1
|
Sithara S, Crowley T, Walder K, Aston-Mourney K. Identification of reversible and druggable pathways to improve beta-cell function and survival in Type 2 diabetes. Islets 2023; 15:2165368. [PMID: 36709757 PMCID: PMC9888462 DOI: 10.1080/19382014.2023.2165368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Targeting β-cell failure could prevent, delay or even partially reverse Type 2 diabetes. However, development of such drugs is limited as the molecular pathogenesis is complex and incompletely understood. Further, while β-cell failure can be modeled experimentally, only some of the molecular changes will be pathogenic. Therefore, we used a novel approach to identify molecular pathways that are not only changed in a diabetes-like state but also are reversible and can be targeted by drugs. INS1E cells were cultured in high glucose (HG, 20 mM) for 72 h or HG for an initial 24 h followed by drug addition (exendin-4, metformin and sodium salicylate) for the remaining 48 h. RNAseq (Illumina TruSeq), gene set enrichment analysis (GSEA) and pathway analysis (using Broad Institute, Reactome, KEGG and Biocarta platforms) were used to identify changes in molecular pathways. HG decreased function and increased apoptosis in INS1E cells with drugs partially reversing these effects. HG resulted in upregulation of 109 pathways while drug treatment downregulated 44 pathways with 21 pathways in common. Interestingly, while hyperglycemia extensively upregulated metabolic pathways, they were not altered with drug treatment, rather pathways involved in the cell cycle featured more heavily. GSEA for hyperglycemia identified many known pathways validating the applicability of our cell model to human disease. However, only a fraction of these pathways were downregulated with drug treatment, highlighting the importance of considering druggable pathways. Overall, this provides a powerful approach and resource for identifying appropriate targets for the development of β-cell drugs.
Collapse
Affiliation(s)
- Smithamol Sithara
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Tamsyn Crowley
- School of Medicine, Bioinformatics Core Research Facility, Deakin University, Geelong, Australia
| | - Ken Walder
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Kathryn Aston-Mourney
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University, Geelong, Australia
- CONTACT Kathryn Aston-Mourney Building Nb, 75 Pidgons Rd, Geelong, VIC3216, Australia
| |
Collapse
|
2
|
Simbula M, Manchinu MF, Mingoia M, Pala M, Asunis I, Caria CA, Perseu L, Shah M, Crossley M, Moi P, Ristaldi MS. miR-365-3p mediates BCL11A and SOX6 erythroid-specific coregulation: A new player in HbF activation. Mol Ther Nucleic Acids 2023; 34:102025. [PMID: 37744176 PMCID: PMC10514143 DOI: 10.1016/j.omtn.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Hemoglobin switching is a complex biological process not yet fully elucidated. The mechanism regulating the suppression of fetal hemoglobin (HbF) expression is of particular interest because of the positive impact of HbF on the course of diseases such as β-thalassemia and sickle cell disease, hereditary hemoglobin disorders that affect the health of countless individuals worldwide. Several transcription factors have been implicated in the control of HbF, of which BCL11A has emerged as a major player in HbF silencing. SOX6 has also been implicated in silencing HbF and is critical to the silencing of the mouse embryonic hemoglobins. BCL11A and SOX6 are co-expressed and physically interact in the erythroid compartment during differentiation. In this study, we observe that BCL11A knockout leads to post-transcriptional downregulation of SOX6 through activation of microRNA (miR)-365-3p. Downregulating SOX6 by transient ectopic expression of miR-365-3p or gene editing activates embryonic and fetal β-like globin gene expression in erythroid cells. The synchronized expression of BCL11A and SOX6 is crucial for hemoglobin switching. In this study, we identified a BCL11A/miR-365-3p/SOX6 evolutionarily conserved pathway, providing insights into the regulation of the embryonic and fetal globin genes suggesting new targets for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Michela Simbula
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Maria Francesca Manchinu
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Maura Mingoia
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Mauro Pala
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Isadora Asunis
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Cristian Antonio Caria
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Lucia Perseu
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Paolo Moi
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Maria Serafina Ristaldi
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| |
Collapse
|
3
|
Tang Y. Plant nuclear envelope as a hub connecting genome organization with regulation of gene expression. Nucleus 2023; 14:2178201. [PMID: 36794966 PMCID: PMC9980628 DOI: 10.1080/19491034.2023.2178201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Eukaryotic cells organize their genome within the nucleus with a double-layered membrane structure termed the nuclear envelope (NE) as the physical barrier. The NE not only shields the nuclear genome but also spatially separates transcription from translation. Proteins of the NE including nucleoskeleton proteins, inner nuclear membrane proteins, and nuclear pore complexes have been implicated in interacting with underlying genome and chromatin regulators to establish a higher-order chromatin architecture. Here, I summarize recent advances in the knowledge of NE proteins that are involved in chromatin organization, gene regulation, and coordination of transcription and mRNA export. These studies support an emerging view of plant NE as a central hub that contributes to chromatin organization and gene expression in response to various cellular and environmental cues.
