1
|
Li R, Ren C, Zhang S, Yang Y, Zhao Q, Hou K, Yuan W, Zhang X, Hu B. STSNet: a novel spatio-temporal-spectral network for subject-independent EEG-based emotion recognition. Health Inf Sci Syst 2023; 11:25. [PMID: 37265664 PMCID: PMC10229500 DOI: 10.1007/s13755-023-00226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
How to use the characteristics of EEG signals to obtain more complementary and discriminative data representation is an issue in EEG-based emotion recognition. Many studies have tried spatio-temporal or spatio-spectral feature fusion to obtain higher-level representations of EEG data. However, these studies ignored the complementarity between spatial, temporal and spectral domains of EEG signals, thus limiting the classification ability of models. This study proposed an end-to-end network based on ManifoldNet and BiLSTM networks, named STSNet. The STSNet first constructed a 4-D spatio-temporal-spectral data representation and a spatio-temporal data representation based on EEG signals in manifold space. After that, they were fed into the ManifoldNet network and the BiLSTM network respectively to calculate higher-level features and achieve spatio-temporal-spectral feature fusion. Finally, extensive comparative experiments were performed on two public datasets, DEAP and DREAMER, using the subject-independent leave-one-subject-out cross-validation strategy. On the DEAP dataset, the average accuracy of the valence and arousal are 69.38% and 71.88%, respectively; on the DREAMER dataset, the average accuracy of the valence and arousal are 78.26% and 82.37%, respectively. Experimental results show that the STSNet model has good emotion recognition performance.
Collapse
Affiliation(s)
- Rui Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Chao Ren
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Sipo Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Yikun Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Qiqi Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Kechen Hou
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Wenjie Yuan
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Xiaowei Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 Gansu China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 Gansu China
| |
Collapse
|
2
|
Zhang W, Ding H, Li Z, Linghu E. Laparoscopic common bile duct exploration through the cystic duct using flexible cholangioscopy combined with cholecystectomy for managing cholecysto-choledocholithiasis. Endoscopy 2023; 55:E659-E661. [PMID: 37084780 PMCID: PMC10121327 DOI: 10.1055/a-2067-4587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Affiliation(s)
- Wengang Zhang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhenjuan Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Enqiang Linghu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Zeng WX, Liu H, Hao Y, Qian KY, Tian FM, Li L, Yu B, Zeng XT, Gao S, Hu Z, Tong XJ. CaMKII mediates sexually dimorphic synaptic transmission at neuromuscular junctions in C. elegans. J Cell Biol 2023; 222:e202301117. [PMID: 37624117 PMCID: PMC10457463 DOI: 10.1083/jcb.202301117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Sexually dimorphic behaviors are ubiquitous throughout the animal kingdom. Although both sex-specific and sex-shared neurons have been functionally implicated in these diverse behaviors, less is known about the roles of sex-shared neurons. Here, we discovered sexually dimorphic cholinergic synaptic transmission in C. elegans occurring at neuromuscular junctions (NMJs), with males exhibiting increased release frequencies, which result in sexually dimorphic locomotion behaviors. Scanning electron microscopy revealed that males have significantly more synaptic vesicles (SVs) at their cholinergic synapses than hermaphrodites. Analysis of previously published transcriptome identified the male-enriched transcripts and focused our attention on UNC-43/CaMKII. We ultimately show that differential accumulation of UNC-43 at cholinergic neurons controls axonal SV abundance and synaptic transmission. Finally, we demonstrate that sex reversal of all neurons in hermaphrodites generates male-like cholinergic transmission and locomotion behaviors. Thus, beyond demonstrating UNC-43/CaMKII as an essential mediator of sex-specific synaptic transmission, our study provides molecular and cellular insights into how sex-shared neurons can generate sexually dimorphic locomotion behaviors.
