1
|
Mann R, Notani D. Transcription factor condensates and signaling driven transcription. Nucleus 2023; 14:2205758. [PMID: 37129580 PMCID: PMC10155639 DOI: 10.1080/19491034.2023.2205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Transcription Factor (TF) condensates are a heterogenous mix of RNA, DNA, and multiple co-factor proteins capable of modulating the transcriptional response of the cell. The dynamic nature and the spatial location of TF-condensates in the 3D nuclear space is believed to provide a fast response, which is on the same pace as the signaling cascade and yet ever-so-specific in the crowded environment of the nucleus. However, the current understanding of how TF-condensates can achieve these feet so quickly and efficiently is still unclear. In this review, we draw parallels with other protein condensates and share our speculations on how the nucleus uses these TF-condensates to achieve high transcriptional specificity and fidelity. We discuss the various constituents of TF-condensates, their properties, and the known and unknown functions of TF-condensates with a particular focus on steroid signaling-induced transcriptional programs.
Collapse
Affiliation(s)
- Rajat Mann
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Dimple Notani
- National Centre for Biological Sciences, TIFR, Bangalore, India
| |
Collapse
|
2
|
Sun X, Feng Y, Gong C, Bao X, Wei Z, Chang L, Chen H, Xu B. Hypertension-Driven Regulatory T-Cell Perturbations Accelerate Myocardial Ischemia-Reperfusion Injury. Hypertension 2023; 80:2046-2058. [PMID: 37615092 DOI: 10.1161/hypertensionaha.123.20481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Patients with a history of hypertension have elevated inflammation and a worse prognosis after acute myocardial infarction (AMI). Regulatory T cells (Tregs) are reported to lose their immunosuppressive capacity under pathological conditions. However, whether hypertension leads to Treg dysfunction, thus accelerating myocardial ischemia-reperfusion injury, is still unknown. METHODS Studies were performed in hypertensive rats and mice with myocardial ischemia-reperfusion injury. The frequencies and phenotypes of Tregs were analyzed by flow cytometry and immunohistochemistry. Reconstruction Treg experiments were performed to evaluate the effect of Tregs on ischemia-reperfusion injury. Patients with AMI were enrolled to assess circulating Tregs, inflammatory cytokines, and cardiac function. RESULTS In this study, we found that hypertension leads to proinflammatory Th1 (T helper 1 cell)-like Treg subsets with compromised suppressive capacity. Reconstruction Treg experiments identified that dysfunctional Tregs induced by hypertension play a pathogenic role in the progression of myocardial ischemia-reperfusion injury. In particular, we identified HDAC6 (histone deacetylase 6) as a central regulator in the perturbed Tregs. Clinical studies revealed that the hypertension-induced reduction in circulating Tregs strongly correlated with the higher occurrence rate of microvascular obstruction in AMI patients with hypertension. CONCLUSIONS Our study provided promising clues to explain the poor prognosis of hypertensive AMI patients due to alterations in Tregs. Targeting disturbed Tregs may be a new strategy to treat AMI patients with hypertension.
Collapse
Affiliation(s)
- Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Yuting Feng
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Chenyi Gong
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Xue Bao
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Zhonghai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Lei Chang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, China (L.C.)
| | - Haiting Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| |
Collapse
|
3
|
López-Gil L, Pascual-Ahuir A, Proft M. Genomic Instability and Epigenetic Changes during Aging. Int J Mol Sci 2023; 24:14279. [PMID: 37762580 PMCID: PMC10531692 DOI: 10.3390/ijms241814279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is considered the deterioration of physiological functions along with an increased mortality rate. This scientific review focuses on the central importance of genomic instability during the aging process, encompassing a range of cellular and molecular changes that occur with advancing age. In particular, this revision addresses the genetic and epigenetic alterations that contribute to genomic instability, such as telomere shortening, DNA damage accumulation, and decreased DNA repair capacity. Furthermore, the review explores the epigenetic changes that occur with aging, including modifications to histones, DNA methylation patterns, and the role of non-coding RNAs. Finally, the review discusses the organization of chromatin and its contribution to genomic instability, including heterochromatin loss, chromatin remodeling, and changes in nucleosome and histone abundance. In conclusion, this review highlights the fundamental role that genomic instability plays in the aging process and underscores the need for continued research into these complex biological mechanisms.
Collapse
Affiliation(s)
- Lucía López-Gil
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
4
|
Espinoza Pereira KN, Shan J, Licht JD, Bennett RL. Histone mutations in cancer. Biochem Soc Trans 2023:BST20210567. [PMID: 37721138 DOI: 10.1042/bst20210567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Genes encoding histone proteins are recurrently mutated in tumor samples, and these mutations may impact nucleosome stability, histone post-translational modification, or chromatin dynamics. The prevalence of histone mutations across diverse cancer types suggest that normal chromatin structure is a barrier to tumorigenesis. Oncohistone mutations disrupt chromatin structure and gene regulatory mechanisms, resulting in aberrant gene expression and the development of cancer phenotypes. Examples of oncohistones include the histone H3 K27M mutation found in pediatric brain cancers that blocks post-translational modification of the H3 N-terminal tail and the histone H2B E76K mutation found in some solid tumors that disrupts nucleosome stability. Oncohistones may comprise a limited fraction of the total histone pool yet cause global effects on chromatin structure and drive cancer phenotypes. Here, we survey histone mutations in cancer and review their function and role in tumorigenesis.
Collapse
Affiliation(s)
| | - Jixiu Shan
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| | - Jonathan D Licht
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| | - Richard L Bennett
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
5
|
Birckhead EM, Das S, Tidd N, Raidal SL, Raidal SR. Visualizing neutrophil extracellular traps in septic equine synovial and peritoneal fluid samples using immunofluorescence microscopy. J Vet Diagn Invest 2023:10406387231196552. [PMID: 37661696 DOI: 10.1177/10406387231196552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Septic synovitis and peritonitis are routinely diagnosed in horses based on clinical examination findings and laboratory assessment of synoviocentesis and abdominocentesis samples, respectively. Diagnosis is difficult in some cases because of an overlap in laboratory results for septic and non-septic inflammation. Neutrophil extracellular trap (NET) formation is part of the innate immune response against pathogens. Identifying and quantifying NETs, which have not been explored in clinical samples from horses with septic synovitis and peritonitis, to our knowledge, may be helpful in detecting infectious processes. Our main objective was to determine whether NETs could be visualized in septic equine synovial and peritoneal fluid cytology samples using immunofluorescence with antibodies against citrullinated histone H3 (Cit-H3) and myeloperoxidase (MPO). We analyzed 9 synovial and 4 peritoneal fluid samples. NET percentages were quantified using a simple counting technique, which is suitable for high-quality, well-preserved, and stained cytospin smears. NETs were evident in all septic samples and were absent in a non-septic sample; NETs were better visualized with Cit-H3 than with MPO immunolabeling. Overall, we believe that there is the potential for NETs and associated markers to be used to investigate and understand septic inflammation in horses.