Collapse
Affiliation(s)
- Yu Tang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China,CONTACT Yu Tang Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| |
Collapse
|
4
|
Barral A, Déjardin J. The chromatin signatures of enhancers and their dynamic regulation. Nucleus 2023; 14:2160551. [PMID: 36602897 PMCID: PMC9828845 DOI: 10.1080/19491034.2022.2160551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Amandine Barral Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. 3400 Civic Blvd, Philadelphia, Pennsylvania19104, USA
| | - Jérôme Déjardin
- Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, Montpellier, France,Jérôme Déjardin Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier34000, France
| |
Collapse
|
5
|
Pan W, An S, Dai L, Xu S, Liu D, Wang L, Zhang R, Wang F, Wang Z. Identification of Potential Differentially-Methylated/Expressed Genes in Chronic Obstructive Pulmonary Disease. COPD 2023; 20:44-54. [PMID: 36655999 DOI: 10.1080/15412555.2022.2158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease that causes obstructed airflow from the lungs. DNA methylation can regulate gene expression. Understanding the potential molecular mechanism of COPD is of great importance. The aim of this study was to find differentially methylated/expressed genes in COPD. DNA methylation and gene expression profiles in COPD were downloaded from the dataset, followed by functional analysis of differentially-methylated/expressed genes. The potential diagnostic value of these differentially-methylated/expressed genes was determined by receiver operating characteristic (ROC) analysis. Expression validation of differentially-methylated/expressed genes was performed by in vitro experiment and extra online datasets. Totally, 81 hypermethylated-low expression genes and 121 hypomethylated-high expression genes were found in COPD. Among which, 9 core hypermethylated-low expression genes (CD247, CCR7, CD5, IKZF1, SLAMF1, IL2RB, CD3E, CD7 and IL7R) and 8 core hypomethylated-high expression genes (TREM1, AQP9, CD300LF, CLEC12A, NOD2, IRAK3, NLRP3 and LYZ) were identified in the protein-protein interaction (PPI) network. Moreover, these genes had a potential diagnostic utility for COPD. Some signaling pathways were identified in COPD, including T cell receptor signaling pathway, cytokine-cytokine receptor interaction, hematopoietic cell lineage, HTLV-I infection, endocytosis and Jak-STAT signaling pathway. In conclusion, differentially-methylated/expressed genes and involved signaling pathways are likely to be associated with the process of COPD.