Collapse
Affiliation(s)
- Wan-Xin Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Yue Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kang-Ying Qian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Tian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Bin Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
- Department of Neuroscience, City University of Hong Kong, Kowloon, China
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
4
|
Xu RH, Lu M, Zhang S, Dong D. EQ-5D and SF-6D health utility scores in patients with spinal and bulbar muscular atrophy. Eur J Health Econ 2023; 24:1399-1410. [PMID: 36418784 DOI: 10.1007/s10198-022-01551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE This study assessed patient-reported health-related quality of life (HRQoL) using two generic preference-based measures in Chinese patients with spinal and bulbar muscular atrophy (SBMA) and identified demographic and clinical determinants of health utility scores in this population. METHODS This study used cross-sectional data of 212 Chinese patients with SBMA who completed both the EQ-5D and SF-6D. Association between response to EQ-5D and SF-6D dimensions was examined using Spearman's correlation coefficient, and the association between the two utility scores was assessed using Pearson's correlation coefficient. The variations in utility scores across patients in different subgroups were compared using one-way ANOVA. Bland-Altman (B-A) plot was used to assess the agreement of utility scores between EQ-5D and SF-6D. A multivariate Tobit regression model was employed to estimate the association between utility scores and the presence of symptoms and chronic conditions. RESULTS The mean utility scores for the EQ-5D and SF-6D were 0.54 and 0.56, respectively. The hypothesized correlation between the EQ-5D and SF-6D dimensions ranged from 0.31 to 0.58, and the correlation between their utility scores was 0.64. An acceptable agreement between EQ-5D and SF-6D utility scores was identified by B-A plot. Patients with chronic diseases, misdiagnosis, high financial burden, and several clinical symptoms were highly likely to report a low health utility score. CONCLUSIONS This study is the first to investigate the HRQoL of patients with SBMA worldwide. The estimated health utility scores for EQ-5D and SF-6D can be utilized as baseline data for future cost-utility analyses of SBMA-related interventions.
Collapse
Affiliation(s)
- Richard Huan Xu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR, China
| | - Ming Lu
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Dong Dong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Sun T, Zhang X, Lv S, Lin X, Ma J, Liu J, Fang Q, Tang L, Liu L, Cao W, Liu B, Zhu Y. Improving the predictions of leaf photosynthesis during and after short-term heat stress with current rice models. Plant Cell Environ 2023; 46:3353-3370. [PMID: 37575035 DOI: 10.1111/pce.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
In response to increasing global warming, extreme heat stress significantly alters photosynthetic production. While numerous studies have investigated the temperature effects on photosynthesis, factors like vapour pressure deficit (VPD), leaf nitrogen, and feedback of sink limitation during and after extreme heat stress remain underexplored. This study assessed photosynthesis calculations in seven rice growth models using observed maximum photosynthetic rate (Pmax ) during and after short-term extreme heat stress in multi-year environment-controlled experiments. Biochemical models (FvCB-type) outperformed light response curve-based models (LRC-type) when incorporating observed leaf nitrogen, photosynthetically active radiation, temperatures, and intercellular CO2 concentration (Ci ) as inputs. Prediction uncertainty during heat stress treatment primarily resulted from variation in temperatures and Ci . Improving FVPD (the slope for the linear effect of VPD on Ci /Ca ) to be temperature-dependent, rather than constant as in original models, significantly improved Ci prediction accuracy under heat stress. Leaf nitrogen response functions led to model variation in leaf photosynthesis predictions after heat stress, which was mitigated by calibrated nitrogen response functions based on active photosynthetic nitrogen. Additionally, accounting for observed differences in carbohydrate accumulation between panicles and stems during grain filling improved the feedback of sink limitation, reducing Ci overestimation under heat stress treatments.
Collapse
Affiliation(s)
- Ting Sun
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xiaohu Zhang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Suyu Lv
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xuanhao Lin
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jifeng Ma
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaming Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qizhao Fang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liang Tang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Leilei Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weixing Cao
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yan Zhu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Zhong H, Zhang R, Li G, Huang P, Zhang Y, Zhu J, Kuang J, Hutchins AP, Qin D, Zhu P, Pei D, Li D. c-JUN is a barrier in hESC to cardiomyocyte transition. Life Sci Alliance 2023; 6:e202302121. [PMID: 37604584 PMCID: PMC10442936 DOI: 10.26508/lsa.202302121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
Loss of c-JUN leads to early mouse embryonic death, possibly because of a failure to develop a normal cardiac system. How c-JUN regulates human cardiomyocyte cell fate remains unknown. Here, we used the in vitro differentiation of human pluripotent stem cells into cardiomyocytes to study the role of c-JUN. Surprisingly, the knockout of c-JUN improved cardiomyocyte generation, as determined by the number of TNNT2+ cells. ATAC-seq data showed that the c-JUN defect led to increased chromatin accessibility on critical regulatory elements related to cardiomyocyte development. ChIP-seq data showed that the knockout c-JUN increased RBBP5 and SETD1B expression, leading to improved H3K4me3 deposition on key genes that regulate cardiogenesis. The c-JUN KO phenotype could be copied using the histone demethylase inhibitor CPI-455, which also up-regulated H3K4me3 levels and increased cardiomyocyte generation. Single-cell RNA-seq data defined three cell branches, and knockout c-JUN activated more regulons that are related to cardiogenesis. In summary, our data demonstrated that c-JUN could regulate cardiomyocyte cell fate by modulating H3K4me3 modification and chromatin accessibility and shed light on how c-JUN regulates heart development in humans.
