1
|
Zhang Z, Pan Y, Guo Z, Fan X, Pan Q, Gao W, Luo K, Pu Y, He B. An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease. Bioact Mater 2024; 33:71-84. [PMID: 38024237 PMCID: PMC10658185 DOI: 10.1016/j.bioactmat.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and refractory condition characterized by disrupted epithelial barrier, dysregulated immune balance, and altered gut microbiota. Nano-enabled interventions for restoring gut homeostasis have the potential to alleviate inflammation in IBD. Herein, we developed a combination of olsalazine (Olsa)-based nanoneedles and microbiota-regulating inulin gel to reshape intestinal homeostasis and relieve inflammation. The Olsa-derived nanoneedles exhibited reactive oxygen species scavenging ability and anti-inflammatory effects in lipopolysaccharide-simulated macrophages. The composite of nanoneedles and inulin gel (Cu2(Olsa)/Gel) displayed a macroporous structure, improved bio-adhesion, and enhanced colon retention after oral administration. Mechanistically, the composite effectively downregulated pro-inflammatory cytokine levels and promoted epithelial barrier repair through anti-inflammatory and antioxidant therapies, resulting in significant alleviation of colitis in three animal models of IBD. Furthermore, analysis of gut microbiota revealed that Cu2(Olsa)/Gel treatment increased the diversity of intestinal microflora and decreased the relative abundance of pathogenic bacteria such as Proteobacteria. Overall, this study provides a self-delivering nanodrug and dietary fiber hydrogel composite for IBD therapy, offering an efficient approach to restore intestinal homeostasis.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Marotti V, Xu Y, Bohns Michalowski C, Zhang W, Domingues I, Ameraoui H, Moreels TG, Baatsen P, Van Hul M, Muccioli GG, Cani PD, Alhouayek M, Malfanti A, Beloqui A. A nanoparticle platform for combined mucosal healing and immunomodulation in inflammatory bowel disease treatment. Bioact Mater 2024; 32:206-221. [PMID: 37859689 PMCID: PMC10582360 DOI: 10.1016/j.bioactmat.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Current treatments for inflammatory bowel disease (IBD) treatment consist of anti-inflammatory products. In this study, we sought to induce the physiological secretion of glucagon-like peptide 2, a peptide with intestinal growth-promoting activity, via nanoparticles while simultaneously providing with immunomodulation by tailoring the nanoparticle surface. To this end, we developed hybrid lipid hyaluronate-KPV conjugated nanoparticles loaded with teduglutide for combination therapy in IBD. The nanocarriers induced (or did not induce) immunosuppression depending on the presence (or absence) of a hyaluronan-KPV functionalization. This strategy holds promise as a nanoparticle platform for combined mucosal healing and immunomodulation in IBD treatment.
Collapse
Affiliation(s)
- Valentina Marotti
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Yining Xu
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Cécilia Bohns Michalowski
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Wunan Zhang
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Hafsa Ameraoui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - Tom G. Moreels
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, 1200 Brussels, Belgium
- Cliniques universitaires Saint-Luc, Department of Hepato-Gastroenterology, Brussels, Belgium
| | - Pieter Baatsen
- EM-platform, VIB Bio Imaging Core, KU Leuven, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Group, 1200 Brussels, Belgium
| | - Giulio G. Muccioli
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - Patrice D. Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Group, 1200 Brussels, Belgium
- UCLouvain, Institute of Experimental and Clinical Research, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Mireille Alhouayek
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
3
|
Han M, Lei W, Liang J, Li H, Hou M, Gao Z. The single-cell modification strategies for probiotics delivery in inflammatory bowel disease: A review. Carbohydr Polym 2024; 324:121472. [PMID: 37985038 DOI: 10.1016/j.carbpol.2023.121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Oral probiotic therapy has become an increasingly attractive method for treating various diseases, including intestinal barrier dysfunction, inflammatory bowel disease (IBD), and colorectal cancer due to its safety and convenience. However, only a few probiotics after oral gavage can survive the acidic and bile salt conditions of the gastrointestinal tract and colonize the colon to have a nutritional effect on the host. To address these challenges, encapsulation technology has been applied to protect probiotics from harsh gastrointestinal conditions, improve gut adhesion, and reduce immunogenicity. In addition, some of the functional polysaccharides are used to endow probiotics with exogenous functions as prebiotics. In this review, we systematically introduced the advancements of emerging single-cell modification strategies for probiotics in IBD applications. Additionally, we discussed the limitations and perspectives of single-cell modification strategies for probiotics. This review contributed to the development of probiotic delivery systems with higher therapeutic efficacy against colitis.