Collapse
Affiliation(s)
- Wen Pan
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Shuyuan An
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Lina Dai
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Shuo Xu
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Dan Liu
- Clinical Laboratory, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Lizhi Wang
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Ruixue Zhang
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Fengliang Wang
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Zongling Wang
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| |
Collapse
|
6
|
Gomes JA, Vieira IA, Sgarioni E, Terças-Tretell ACP, da Silva JH, Ribeiro BFR, Galera MF, de Oliveira TM, Carvalho de Andrade MDF, Carvalho IF, Schüler-Faccini L, Vianna FSL. Contribution of miR-124 rs531564 polymorphism to the occurrence of congenital Zika syndrome. Epigenetics 2023; 18:2145061. [PMID: 36411728 PMCID: PMC9980461 DOI: 10.1080/15592294.2022.2145061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Zika virus (ZIKV) cause Congenital Zika Syndrome (CZS) in individuals exposed during pregnancy. Studies have shown that ZIKV infection positively regulates the miR-124 expression in neural cells, which leads to a decrease of TFRC, a gene targeted of this miRNA. Both miR-124 and TFRC exhibit a pivotal role in nervous system development. Therefore, in this study we aimed to investigate whether genetic variants that affect the expression of these genes could act together with ZIKV to increase the risk of individuals developing CZS. TFRC rs406271 and MIR-124-1 rs531564 polymorphisms were genotyped, using TaqMan® Genotyping Assays, in a sample of children who were exposed to ZIKV during pregnancy, of whom 40 were born with CZS and 48 without congenital anomalies. We identified that individuals with CZS presented a higher frequency of CG genotype of rs531564 polymorphism in MIR-124-1 (p=0.048), which is associated with increased expression of miR-124. Since ZIKV also upregulates the expression of this miRNA, the presence of CG genotype in individuals exposed to the virus could lead to a scenario of overexpression of miR-124 in the brain. Since teratogenesis is a multifactorial event, this genetic finding could partly explain why such individuals are more susceptible to CZS, considering both the downregulation of important neurodevelopment genes, as well as deregulation of the neurogenesis process. Thus, we provide preliminary evidence about a possible genetic risk factor to CZS and highlight the importance of analyzing functional polymorphisms related to epigenetic modulators of neurodevelopment genes in the context of ZIKV teratogenesis.
Collapse
Affiliation(s)
- Julia A Gomes
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica (SGM), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil,Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil,Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Igor Araujo Vieira
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil,Escola de Saúde, Universidade do Vale do Rio do Sinos (Unisinos), São Leopoldo, Brazil
| | - Eduarda Sgarioni
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Juliana H da Silva
- Programa de Pós-graduação em Saúde Coletiva, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil,Secretaria Municipal de Saúde de Tangará da Serra, Tangará da Serra, Brazil
| | | | - Marcial F Galera
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Thalita M de Oliveira
- Hospital Universitário Júlio Müller (HUJM), Universidade Federal de Mato Grosso (UFMT), Empresa Brasileira de Serviços Hospitalares (EBSERH), Cuiabá, Brazil
| | | | | | - Lavínia Schüler-Faccini
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica (SGM), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil,Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fernanda SL Vianna
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica (SGM), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil,Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil,Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil,CONTACT Fernanda SL Vianna Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, ZIP91501-970, Brazil
| |
Collapse
|
7
|
Stuckel AJ, Zeng S, Lyu Z, Zhang W, Zhang X, Dougherty U, Mustafi R, Khare T, Zhang Q, Joshi T, Bissonnette M, Khare S. Sprouty4 is epigenetically upregulated in human colorectal cancer. Epigenetics 2023; 18:2145068. [PMID: 36384366 PMCID: PMC9980603 DOI: 10.1080/15592294.2022.2145068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sprouty4 (SPRY4) has been frequently reported as a tumor suppressor and is therefore downregulated in various cancers. For the first time, we report that SPRY4 is epigenetically upregulated in colorectal cancer (CRC). In this study, we explored DNA methylation and hydroxymethylation levels of SPRY4 in CRC cells and patient samples and correlated these findings with mRNA and protein expression levels. Three loci within the promoter region of SPRY4 were evaluated for 5mC levels in CRC using the combined bisulfite restriction analysis. In addition, hydroxymethylation levels within SPRY4 were measured in CRC patients. Lastly, DNA methylation and mRNA expression data were extracted from CRC patients in multiple high-throughput data repositories like Gene Expression Omnibus and The Cancer Genome Atlas. Combined in vitro and in silico analysis of promoter methylation levels of SPRY4 clearly demonstrates that the distal promoter region undergoes hypomethylation in CRC patients and is associated with increased expression. Moreover, a decrease in gene body hydroxymethylation and an increase in gene body methylation within the coding region of SPRY4 were found in CRC patients and correlated with increased expression. SPRY4 is epigenetically upregulated in CRC by promoter hypomethylation and hypermethylation within the gene body that warrants future investigation of atypical roles of this established tumor suppressor.
