1
|
Wang S, Xing Y, Wang R, Jin Z. Jianpi Huayu Decoction suppresses cellular senescence in colorectal cancer via p53-p21-Rb pathway: Network pharmacology and in vivo validation. J Ethnopharmacol 2024; 319:117347. [PMID: 37931831 DOI: 10.1016/j.jep.2023.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Huayu Decoction (JHD) is an herbal prescription in traditional Chinese medicine based on Sijunzi Decoction to treat patients with colorectal cancer (CRC). Its effects on the inhibition of CRC cell proliferation and tumor growth are promising; however, its multicomponent nature makes a complete understanding of its mechanism challenging. AIM OF THE STUDY To explore the therapeutic targets and underlying molecular pathways of JHD in CRC treatment using network pharmacology techniques and in vivo validation. MATERIALS AND METHODS The active ingredients and targets of JHD were identified, compound-target interactions were mapped, and enrichment analyses were conducted. We identified the hub targets of JHD-induced cellular senescence in CRC. The binding affinities between compounds and targets were evaluated through molecular docking. Subsequently, we conducted bioinformatic analyses to compare the expression of hub targets between colorectal tissue and normal tissue. Finally, in vivo experiments were carried out utilizing a xenograft model to assess the effects of JHD on cellular senescence biomarkers. RESULTS Network pharmacology revealed 129 active ingredients in JHD that were associated with 678 targets, leading to the construction of compound-target and target-pathway networks. Enrichment analyses highlighted key pathways including cellular senescence. Based on this, hub targets associated with cellular senescence were determined and validated. Molecular docking indicated favorable interactions between the active components and hub targets. Gene expression and survival analysis in CRC tissue were consistent with the potential roles of hub genes. Animal experiments showed that JHD triggered cellular senescence and suppressed the growth of CRC by regulating the p53-p21-Rb signaling pathway. CONCLUSIONS This research adopted network pharmacology, bioinformatics, and animal experiments to unveil that JHD induces cellular senescence in CRC by influencing the p53-p21-Rb pathway and senescence-associated secretory phenotypes, highlighting its potential as a CRC treatment.
Collapse
Affiliation(s)
- Shiting Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Xing
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruiping Wang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Jin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Mu BX, Li Y, Ye N, Liu S, Zou X, Qian J, Wu C, Zhuang Y, Chen M, Zhou JY. Understanding apoptotic induction by Sargentodoxa cuneata-Patrinia villosa herb pair via PI3K/AKT/mTOR signalling in colorectal cancer cells using network pharmacology and cellular studies. J Ethnopharmacol 2024; 319:117342. [PMID: 37879505 DOI: 10.1016/j.jep.2023.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargentodoxa cuneata (Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson, DXT)-Patrinia villosa(Patrinia villosa (Thunb.) Dufr, BJC) constitutes a commonly employed herb pair in Chinese medicine for colorectal cancer (CRC) treatment. Modern pharmacological investigations have revealed the anticancer activities of both Sargentodoxa cuneata and Patrinia villosa. Nevertheless, comprehensive studies are required to discern the specific antitumor active ingredients and mechanism of action when these two herbs are used in combination. AIM OF THE STUDY Through the integration of network pharmacology, molecular docking techniques, experimental assays, and bioinformatics analysis, our study aims to forecast the active ingredients, potential targets, and molecular mechanisms underlying the therapeutic efficacy of this herb pair against CRC. MATERIALS AND METHODS Plant names (1, Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson; 2, Patrinia villosa (Thunb.) Dufr.) have been verified through WorldFloraOnline (www.worldFloraonline.org) and MPNs (http://mpns.kew.org). The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were utilized for screening the active ingredients of the herb pair. The PharmMapper database was employed to predict the target proteins for each active ingredient. CRC-related targets were obtained from the Genecards database, Online Mendelian Inheritance in Man (OMIM) database, Disease Gene Network (DisGeNET) database, and Therapeutic Target