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Zhang S, Cao Y, Huang Y, Zhang S, Wang G, Fang X, Bao W. Aqueous M. oleifera leaf extract alleviates DSS-induced colitis in mice through suppression of inflammation. J Ethnopharmacol 2024; 318:116929. [PMID: 37480965 DOI: 10.1016/j.jep.2023.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. (M. oleifera) is a perennial deciduous tree with considerable agricultural and pharmacological value. Nearly all parts of the tree are edible, and nearly all parts are used in traditional medicine. Leaves of M. oleifera have the functions of hypoglycemic (antidiabetic), anti-cancer and anti-oxidant stress, but less research pay attention to the anti-inflammatory effect of M. oleifera leaves. AIM OF THE STUDY Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal medication. Here, we investigated the anti-inflammatory effects of aqueous extract of M. oleifera leaves. MATERIALS AND METHODS Intestinal organoids and mice as in vitro and in vivo models to investigate the effects of aqueous extract of M. oleifera leaves on inflammation induced by TNF-α and dextran sulfate sodium (DSS) respectively. The expression of inflammatory cytokines and proliferation-related genes were evaluated by RT-qPCR, respectively. The compounds in the leaf extract were determined by LC/MS, and network pharmacology approach was employed to predict 54 anti-IBD potential targets of quercetin-3-galactoside (QG) and isoquercitrin (IS). RESULTS We found that the extract protected against damage to intestinal organoids caused by tumor necrosis factor (TNF-α), and significantly down-regulated the expression of inflammatory cytokines. The extract also suppressed the TNF-α-induced expression of Pcna, c-Myc, and c-Jun. Additionally, oral administration of the extract also ameliorated DSS-induced colon damage (colonic shortening, loss of goblet cells and overall abnormal cellularity), and inhibited the expression of inflammatory cytokines and proliferation-related genes in colitis. By LC/MS we identified nearly 2000 of the compounds in the leaf extract, of the flavonoids identified, QG and IS made up the largest percentage; both have been shown to have anti-inflammatory properties. Moreover, network pharmacology approach was employed to predict 54 anti-IBD potential targets of QG and IS. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the overlapping targets participated in response to oxidative stress and PI3K-Akt signaling pathway respectively. CONCLUSIONS The present study demonstrated the anti-inflammatory capability, in vitro and in vivo, of the aqueous extract of M. oleifera leaves and suggests its potential phytotherapeutic treatment for IBD.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanan Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuoshuo Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaomin Fang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture & Agri-product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Vishnu V, Krishnendu PR, Zachariah SM, S K K. Novel 1-H Phenyl Benzimidazole Derivatives for IBD Therapy - An in-vitro and in-silico Approach to Evaluate its Effects on the IL-23 Mediated Inflammatory Pathway. Curr Comput Aided Drug Des 2024; 20:60-71. [PMID: 37073665 DOI: 10.2174/1573409919666230417103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE IBD is a chronic idiopathic gut condition characterised by recurring and remitting inflammation of the colonic mucosal epithelium. Benzimidazole is a prominent and attractive heterocyclic compound with diverse actions. Although seven locations in the benzimidazole nucleus can be changed with a number of chemical entities for biological activity, benzimidazole fused with a phenyl ring has caught our interest. METHODS To find and optimize novel 1-H phenyl benzimidazole compounds with favorable physicochemical features and drug-like characteristics for the treatment of IBD, in-silico studies and in-vitro approach were being used to identify and optimize these derivatives as potent inhibitors of IL-23 mediated inflammatory signaling pathway. RESULTS All six compounds exhibit favorable drug-like properties with good intestinal absorption properties. Its high affinity for the target JAK and TYK, which is thought to be a key immunological signaling cascade in the pathophysiology of IBD, is revealed by docking studies. CONCLUSION Because of their effects on decreasing iNOS-derived NO release and IL-23-mediated immune signaling by decreasing COX-2 and LOX activity, it's conceivable that the compounds CS3 and CS6 are better options for the treatment of IBD based on in-vitro cell line investigations.