Collapse
Affiliation(s)
- Alexei J. Stuckel
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Shuai Zeng
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65201, USA
| | - Zhen Lyu
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65201, USA
| | - Wei Zhang
- Department of Preventive Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois, Chicago, Illinois, 60607, USA
| | - Urszula Dougherty
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Reba Mustafi
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Tripti Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Qiong Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, 65211, USA,Department of Health Management and Informatics; School of Medicine, University of Missouri, Columbia, Missouri, 65212, USA
| | - Marc Bissonnette
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Sharad Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA,Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, 65201, USA,CONTACT Sharad Khare Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| |
Collapse
|
8
|
Hassan FA, Shalaby AG, Elkassas NEM, El-Medany SA, Hamdi Rabie A, Mahrose K, Abd El-Aziz A, Bassiony S. Efficacy of ascorbic acid and different sources of orange peel on growth performance, gene expression, anti-oxidant status and microbial activity of growing rabbits under hot conditions. Anim Biotechnol 2023; 34:2480-2491. [PMID: 35875862 DOI: 10.1080/10495398.2022.2101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Orange peel and its extract are good sources of phenols and vitamin C that can be used as powerful antioxidants and antibacterial. The effects of dietary ascorbic acid (AA), orange peel powder (OPP) and orange peel extract (OPE) supplementations on growth performance, blood biochemicals, gene expression and antioxidant status of growing rabbits under hot conditions were investigated. A total of 80 weaned Giant Flander male rabbits, five weeks old (606.25 ± 10.08 g), were randomly assigned to four groups. The first group received untreated diet (control group). The other groups received diets supplemented with 0.5 g AA/kg diet, 2% OPP and 500 mg OPE/kg diet. The lowest feed conversion ratio (FCR) was recorded by rabbits consumed diet supplemented with AA. Supplementations of OPP and OPE reduced blood plasma total cholesterol, low density lipoprotein and very-low density lipoprotein concentrations. The tested diets reduced triglycerides, total lipids, hydrogen peroxide, malondialdehyde levels, Staphylococcus aureus and Escherichia coli of the rabbits cecum. Supplementation of OPE improved activities of superoxide dismutase gene (6.1475) and insulin-like growth factor-1 (9.2108). Conclusively, dietary supplementation of OPE improved rabbit performance through improving antioxidant enzyme activities as well as upregulation of insulin-like growth gene. Additionally, OPP and OPE (2% and 500 mg/kg diet, respectively) had antibacterial effects for growing rabbits under hot conditions.
Collapse
Affiliation(s)
- Fawzia A Hassan
- Agricultural Research Center, Animal Production Research Institute, Giza, Egypt
| | - Azhar G Shalaby
- Agricultural Research Center, Animal Health Research Institute, Giza, Egypt
| | | | - Shawky A El-Medany
- Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| | - Ahmed Hamdi Rabie
- Agricultural Research Center, Animal Production Research Institute, Giza, Egypt
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Ayman Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - Samar Bassiony
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Qiu X, Zhang JH, Xu Y, Cao YX, Zhang RT, Hu LN, Zhou JH. Identification of FCER1G as a key gene in multiple myeloma based on weighted gene co-expression network analysis. Hematology 2023; 28:2210904. [PMID: 37170758 DOI: 10.1080/16078454.2023.2210904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
PURPOSE Although the prognosis of multiple myeloma (MM) has remarkably improved with the emerge of novel agents, it remains incurable and relapses inevitably. The molecular mechanisms of MM have not been well-studied. Herein, this study aimed to identify key genes in MM. MATERIALS AND METHODS The GSE39754 dataset was used to screen differentially expressed genes (DEGs) and construct a co-expression network. Hub nodes were identified in the protein and protein interaction (PPI) network. Datasets GSE13591 and GSE2658 were used to validate hub genes. Moreover, function and gene set enrichment analyses were performed to elucidate the molecular pathogenesis of MM. RESULTS In this study, 11 genes were found to be hub genes in the co-expression network, among which four genes (CD68, FCER1G, PLAUR and LCP2) were also identified as hub nodes. In the test dataset GSE13591, CD68 and FCER1G were significantly downregulated in MM. Besides, the areas under the curve (AUCs) of CD68 and FCER1G were greater than 0.8 in both the training dataset and the test dataset. Our results also confirmed that FCER1G highly expressed patients had remarkably longer survival times in MM. Function and pathway enrichment analyses suggested that hub genes were associated with epithelial mesenchymal transition, TNF-α signaling via NF-κB and inflammatory response. GSEA in our study indicated that FCER1G participated in NK cell mediated cytotoxicity and the NOD-like receptor signaling pathway. CONCLUSION Our study identified FCER1G as a key gene in MM, providing a novel biomarker and potential molecular mechanisms of MM for further studies.