Collapse
Affiliation(s)
- Emily M Birckhead
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Naomie Tidd
- Veterinary Diagnostic Laboratory, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sharanne L Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shane R Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
6
|
Smerdon MJ, Wyrick JJ, Delaney S. A half century of exploring DNA excision repair in chromatin. J Biol Chem 2023; 299:105118. [PMID: 37527775 PMCID: PMC10498010 DOI: 10.1016/j.jbc.2023.105118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
DNA in eukaryotic cells is packaged into the compact and dynamic structure of chromatin. This packaging is a double-edged sword for DNA repair and genomic stability. Chromatin restricts the access of repair proteins to DNA lesions embedded in nucleosomes and higher order chromatin structures. However, chromatin also serves as a signaling platform in which post-translational modifications of histones and other chromatin-bound proteins promote lesion recognition and repair. Similarly, chromatin modulates the formation of DNA damage, promoting or suppressing lesion formation depending on the chromatin context. Therefore, the modulation of DNA damage and its repair in chromatin is crucial to our understanding of the fate of potentially mutagenic and carcinogenic lesions in DNA. Here, we survey many of the landmark findings on DNA damage and repair in chromatin over the last 50 years (i.e., since the beginning of this field), focusing on excision repair, the first repair mechanism studied in the chromatin landscape. For example, we highlight how the impact of chromatin on these processes explains the distinct patterns of somatic mutations observed in cancer genomes.
Collapse
Affiliation(s)
- Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | - John J Wyrick
- Genetics and Cell Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
7
|
de Siqueira Santos R, Rochael NC, Mattos TRF, Fallett E Silva MF, Linhares-Lacerda L, de Oliveira LT, Cunha MS, Mohana-Borges R, Gomes TA, Barbosa-Silva MC, Maron-Gutierrez T, Foguel D, Saraiva EM. Peripheral nervous system is injured by neutrophil extracellular traps (NETs) elicited by nonstructural (NS) protein-1 from Zika virus. FASEB J 2023; 37:e23126. [PMID: 37594040 DOI: 10.1096/fj.202201904r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
The involvement of innate immune mediators to the Zika virus (ZIKV)-induced neuroinflammation is not yet well known. Here, we investigated whether neutrophil extracellular traps (NETs), which are scaffolds of DNA associated with proteins, have the potential to injure peripheral nervous. The tissue lesions were evaluated after adding NETs to dorsal root ganglia (DRG) explants and to DRG constituent cells or injecting them into mouse sciatic nerves. Identification of NET harmful components was achieved by pharmacological inhibition of NET constituents. We found that ZIKV inoculation into sciatic nerves recruited neutrophils and elicited the production of the cytokines CXCL1 and IL-1β, classical NET inducers, but did not trigger NET formation. ZIKV blocked PMA- and CXCL8-induced NET release, but, in contrast, the ZIKV nonstructural protein (NS)-1 induced NET formation. NET-enriched supernatants were toxic to DRG explants, decreasing neurite area, length, and arborization. NETs were toxic to DRG constituent cells and affected myelinating cells. Myeloperoxidase (MPO) and histones were identified as the harmful component of NETs. NS1 injection into mouse sciatic nerves recruited neutrophils and triggered NET release and caspase-3 activation, events that were also elicited by the injection of purified MPO. In summary, we found that ZIKV NS1 protein induces NET formation, which causes nervous tissue damages. Our findings reveal new mechanisms leading to neuroinflammation by ZIKV.
Collapse
Affiliation(s)
- Raphael de Siqueira Santos
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Natalia Cadaxo Rochael
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thayana Roberta F Mattos
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Matheus Felipe Fallett E Silva
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Leandra Linhares-Lacerda
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Leandro Teixeira de Oliveira
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcela Sabino Cunha
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tiago Araujo Gomes
- Laboratório de Microbiologia Celular Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Maria Carolina Barbosa-Silva
- Laboratório de Imunofarmacologia - Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratório de Imunofarmacologia - Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Debora Foguel
- Laboratório de Agregação de Proteínas e Amiloidoses, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Rico MC, Perez-Leal O, Barbe MF, Amin M, Colussi DJ, Florez ML, Olusajo V, Rios DS, Barrero CA. Extracellular Acetylated Histone 3.3 Induces Inflammation and Lung Tissue Damage. Biomolecules 2023; 13:1334. [PMID: 37759735 PMCID: PMC10527259 DOI: 10.3390/biom13091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Extracellular histones, part of the protein group known as damage-associated molecular patterns (DAMPs), are released from damaged or dying cells and can instigate cellular toxicity. Within the context of chronic obstructive pulmonary disease (COPD), there is an observed abundance of extracellular histone H3.3, indicating potential pathogenic implications. Notably, histone H3.3 is often found hyperacetylated (AcH3.3) in the lungs of COPD patients. Despite these observations, the specific role of these acetylated histones in inducing pulmonary tissue damage in COPD remains unclear. To investigate AcH3.3's impact on lung tissue, we administered recombinant histones (rH2A, rH3.3, and rAcH3.3) or vehicle solution to mice via intratracheal instillation. After 48 h, we evaluated the lung toxicity damage and found that the rAcH3.3 treated animals exhibited more severe lung tissue damage compared to those treated with non-acetylated H3.3 and controls. The rAcH3.3 instillation resulted in significant histological changes, including alveolar wall rupture, epithelial cell damage, and immune cell infiltration. Micro-CT analysis confirmed macroscopic structural changes. The rAcH3.3 instillation also increased apoptotic activity (cleavage of caspase 3 and 9) and triggered acute systemic inflammatory marker activation (TNF-α, IL-6, MCP-3, or CXCL-1) in plasma, accompanied by leukocytosis and lymphocytosis. Confocal imaging analysis confirmed lymphocytic and monocytic/macrophage lung infiltration in response to H3.3 and AcH3.3 administration. Taken together, our findings implicate extracellular AcH3.3 in inducing cytotoxicity and acute inflammatory responses, suggesting its potential role in promoting COPD-related lung damage progression.