Collapse
Affiliation(s)
- V Vishnu
- Department of Pharmaceutical Chemistry, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, Kerala, India
| | - P R Krishnendu
- Department of Pharmaceutical Chemistry, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, Kerala, India
| | - Subin Mary Zachariah
- Department of Pharmaceutical Chemistry, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, Kerala, India
| | - Kanthlal S K
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, Kerala, India
| |
Collapse
|
6
|
Ding W, Marx OM, Mankarious MM, Koltun WA, Yochum GS. Disease Severity Impairs Generation of Intestinal Organoid Cultures From Inflammatory Bowel Disease Patients. J Surg Res 2024; 293:187-195. [PMID: 37776721 DOI: 10.1016/j.jss.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/02/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Chronic inflammation of the intestinal epithelium is an underlying cause of the two main types of inflammatory bowel disease (IBD), ulcerative colitis (UC), and Crohn's disease (CD). Ex vivo organoids derived from the intestinal epithelium are a useful model to study IBD. Whether such cultures can be established from surgically resected diseased IBD intestinal tissues has not been fully explored. In this study, we tested our ability to establish organoids from nondiseased and diseased IBD intestinal tissues. MATERIALS AND METHODS From 12 UC patients (n = 54 tissues) and 20 CD patients (n = 49 tissues), tissues were collected from multiple colonic regions, and for CD, the terminal ileum was also surveyed. Organoids were cultured in Matrigel domes using defined media. In primary tissues, we conducted immunohistochemical analysis for mucin 2 (MUC2) and Alcian blue staining for goblet cells. Organoids were stained for Ki67, E-cadherin, and MUC2. RESULTS For UC, we were highly successful establishing organoids from nondiseased tissue (n = 12 of 13, 92%). This success rates dropped from tissues with mild (n = 6 of 9, 67%), moderate (n = 2 of 9, 22%), or severe disease (n = 1 of 23, 4%). The rates from nondiseased CD tissues were reduced (n = 11 of 23, 48%) in comparison to such tissues from UC patients. In UC, goblet cells and MUC2 were reduced in diseased tissues and these phenotypes were retained in organoids. CONCLUSIONS Organoids can be readily derived from nondiseased surgically resected IBD tissues. While more work is needed to improve their derivation from diseased tissue, our study supports the use of organoids to study IBD pathophysiology.
Collapse
Affiliation(s)
- Wei Ding
- Division of Colon & Rectal Surgery, Department of Surgery, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Olivia M Marx
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Marc M Mankarious
- Division of Colon & Rectal Surgery, Department of Surgery, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Walter A Koltun
- Division of Colon & Rectal Surgery, Department of Surgery, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Gregory S Yochum
- Division of Colon & Rectal Surgery, Department of Surgery, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania; Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
7
|
Zhang S, Zhang M, Li W, Ma L, Liu X, Ding Q, Yu W, Yu T, Ding C, Liu W. Research progress of natural plant polysaccharides inhibiting inflammatory signaling pathways and regulating intestinal flora and metabolism to protect inflammatory bowel disease. Int J Biol Macromol 2023; 253:126799. [PMID: 37703965 DOI: 10.1016/j.ijbiomac.2023.126799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Natural plant polysaccharides are macromolecular substances with a wide range of biological activities. They have a wide range of biological activities, especially play an important role in the treatment of inflammatory bowel disease. The molecular weight of polysaccharides, the composition of monosaccharides and the connection of glycosidic bonds will affect the therapeutic effect on inflammatory bowel disease. Traditional Chinese medicine plant polysaccharides and various types of plant polysaccharides reduce the levels of inflammatory cytokines IL-1β, IL-6, IL-8 and IL-17, increase the level of anti-inflammatory factor IL-10, regulate NF-κB signaling pathway, and NLRP3 inflammasome to relieve colitis. At the same time, they can play a protective role by regulating the balance of intestinal flora in mice with colitis and increasing the abundance of probiotics to promote the metabolism of polysaccharide metabolites SCFAs. This review summarizes the research on the treatment of inflammatory bowel disease by many natural plant polysaccharides, and provides a theoretical basis for the later treatment of polysaccharides on inflammatory bowel disease.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Mingxu Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lina Ma