Collapse
Affiliation(s)
- Xiao Qiu
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, People's Republic of China
| | - Jia-He Zhang
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, People's Republic of China
| | - Ying Xu
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, People's Republic of China
| | - Yi-Xuan Cao
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, People's Republic of China
| | - Rui-Ting Zhang
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, People's Republic of China
| | - Li-Na Hu
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, People's Republic of China
| | - Ji-Hao Zhou
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, People's Republic of China
| |
Collapse
|
10
|
Kolli U, Jalodia R, Moidunny S, Singh PK, Ban Y, Tao J, Cantu GN, Valdes E, Ramakrishnan S, Roy S. Multi-omics analysis revealing the interplay between gut microbiome and the host following opioid use. Gut Microbes 2023; 15:2246184. [PMID: 37610102 PMCID: PMC10448978 DOI: 10.1080/19490976.2023.2246184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Opioid crisis is an ongoing epidemic since the past several decades in the United States. Opioid use-associated microbial dysbiosis is emerging as a key regulator of intestinal homeostasis and behavioral responses to opioid. However, the mechanistic insight into the role of microbial community in modulating host response is unavailable. To uncover the role of opioid-induced dysbiosis in disrupting intestinal homeostasis we utilized whole genome sequencing, untargeted metabolomics, and mRNA sequencing to identify changes in microbiome, metabolome, and host transcriptome respectively. Morphine treatment resulted in significant expansion of Parasuterella excrementihominis, Burkholderiales bacterium 1_1_47, Enterococcus faecalis, Enterorhabdus caecimuris and depletion of Lactobacillus johnsonii. These changes correlated with alterations in lipid metabolites and flavonoids. Significant alteration in microbial metabolism (metabolism of lipids, amino acids, vitamins and cofactors) and increased expression of virulence factors and biosynthesis of lipopolysaccharides (LPS) and lipoteichoic acid (LTA) were observed in microbiome of morphine-treated animals. In concurrence with changes in microbiome and metabolome extensive changes in innate and adaptive immune response, lipid metabolism, and gut barrier dysfunction were observed in the host transcriptome. Microbiome depleted mice displayed lower levels of inflammation, immune response and tissue destruction compared to mice harboring a dysbiotic microbiome in response to morphine treatment, thus establishing dysbiotic microbiome as mediator of morphine gut pathophysiology. Integrative analysis of multi-omics data highlighted the associations between Parasutterella excrementihominis, Burkholderiales bacterium 1_1_47, Enterococcus faecalis, Enterorhabdus caecimuris and altered levels of riboflavin, flavonoids, and lipid metabolites including phosphocholines, carnitines, bile acids, and ethanolamines with host gene expression changes involved in inflammation and barrier integrity of intestine. Omic analysis also highlighted the role of probiotic bacteria Lactobacillus johnsonii, metabolites flavonoids and riboflavin that were depleted with morphine as important factors for intestinal homeostasis. This study presents for the first time ever an interactive view of morphine-induced changes in microbial metabolism, strain level gut microbiome analysis and comprehensive view of changes in gut transcriptome. We also identified areas of potential therapeutic interventions to limit microbial dysbiosis and present a unique resource to the opioid research community.