Collapse
Affiliation(s)
- Mario C. Rico
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| | - Oscar Perez-Leal
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| | - Mary F. Barbe
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.F.B.); (M.A.)
| | - Mamta Amin
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.F.B.); (M.A.)
| | - Dennis J. Colussi
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| | - Magda L. Florez
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| | - Victor Olusajo
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| | | | - Carlos A. Barrero
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| |
Collapse
|
9
|
Speidell A, Bin Abid N, Yano H. Brain-Derived Neurotrophic Factor Dysregulation as an Essential Pathological Feature in Huntington's Disease: Mechanisms and Potential Therapeutics. Biomedicines 2023; 11:2275. [PMID: 37626771 PMCID: PMC10452871 DOI: 10.3390/biomedicines11082275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a major neurotrophin whose loss or interruption is well established to have numerous intersections with the pathogenesis of progressive neurological disorders. There is perhaps no greater example of disease pathogenesis resulting from the dysregulation of BDNF signaling than Huntington's disease (HD)-an inherited neurodegenerative disorder characterized by motor, psychiatric, and cognitive impairments associated with basal ganglia dysfunction and the ultimate death of striatal projection neurons. Investigation of the collection of mechanisms leading to BDNF loss in HD highlights this neurotrophin's importance to neuronal viability and calls attention to opportunities for therapeutic interventions. Using electronic database searches of existing and forthcoming research, we constructed a literature review with the overarching goal of exploring the diverse set of molecular events that trigger BDNF dysregulation within HD. We highlighted research that investigated these major mechanisms in preclinical models of HD and connected these studies to those evaluating similar endpoints in human HD subjects. We also included a special focus on the growing body of literature detailing key transcriptomic and epigenetic alterations that affect BDNF abundance in HD. Finally, we offer critical evaluation of proposed neurotrophin-directed therapies and assessed clinical trials seeking to correct BDNF expression in HD individuals.
Collapse
Affiliation(s)
- Andrew Speidell
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Noman Bin Abid
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Meenakshi S, Maharana KC, Nama L, Kumar VU, Dhingra S, Ravichandiran V, Murti K, Kumar N. Targeting Histone 3 Variants Epigenetic Landscape and Inhibitory Immune Checkpoints: An Option for Paediatric Brain Tumours Therapy. Curr Neuropharmacol 2023; 21:CN-EPUB-133484. [PMID: 37605389 DOI: 10.2174/1570159x21666230809110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 08/23/2023] Open
Abstract
Despite little progress in survival rates with regular therapies, which do not provide complete care for curing pediatric brain tumors (PBTs), there is an urgent need for novel strategies to overcome the toxic effects of conventional therapies to treat PBTs. The co-inhibitory immune checkpoint molecules, e.g., CTLA-4, PD-1/PD-L1, etc., and epigenetic alterations in histone variants, e.g., H3K27me3 that help in immune evasion at tumor microenvironment have not gained much attention in PBTs treatment. However, key epigenetic mechanistic alterations, such as acetylation, methylation, phosphorylation, sumoylation, poly (ADP)-ribosylation, and ubiquitination in histone protein, are greatly acknowledged. The crucial checkpoints in pediatric brain tumors are cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PDL1), OX-2 membrane glycoprotein (CD200), and indoleamine 2,3-dioxygenase (IDO). This review covers the state of knowledge on the role of multiple co-inhibitory immunological checkpoint proteins and histone epigenetic alterations in different cancers. We further discuss the processes behind these checkpoints, cell signalling, the current scenario of clinical and preclinical research and potential futuristic opportunities for immunotherapies in the treatment of pediatric brain tumors. Conclusively, this article further discusses the possibilities of these interventions to be used for better therapy options.
Collapse
Affiliation(s)
- Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar
| | - Lokesh Nama
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar
| | - V Udaya Kumar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Velayutham Ravichandiran
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar
| |
Collapse
|
11
|
Burkewitz K. Hitting the brakes on transcription to extend lifespan. Trends Genet 2023:S0168-9525(23)00165-8. [PMID: 37574379 DOI: 10.1016/j.tig.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
In aged animals from worms to humans, transcriptional elongation rates are faster, leading to changes in transcript quality and alternative splicing. Recent work by Debès et al. shows how interventions that slow elongation rates, such as mutating RNA polymerase II (Pol II) or increasing nucleosome density to impose transcriptional 'traffic', delay senescence and promote longevity.
Collapse
Affiliation(s)
- Kristopher Burkewitz
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
12
|
Homsi C, Rajan RE, Minati R, St-Hilaire E, Bonneil E, Dufresne SF, Wurtele H, Verreault A, Thibault P. A Rapid and Efficient Method for the Extraction of Histone Proteins. J Proteome Res 2023; 22:2765-2773. [PMID: 37463329 PMCID: PMC10408643 DOI: 10.1021/acs.jproteome.3c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 07/20/2023]
Abstract
Current protocols used to extract and purify histones are notoriously tedious, especially when using yeast cells. Here, we describe the use of a simple filter-aided sample preparation approach enabling histone extraction from yeast and mammalian cells using acidified ethanol, which not only improves extraction but also inactivates histone-modifying enzymes. We show that our improved method prevents N-terminal clipping of H3, an artifact frequently observed in yeast cells using standard histone extraction protocols. Our method is scalable and provides efficient recovery of histones when extracts are prepared from as few as two million yeast cells. We further demonstrate the application of this approach for the analysis of histone modifications in fungal clinical isolates available in a limited quantity. Compared with standard protocols, our method enables the study of histones and their modifications in a faster, simpler, and more robust manner.