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Weimin Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Taojing Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
8
|
Muso-Cachumba JJ, Feng S, Belaid M, Zhang Y, de Oliveira Rangel-Yagui C, Vllasaliu D. Polymersomes for protein drug delivery across intestinal mucosa. Int J Pharm 2023; 648:123613. [PMID: 37977286 DOI: 10.1016/j.ijpharm.2023.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The oral administration is the route preferred by patients due to its multiple advantages. In the case of biopharmaceuticals, due to their low stability and absorption in the intestine, these molecules must be administered by injectable routes. To circumvent these problems, several strategies have been studied, among which the use of nanosystems, such as polymersomes, can be highlighted. In this work the potential of poloxamer 401 polymersomes as a system for oral delivery of antibodies was evaluated. IgG-FITC-loaded poloxamer 401 polymerosomes were initially used to assess whether it improves intestinal epithelial permeation in Caco-2 cell monolayers. Subsequently, epithelial/macrophage co-culture model was used to evaluate the ability of poloxamer 401 polymersomes containing adalimumab to reduce proinflammatory cytokine levels. The data showed that polymersome-encapsulated IgG increased the transport across intestinal Caco-2 monolayers 2.7-fold compared to the antibody in solution. Also, when comparing the groups of blank polymersomes with polymersomes containing adalimumab, decreases of 1.5-, 5.5-, and 2.4-fold in TNF-α concentrations were observed for the polymersomes containing 1.5, 3.75, and 15 µg/mL of adalimumab, respectively. This could indicate a possibility for the oral administration of biopharmaceuticals which would revolutionize many conditions that require the systemic administration such as in inflammatory bowel disease.
Collapse
Affiliation(s)
- Jorge Javier Muso-Cachumba
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil
| | - Sa Feng
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Mona Belaid
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Yunyue Zhang
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Carlota de Oliveira Rangel-Yagui
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil.
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| |
Collapse
|
9
|
Luan WY, Yang Z, Chen XD, Zhang TT, Zhang F, Miao YD. Intestinal barrier in inflammatory bowel disease: A bibliometric analysis. World J Gastroenterol 2023; 29:6017-6021. [DOI: 10.3748/wjg.v29.i45.6017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
The primary objective of this investigation was to examine the evolving trajectories and pivotal focal points within the domain of research on intestinal barriers with regard to inflammatory bowel disease (IBD). Publications germane to the intestinal barrier in the context of IBD were procured from the Science Citation Index Expanded within the Web of Science Core Collection database. Bibliometric scrutiny and visualization were executed employing the R package "bibliometrix" through the R software platform (version: 4.3.0). A comprehensive compilation of 7344 English-language articles spanning from January 1, 2001 to December 31, 2021 was meticulously identified and included in the analysis. Remarkably, China emerged as the preeminent force in the realm of intestinal barrier research in relation to IBD. The significance of the intestinal barrier in the context of IBD has been progressively and comprehensively acknowledged. This recognition has ushered in a fresh therapeutic perspective that offers the promise of enhancing the management of inflammation and prognostication.