Database (TTD). Common targets were identified by intersecting the target proteins of all active ingredients with CRC-related targets. Protein-protein interactions (PPI) for the common target proteins were constructed using the String database and Cytoscape 3.9.1 software. Network topology analysis facilitated the identification of core targets. These core targets were subjected to enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the Metascape database. Molecular docking was performed using Discovery Studio 2019 to investigate the interactions between the active ingredients and core target proteins. The core targets were validated through bioinformatics analysis using GEPIA, HPA, and the cBioPortal database. Finally, a series of experiments were conducted to further validate the results in vitro. RESULT A total of 15 active ingredients and 255 herb targets were identified, resulting in 66 common targets in conjunction with 6113 disease targets. The PPI analysis highlighted AKT1, EGFR, CASP3, SRC, and ESR1 as core targets. KEGG enrichment analysis indicated significant enrichment in the PI3K-AKT signaling pathway, a pathway associated with cancer. Molecular docking experiments confirmed favorable interactions between dihydroguaiaretic acid and the core target proteins (AKT1, EGFR, CASP3, and ESR1). Bioinformatics analysis revealed differential expression of EGFR and CASP3 in normal and CRC tissues. Cellular experiments further verified that dihydroguaiaretic acid induces apoptosis in colorectal cancer cells through the PI3K-AKT signaling pathway. CONCLUSION Our network pharmacology study has elucidated that the Sargentodoxa cuneata-Patrinia villosa herb pair exerts the negative regulation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the induction of apoptosis in colorectal cancer cells. This research has predicted and validated the active ingredients, potential targets, and molecular mechanisms of Sargentodoxa cuneata-Patrinia villosa in the treatment of CRC, providing scientific evidence for the use of traditional Chinese medicine in managing CRC.
Collapse
Affiliation(s)
- Bai-Xiang Mu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Yuanxiang Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Ningyuan Ye
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Shenlin Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Xi Zou
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Jun Qian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Cunen Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu, 210046, China.
| | - Yuwen Zhuang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Min Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Jin-Yong Zhou
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
3
|
Li F, Qiu F, Fan X, Yu Q, Liu S, Guo Y, Zhu Y, Xi X, Du B. Expression of CD44 is regulated by ELF3 in 5-FU treated colorectal cancer cells. Gene 2024; 892:147896. [PMID: 37832805 DOI: 10.1016/j.gene.2023.147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The development of chemoresistance in colorectal cancer (CRC) cells was usually thought to be inevitable as a result of continuing exposure to chemotherapeutic drugs. The existence of cancer stem cells (CSCs) within CRC tissues was recently suggested to play importance roles for this process. In this study, in order to mimic a dose schedule used in clinic (continuous infusion), low dose of fluorouracil (IC10 of 5-FU) was used to treat CRC cells. Our results showed that the expression of CD44, including some other CSCs markers were all increased after 5-FU treatment. The stemness properties of survived CRC cells were also observed to be enhanced. RNA-seq analysis revealed that ELF3, one of the members of ETS (E26 transformation-specific) transcription activator family, was increased along with CD44 after 5-FU treatment of CRC cells. Results from dual-luciferase reporter assay revealed that the transcription of CD44 could be activated by ELF3 in CRC cells. The induced CD44 expression in 5-FU treated CRC cells could also be decreased after the expression of ELF3 was inhibited. Moreover, it could be observed that the expression of ELF3 is significantly higher in CD44+ CRC cells. Taken together, our results suggested that CD44 expression might be regulated by ELF3 and could be induced after 5-FU treatment of CRC cells. Inhibition of ELF3 might be a promising treatment method when it was used in combination with chemotherapeutics to overcome chemoresistance formation during CRC treatment in clinic.
