1
|
Chen M, Zhu J, Luo H, Mu W, Guo L. The journey towards physiology and pathology: Tracing the path of neuregulin 4. Genes Dis 2024; 11:687-700. [PMID: 37692526 PMCID: PMC10491916 DOI: 10.1016/j.gendis.2023.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/11/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
Neuregulin 4 (Nrg4), an epidermal growth factor (EGF) family member, can bind to and activate the ErbB4 receptor tyrosine kinase. Nrg4 has five different isoforms by alternative splicing and performs a wide variety of functions. Nrg4 is involved in a spectrum of physiological processes including neurobiogenesis, lipid metabolism, glucose metabolism, thermogenesis, and angiogenesis. In pathological processes, Nrg4 inhibits inflammatory factor levels and suppresses apoptosis in inflammatory diseases. In addition, Nrg4 could ameliorate obesity, insulin resistance, and cardiovascular diseases. Furthermore, Nrg4 improves non-alcoholic fatty liver disease (NAFLD) by promoting autophagy, improving lipid metabolism, and inhibiting cell death of hepatocytes. Besides, Nrg4 is closely related to the development of cancer, hyperthyroidism, and some other diseases. Therefore, elucidation of the functional role and mechanisms of Nrg4 will provide a clearer view of the therapeutic potential and possible risks of Nrg4.
Collapse
Affiliation(s)
- Min Chen
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jieying Zhu
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Hongyang Luo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wangjing Mu
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
2
|
Menze R, Hesse B, Kusmierczuk M, Chen D, Weitkamp T, Bettink S, Scheller B. Synchrotron microtomography reveals insights into the degradation kinetics of bio-degradable coronary magnesium scaffolds. Bioact Mater 2024; 32:1-11. [PMID: 37771679 PMCID: PMC10522944 DOI: 10.1016/j.bioactmat.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Bioresorbable magnesium scaffolds are a promising future treatment option for coronary artery stenosis, especially for young adults. Due to the degradation of these scaffolds (<1 year), long-term device-related clinical events could be reduced compared to treatments with conventional drug eluting stents. First clinical trials indicate a return of vasomotion after one year, which may be associated with improved long-term clinical outcomes. However, even after decades of development, the degradation process, ideal degradation time and biological response in vivo are still not fully understood. The present study investigates the in vivo degradation of magnesium scaffolds in the coronary arteries of pigs influenced by different strut thicknesses and the presence of antiproliferative drugs. Due to high 3D image contrast of synchrotron-based micro-CT with phase contrast (SR-μCT), a qualitative and quantitative evaluation of the degradation morphology of magnesium scaffolds was obtained. For the segmentation of the μCT images a convolutional network architecture (U-net) was exploited, demonstrating the huge potential of merging high resolution SR-μCT with deep learning (DL) supported data analysis. In total, 30 scaffolds, made of the rare earth alloy Resoloy®, with different strut designs were implanted into the coronary arteries of 10 domestic pigs for 28 days using drug-coated or uncoated angioplasty balloons for post-dilatation. The degradation morphology was analyzed using scanning electron microscopy, energy dispersive x-ray spectroscopy and SR-μCT. The data from these methods were then related to data from angiography, optical coherence tomography and histology. A thinner strut size (95 vs. 130 μm) and the presence of paclitaxel indicated a slower degradation rate at 28 d in vivo, which positively influences the late lumen loss (0.5 and 0.6 mm vs. 1.0 and 1.1 mm) and recoil values (0 and 1.7% vs. 6.1 and 22%).