Collapse
Affiliation(s)
- Wen-Yu Luan
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Zhe Yang
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Xiao-Dong Chen
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Tong-Tong Zhang
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Fang Zhang
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Yan-Dong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| |
Collapse
|
10
|
Wang X, Li X, Ma X, Zhang L, Han T, Zhang D. Dihydromyricetin alleviates inflammatory bowel disease associated intestinal fibrosis by inducing autophagy through the PI3K/AKT/mTOR signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2023:10.1007/s00210-023-02856-0. [PMID: 38041777 DOI: 10.1007/s00210-023-02856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Intestinal fibrosis is a common complication of inflammatory bowel disease and is characterized by tissue stiffening and luminal narrowing. Dihydromyricetin (DHM) can alleviate liver fibrosis and renal interstitial fibrosis by inducing autophagy. However, whether DHM can alleviate intestinal fibrosis remains unclear. This study is aimed at evaluating the role and mechanism of action of DHM in inflammatory bowel disease-associated intestinal fibrosis. Mice were administered dextran sulfate sodium (DSS) in drinking water to induce inflammatory bowel disease-associated intestinal fibrosis. HE staining, qPCR, and Western blotting were used to analyze colon inflammation. Masson's trichrome staining, qPCR, Western blotting, and immunofluorescence staining were used to evaluate the severity of fibrosis. Transmission electron microscopy and Western blotting were used to assess the activation of autophagosomes. The human colonic fibroblast line CCD-18Co was cultured in the presence of TGF-β1 to develop a fibrotic phenotype. Immunofluorescence staining, Western blotting, and qPCR were used to assess the alteration of fibrosis markers and used to investigate whether DHM-induced autophagy was involved in the inactivation of CCD-18Co cells. Additionally, the role of the PI3K/AKT/mTOR pathway was investigated. DHM alleviated intestinal inflammation and inhibited the progression of intestinal fibrosis. Additionally, DHM induced the activation of autophagy, thereby alleviating intestinal fibrosis, and downregulated the PI3K/AKT/mTOR signaling pathway in vitro. Overall, this study demonstrated that DHM can inhibit the progression of intestinal fibrosis and activation of colonic fibroblasts by inducing autophagy through the PI3K/AKT/mTOR signaling pathway, thereby playing a preventive and therapeutic role in intestinal fibrosis.
Collapse
Affiliation(s)
- XiaoChun Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - XiaoLi Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - XueNi Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - LuDan Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - TiYun Han
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - DeKui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Handa O, Miura H, Gu T, Osawa M, Matsumoto H, Umegaki E, Inoue R, Naito Y, Shiotani A. Reduction of butyric acid-producing bacteria in the ileal mucosa-associated microbiota is associated with the history of abdominal surgery in patients with Crohn's disease. Redox Rep 2023; 28:2241615. [PMID: 37530134 PMCID: PMC10402863 DOI: 10.1080/13510002.2023.2241615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Fecal microbiota is a significant factor determining the cause, course, and prognosis of Crohn's disease (CD). However, the factors affecting mucosa-associated microbiota (MAM) remain unclear. This retrospective study examined the differences in ileal MAM between CD patients and healthy controls and investigated the factors affecting MAM in CD patients to clarify potential therapeutic targets. Ileal MAM was obtained using brush forceps during endoscopic examination from 23 healthy controls and 32 CD patients (most were in remission). The samples' microbiota was profiled using the Illumina MiSeq platform. Compared to controls, CD patients had significantly reduced α-diversity in the ileum and a difference in β-diversity. The abundance of butyric acid-producing bacteria in the ileal MAM was significantly lower in CD patients with a history of abdominal surgery than in those without. Because butyric acid is a major energy source in the intestinal epithelium, its metabolism via β-oxidation increases oxygen consumption in epithelial cells, reducing oxygen concentration in the intestinal lumen and increasing the abundance of obligate anaerobic bacteria. The suppression of obligate anaerobes in CD patients caused an overgrowth of facultative anaerobes. Summarily, reducing the abundance of butyric acid-producing bacteria in the ileal MAM may play an important role in CD pathophysiology.