Collapse
Affiliation(s)
- Udhghatri Kolli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Richa Jalodia
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shamsudheen Moidunny
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Praveen Kumar Singh
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Fl, USA
| | - Junyi Tao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eridania Valdes
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
11
|
Wijayanti D, Bai Y, Hanif Q, Chen H, Zhu H, Qu L, Guo Z, Lan X. Goat CLSTN2 gene: tissue expression profile, genetic variation, and its associations with litter size. Anim Biotechnol 2023; 34:2674-2683. [PMID: 35980330 DOI: 10.1080/10495398.2022.2111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Calsyntenin-2 (CLSTN2) is involved in cell proliferation, differentiation, cell death, tumorigenesis, and follicular expression. Although CLSTN2 has been identified as a potential candidate gene for sheep prolificacy, no studies have been done on its effect on goat prolificacy. The purpose of this study was to identify mRNA expression and genetic variation within goat CLSTN2, and its association with prolificacy. Herein, we uncovered significant differences in mRNA levels of the CLSTN2 gene in different tissues in female goats (p < 0.01), including ovary tissue. Nine putative indels were designed to investigate their correlation to litter size, but only one 16-bp deletion was discovered in female Shaanbei white cashmere goats (n = 902). We discovered that a 16-bp deletion within the CLSTN2 gene was significantly correlated with first-born litter size (p = 0.0001). As shown by the chi-squared test, the genotypic II of single-lambs and multi-lambs was dramatically higher than with genotype ID (p = 0.005). Our findings suggest that indel within the CLSTN2 gene is a candidate gene affecting prolificacy in goats and may be used for Marker Assisted Selection (MAS) in goats.
Collapse
Affiliation(s)
- Dwi Wijayanti
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, Indonesia
| | - Yangyang Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quratulain Hanif
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, PR China and Life Science Research Center, Yulin University, Yulin, Shaanxi, PR China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, PR China and Life Science Research Center, Yulin University, Yulin, Shaanxi, PR China
| | - Zhengang Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Institute of Animal Husbandry and Veterinary Science of Bijie City, Guizhou, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Yilmaz E, Gul M. Effects of dietary supplementation of cumin ( Cuminum cyminum L.) essential oil on expression of genes related to antioxidant, apoptosis, detoxification, and heat shock mechanism in heat-stressed broiler chickens. Anim Biotechnol 2023; 34:2766-2777. [PMID: 36052972 DOI: 10.1080/10495398.2022.2117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study was carried out to evaluate the impact of cumin essential oil (CEO) supplementation on levels of certain gene expression related to antioxidant, apoptotic, detoxific, and heat shock mechanisms in the breast meat and ileum of heat-stressed broilers. The study was conducted on a 2 × 6 factorial design (heat stress + feed additive) on 600 day-old male broiler chicks for a period of 42 days. From day 7 to 42, although broilers in heat stress groups (HT) were exposed to constant chronic heat stress (36 °C), others were housed at thermoneutral ambient temperature (TN). The chicks in both conditions were fed with 6 experimental diets: C0 (basal diet with no additive), ANTIB (basal diet + 100 mg/kg chloramphenicol), VITE (basal diet + 50 IU α-tocopherol), C2 (basal diet + 200 mg/kg CEO), C4 (basal diet + 400 mg/kg CEO), C6 (basal diet+ 600 mg/kg CEO). The results showed that heat stress upregulated (except for Bcl-2) the genes related to antioxidant, apoptosis, detoxification, and heat shock mechanism. However, cumin essential oil increased the dose-dependently positive effect on certain genes in tissues of the heat-stressed broilers and downregulated (except for Bcl-2) these genes.
Collapse
Affiliation(s)
- Emre Yilmaz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Gul
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
13
|
Kaneshiro JM, Capitanio JS, Hetzer MW. Lamin B1 overexpression alters chromatin organization and gene expression. Nucleus 2023; 14:2202548. [PMID: 37071033 PMCID: PMC10114975 DOI: 10.1080/19491034.2023.2202548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Peripheral heterochromatin positioning depends on nuclear envelope associated proteins and repressive histone modifications. Here we show that overexpression (OE) of Lamin B1 (LmnB1) leads to the redistribution of peripheral heterochromatin into heterochromatic foci within the nucleoplasm. These changes represent a perturbation of heterochromatin binding at the nuclear periphery (NP) through a mechanism independent from altering other heterochromatin anchors or histone post-translational modifications. We further show that LmnB1 OE alters gene expression. These changes do not correlate with different levels of H3K9me3, but a significant number of the misregulated genes were likely mislocalized away from the NP upon LmnB1 OE. We also observed an enrichment of developmental processes amongst the upregulated genes. ~74% of these genes were normally repressed in our cell type, suggesting that LmnB1 OE promotes gene de-repression. This demonstrates a broader consequence of LmnB1 OE on cell fate, and highlights the importance of maintaining proper levels of LmnB1.