Collapse
Affiliation(s)
- Roman Menze
- MeKo Manufacturing e.K., Im Kirchenfelde 12-14, 31157, Sarstedt, Germany
| | - Bernhard Hesse
- Xploraytion GmbH, Bismarckstr. 10-12, 10625, Berlin, Germany
| | | | - Duote Chen
- Xploraytion GmbH, Bismarckstr. 10-12, 10625, Berlin, Germany
| | - Timm Weitkamp
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | | | - Bruno Scheller
- Universität des Saarlandes, Campus Homburg, 66421, Homburg, Germany
| |
Collapse
|
3
|
Zhu JX, Guo MX, Zhou L, Yi LT, Huang HL, Wang HL, Cheng HY. Evaluation of the anti-inflammatory material basis of Lagotis brachystachya in HepG2 and THP-1 cells. J Ethnopharmacol 2024; 318:117055. [PMID: 37597676 DOI: 10.1016/j.jep.2023.117055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE LAGOTIS BRACHYSTACHYA Maxim is a traditional ethnic medicine commonly used in Tibet. In Tibetan medicine theory, Lagotis brachystachya is mainly used for the treatment of inflammatory related diseases. However, the active components and mechanism of the anti-inflammatory activity of Lagotis brachystachya are not clear. AIM OF THE STUDY The putative anti-inflammatory active compounds from Lagotis brachystachya Maxim and its anti-inflammation related mechanism involving in the TLR4/MyD88/NF-κB and NLRP3 signaling pathways were investigated. MATERIALS AND METHODS In this study, we investigated the anti-inflammatory activity and mechanism of 32 compounds extracted from Lagotis brachystachya in HepG2 and THP-1 cells using the alcohol-induced HepG2 cell injury model and the monosodium urate (MSU) combined with lipopolysaccharide (LPS)-induced THP-1 cell inflammation model. RESULTS The results found that six compounds, including Echinacoside, Quercetin, Homoplantaginin, Tricin-7-O-glucoside, Apigenin and Luteolin-7-O-beta-d-glucopyranoside, were shown to exhibit significant anti-inflammatory effects in both cell models. Furthermore, these compounds were shown to inhibit the TLR4/MyD88/NF-κB and NLRP3 signaling pathways and reduce the release of pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 in both cell models. CONCLUSION These findings suggest that Echinacoside, Quercetin, Homoplantaginin, Tricin-7-O-glucoside, Apigenin and Luteolin-7-O-beta-d-glucopyranoside from Lagotis brachystachya have promising potential as natural anti-inflammatory agents for the treatment of inflammatory-related diseases. The discovery of bioactive compounds from this plant opens up possibilities for the development of novel treatments for inflammatory-related diseases, potentially providing alternative or adjunctive options to conventional therapies.
Collapse
Affiliation(s)
- Ji-Xiao Zhu
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Min-Xia Guo
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Lin Zhou
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| | - Hui-Lian Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Hong-Ling Wang
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Hong-Yu Cheng
- College of Humanities, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| |
Collapse
|
4
|
Yu X, Wu Q, Ren Z, Chen B, Wang D, Yuan T, Ding H, Wang Y, Yuan G, Wang Y, Zhang L, Zhao J, Sun Z. Kaempferol attenuates wear particle-induced inflammatory osteolysis via JNK and p38-MAPK signaling pathways. J Ethnopharmacol 2024; 318:117019. [PMID: 37574017 DOI: 10.1016/j.jep.2023.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wear particle-induced inflammatory osteoclast activation is a master contributor to periprosthetic osteolysis, which can cause pathological bone loss and destruction. Hence, inhibiting inflammation and osteoclastogenesis is an important strategy for preventing wear particle-induced osteolysis. To date, there are no FDA-approved non-surgical pharmacotherapies for arresting periprosthetic osteolysis. Kaempferol (KAE), a natural flavonol abundant in many traditional Chinese herbal medicines, has been shown to have protective effects against inflammatory bone diseases such as rheumatoid arthritis, but no previous study has evaluated the effects of KAE on wear particle-induced osteolysis. AIM OF THE STUDY The study aimed to investigate the effects of KAE on wear particle-induced inflammatory osteolysis and osteoclast activation, and further explore the underlying mechanisms. MATERIALS AND METHODS TiAl6V4 metal particles (TiPs) were retrieved from the prosthesis of patients who underwent revision hip arthroplasty due to aseptic loosening. A mouse calvarial osteolysis model was used to investigate the effects of KAE on wear particle-induced inflammatory osteolysis in vivo. Primary bone marrow-derived macrophages (BMMs) were used to explore the effects of KAE on osteoclast differentiation and bone-resorbing activity as well as the underlying mechanisms in vitro. RESULTS In the present study, we found that KAE alleviated wear particle-induced inflammatory bone loss in vivo and inhibited osteoclast differentiation and function in vitro. Furthermore, we revealed that KAE exerted anti-osteoclastogenic effects by downregulating JNK and p38-MAPK signaling as well as the downstream NFATc1 expression. CONCLUSIONS KAE is an alternative therapeutic agent for preventing and treating periprosthetic osteolysis and aseptic loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Qi Wu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Bin Chen
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Dongsheng Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Tao Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Hao Ding
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Guodong Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxiang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Lei Zhang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, 210002, China.