Collapse
Affiliation(s)
- Fangzhou Li
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Fen Qiu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Xu Fan
- Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Qingqing Yu
- Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Shuaitong Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Yang Guo
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Yunhe Zhu
- Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China.
| | - Xueyan Xi
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China.
| | - Boyu Du
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan City, Hubei Province, PR China.
| |
Collapse
|
4
|
Housini M, Dariya B, Ahmed N, Stevens A, Fiadjoe H, Nagaraju GP, Basha R. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene 2024; 892:147857. [PMID: 37783294 DOI: 10.1016/j.gene.2023.147857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly detected cancer with a serious global health issue. The rates for incidence and mortality for CRC are alarming, especially since the prognosis is abysmal when the CRC is diagnosed at an advanced or metastatic stage. Both type of (modifiable/ non-modifiable) types of risk factors are established for CRC. Despite the advances in recent technology and sophisticated research, the survival rate is still meager due to delays in diagnosis. Therefore, there is urgently required to identify critical biomarkers aiming at early diagnosis and improving effective therapeutic strategies. Additionally, a complete understanding of the dysregulated pathways like PI3K/Akt, Notch, and Wnt associated with CRC progression and metastasis is very beneficial in designing a therapeutic regimen. This review article focused on the dysregulated signaling pathways, genetics and epigenetics alterations, and crucial biomarkers of CRC. This review also provided the list of clinical trials targeting signaling cascades and therapies involving small molecules. This review discusses up-to-date information on novel diagnostic and therapeutic strategies alongside specific clinical trials.
Collapse
Affiliation(s)
- Mohammad Housini
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, MN 5545, United States
| | - Nadia Ahmed
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Alyssa Stevens
- Missouri Southern State University, Joplin, MO 64801, United States
| | - Hope Fiadjoe
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, The University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
5
|
Zhai P, Zhang H, Li Q, Yang M, Guo Y, Xing C. DNMT1-mediated NR3C1 DNA methylation enables transcription activation of connexin40 and augments angiogenesis during colorectal cancer progression. Gene 2024; 892:147887. [PMID: 37813207 DOI: 10.1016/j.gene.2023.147887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer (CRC) continues to be a major contributor to cancer-related mortality. Connexin 40 (CX40) is one of the major gap junction proteins with the capacity in regulating cell-to-cell communication and angiogenesis. This study investigates its role in angiogenesis in CRC and explores the regulatory mechanism. Aberrant high CX40 expression was detected in tumor tissues, which was associated with a poor prognosis in CRC patients. Elevated CX40 expression was detected in CRC cell lines as well. Conditioned medium of SW620 and HT29 cell lines was used to induce angiogenesis of human umbilical vein endothelial cells (HUVECs). CX40 knockdown in CRC cells reduced angiogenesis and mobility of HUVECs and blocked CRC cell proliferation, mobility, and survival. Following bioinformatics predictions, we validated by chromatin immunoprecipitation and luciferase assays that nuclear receptor subfamily 3 group C member 1 (NR3C1), which was poorly expressed in CRC samples, suppressed CX40 transcription. The poor NR3C1 expression was attributive to DNA hypermethylation induced by DNA methyltransferase 1 (DNMT1). Restoration of NR3C1 suppressed the pro-angiogenic effect, proliferation and survival, and tumorigenic activity of CRC cells, which were, however, rescued by CX40 upregulation. Collectively, this study demonstrates that transcription activation of CX40 upon DNMT1-mediated NR3C1 DNA methylation potentiates angiogenesis in CRC.
Collapse
Affiliation(s)
- Peng Zhai
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, PR China; Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an 223300, Jiangsu, PR China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu, PR China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, PR China; Department of Gerneral Surgery, The Second Afilliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, PR China
| | - Ming Yang
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an 223300, Jiangsu, PR China
| | - Yunhu Guo
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an 223300, Jiangsu, PR China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, PR China.