Collapse
Affiliation(s)
- Osamu Handa
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hiroto Miura
- Faculty of Agriculture, Setsunan University, Hirakata-city, Osaka, Japan
| | - Tingting Gu
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Motoyasu Osawa
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hiroshi Matsumoto
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Eiji Umegaki
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Ryo Inoue
- Faculty of Agriculture, Setsunan University, Hirakata-city, Osaka, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Shiotani
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
12
|
Awad A, Hollis E, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed multi-drug-loaded suppositories for acute severe ulcerative colitis. Int J Pharm X 2023; 5:100165. [PMID: 36876053 PMCID: PMC9982042 DOI: 10.1016/j.ijpx.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Acute severe ulcerative colitis (ASUC) is a growing health burden that often requires treatment with multiple therapeutic agents. As inflammation is localised in the rectum and colon, local drug delivery using suppositories could improve therapeutic outcomes. Three-dimensional (3D) printing is a novel manufacturing tool that permits the combination of multiple drugs in personalised dosage forms, created based on each patient's disease condition. This study, for the first time, demonstrates the feasibility of producing 3D printed suppositories with two anti-inflammatory agents, budesonide and tofacitinib citrate, for the treatment of ASUC. As both drugs are poorly water-soluble, the suppositories' ability to self-emulsify was exploited to improve their performance. The suppositories were fabricated via semi-solid extrusion (SSE) 3D printing and contained tofacitinib citrate and budesonide in varying doses (10 or 5 mg; 4 or 2 mg, respectively). The suppositories displayed similar dissolution and disintegration behaviours irrespective of their drug content, demonstrating the flexibility of the technology. Overall, this study demonstrates the feasibility of using SSE 3D printing to create multi-drug suppositories for the treatment of ASUC, with the possibility of titrating the drug doses based on the disease progression.
Collapse
Affiliation(s)
- Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Eleanor Hollis
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK.,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials institute (iMATUS) and Health Research Institute (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| |
Collapse
|
13
|
Chen X, Xiang X, Xia W, Li X, Wang S, Ye S, Tian L, Zhao L, Ai F, Shen Z, Nie K, Deng M, Wang X. Evolving Trends and Burden of Inflammatory Bowel Disease in Asia, 1990-2019: A Comprehensive Analysis Based on the Global Burden of Disease Study. J Epidemiol Glob Health 2023; 13:725-739. [PMID: 37653213 PMCID: PMC10686927 DOI: 10.1007/s44197-023-00145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Asia's inflammatory bowel disease (IBD) burden has rapidly increased recently, but the epidemiological trends in Asia remain unclear. We report IBD's incidence, prevalence, mortality, and Disability-Adjusted Life Years (DALY) in 52 Asian countries from 1990 to 2019. METHODS Data from the Global Burden of Disease 2019 were analyzed for IBD burden across 52 countries, using metrics like incidence, prevalence, mortality rates, and DALY. The epidemiological trend of IBD from 1990 to 2019 was assessed with the Joinpoint and APC methods. Decomposition and frontier analyses examined factors behind IBD case and death changes. The NORPRED forecasted Asia's morbidity and mortality trends from 2019 to 2044. RESULTS From 1990 to 2019, The incidence and prevalence of IBD increased in Asia, while mortality and DALY decreased. East Asia had the highest increase in disease burden. IBD incidence was highest among the 30-34 age group, with prevalence peaking in the 45-49 age group. In high-income regions, IBD peak age shifted to younger groups. Decompose analysis showed population growth as the primary factor for the increasing IBD cases in Asia. NORDPRED model predicted a continued IBD burden increase in Asia over the next 25 years. CONCLUSIONS Between 1990 and 2019, ASIR and ASPR of IBD in Asia increased, while ASMR and ASDR decreased. Due to population growth and aging, the IBD burden is expected to rise over the next 25 years, particularly in East Asia.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xin Xiang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Weitong Xia
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xindi Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Lian Zhao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Kai Nie
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Bartlett DJ, Takahashi H, Bach CR, Lunn B, Thorpe MP, Broski SM, Packard AT, Fletcher JG, Navin PJ. Potential applications of PET/MRI in non-oncologic conditions within the abdomen and pelvis. Abdom Radiol (NY) 2023; 48:3624-3633. [PMID: 37145312 DOI: 10.1007/s00261-023-03922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
PET/MRI is a relatively new imaging modality with several advantages over PET/CT that promise to improve imaging of the abdomen and pelvis for specific diagnostic tasks by combining the superior soft tissue characterization of MRI with the functional information acquired from PET. PET/MRI has an established role in staging and response assessment of multiple abdominopelvic malignancies, but the modality is not yet established for non-oncologic conditions of the abdomen and pelvis. In this review, potential applications of PET/MRI for non-oncologic conditions of abdomen and pelvis are outlined, and the available literature is reviewed to highlight promising areas for further research and translation into clinical practice.