Collapse
Affiliation(s)
- Charles Homsi
- Institute
for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Molecular
Biology Program, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Roshan Elizabeth Rajan
- Institute
for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Robin Minati
- Institute
for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Molecular
Biology Program, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Edlie St-Hilaire
- Maisonneuve-Rosemont
Hospital Research Center, Montréal, Québec H1T 2M4, Canada
| | - Eric Bonneil
- Institute
for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Simon F. Dufresne
- Division
of Infectious Diseases and Clinical Microbiology, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, Québec H1T 2M4, Canada
| | - Hugo Wurtele
- Department
of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Department
of Pathology and Cell Biology, Université
de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Alain Verreault
- Institute
for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Department
of Pathology and Cell Biology, Université
de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Pierre Thibault
- Institute
for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Department
of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
13
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D'Arcy S. Molecular basis of RanGTP-activated release of Histones H2A-H2B from Importin-9. Structure 2023; 31:903-911.e3. [PMID: 37379840 PMCID: PMC10527638 DOI: 10.1016/j.str.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP is insufficient to release H2A-H2B. The resulting stable RanGTP·Imp9·H2A-H2B complex gains nucleosome assembly activity with H2A-H2B able to be deposited into an assembling nucleosome in vitro. Using hydrogen-deuterium exchange coupled with mass spectrometry (HDX), we show that Imp9 stabilizes H2A-H2B beyond the direct-binding site, like other histone chaperones. HDX also shows that binding of RanGTP releases H2A-H2B contacts at Imp9 HEAT repeats 4-5, but not 18-19. DNA- and histone-binding surfaces of H2A-H2B are exposed in the ternary complex, facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. Imp9 thus provides a connection between the nuclear import of H2A-H2B and its deposition into chromatin.
Collapse
Affiliation(s)
- Joy M Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Oladimeji S Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA.
| |
Collapse
|
14
|
Paladini A, Vallejo R, Guerrero M, Pasqualucci A, Peppin JF, Pergolizzi J, Varrassi G. Answering Big Questions in Pain Medicine. Cureus 2023; 15:e43561. [PMID: 37719539 PMCID: PMC10502917 DOI: 10.7759/cureus.43561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
The future of pain medicine is marked by many questions. What can other nations around the world learn from the opioid crisis that is still affecting the United States? The American opioid experience was mischaracterized and wrongly described, and its causes were misdiagnosed from the outset, leading to its mismanagement and the abandonment of many chronic pain patients to their suffering. There are a few new drugs in the analgesic armamentarium. What new targets do we have in pain medicine? There are many breakthroughs, discoveries, and potential new targets that could add to our analgesic prescribing choices. These include sigma receptors, d-amino acid oxidase, endoplasmic reticulum stress receptors, histone deacetylase, and others. Neuromodulation had been used with varying degrees of success for years, but with a simplistic approach based on the gate theory of pain. Despite our familiarity with neuromodulation and spinal cord stimulators, neuromodulation research indicates that the activation of glial cells may activate the immune system and enhance analgesia. Neuromodulation studies have concentrated on how electricity affects neuronal activity rather than how electrical activity could reduce pain. There are still more frontiers in our battle against pain and some promising avenues for treatments. This narrative review will try to summarize what can be done from the perspective of recent technological and pharmacological developments.
Collapse
Affiliation(s)
- Antonella Paladini
- Department of Life, Health & Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, ITA
| | - Ricardo Vallejo
- Department of Research, Millennium Pain Center, Bloomington, USA
| | - Marixa Guerrero
- Department of Pain Medicine/ Pain Management, Clínica del Country, Bogota, COL
| | - Alberto Pasqualucci
- Department of Anesthesia and Critical Care, University of Perugia, Perugia, ITA
| | - John F Peppin
- Department of Osteopathic Medicine, Marian University, Indianapolis, USA
| | - Joseph Pergolizzi
- Department of Anesthesiology, Pain Medicine, and Critical Care Medicine, Nema Research, Naples, USA
| | | |
Collapse
|
15
|
Petell CJ, Burkholder NT, Ruiz PA, Skela J, Foreman JR, Southwell LE, Temple BR, Krajewski K, Strahl BD. The bromo-adjacent homology domains of PBRM1 associate with histone tails and contribute to PBAF-mediated gene regulation. J Biol Chem 2023; 299:104996. [PMID: 37394010 PMCID: PMC10425938 DOI: 10.1016/j.jbc.2023.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
A critical component of gene regulation is recognition of histones and their post-translational modifications by transcription-associated proteins or complexes. Although many histone-binding reader modules have been characterized, the bromo-adjacent homology (BAH) domain family of readers is still poorly characterized. A pre-eminent member of this family is PBRM1 (BAF180), a component of the PBAF chromatin-remodeling complex. PBRM1 contains two adjacent BAH domains of unknown histone-binding potential. We evaluated the tandem BAH domains for their capacity to associate with histones and to contribute to PBAF-mediated gene regulation. The BAH1 and BAH2 domains of human PBRM1 broadly interacted with histone tails, but they showed a preference for unmodified N-termini of histones H3 and H4. Molecular modeling and comparison of the BAH1 and BAH2 domains with other BAH readers pointed to a conserved binding mode via an extended open pocket and, in general, an aromatic cage for histone lysine binding. Point mutants that were predicted to disrupt the interaction between the BAH domains and histones reduced histone binding in vitro and resulted in dysregulation of genes targeted by PBAF in cellulo. Although the BAH domains in PBRM1 were important for PBAF-mediated gene regulation, we found that overall chromatin targeting of PBRM1 was not dependent on BAH-histone interaction. Our findings identify a function of the PBRM1 BAH domains in PBAF activity that is likely mediated by histone tail interaction.
Collapse
Affiliation(s)
- Christopher J Petell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel T Burkholder
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paloma A Ruiz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica Skela
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jake R Foreman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lauren E Southwell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brenda R Temple
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; R L Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
16
|
Jiou J, Shaffer JM, Bernades NE, Fung HYJ, Kikumoto Dias J, D'Arcy S, Chook YM. Mechanism of RanGTP priming H2A-H2B release from Kap114 in an atypical RanGTP•Kap114•H2A-H2B complex. Proc Natl Acad Sci U S A 2023; 120:e2301199120. [PMID: 37450495 DOI: 10.1073/pnas.2301199120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Previously, we showed that the nuclear import receptor Importin-9 wraps around the H2A-H2B core to chaperone and transport it from the cytoplasm to the nucleus. However, unlike most nuclear import systems where RanGTP dissociates cargoes from their importins, RanGTP binds stably to the Importin-9•H2A-H2B complex, and formation of the ternary RanGTP•Importin-9•H2A-H2B complex facilitates H2A-H2B release to the assembling nucleosome. It was unclear how RanGTP and the cargo H2A-H2B can bind simultaneously to an importin, and how interactions of the three components position H2A-H2B for release. Here, we show cryo-EM structures of Importin-9•RanGTP and of its yeast homolog Kap114, including Kap114•RanGTP, Kap114•H2A-H2B, and RanGTP•Kap114•H2A-H2B, to explain how the conserved Kap114 binds H2A-H2B and RanGTP simultaneously and how the GTPase primes histone transfer to the nucleosome. In the ternary complex, RanGTP binds to the N-terminal repeats of Kap114 in the same manner as in the Kap114/Importin-9•RanGTP complex, and H2A-H2B binds via its acidic patch to the Kap114 C-terminal repeats much like in the Kap114/Importin-9•H2A-H2B complex. Ran binds to a different conformation of Kap114 in the ternary RanGTP•Kap114•H2A-H2B complex. Here, Kap114 no longer contacts the H2A-H2B surface proximal to the H2A docking domain that drives nucleosome assembly, positioning it for transfer to the assembling nucleosome or to dedicated H2A-H2B chaperones in the nucleus.