| |
Collapse
|
5
|
Hong MH, Jang YJ, Yoon JJ, Lee HS, Kim HY, Kang DG. Dohongsamul-tang inhibits cardiac remodeling and fibrosis through calcineurin/NFAT and TGF-β/Smad2 signaling in cardiac hypertrophy. J Ethnopharmacol 2024; 318:116844. [PMID: 37453625 DOI: 10.1016/j.jep.2023.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dohongsammul-tang (DH) is a Korean traditional herbal medicine used to alleviate symptoms caused by extravasated blood. It is known to protect against cardiovascular diseases and promote blood circulation by activating blood circulation to dispel blood stasis. The DH based on the characteristics of its medicinal properties has discovered the potential of alleviating cardiac hypertrophy. Therefore, this study was performed to verify the pharmacological effect of DH on improving cardiovascular disorders and to demonstrate its mutual improvement effect on renal function. Furthermore, aim of this study is founding the new potential beyond the traditional medicinal efficacy of DH, a traditional medicine. AIM OF THE STUDY In cardiovascular disease, cardiac hypertrophy refers to a change in the shape of the heart's structure due to pressure overload. It is known that an increase in myofibrils causes thickening of the heart, resulting in high blood pressure. Therefore, suppressing cardiac hypertrophy may be a major factor in lowering the morbidity, mortality, and heart failure associated with cardiovascular disease. Therefore, the study was performed to investigate whether DH, traditionally used, has effects on improving and alleviating cardiac injury and fibrosis caused by cardiac hypertrophy. MATERIALS AND METHODS Dohongsamul-tang was composed of 6 herbal medicine and each material were boiled with 4 L distilled water for 2 h. The mixture for dohongsamul-tang centrifuged at 3000 rpm for 10 min and concentrated. The concentrated dohongsamul-tang extraction freeze-dried and sotred at 70 °C. The powder of dohongsamul-tang was diluted with distilled water and administered orally. In this study, pressure overload was induced by tying the transverse aortic arch, which is connected to the left ventricle, to the thickness of a 27G needle by performing a surgical operation. The resulting cardiac hypertrophy and heart remodeling was induced and maintained for 8 weeks. RESULTS The study administered propranolol and dohongsamul-tang orally for 10 weeks to investigate their effects on cardiac hypertrophy induced by transverse aortic contraction (TAC) surgery. Results showed that TAC group increased the left ventricle weight and decreased cardiac function, but dohongsamul-tang treatment attenuated these effects. The pressure-volume curve experiment revealed that dohongsamul-tang improved cardiovascular function, which was worsened by TAC group. Dohongsamul-tang treatment also downregulated collagen I and III through the TGF-β/Smad2 signaling pathway and improved hematological biomarkers of cardiac hypertrophy. In addition, dohongsamul-tang treatment improved renal function-related biomarkers, such as blood creatinine, blood urea nitrogen, and neutrophil gelatinase-associated lipocalin, which were increased by TAC-induced cardiac hypertrophy. CONCLUSIONS Taken together, dohongsamul-tang treatment inhibited cardiac remodeling due to pressure overload in the TAC-induced cardiac hypertrophy model, and this effect is thought to be manifested by improving the functional and morphological changes through the calcineurin/NFATc4 and reducing the cardiac fibrosis by suppressing TGF-β/Smad2 signaling pathways.