| |
Collapse
|
6
|
Zhang RY, Cheng K, Huang ZY, Zhang XS, Li Y, Sun X, Yang XQ, Hu YG, Hou XL, Liu B, Chen W, Fan JX, Zhao YD. M1 macrophage-derived exosome for reprograming M2 macrophages and combining endogenous NO gas therapy with enhanced photodynamic synergistic therapy in colorectal cancer. J Colloid Interface Sci 2024; 654:612-625. [PMID: 37862809 DOI: 10.1016/j.jcis.2023.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Reprogramming immunosuppressive M2 macrophages into M1 macrophages in tumor site provides a new strategy for the immunotherapy of colorectal cancer. In this study, M1 macrophage-derived exosome nanoprobe (M1UC) with Ce6-loaded upconversion material is designed to enhance the photodynamic performance of Ce6 while reprogramming M2 macrophages at tumor site and producing NO gas for three-mode synergistic therapy. Under the excitation of near-infrared light at 808 nm, the probe can generate 660 nm up-conversion fluorescence, which enables the photosensitizer Ce6 to produce ROS efficiently. In addition, the probe leads the production of NO by nitric oxide synthase on exosomes. Confocal laser and flow cytometry results show that M1UC probe reprograms M2 macrophages into M1 macrophages with an efficiency of 95.12%. The cell experiments show that the apoptosis rate of the three-mode synergistic therapy group is 78.8%, and the therapeutic effect is significantly higher than those of the other single treatment groups. In vivo experiments results show that M1UC probes maximally gather at the tumor site after 12 h of intravenous injection in orthotopic colorectal cancer mice. After 808 nm laser irradiation, the survival rate of mice is 100% and the recurrence rate was 0 within 60 d, and the therapeutic effect is significantly higher than those of other single treatment groups, which is also confirmed by immunohistochemistry. This M1 macrophage-derived exosome nanoplatform which is based on the three modes of immunotherapy, gas therapy and photodynamic therapy, provides a new design idea for the diagnosis and treatment of deep tumors.
Collapse
Affiliation(s)
- Ruo-Yun Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, Hubei, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, Hubei, PR China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Zhuo-Yao Huang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Shuai Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan 430081, Hubei, PR China
| | - Yong Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xing Sun
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Quan Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
7
|
Kralova K, Vrtelka O, Fouskova M, Hribek P, Bunganic B, Miskovicova M, Urbanek P, Zavoral M, Petruzelka L, Habartova L, Setnicka V. Raman spectroscopy and Raman optical activity of blood plasma for differential diagnosis of gastrointestinal cancers. Spectrochim Acta A Mol Biomol Spectrosc 2024; 305:123430. [PMID: 37776835 DOI: 10.1016/j.saa.2023.123430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Improving the early diagnosis of gastrointestinal cancers is a crucial step in reducing their mortality. Given the non-specificity of the initial symptoms, the ability of any diagnostic method to differentiate between various types of gastrointestinal cancers also needs to be addressed. To detect disease-specific alterations in biomolecular structure and composition of the blood plasma, we have implemented an approach combining Raman spectroscopy and its conformation-sensitive polarized version, Raman optical activity, to analyze blood plasma samples of patients suffering from three different types of gastrointestinal cancer - hepatocellular, colorectal and pancreatic. First, we aimed to discriminate any type of gastrointestinal cancer from healthy control individuals; inthenext step, the focus was on differentiating among the three cancer types studied. The more straightforward of the two statistical approaches tested, the combination of linear discriminant analysis and principal component analysis applied to the entire spectral dataset, allowed the discrimination of cancer and control samples with 87% accuracy. The three gastrointestinal cancers were classified with an overall accuracy of 76%. The second method, the linear discriminant analysis applied to a selection of spectral bands, yielded even higher values. Cancer and control samples were distinguished with 89% accuracy and hepatocellular, colorectal and pancreatic cancer with an overall accuracy of 87%. The results obtained in our study suggest that the proposed approach may become a disease-specific diagnostic tool in daily clinical practice.