Collapse
Affiliation(s)
- Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Joy M Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080
| | - Natalia E Bernades
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Juliana Kikumoto Dias
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
17
|
Ostroverkhova D, Espiritu D, Aristizabal MJ, Panchenko AR. Leveraging Gene Redundancy to Find New Histone Drivers in Cancer. Cancers (Basel) 2023; 15:3437. [PMID: 37444547 DOI: 10.3390/cancers15133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Histones play a critical role in chromatin function but are susceptible to mutagenesis. In fact, numerous mutations have been observed in several cancer types, and a few of them have been associated with carcinogenesis. Histones are peculiar, as they are encoded by a large number of genes, and the majority of them are clustered in three regions of the human genome. In addition, their replication and expression are tightly regulated in a cell. Understanding the etiology of cancer mutations in histone genes is impeded by their functional and sequence redundancy, their unusual genomic organization, and the necessity to be rapidly produced during cell division. Here, we collected a large data set of histone gene mutations in cancer and used it to investigate their distribution over 96 human histone genes and 68 different cancer types. This analysis allowed us to delineate the factors influencing the probability of mutation accumulation in histone genes and to detect new histone gene drivers. Although no significant difference in observed mutation rates between different histone types was detected for the majority of cancer types, several cancers demonstrated an excess or depletion of mutations in histone genes. As a consequence, we identified seven new histone genes as potential cancer-specific drivers. Interestingly, mutations were found to be distributed unevenly in several histone genes encoding the same protein, pointing to different factors at play, which are specific to histone function and genomic organization. Our study also elucidated mutational processes operating in genomic regions harboring histone genes, highlighting POLE as a factor of potential interest.
Collapse
Affiliation(s)
- Daria Ostroverkhova
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Daniel Espiritu
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
- School of Computing, Queen's University, Kingston, ON K7L 3N6, Canada
- Ontario Institute of Cancer Research, Toronto, ON M5G 0A3, Canada
| |
Collapse
|
18
|
Giglio RV, Ligi D, Della Franca C, Lo Sasso B, Rivas JZ, Agnello L, Mannello F, Ciaccio M. Thrombocytopenia and hyperinflammation are induced by extracellular histones circulating in blood. Clin Chem Lab Med 2023; 0:cclm-2023-0590. [PMID: 37338192 DOI: 10.1515/cclm-2023-0590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, BiND, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Daniela Ligi
- Department of Biomolecular Sciences - DISB, Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Urbino, Italy
| | - Chiara Della Franca
- Department of Biomolecular Sciences - DISB, Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Urbino, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, BiND, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Julia Zulema Rivas
- Department of Biomolecular Sciences - DISB, Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Urbino, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, BiND, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Ferdinando Mannello
- Department of Biomolecular Sciences - DISB, Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Urbino, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, BiND, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
19
|
Hamza GM, Miele E, Wojchowski DM, Toran P, Worsfold CR, Anthonymuthu TS, Bergo VB, Zhang AX, Silva JC. Affi-BAMS™: A Robust Targeted Proteomics Microarray Platform to Measure Histone Post-Translational Modifications. Int J Mol Sci 2023; 24:10060. [PMID: 37373206 DOI: 10.3390/ijms241210060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
For targeted protein panels, the ability to specifically assay post-translational modifications (PTMs) in a quantitative, sensitive, and straightforward manner would substantially advance biological and pharmacological studies. The present study highlights the effectiveness of the Affi-BAMS™ epitope-directed affinity bead capture/MALDI MS platform for quantitatively defining complex PTM marks of H3 and H4 histones. Using H3 and H4 histone peptides and isotopically labelled derivatives, this affinity bead and MALDI MS platform achieves a range of >3 orders of magnitude with a technical precision CV of <5%. Using nuclear cellular lysates, Affi-BAMS PTM-peptide capture resolves heterogeneous histone N-terminal PTMs with as little as 100 µg of starting material. In an HDAC inhibitor and MCF7 cell line model, the ability to monitor dynamic histone H3 acetylation and methylation events is further demonstrated (including SILAC quantification). Affi-BAMS (and its capacity for the multiplexing of samples and target PTM-proteins) thus provides a uniquely efficient and effective approach for analyzing dynamic epigenetic histone marks, which is critical for the regulation of chromatin structure and gene expression.
Collapse
Affiliation(s)
- Ghaith M Hamza
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Boston, MA 02451, USA
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Eric Miele
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Boston, MA 02451, USA
| | - Don M Wojchowski
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Paul Toran
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | | | | | - Andrew X Zhang
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Boston, MA 02451, USA
| | - Jeffrey C Silva
- Adeptrix Corporation, Beverly, MA 01915, USA
- Cell Signaling Technology, Danvers, MA 01915, USA
| |
Collapse
|
20
|
Driver T, Pipkorn R, Averbukh V, Frasinski LJ, Marangos JP, Edelson-Averbukh M. Identification of Cofragmented Combinatorial Peptide Isomers by Two-Dimensional Partial Covariance Mass Spectrometry. J Am Soc Mass Spectrom 2023. [PMID: 37252811 DOI: 10.1021/jasms.3c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Combinatorial post-translational modifications (PTMs), such as those forming the so-called "histone code", have been linked to cell differentiation, embryonic development, cellular reprogramming, aging, cancers, neurodegenerative disorders, etc. Nevertheless, a reliable mass spectral analysis of the combinatorial isomers represents a considerable challenge. The difficulty stems from the incompleteness of information that could be generated by the standard MS to differentiate cofragmented isomeric sequences in their naturally occurring mixtures based on the fragment mass-to-charge ratio and relative abundance information only. Here we show that fragment-fragment correlations revealed by two-dimensional partial covariance mass spectrometry (2D-PC-MS) allow one to solve the combinatorial PTM puzzles that cannot be tackled by the standard MS as a matter of principle. We introduce 2D-PC-MS marker ion correlation approach and demonstrate experimentally that it can provide the missing information enabling identification of cofragmentated combinatorially modified isomers. Our in silico study shows that the marker ion correlations can be used to unambiguously identify 5 times more cofragmented combinatorially acetylated tryptic peptides and 3 times more combinatorially modified Glu-C peptides of human histones than is possible using standard MS methods.