Collapse
Affiliation(s)
- Hui Zhong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ran Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- https://ror.org/00zat6v61 Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Guihuan Li
- https://ror.org/00zat6v61 Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yudan Zhang
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Dajiang Qin
- https://ror.org/00zat6v61 Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences; Hong Kong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease and Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Dongwei Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- https://ror.org/00zat6v61 Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Li YY, Xiong YM, Chen XY, Sheng JY, Lv L, Li XH, Qin ZF. Extended exposure to tetrabromobisphenol A-bis(2,3-dibromopropyl ether) leads to subfertility in male mice at the late reproductive age. Arch Toxicol 2023; 97:2983-2995. [PMID: 37606655 DOI: 10.1007/s00204-023-03589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Tetrabromobisphenol A-bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), a commonly used brominated flame retardant as a decabromodiphenyl ether substitute, has been detected in various environmental compartments, but its health hazards remain largely unknown. Our recent study showed that low-dose exposure of male mice to TBBPA-BDBPE from postnatal day (PND) 0 to 56 caused remarkable damage to the microtubule skeleton in Sertoli cells and the blood-testis barrier (BTB) but exerted little effect on conventional reproductive endpoints in adulthood. To investigate whether TBBPA-BDBPE may cause severe reproductive impairments at late reproductive age, here, we extended exposure of historically administrated male mice to 8-month age and allowed them to mate with non-treated females for the evaluation of fertility, followed by a general examination for the reproductive system. As expected, we found that 8-month exposure to 50 μg/kg/d as well as 1000 μg/kg/d TBBPA-BDBPE caused severe damage to the reproductive system, including reduced sperm counts, increased sperm abnormality, histological alterations of testes. Moreover, microtubule damage and BTB-related impairment were still observed following 8-month exposure. Noticeably, high-dose TBBPA-BDBPE-treated mice had fewer offspring with a female-biased sex ratio. All results show that long-term exposure to TBBPA-BDBPE caused severe reproductive impairment, including poor fertility at late reproductive age. It is therefore concluded that slight testicular injuries in early life can contribute to reproductive impairment at late reproductive age, highlighting that alterations in certain non-conventional endpoints should be noticed as well as conventional endpoints in future reproductive toxicity studies.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Yi Sheng
- The High School Affiliated to Renmin, University of China, Beijing, 100080, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Life Sciences, Hengshui University, Hebei, 053000, China.
| |
Collapse
|
8
|
Ma Y, Zhu W, Zhao W, Zhang B, He J, Zhang C, Li P, Hu Y, Zhou Z, Yan Z, Li J, Cai W, Ren G, Chen R. MtESN2 is a subgroup II sulphate transporter required for symbiotic nitrogen fixation and prevention of nodule early senescence in Medicago truncatula. Plant Cell Environ 2023; 46:3558-3574. [PMID: 37545348 DOI: 10.1111/pce.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Adequate distribution of mineral sulphur (S) nutrition to nodules mediated by sulphate transporters is crucial for nitrogen fixation in symbiosis establishment process. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we characterized the function of Early Senescent Nodule 2 (MtESN2), a gene crucial to nitrogen fixation in Medicago truncatula. Mutations in MtESN2 resulted in severe developmental and functional defects including dwarf shoots, early senescent nodules, and lower nitrogenase activity under symbiotic conditions compared to wild-type plants. MtESN2 encodes an M. truncatula sulphate transporter that is expressed only in roots and nodules, with the highest expression levels in the transition zone and nitrogen-fixing zone of nodules. MtESN2 exhibited sulphate transport activity when expressed in yeast. Immunolocalization analysis showed that MtESN2-yellow fluorescent protein fusion protein was localized to the plasma membranes of both uninfected and infected cells of nodules, where it might transport sulphate into both rhizobia-infected and uninfected cells within the nodules. Our results reveal an unreported sulphate transporter that contributes to effective symbiosis and prevents nodule early senescence in M. truncatula.
Collapse
Affiliation(s)
- Yanlin Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Weike Zhu
- College of Cuiying Honors, Lanzhou University, Lanzhou, China
| | - Weichen Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Beihong Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanxia He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chenyan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Peng Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yibo Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zaicai Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zezhang Yan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanjuan Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenkai Cai
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Zheng B, Li YT, Wu QP, Zhao W, Ren TH, Zhang XH, Li G, Ning TY, Zhang ZS. Maize (Zea mays L.) planted at higher density utilizes dynamic light more efficiently. Plant Cell Environ 2023; 46:3305-3322. [PMID: 37485705 DOI: 10.1111/pce.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C4 species than in C3 species. However, little is known about the plasticity of PLUE under dynamic light in C4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.