Collapse
Affiliation(s)
- Katerina Kralova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Ondrej Vrtelka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Marketa Fouskova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Petr Hribek
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske nemocnice 1200, 169 02 Prague 6, Czech Republic; Department of Internal Medicine, Faculty of Military Health Sciences in Hradec Kralove, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Bohus Bunganic
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske nemocnice 1200, 169 02 Prague 6, Czech Republic
| | - Michaela Miskovicova
- Department of Oncology, First Faculty of Medicine of Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Petr Urbanek
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske nemocnice 1200, 169 02 Prague 6, Czech Republic
| | - Miroslav Zavoral
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske nemocnice 1200, 169 02 Prague 6, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine of Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Lucie Habartova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Vladimir Setnicka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
8
|
Li Y, Cai M, Zhang W, Liu Y, Yuan X, Han N, Li J, Jin S, Ding C. Cas12a-based direct visualization of nanoparticle-stabilized fluorescence signal for multiplex detection of DNA methylation biomarkers. Biosens Bioelectron 2024; 244:115810. [PMID: 37924654 DOI: 10.1016/j.bios.2023.115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
The CRISPR-Cas12a RNA-guided complexes hold immense promise for nucleic acid detection. However, limitations arise from their specificity in detecting off-targets and the stability of the signal molecules. Here, we have developed a platform that integrates multiplex amplification and nanomolecular-reporting signals, allowing us to detect various clinically relevant nucleic acid targets with enhanced stability, sensitivity, and visual interpretation. Through the electrostatic co-assembly of the Oligo reporter with oppositely charged nanoparticles, we observed a significant enhancement in its stability in low-pollution environments, reaching up to a threefold increase compared to the original version. Additionally, the fluorescence efficiency was expanded by three orders of magnitude, broadening the detection range considerably. Utilizing a multiplex strategy, this assay can accomplish simultaneous detection of multiple targets and single-point indication detection of nine specific targets. This significant advancement heightened the sensitivity of disease screening and improved the accuracy of diagnosing disease-related changes. We tested this assay in a colorectal cancer model, demonstrating that it can identify DNA methylation features at the aM-level within 40-60 min. Validation using clinical samples yielded consistent results with qPCR and bisulfite sequencing, affirming the assay's reliability and potential for clinical applications.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Miaomiao Cai
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenwen Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ying Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoqing Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Na Han
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing Li
- Yinchuan Hospital of Traditional Chinese Medicine, Ningxia, 750001, China
| | - Shengnan Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chunming Ding
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
9
|
Wei J, Zheng Z, Hou X, Jia F, Yuan Y, Yuan F, He F, Hu L, Zhao L. Echinacoside inhibits colorectal cancer metastasis via modulating the gut microbiota and suppressing the PI3K/AKT signaling pathway. J Ethnopharmacol 2024; 318:116866. [PMID: 37429503 DOI: 10.1016/j.jep.2023.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Echinacoside (ECH) is the dominant phenylethanoid glycoside-structured compound identified from our developed herbal formula Huangci granule, which has been previously reported to inhibit the invasion and metastasis of CRC and prolong patients' disease-free survival duration. Though ECH has inhibitory activity against aggressive colorectal cancer (CRC) cells, its anti-metastasis effect in vivo and the action mechanism is undetermined. Given that ECH has an extremely low bioavailability and gut microbiota drives the CRC progression, we hypothesized that ECH could inhibit metastatic CRC by targeting the gut microbiome. AIM OF THE STUDY The purpose of this study was to investigate the impact of ECH on colorectal cancer liver metastasis in vivo and its potential mechanisms. MATERIALS AND METHODS An intrasplenic injection-induced liver metastatic model was established to examine the efficiency of ECH on tumor metastasis in vivo. Fecal microbiota from the model group and the ECH group were separately transplanted into pseudo-sterile CRLM mice in order to verify the role of gut flora in the ECH anti-metastatic effect. The 16S rRNA gene sequence was applied to analyze the structure and composition of the gut microbiota after ECH intervention, and the effect of ECH on short-chain fatty acid (SCFAs)-producing bacteria growth was proven by anaerobic culturing in vitro. GC-MS was applied to quantitatively analyze the serum SCFAs levels in mice. RNA-seq was performed to detect the gene changes involving tumor-promoting signaling pathway. RESULTS ECH inhibited CRC metastasis in a dose-dependent manner in the metastatic colorectal cancer (mCRC) mouse model. Manipulation of gut bacteria in the mCRC mouse model further proved that SCFA-generating gut bacteria played an indispensable role in mediating the antimetastatic action of ECH. Under an anaerobic condition, ECH benefited SCFA-producing microbiota without affecting the total bacterial load, presenting a dose-dependent promotion on the growth of a butyrate producer, Faecalibacterium prausnitzii (F.p). Furthermore, ECH-reshaped or F.p-colonized microbiota with a high butyrate-producing capability inhibited liver metastasis by suppressing PI3K/AKT signaling and reversing the epithelial-mesenchymal transition (EMT) process, whereas this anti-metastatic ability was abrogated by the butyrate synthase inhibitor heptanoyl-CoA. CONCLUSION This study demonstrated that ECH exhibits oral anti-metastatic efficacy by facilitating butyrate-producing gut bacteria, which downregulates PI3K/AKT signaling and EMT. It hints at a novel role for ECH in CRC therapy.