Collapse
Affiliation(s)
- Taran Driver
- Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Rüdiger Pipkorn
- Department of Translational Immunology, German Cancer Research Centre, INF 580, 69120 Heidelberg, Germany
| | - Vitali Averbukh
- Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | | | - Jon P Marangos
- Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | | |
Collapse
|
21
|
Lin R, Wu J, You Z, Xu D, Li C, Wang W, Qian G. Induction of Hibernation and Changes in Physiological and Metabolic Indices in Pelodiscus sinensis. Biology (Basel) 2023; 12:biology12050720. [PMID: 37237532 DOI: 10.3390/biology12050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Pelodiscus sinensis (P. sinensis) is a commonly cultivated turtle species with a habit of hibernation. To study the changes in histone expression and methylation of P. sinensis during hibernation induction, a model was established by artificial induction. Physiological and metabolic indices were measured, and the expression and localization of histone (H1, H2A, H2B, H3, and H4) and methylation-related genes (ASH2L, KMT2A, KMT2E, KDM1A, KDM1B, and KDM5A) were measured by quantitative PCR, immunohistochemistry, and Western blot analysis. The results indicated that the metabolism, antioxidation index, and relative expression of histone methyltransferase were significantly decreased (p < 0.05), whereas the activity and expression of histone demethyltransferase were significantly increased (p < 0.05). Although our results showed significant changes in physiological and gene expression after hibernation induction, we could not confirm that P. sinensis entered deep hibernation. Therefore, for the state after cooling-induced hibernation, cold torpor might be a more accurate description. The results indicate that the P. sinensis can enter cold torpor through artificial induction, and the expression of histones may promote gene transcription. Unlike histones expressed under normal conditions, histone methylation may activate gene transcription during hibernation induction. Western blot analysis revealed that the ASH2L and KDM5A proteins were differentially expressed in the testis at different months (p < 0.05), which may perform a role in regulating gene transcription. The immunohistochemical localization of ASH2L and KDM5A in spermatogonia and spermatozoa suggests that ASH2L and KDM5A may perform a role in mitosis and meiosis. In conclusion, this study is the first to report changes in histone-related genes in reptiles, which provides insight for further studies on the physiological metabolism and histone methylation regulation of P. sinensis during the hibernation induction and hibernation period.
Collapse
Affiliation(s)
- Runlan Lin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Jiahao Wu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Ziyi You
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Dongjie Xu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Caiyan Li
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wang
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
22
|
Zion E, Chen X. Studying histone inheritance in different systems using imaging-based methods and perspectives. Biochem Soc Trans 2023:233041. [PMID: 37171077 DOI: 10.1042/bst20220983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Understanding cell identity is critically important in the fields of cell and developmental biology. During cell division, a mother cell duplicates the genetic material and cellular components to give rise to two daughter cells. While both cells receive the same genetic information, they can take on similar or different cell fates, resulting from a symmetric or asymmetric division. These fates can be modulated by epigenetic mechanisms that can alter gene expression without changing genetic information. Histone proteins, which wrap DNA into fundamental units of chromatin, are major carriers of epigenetic information and can directly influence gene expression and other cellular functions through their interactions with DNA. While it has been well studied how the genetic information is duplicated and segregated, how epigenetic information, such as histones, are inherited through cell division is still an area of investigation. Since canonical histone proteins are incorporated into chromatin during DNA replication and can be modified over time, it is important to study their inheritance within the context of the cell cycle. Here, we outline the biological basis of histone inheritance as well as the imaging-based experimental design that can be used to study this process. Furthermore, we discuss various studies that have investigated this phenomenon with the focus on asymmetrically dividing cells in different systems. This synopsis provides insight into histone inheritance within the context of the cell cycle, along with the technical methods and considerations that must be taken when studying this process in vivo.
Collapse
Affiliation(s)
- Emily Zion
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, U.S.A
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, U.S.A
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, U.S.A
| |
Collapse
|
23
|
Rojano Rada J, Fernández Mestre M, Ramírez Morales C. Effect of epigenetics on rheumatoid arthritis. Medwave 2023; 23. [PMID: 37094250 DOI: 10.5867/medwave.2023.03.2619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Rheumatoid arthritis is an autoimmune and inflammatory disease that predominantly affects the diarthrodial joints. In this pathology, environmental or behavioral factors can act in synergy with genetic predisposition, accelerating the onset and severity of the disease. This link between the environment and the genome is mediated by epigenetic marks on deoxyribonucleic acid, including its methylation, histone modification, and noncoding ribonucleic acid-mediated regulation. Epigenetics can generate heritable phenotypic changes, which are not determined by modifications in the deoxyribonucleic acid sequence and are therefore reversible. Therefore, diet, medications and other environmental factors would have the ability to modulate them. The identification of a specific epigenetic dysregulation can offer a better understanding of the pathophysiology of the disease and positively influence the prevention, diagnosis and development of new therapeutic targets.