Collapse
Affiliation(s)
- Jeanae M Kaneshiro
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Juliana S Capitanio
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Paul F. Glenn Center for Biology of Aging Research, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
14
|
Dubey PK, Dubey S, Aggarwal J, Kathiravan P, Mukesh M, Dige MS, Mishra BP, Kataria RS. Identification of novel polymorphism in mammary-derived growth inhibitor gene of water buffalo and its expression analysis in the mammary gland. Anim Biotechnol 2023; 34:2999-3007. [PMID: 36170026 DOI: 10.1080/10495398.2022.2126980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Mammary-derived growth inhibitor (MDGI), a member of the lipophilic family of fatty acid-binding proteins, plays an important role in the development, regulation, and differentiation of the mammary gland. The aim of the study was to identify polymorphism in the MDGI gene and its expression analysis in the mammary gland at various stages of lactation, in Indian buffalo. Nucleotide sequence analysis of MDGI gene in different breeds of riverine and swamp buffaloes revealed a total of 16 polymorphic sites and one Indel. Different transcription factor binding sites were predicted for buffalo MDGI gene promoter sequence, using online tools and in-silico analysis indicating that the SNPs in this region can impact the gene expression regulation. Phylogenetic analysis exhibited the MDGI of buffalo being closer to other ruminants like cattle, yak, sheep, and goats. Further, the expression analysis revealed that buffalo MDGI being highly expressed in well-developed mammary glands of lactating buffalo as compared to involution/non-lactating and before functional development to start the milk production stage in heifers. Stage-specific variation in expression levels signifies the important functional role of the MDGI gene in mammary gland development and milk production in buffalo, an important dairy species in Southeast Asia.
Collapse
Affiliation(s)
- P K Dubey
- National Bureau of Animal Genetic Resources, Karnal, India
| | - S Dubey
- National Bureau of Animal Genetic Resources, Karnal, India
| | - J Aggarwal
- National Bureau of Animal Genetic Resources, Karnal, India
| | - P Kathiravan
- National Bureau of Animal Genetic Resources, Karnal, India
| | - M Mukesh
- National Bureau of Animal Genetic Resources, Karnal, India
| | - M S Dige
- National Bureau of Animal Genetic Resources, Karnal, India
| | - B P Mishra
- National Bureau of Animal Genetic Resources, Karnal, India
| | - R S Kataria
- National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
15
|
Chen K, Yuan J, Sia Y, Chen Z. Mechanism of action of the SWI/SNF family complexes. Nucleus 2023; 14:2165604. [PMID: 36633435 PMCID: PMC9839376 DOI: 10.1080/19491034.2023.2165604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Kangjing Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China,School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Junjie Yuan
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China,School of Life Sciences, Tsinghua University, Beijing, P.R. China,Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing, Beijing, China
| | - Youyang Sia
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China,School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Zhucheng Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing, P.R. China,School of Life Sciences, Tsinghua University, Beijing, P.R. China,Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing, Beijing, China,CONTACT Zhucheng Chen MOE Key Laboratory of Protein Science, Tsinghua University, Beijing100084, P.R. China
| |
Collapse
|
16
|
Rassouli A, Shihmani B, Mehrzad J, Shokrpoor S. The immunomodulatory effect of minocycline on gene expression of inflammation related cytokines in lipopolysaccharide-treated human peripheral blood mononuclear cells. Anim Biotechnol 2023; 34:2159-2165. [PMID: 35622407 DOI: 10.1080/10495398.2022.2077743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To evaluate the immunomodulatory effect of minocycline, the present study was carried out on the gene expression of toll-like receptor type-4 (TLR4) and some pro-inflammatory (IL-1β, IL-6) and anti-inflammatory cytokines (IL-10) associated with lipopolysaccharide (LPS) -induced inflammation in human peripheral blood mononuclear cells (PBMCs). The PBMCs were collected and then 5.4 × 106 PBMCs/mL were used in eight groups as follows: control group (only media), LPS group (only LPS), methylprednisolone (Pred) group (LPS plus Pred), meloxicam (Melo) group (LPS plus Melo), three minocycline groups [M1, M5 and M25] (LPS plus 1, 5, and 25 µg/mL minocycline, respectively) and minocycline control (MC) group (5 µg/mL minocycline). After incubation for 24 h, the PBMCs were subjected to quantitative PCR assays. Gene expression levels of TLR4 were not changed in any groups. The IL-1β levels were increased in the LPS group but the increases were much more intense in the other groups except Pred group. Compared with control group, IL-6 levels increased significantly in Melo, M1 and M25 groups. Significant increases of IL-10 levels were also observed in Melo, M25 and MC groups. It can be concluded that minocycline had dual pro- and anti-inflammatory activities with potential clinical immunomodulatory effects.