Collapse
Affiliation(s)
- Jiao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongmei Zheng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinxin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengjing Jia
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fuwen Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Zhou JY, Wu C, Shen Z, Liu S, Zou X, Qian J, Wu Z, Huan X, Mu BX, Ye N, Ning Y, Wang Y, Chen M, Zhuang Y. Yiqi Huayu Jiedu Decoction inhibits liver metastasis of colorectal cancer via enhancing natural killer cells function. J Ethnopharmacol 2024; 318:116915. [PMID: 37451487 DOI: 10.1016/j.jep.2023.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Complementary treatment with valuable efficacy and less toxic or side effect is in urgent need for colorectal cancer (CRC) therapy. Yiqi Huayu Jiedu Decoction (YHJD) is a polyherbal formulation which has been applied in clinic to treat CRC for a long period of time. Nevertheless, the potential active ingredients and molecular mechanism remains to be further explored. AIM OF THE STUDY To probe the effective compounds of YHJD and its underlying pharmacological effects. Moreover, the influence on liver metastasis of CRC as well as function of natural killer (NK) cells results from YHJD was investigated. MATERIALS AND METHODS The active ingredients and target genes of YHJD was examined through TCMSP databases. Compound-compound target network was performed by applying Cytoscape3.9.1 software. The CRC-related disease targets were explored via DisGeNET database. Venn database was used to find the common genes between CRC and YHJD. Protein-protein interaction network was established by STRING database. Biological process and signaling pathways potentially regulated by YHJD were evaluated by DAVID database. Western blot assay was then conducted to further investigate the effect of YHJD on PI3K-AKT signaling. The association between NK cells content and TNM or pathological stages of CRC was studied through TCGA database. The killing efficiency of NK cells was researched by CCK8 experiment. In vivo assay and HE staining were performed to assess the anti-liver metastasis effect of YHJD. The variation of NK cells content was authenticated by applying flow cytometry analysis. RESULTS We firstly found 176 active ingredients and 268 target genes of YHJD. Compound-compound target network was then established consisted of 455 nodes and 3989 edges. Then 707 disease targets associated with CRC were discovered and 42 common genes between CRC and YHJD were identified. Protein-protein interaction network was further constructed, among which 5 vital genes including TP53, AKT1, TNF, MYC and CCND1 were recognized. GO and KEGG analysis was performed to explore probable biological process and signaling pathways regulated by YHJD. Particularly, the ratio of p-PI3K/PI3K and p-AKT/AKT at protein level representing the activation of PI3K-AKT signaling could be suppressed by YHJD. In addition, bioinformatic analysis detected reduced NK cells content in CRC tissues, which gave rise to more advanced node, metastasis and pathological stages. We next presented that YHJD can improve the killing effect of NK cells on CRC. At meantime, YHJD was capable of suppressing liver metastasis of CRC in vivo as well as promoting the content of NK cells, while the improving effect was partially neutralized by anti-ASGM1. CONCLUSIONS Our research indicates that YHJD can prohibit liver metastasis of CRC in vivo. The therapeutic effectiveness is linked to regulation of multiple targets and effector process, especially PI3K-AKT signaling as well as immune response dominated by NK cells.
