1
|
Wang J, Zeng J, Yin G, Deng Z, Wang L, Liu J, Yao K, Long Z, Jiang X, Tan J. Long non-coding RNA FABP5P3/miR-22 axis improves TGFβ1-induced fatty acid oxidation deregulation and fibrotic changes in proximal tubular epithelial cells of renal fibrosis. Cell Cycle 2023; 22:433-449. [PMID: 36196456 PMCID: PMC9879175 DOI: 10.1080/15384101.2022.2122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Severe hydronephrosis increases the risk of urinary tract infection and irretrievable renal fibrosis. While TGFβ1-mediated fibrotic changes in proximal tubular epithelial cells and fatty acid oxidation (FAO) deregulation contribute to renal fibrosis and hydronephrosis. Firstly, a few elements were analyzed in this paper, including differentially-expressed long non-coding RNAs (lncRNAs), and miRNAs correlated to CPT1A, RXRA, and NCOA1. This paper investigated TGFβ1 effects on lncRNA FABP5P3, CPT1A, RXRA, and NCOA1 expression and fibrotic changes in HK-2 cells and FABP5P3 overexpression effects on TGFβ1-induced changes. Moreover, this paper predicted and proved that miR-22 binding to lncRNA FABP5P3, 3'UTR of CPT1A, RXRA, and NCOA1 was validated. The dynamic effects of the FABP5P3/miR-22 axis on TGFβ1-induced changes were investigated. A Renal fibrosis model was established in unilateral ureteral obstruction (UUO) mice, and FABP5P3 effects were investigated. Eventually, this paper concluded that TGFβ1 inhibited lncRNA FABP5P3, CPT1A, RXRA, and NCOA1 expression, induced fibrotic changes in HK-2 cells, and induced metabolic reprogramming within HK-2 cells, especially lower FAO. FABP5P3 overexpression partially reversed TGFβ1-induced changes. miR-22 targeted lncRNA FABP5P3, CPT1A, RXRA, and NCOA1. LncRNA FABP5P3 counteracted miR-22 inhibition of CPT1A, NCOA1, and RXRA through competitive binding. TGFβ1 stimulation induced the activation of TGFβ/SMAD and JAG/Notch signaling pathways; Nocth2 knockdown reversed TGFβ1 suppression on lncRNA FABP5P3. FABP5P3 overexpression attenuated renal fibrosis in unilateral ureteral obstruction mice. The LncRNA FABP5P3/miR-22 axis might be a potent target for improving the FAO deregulation and fibrotic changes in proximal TECs under TGFβ1 stimulation.
Collapse
Affiliation(s)
- Jingrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jia Zeng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guangmin Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhijun Deng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Kun Yao
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xianzhen Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Tan
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China,CONTACT Jing Tan Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha, China
| |
Collapse
|