Collapse
Affiliation(s)
- Ali Rassouli
- Pharmacology Division, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Basim Shihmani
- Department of Comparative Biosciences, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Al-Sharif M, Marghani BH, Ateya A. DNA polymorphisms and expression profile of immune and antioxidant genes as biomarkers for reproductive disorders tolerance/susceptibility in Baladi goat. Anim Biotechnol 2023; 34:2219-2230. [PMID: 35671246 DOI: 10.1080/10495398.2022.2082975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The objective of this study was to explore single nucleotide polymorphisms (SNPs) and gene expression of immune and antioxidant markers associated with reproductive disorders in Baladi goats. A total of one hundred adults Baladi does were allocated into two equal-sized groups: normal reproductive performance and does have a history of reproductive disorders. DNA sequencing of PRLR (304-bp), LTF (904-bp), TLR2 (420-bp), TLR4 (335-bp), CLA-DRB3.2 (285-bp), SOD3 (735-bp), CAT (1526-bp), GPX4 (782-bp), and GST (690-bp) revealed SNPs associated with reproductive disorders tolerance/susceptibility in investigated does. Nonetheless, DNA sequencing of beta defensin (483-bp), CCL5 (840-bp), and ATOX1 (374-bp) genes elicited a monomorphic pattern. Levels of PRLR, LTF, TLR2, TLR4, CLA-DRB3.2, beta defensin, and CCL5 genes were significantly up-regulated in does affect with reproductive disorders than tolerant ones; while SOD3, CAT, GPX4, GST and ATOX1 genes pattern elicited an opposite trend. The results herein confirmed the potential significance of SNPs in immune and antioxidant genes as genetic markers for reproductive disorders tolerance/susceptibility in Baladi does. The Gene expression profile of investigated genes could be also used as proxy biomarkers for the prediction of the most susceptible risk time for disease occurrence and for building up an effective management protocol.
Collapse
Affiliation(s)
- Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Basma H Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Chalana G, Sihag S, Kumar A, Magotra A. Expression profiling of immune genes associated with black pepper ( Piper nigrum) powder supplementation in the diets of broiler chickens. Anim Biotechnol 2023; 34:2336-2342. [PMID: 35732035 DOI: 10.1080/10495398.2022.2088551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study was conducted on three hundred commercial broiler chicks with the aim to evaluate the effect of black pepper supplementation on expression of TLR gene where the negative control (T1) group was given basal diet without antibiotic and in the control group (T2) basal diet with antibiotic was fed, third (T3), fourth (T4), fifth (T5) and sixth (T6) groups were supplemented with black pepper powder (BPP) at levels 0.25, 0.5, 0.75 and 1%, respectively in diet. After 42 days, a significant reduction (p < 0.05) in ileal E. coli count and a higher value of Lactobacilli was recorded in the various black pepper powder supplemented groups, and they differed significantly (p < 0.05) from negative control. The mRNA expression levels of Toll-like receptors (TLR 2 and TLR 4) had shown significant (p < 0.05) changes in experimental groups. The TLR 2 and TLR 4 genes revealed differential expression in all black pepper supplemented groups in comparison to negative control and control group, while TLR 7 did not show any significant change. Thus, supplementation of black pepper powder can be exploited as an immunomodulator to enhance adaptive immune response of broiler chicks after validation on large number of samples.
Collapse
|