Collapse
Affiliation(s)
- Mi Hyeon Hong
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea; College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| | - Youn Jae Jang
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea; College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| | - Jung Joo Yoon
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| | - Ho Sub Lee
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea; College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| | - Hye Yoom Kim
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| | - Dae Gill Kang
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea; College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| |
Collapse
|
6
|
Xie D, Wu C, Wang D, Nisma Lena BA, Liu N, Ye G, Sun M. Wei-fu-chun tablet halted gastric intestinal metaplasia and dysplasia associated with inflammation by regulating the NF-κB pathway. J Ethnopharmacol 2024; 318:117020. [PMID: 37567428 DOI: 10.1016/j.jep.2023.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chi006Eese herbal medicine Weifuchun Tablets (WFC) approved by the State Food and Drug Administration in 1982 has been widely used in treating a variety of chronic stomach disorders including Chronic atrophic gastritis (CAG) and Gastric precancerous lesions in China clinically. This study aimed to investigate the efficacy and potential mechanism of WFC in treating Gastric intestinal metaplasia (GIM) and Gastric dysplasia (GDys). MATERIALS AND METHODS Rat GIM and GDys established by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) combined with hot paste, ethanol injury, and intermittent fasting were intervened by WFC. Body weight, histopathology, pH of gastric acid, pepsin activity, intestinal metaplasia index and inflammation were detected. Rat bone marrow derived macrophages (BMDMs) pretreated with WFC were stimulated by LPS. Inflammatory factors and the nuclear factor-kappa B (NF-κB) pathway were assessed. GES-1 cells pretreated by WFC were stimulated by MNNG and TNF-α, intestinal metaplasia index, the NF-κB pathway and interaction between P65 and CDX2 were detected. RESULTS WFC improved rat body weight, histopathology, pH value of gastric acid, activity of gastric pepsin, intestinal metaplasia (CDX2), inflammation (IL-1β, IL-6 and TNF-α), macrophage aggregation (CD68) in gastric mucosa in rat GIM and GDys. WFC inhibited inflammation (IL-1β and TNF-α) by inactivating the NF-κB pathway. WFC reduced the expression of CDX2 by inhibiting the binding of CDX2 promoter TSS upstream region with p65. CONCLUSION WFC blocked GIM and GDys associated with inflammation by regulating the NF-κB pathway.
Collapse
Affiliation(s)
- Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao Wu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Wang
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bahaji Azami Nisma Lena
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ningning Liu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China.
| | - Mingyu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Zhang Z, Deng X, Gu W, Jiao Y, Su C, Liu H, Ma W, Zhang H, Xiang R, Wang D, Wang Y, Chunguo W, Meng F. Jianghu decoction and its active component polydatin inhibit inflammation and fibrotic lesions in the lungs of ILD mice via the AMPK signaling pathway. J Ethnopharmacol 2024; 318:117003. [PMID: 37543150 DOI: 10.1016/j.jep.2023.117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Recently, interstitial lung disease (ILD) morbidity and mortality have been increasing with insidious epidemiological characteristics. Jianghu decoction (JH) is an effective Chinese medicine for ILD. AIM OF THE STUDY We aimed to reveal the material basis and mechanism of action of JH in the treatment of ILD. MATERIALS AND METHODS In this study, an ILD mouse model was constructed with bleomycin. HE staining, transcriptome analysis, parallel reaction monitoring-mass spectrometry (PRM-MS), UPLC‒MS, and western blotting assays were conducted. RESULTS HE staining results showed that JH effectively reduced inflammation and fibrosis foci in the lungs of the ILD model. Furthermore, transcriptome analysis revealed that JH regulates a set of biological signaling pathways related to immune inflammation and fibrosis. PRM-MS combined with western blotting was applied to detect inflammation and fibrosis involving proteins in lung tissue. JH effectively reversed the aberrant expression of HMGB1, RAGE, SEPTIN4, ACTA2, and ITGAV proteins in the model group. AMPK was identified as the core upstream regulatory protein for JH-mediated ILD regulation. In addition, UHPLC‒MS technology was applied to determine the active ingredients of JH. A total of 80 components were identified from JH, and polydatin (PD) was identified as the active ingredient that effectively alleviated lung fibrosis and inflammatory injury in ILD mice. To illustrate the molecular regulatory network of JH and PD in alleviating lung fibrosis and inflammatory injury, we also examined inflammation and fibrosis-related molecules downstream of the AMPK pathway with RT‒qPCR and western blotting. CONCLUSIONS The results showed that both JH and its active component PD exert synergistic inhibition on pulmonary fibrosis and inflammation. Specifically, the AMPK/PGC1α/PPARγ signaling pathway was activated, and the AMPK/HMGB1/RAGE signaling pathway was inhibited in ILD lungs responding to JH or PD administration.
Collapse
Affiliation(s)
- Zhengju Zhang
- Dongfang Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xinqi Deng
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen Gu
- Beijing Hospital of Traditional Chinese Medicine of Capital Medical University, Beijing, China
| | - Yang Jiao
- Dongfang Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Canyu Su
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Liu
- Dongfang Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Weiguo Ma
- Dongfang Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Honghong Zhang
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Ruiyang Xiang
- Yongledian Health Service Center of Tongzhou District, Beijing, China
| | |
|