Collapse
Affiliation(s)
- Bin Zheng
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Yu-Ting Li
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Qiu-Ping Wu
- Jining Academy of Agricultural Sciences, Shandong, P. R. China
| | - Wei Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Ting-Hu Ren
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Xing-Hui Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Geng Li
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Tang-Yuan Ning
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Zi-Shan Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| |
Collapse
|
10
|
Zhao X, Zhang X, Pei J, Liu Y, Niu W, Sun H. Targeting BCAA metabolism to potentiate metformin's therapeutic efficacy in the treatment of diabetes in mice. Diabetologia 2023; 66:2139-2153. [PMID: 37581618 DOI: 10.1007/s00125-023-05985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/07/2023] [Indexed: 08/16/2023]
Abstract
AIMS/HYPOTHESIS An increasing body of evidence has shown that the catabolism of branched-chain amino acids (BCAAs; leucine, isoleucine and valine) is impaired in obese animals and humans, contributing to the development of insulin resistance and type 2 diabetes. Promoting BCAA catabolism benefits glycaemic control. It remains unclear whether BCAA catabolism plays a role in the therapeutic efficacy of currently used glucose-lowering drugs such as metformin. METHODS Mice were treated with vehicle or metformin (250 mg/kg per day) for more than 4 weeks to investigate the effects of metformin in vivo. In vitro, primary mouse hepatocytes and HepG2 cells were treated with 2 mmol/l metformin. The therapeutic efficacy of metformin in the treatment of type 2 diabetes was assessed in genetically obese (ob/ob) mice and high-fat-diet-induced obese (DIO) mice. Enhancing BCAA catabolism was achieved with a pharmacological agent, 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (BT2). The ob/ob mice were treated with a low-BCAA diet or intermittent protein restriction (IPR) to reduce BCAA nutritional intake. RESULTS Metformin unexpectedly inhibited the catabolism of BCAAs in obese mice, resulting in an elevation of BCAA abundance. AMP-activated protein kinase (AMPK) mediated the impact of metformin on BCAA catabolism in hepatocytes. Importantly, enhancing BCAA catabolism via a pharmacological agent BT2 significantly potentiated the glucose-lowering effect of metformin while decreasing circulating BCAA levels in ob/ob and DIO mice. Similar outcomes were achieved by a nutritional approach of reducing BCAA intake. IPR also effectively reduced the circulating BCAA abundance and enhanced metformin's glucose-lowering effect in ob/ob mice. BT2 and IPR treatments reduced the expression of fructose-1,6-bisphosphatase 1, a rate-limiting enzyme in gluconeogenesis, in the kidney but not liver, indicating the involvement of renal gluconeogenesis. CONCLUSIONS/INTERPRETATION Metformin self-limits its therapeutic efficacy in the treatment of type 2 diabetes by triggering the suppression of BCAA catabolism. Enhancing BCAA catabolism pharmacologically or reducing BCAA intake nutritionally potentiates the glucose-lowering effect of metformin. These data highlight the nutritional impact of protein on metformin's therapeutic efficacy and provide new strategies targeting BCAA metabolism to improve metformin's effects on the clinical outcome in diabetes.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xuejiao Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jingjing Pei
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yajin Liu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| | - Haipeng Sun
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
- Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
11
|
Zhang Z, Sun W, Wen L, Liu Y, Guo X, Liu Y, Yao C, Xue Q, Sun Z, Wang Z, Zhang Y. Dynamic gene regulatory networks improving spike fertility through regulation of floret primordia fate in wheat. Plant Cell Environ 2023; 46:3628-3643. [PMID: 37485926 DOI: 10.1111/pce.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The developmental process of spike is critical for spike fertility through affecting floret primordia fate in wheat; however, the genetic regulation of this dynamic and complex developmental process remains unclear. Here, we conducted a high temporal-resolution analysis of spike transcriptomes and monitored the number and morphology of floret primordia within spike. The development of all floret primordia in a spike was clearly separated into three distinct phases: differentiation, pre-dimorphism and dimorphism. Notably, we identified that floret primordia with meiosis ability at the pre-dimorphism phase usually develop into fertile floret primordia in the next dimorphism phase. Compared to control, increasing plant space treatment achieved the maximum increasement range (i.e., 50%) in number of fertile florets by accelerating spike development. The process of spike fertility improvement was directed by a continuous and dynamic regulatory network involved in transcription factor and genes interaction. This was based on the coordination of genes related to heat shock protein and jasmonic acid biosynthesis during differentiation phase, and genes related to lignin, anthocyanin and chlorophyll biosynthesis during dimorphism phase. The multi-dimensional association with high temporal-resolution approach reported here allows rapid identification of genetic resource for future breeding studies to realise the maximum spike fertility potential in more cereal crops.
Collapse
|