Collapse
Affiliation(s)
- Jairo Rojano Rada
- Doctorado de Ciencias de Salud, Coordinación de postgrado, Universidad Central de Venezuela, Caracas, Venezuela
| | - Mercedes Fernández Mestre
- Laboratorio de Fisiopatología del Centro de Medicina Experimental "Miguel Layrisse", Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Carlos Ramírez Morales
- Unidad de Estudios Genéticos Forenses, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| |
Collapse
|
24
|
Sudhamalla B, Bardhan I, Barman S, Roy A. Novel insights into the recognition of acetylated histone H4 tail by the TRIM24 PHD-Bromo module. Biochem J 2023; 480:629-647. [PMID: 37075063 DOI: 10.1042/bcj20230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
TRIM24 is a multi-functional chromatin reader, and it binds to the estrogen receptor (ER) to activate estrogen-dependent target genes associated with tumour development. TRIM24 is known to ubiquitinate p53 via an N-terminal RING domain and binds a specific combinatorial histone signature of H3K4me0/H3K23ac via its C-terminal plant homeodomain (PHD) and bromodomain (Bromo). Aberrant expression of TRIM24 positively correlates with H3K23ac levels, and high levels of both TRIM24 and H3K23ac predict poor survival of breast cancer patients. Little has been explored about the acetylated histone H4 (H4ac) signatures of TRIM24 and their biological functions. Herein, we report novel H4ac binding partners of TRIM24 and their localization in the genome. Isothermal titration calorimetry binding assay on the histone peptides revealed that the TRIM24 PHD-Bromo preferably binds to H4K5ac, H4K8ac, and H4K5acK8ac compared to other acetylated histone H4 ligands. Co-immunoprecipitation on the endogenous histones suggests that the recognition of H4ac by Bromo does not interfere with recognition of H3K4me0 mark by the PHD domain of TRIM24. Consistent with this, TRIM24 PHD-Bromo exhibits minimal discrimination among H4ac binding partners at endogenous histone and nucleosome levels. Moreover, ChIP-seq analysis revealed that the H4K5ac and H4K8ac histone signatures strongly co-localize near the transcription start sites of different hub genes or TRIM24-targeted genes in breast cancer. In addition, the KEGG pathway analysis demonstrates that the TRIM24 and its H4ac targets are associated with several important biological pathways. Our findings describe that the H4ac recognition by TRIM24 PHD-Bromo enables access to the chromatin for specific transcriptional regulation.
Collapse
Affiliation(s)
- Babu Sudhamalla
- Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Ishita Bardhan
- Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Soumen Barman
- Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Anirban Roy
- Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
25
|
Tutanov O, Shefer A, Tsentalovich Y, Tamkovich S. Comparative Analysis of Molecular Functions and Biological Role of Proteins from Cell-Free DNA-Protein Complexes Circulating in Plasma of Healthy Females and Breast Cancer Patients. Int J Mol Sci 2023; 24:ijms24087279. [PMID: 37108441 PMCID: PMC10138639 DOI: 10.3390/ijms24087279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Cell-free DNA (cfDNA) circulates in the bloodstream packed in membrane-coated structures (such as apoptotic bodies) or bound to proteins. To identify proteins involved in the formation of deoxyribonucleoprotein complexes circulating in the blood, native complexes were isolated using affinity chromatography with immobilized polyclonal anti-histone antibodies from plasma of healthy females (HFs) and breast cancer patients (BCPs). It was found that the nucleoprotein complexes (NPCs) from HF plasma samples contained shorter DNA fragments (~180 bp) than BCP NPCs. However, the share of DNA in the NPCs from cfDNA in blood plasma in HFs and BCPs did not differ significantly, as well as the share of NPC protein from blood plasma total protein. Proteins were separated by SDS-PAGE and identified by MALDI-TOF mass spectrometry. Bioinformatic analysis showed that in the presence of a malignant tumor, the proportion of proteins involved in ion channels, protein binding, transport, and signal transduction increased in the composition of blood-circulating NPCs. Moreover, 58 (35%) proteins are differentially expressed in a number of malignant neoplasms in the NPCs of BCPs. Identified NPC proteins from BCP blood can be recommended for further testing as breast cancer diagnostic/prognostic biomarkers or as being useful in developing gene-targeted therapy approaches.
Collapse
Affiliation(s)
- Oleg Tutanov
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksei Shefer
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
26
|
Găman MA, Cozma EC, Cozma MA, Kord Varkaneh H, Chen Y, Găman AM, Diaconu CC, S Srichawla B. Bioactive Vitamins and Epigenetic Modifications in Diabetes: A Perspective. Curr Diabetes Rev 2023:CDR-EPUB-130545. [PMID: 37005542 DOI: 10.2174/1573399819666230330124035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 04/04/2023]
Abstract
Diabetes is a complex metabolic disease that has been associated with epigenetic changes. External factors such as dietary patterns can induce an imbalance in the pools of micronutrients and macronutrients in the body. Consequently, bioactive vitamins may influence epigenetic mechanisms via several pathways: involvement in the control of gene expression, and in protein synthesis, by acting as coenzymes and co-factors in the metabolism of methyl groups or methylation of DNA and histones. Herein, we present a perspective on the relevance of bioactive vitamins in the epigenetic modifications that occur in diabetes.
Collapse
Affiliation(s)
| | - Elena-Codruța Cozma
- University of Medicine and Pharmacy of Craiova Doctoral School Craiova Romania
| | - Matei-Alexandru Cozma
- Carol Davila University of Medicine and Pharmacy Faculty of Medicine Bucharest Romania
| | - Hamed Kord Varkaneh
- Shahid Beheshti University of Medical Sciences Clinical Nutrition and Dietetics Tehran Iran
| | - Yongfeng Chen
- Taizhou University Department of Basic Medical Sciences Taizhou China
| | - Amelia Maria Găman
- University of Medicine and Pharmacy of Craiova Pathophysiology Craiova Romania
| | | | - Bahadar S Srichawla
- University of Massachusetts Chan Medical School Department of Neurology Worcester United States
| |
Collapse
|
27
|
Lei B, Wang C, Snow K, Graton ME, Tighe RM, Fager AM, Hoffman MR, Giangrande PH, Miller FJ. Inhalation of an RNA aptamer that selectively binds extracellular histones protects from acute lung injury. Mol Ther Nucleic Acids 2023; 31:662-673. [PMID: 36910716 PMCID: PMC9999168 DOI: 10.1016/j.omtn.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Acute lung injury (ALI) is a syndrome of acute inflammation, barrier disruption, and hypoxemic respiratory failure associated with high morbidity and mortality. Diverse conditions lead to ALI, including inhalation of toxic substances, aspiration of gastric contents, infection, and trauma. A shared mechanism of acute lung injury is cellular toxicity from damage-associated molecular patterns (DAMPs), including extracellular histones. We recently described the selection and efficacy of a histone-binding RNA aptamer (HBA7). The current study aimed to identify the effects of extracellular histones in the lung and determine if HBA7 protected mice from ALI. Histone proteins decreased metabolic activity, induced apoptosis, promoted proinflammatory cytokine production, and caused endothelial dysfunction and platelet activation in vitro. HBA7 prevented these effects. The oropharyngeal aspiration of histone proteins increased neutrophil and albumin levels in bronchoalveolar lavage fluid (BALF) and precipitated neutrophil infiltration, interstitial edema, and barrier disruption in alveoli in mice. Similarly, inhaling wood smoke particulate matter, as a clinically relevant model, increased lung inflammation and alveolar permeability. Treatment by HBA7 alleviated lung injury in both models of ALI. These findings demonstrate the pulmonary delivery of HBA7 as a nucleic acid-based therapeutic for ALI.