Collapse
Affiliation(s)
- Jin-Yong Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Cunen Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu, 210046, China.
| | - Zhaofeng Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Jun Qian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Zhenfeng Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Xiangkun Huan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Bai-Xiang Mu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China.
| | - Ningyuan Ye
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China.
| | - Yongbo Ning
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China.
| | - Yaxing Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China.
| | - Min Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Yuwen Zhuang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
11
|
Yu JH, Tan JN, Zhong GY, Zhong L, Hou D, Ma S, Wang PL, Zhang ZH, Lu XQ, Yang B, Zhou SN, Han FH. Hsa_circ_0020134 promotes liver metastasis of colorectal cancer through the miR-183-5p-PFN2-TGF-β/Smad axis. Transl Oncol 2024; 39:101823. [PMID: 37925795 PMCID: PMC10652212 DOI: 10.1016/j.tranon.2023.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a distinct class of non-coding RNAs that play regulatory roles in the initiation and progression of tumors. With advancements in transcriptome sequencing technology, numerous circRNAs that play significant roles in tumor-related genes have been identified. In this study, we used transcriptome sequencing to analyze the expression levels of circRNAs in normal adjacent tissues, primary colorectal cancer (CRC) tissues, and CRC tissues with liver metastasis. We successfully identified the circRNA hsa_circ_0020134 (circ0020134), which exhibited significantly elevated expression specifically in CRC with liver metastasis. Importantly, high levels of circ0020134 were associated with a poor prognosis among patients. Functional experiments demonstrated that circ0020134 promotes the proliferation and metastasis of CRC cells both in vitro and in vivo. Mechanistically, upregulation of circ0020134 was induced by the transcription factor, PAX5, while miR-183-5p acted as a sponge for circ0020134, leading to partial upregulation of PFN2 mRNA and protein levels, thereby further activating the downstream TGF-β/Smad pathway. Additionally, downregulation of circ0020134 inhibited epithelial-mesenchymal transition (EMT) in CRC cells, which could be reversed by miR-183-5p inhibitor treatment. Collectively, our findings confirm that the circ0020134-miR-183-5p-PFN2-TGF-β/Smad axis induces EMT transformation within tumor cells, promoting CRC proliferation and metastasis, thus highlighting its potential as a therapeutic target for patients with CRC liver metastasis.
Collapse
Affiliation(s)
- Jin-Hao Yu
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Jia-Nan Tan
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Guang-Yu Zhong
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Lin Zhong
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Dong Hou
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Shuai Ma
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Peng-Liang Wang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Zhi-Hong Zhang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Xu-Qiang Lu
- Department of General Surgery, Puning People's Hospital, Puning, China, 515399
| | - Bin Yang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120.
| | - Sheng-Ning Zhou
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120.
| | - Fang-Hai Han
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120.
| |
Collapse
|
12
|
Rahaoui M, Amri F, Seghrouchni N, El Eulj O, Zazour A, Koulali H, Elmqaddem O, Bennani A, Ismaili Z, Kharrasse G. Signet-ring cell carcinoma of the caecum: A case report. Radiol Case Rep 2024; 19:24-28. [PMID: 38046915 PMCID: PMC10692448 DOI: 10.1016/j.radcr.2023.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 12/05/2023] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, with adenocarcinomas being the most frequent type. Signet ring cell carcinoma (SRCC) is a very rare subtype of adenocarcinoma, it commonly occurs in the stomach. However, other digestive localizations are possible including the colon, rectum, and gallbladder. Herein, we report a rare case of a metastatic caecal SRCC in a young male patient, presented to our department for abdominal diffuse pain and distention evolving for 3 months, associated with remarkable weight loss and asthenia. The clinical examination revealed abundant ascites and abdominal tenderness. Laboratory tests showed an elevated C-reactive protein at 35 mg/l (normal value: <6 mg/l), a microcytic hypochromic anemia at 11.2 g/dl (normal value for a man > 13 g/dl), increased carcinoembryonic antigen (CEA) levels, as well as CA 19-9 and CA-125.The abdominal scan showed irregular and asymmetrical thickening with peripheral speculation of the caecum measuring 2.1 cm *5.8 cm. Additionally, adjacent adenopathies, abundant ascites, and peritoneal carcinomatosis were observed to be associated with suspicious bilateral pulmonary nodules and micronodules. The colonoscopy identified a bulging ulcerative tumor of the ileocecal valve extended to the ileum. Further histologic examination confirmed the presence of signet-ring cell carcinoma. The patient was referred to the medical oncology department to initiate palliative chemotherapy following a multidisciplinary consultation meeting. We can underline that SRCC of the caecum is a rare entity with a bad prognosis. Usually, the diagnosis is made at late stages due to the lack of obvious symptoms earlier.