Collapse
Affiliation(s)
| | | | - Corrie R Bach
- Department of Radiology, Mayo Clinic, Rochester, USA
| | - Brendan Lunn
- Department of Radiology, Mayo Clinic, Rochester, USA
| | | | | | - Ann T Packard
- Department of Radiology, Mayo Clinic, Rochester, USA
| | | | | |
Collapse
|
15
|
Barrett JG, MacDonald ES. Use of Biologics and Stem Cells in the Treatment of Other Inflammatory Diseases in the Horse. Vet Clin North Am Equine Pract 2023; 39:553-563. [PMID: 37607855 DOI: 10.1016/j.cveq.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are powerful immunomodulatory cells that act via multiple mechanisms to coordinate, inhibit, and control the cells of the immune system. MSCs act as rescuers for various damaged or degenerated cells of the body via (1) cytokines, growth factors, and signaling molecules; (2) extracellular vesicle (exosome) signaling; and (3) direct donation of mitochondria. Several studies evaluating the efficacy of MSCs have used MSCs grown using xenogeneic media, which may reduce or eliminate efficacy. Although more research is needed to optimize the anti-inflammatory potential of MSCs, there is ample evidence that MSC therapeutics are worthy of further development.
Collapse
Affiliation(s)
- Jennifer G Barrett
- Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, VA, USA.
| | - Elizabeth S MacDonald
- Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, VA, USA
| |
Collapse
|
16
|
Fu Y, Zhang C, Xie H, Wu Z, Tao Y, Wang Z, Gu M, Wei P, Lin S, Li R, He Y, Sheng J, Xu J, Wang J, Pan Y. Human umbilical cord mesenchymal stem cells alleviated TNBS-induced colitis in mice by restoring the balance of intestinal microbes and immunoregulation. Life Sci 2023; 334:122189. [PMID: 37865178 DOI: 10.1016/j.lfs.2023.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
AIMS Human umbilical cord mesenchymal stem cells (HUMSCs) have been documented to be effective for several immune disorders including inflammatory bowel diseases (IBD). However, it remains unclear how HUMSCs function in regulating immune responses and intestinal flora in the trinitrobenzene sulfonic acid (TNBS)-induced IBD model. MATERIALS AND METHODS We assessed the regulatory effects of HUMSCs on the gut microbiota, T lymphocyte subpopulations and related immune cytokines in the TNBS-induced IBD model. The mice were divided into the normal, TNBS, and HUMSC-treated groups. The effect of HUMSCs was evaluated by Hematoxylin and Eosin (H&E) staining, fluorescence-activated cell sorting (FACS), and enzyme-linked immunosorbent assay (ELISA) analyses. Metagenomics Illumina sequencing was conducted for fecal samples. KEY FINDINGS We demonstrated that the disease symptoms and pathological changes in the colon tissues of TNBS-induced colitis mice were dramatically ameliorated by HUMSCs, which improved the gut microbiota and rebalanced the immune system, increasing the abundance of healthy bacteria (such as Lactobacillus murinus and Lactobacillus johnsonii), the Firmicutes/Bacteroidetes ratio, and the proportion of Tregs; the Th1/Th17 ratio was decreased. Consistently, the expression levels of IFN-γ and IL-17 were significantly decreased, and transforming growth factor-β1 (TGF-β1) levels were significantly increased in the plasma of colitis mice HUMSC injection. SIGNIFICANCE Our experiment revealed that HUMSCs mitigate acute colitis by regulating the rebalance of Th1/Th17/Treg cells and related cytokines and remodeling the gut microbiota, providing potential future therapeutic targets in IBD.
Collapse
Affiliation(s)
- Yanxia Fu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Chen Zhang
- Chinese PLA General Hospital and Medical School, Beijing 100853, China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Hui Xie
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Zisheng Wu
- Chinese PLA General Hospital and Medical School, Beijing 100853, China
| | - Yurong Tao
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ruoran Li
- Chinese PLA General Hospital and Medical School, Beijing 100853, China
| | - Yuqi He
- Department of Gastroenterology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Junfeng Xu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
17
|
Meade S, Liu Chen Kiow J, Massaro C, Kaur G, Squirell E, Bressler B, Lunken G. Gut microbiome-associated predictors as biomarkers of response to advanced therapies in inflammatory bowel disease: a systematic review. Gut Microbes 2023; 15:2287073. [PMID: 38044504 DOI: 10.1080/19490976.2023.2287073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
Loss of response to therapy in inflammatory bowel disease (IBD) has led to a surge in research focusing on precision medicine. Three systematic reviews have been published investigating the associations between gut microbiota and disease activity or IBD therapy. We performed a systematic review to investigate the microbiome predictors of response to advanced therapy in IBD. Unlike previous studies, our review focused on predictors of response to therapy; so the included studies assessed microbiome predictors before the proposed time of response or remission. We also provide an update of the available data on mycobiomes and viromes. We highlight key themes in the literature that may serve as future biomarkers of treatment response: the abundance of fecal SCFA-producing bacteria and opportunistic bacteria, metabolic pathways related to butyrate synthesis, and non-butyrate metabolomic predictors, including bile acids (BAs), amino acids, and lipids, as well as mycobiome predictors of response.
Collapse
Affiliation(s)
- Susanna Meade
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Jeremy Liu Chen Kiow
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Cristian Massaro
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - Gurpreet Kaur
- IBD Centre of BC, Vancouver, Canada
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
| | - Elizabeth Squirell
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Brian Bressler
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Genelle Lunken
- IBD Centre of BC, Vancouver, Canada
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
18
|
Khazdouz M, Daryani NE, Cheraghpour M, Alborzi F, Hasani M, Ghavami SB, Shidfar F. The effect of selenium supplementation on disease activity and immune-inflammatory biomarkers in patients with mild-to-moderate ulcerative colitis: a randomized, double-blind, placebo-controlled clinical trial. Eur J Nutr 2023; 62:3125-3134. [PMID: 37525068 DOI: 10.1007/s00394-023-03214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Selenium (Se) supplementation may help reduce inflammation and disease activity in ulcerative colitis (UC) patients. We investigated the therapeutic effects of Se administration in cases with mild-to-moderate active UC. METHODS A multicenter, double-blind, randomized clinical trial (RCT) was conducted on 100 cases with active mild-to-moderate UC. The patients were randomly allocated to be given an oral selenomethionine capsule (200 mcg/day, n = 50) or a placebo capsule (n = 50) for 10 weeks. The primary outcome was defined as disease activity via the Simple Clinical Colitis Activity Index (SCCAI), and secondary outcomes were measured at the end of the study. RESULTS After 10 weeks, the SCCAI score's mean was reduced in the Se group (P < 0.001). At the end of the intervention, clinical improvement (decline of 3 ≥ score from baseline score) was observed in 19 patients (38%) of the Se group and 3 patients (6%) of the placebo group. The patients with clinical remission (defined as SCCAI ≤ 2) were assigned in the Se group (P = 0.014). The Se group's quality of life and Se serum levels were enhanced at the end of the study (P < 0/001). In the Se group, the mean concentration of interleukin-17 decreased (P < 0/001). However, the levels of interleukin-10 showed no considerable change between the two groups in the 10th week (P = 0.23). CONCLUSION Se supplementation as add-on therapy with medical management induced remission and improved the quality of life in patients with active mild-to-moderate UC. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION IRCT20091114002709N51; 2020-04-13.
Collapse
Affiliation(s)
- Maryam Khazdouz
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ebrahimi Daryani
- Department of Gastroenterology and Hepatology, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foroogh Alborzi
- Department of Gastroenterology and Hepatology, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Hasani
- Department of Nutrition, School of Public Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Tie Y, Huang Y, Chen R, Li L, Chen M, Zhang S. Current insights on the roles of gut microbiota in inflammatory bowel disease-associated extra-intestinal manifestations: pathophysiology and therapeutic targets. Gut Microbes 2023; 15:2265028. [PMID: 37822139 PMCID: PMC10572083 DOI: 10.1080/19490976.2023.2265028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/26/2023] |