Collapse
Affiliation(s)
- Maissae Rahaoui
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Disease Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morrocco
| | - Fakhrddine Amri
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Disease Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morrocco
| | - Noura Seghrouchni
- Department of Pathology, Mohammed VI University Hospital, Oujda, Morocco
| | - Oumayma El Eulj
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Disease Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morrocco
| | - Abdelkrim Zazour
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Disease Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morrocco
| | - Hajar Koulali
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Disease Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morrocco
| | - Ouiam Elmqaddem
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Disease Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morrocco
| | - Amal Bennani
- Department of Pathology, Mohammed VI University Hospital, Oujda, Morocco
| | - Zahi Ismaili
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Disease Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morrocco
| | - Ghizlane Kharrasse
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Disease Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morrocco
| |
Collapse
|
13
|
Shen C, Liu J, Liu H, Li G, Wang H, Tian H, Mao Y, Hua D. Timosaponin AIII induces lipid peroxidation and ferroptosis by enhancing Rab7-mediated lipophagy in colorectal cancer cells. Phytomedicine 2024; 122:155079. [PMID: 37863004 DOI: 10.1016/j.phymed.2023.155079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/28/2023] [Accepted: 09/09/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common digestive system malignancy, and despite significant therapeutic advancements, more effective treatments are needed. Timosaponin AIII (TA-III), a major steroidal saponin derived from Anemarrhena asphodeloides Bge, is a potential anticancer agent. Ferroptosis plays an important role in cancer treatment. PURPOSE To investigate the molecular mechanism of TA-III as a novel ferroptosis inducer in suppressing CRC through lipophagy. Ferroptosis, an autophagy-dependent mode of cell death, has been implicated in CRC. METHODS CRC cells were treated with TA-III, and lipophagy levels were evaluated via BODIPY493/503 staining and western blotting. Autophagy turnover was tracked using GFP-RFP-LC3B. Lipid peroxidation was quantified using an malondialdehyde kit and C11-BODIPY flow assay. Mitochondrial morphology was observed using transmission electron microscopy. GC-MS/MS was used to detect lipid metabolism changes. The role of ras related protein Rab 7a (Rab7) was assessed by western blotting and glutathione S-transferase pull-down assays. In vivo, the anticancer efficacy of TA-III was tested using a xenograft model. RESULTS RNA-seq analysis unveiled the potential of TA-III as an anticancer agent through ferroptosis. In vivo experiments revealed how TA-III treatment triggered degradation of lipid droplets in CRC cells, resulting in an accumulation of FFAs, heightened unsaturated free fatty acids, and increased lipid peroxidation. These events ultimately lead to mitochondrial shrinkage and downregulation of ferroptosis markers (FSP1 and GPX4). Intriguingly, the Rab7 protein emerged as a crucial bridge between lipophagy and ferroptosis, underlining its significance in the anticancer mechanism of TA-III. Moreover, TA-III treatment in a xenograft tumour model substantially reduced tumour volume via ferroptosis, underscoring its therapeutic efficacy. CONLUSION Our study is the first to establish that TA-III triggers lipophagy in CRC cells via the Rab7 gene, subsequently promoting ferroptosis. This suggests its potential use as an antitumour agent.
Collapse
|