Collapse
Affiliation(s)
- Beilei Lei
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Chaojian Wang
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Kamie Snow
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Murilo E Graton
- Department of Medicine, Duke University, Durham, NC 27710, USA.,São Paulo State University, School of Dentistry, Campus of Aracatuba, São Paulo 16015-050, Brazil
| | - Robert M Tighe
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ammon M Fager
- Department of Medicine, Duke University, Durham, NC 27710, USA.,Veterans Affairs Medical Center, Durham, NC 27705, USA
| | - Maureane R Hoffman
- Department of Pathology, Duke University, Durham, NC 27710, USA.,Veterans Affairs Medical Center, Durham, NC 27705, USA
| | | | - Francis J Miller
- Department of Medicine, Duke University, Durham, NC 27710, USA.,Veterans Affairs Tennessee Valley Healthcare, Nashville, TN 37212, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
28
|
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had spread from China and, within 2 months, became a global pandemic. The infection from this disease can cause a diversity of symptoms ranging from asymptomatic to severe acute respiratory distress syndrome with an increased risk of vascular hyperpermeability, pulmonary inflammation, extensive lung damage, and thrombosis. One of the host defense systems against coronavirus disease 2019 (COVID-19) is the formation of neutrophil extracellular traps (NETs). Numerous studies on this disease have revealed the presence of elevated levels of NET components, such as cell-free DNA, extracellular histones, neutrophil elastase, and myeloperoxidase, in plasma, serum, and tracheal aspirates of severe COVID-19 patients. Extracellular histones, a major component of NETs, are clinically very relevant as they represent promising biomarkers and drug targets, given that several studies have identified histones as key mediators in the onset and progression of various diseases, including COVID-19. However, the role of extracellular histones in COVID-19 per se remains relatively underexplored. Histones are nuclear proteins that can be released into the extracellular space via apoptosis, necrosis, or NET formation and are then regarded as cytotoxic damage-associated molecular patterns that have the potential to damage tissues and impair organ function. This review will highlight the mechanisms of extracellular histone-mediated cytotoxicity and focus on the role that histones play in COVID-19. Thereby, this paper facilitates a bench-to-bedside view of extracellular histone-mediated cytotoxicity, its role in COVID-19, and histones as potential drug targets and biomarkers for future theranostics in the clinical treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
29
|
Kurgina TA, Lavrik OI. [Poly(ADP-Ribose) Polymerases 1 and 2: Classical Functions and Interaction with New Histone Poly(ADP-Ribosyl)ation Factor HPF1]. Mol Biol (Mosk) 2023; 57:254-268. [PMID: 37000654 DOI: 10.31857/s0026898423020167, edn: efqjgh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/07/2022] [Indexed: 04/01/2023]
Abstract
Poly(ADP-ribose) (PAR) is a negatively charged polymer, linear or branched, that consists of ADP-ribose monomers. PAR is synthesized by poly(ADP-ribose)polymerase (PARP) enzymes, which are activated upon DNA damage and use nicotinamide adenine dinucleotide (NAD^(+)) as a substrate. The best-studied members of the PARP family, PARP1 and PARP2, are the most important nuclear proteins involved in many cell processes, including the regulation of DNA repair. PARP1 and PARP2 catalyze PAR synthesis and transfer to amino acid residues of target proteins, including autoPARylation. PARP1 and PARP2 are promising targets for chemotherapy in view of their key role in regulating DNA repair. A novel histone PARylation factor (HPF1) was recently discovered to modulate PARP1/2 activity by forming a transient joint active site with PARP1/2. Histones are modified at serine residues in the presence of HPF1. The general mechanism of the interaction between HPF1 and PARP1/2 is a subject of intense research now. The review considers the discovery and classical mechanism of PARylation in higher eukaryotes and the role of HPF1 in the process.
Collapse
Affiliation(s)
- T A Kurgina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| |
Collapse
|
30
|
Ligi D, Lo Sasso B, Della Franca C, Giglio RV, Agnello L, Ciaccio M, Mannello F. Monocyte distribution width alterations and cytokine storm are modulated by circulating histones. Clin Chem Lab Med 2023:cclm-2023-0093. [PMID: 36847604 DOI: 10.1515/cclm-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
OBJECTIVES Extracellular histone levels are associated with the severity of many human pathologies, including sepsis and COVID-19. This study aimed to investigate the role of extracellular histones on monocyte distribution width (MDW), and their effect on the release of cytokines by blood cells. METHODS Peripheral venous blood was collected from healthy subjects and treated with different doses of a histone mixture (range 0-200 μg/mL) to analyze MDW modifications up-to 3 h and digital microscopy of blood smears. Plasma obtained after 3 h of histone treatment were assayed to evaluate a panel of 24 inflammatory cytokines. RESULTS MDW values significantly increased in a time- and dose-dependent manner. These findings are associated with the histone-induced modifications of cell volume, cytoplasmic granularity, vacuolization, and nuclear structure of monocytes, promoting their heterogeneity without affecting their count. After 3 h of treatment almost all cytokines significantly increased in a dose-dependent manner. The most relevant response was shown by the significantly increased G-CSF levels, and by the increase of IL-1β, IL-6, MIP-1β, and IL-8 at the histone doses of 50, 100, and 200 µg/mL. VEGF, IP-10, GM-CSF, TNF-α, Eotaxin, and IL-2 were also up-regulated, and a lower but significant increase was observed for IL-15, IL-5, IL-17, bFGF, IL-10, IFN-γ, MCP-1, and IL-9. CONCLUSIONS Circulating histones critically induce functional alterations of monocytes mirrored by MDW, monocyte anisocytosis, and hyperinflammation/cytokine storm in sepsis and COVID-19. MDW and circulating histones may be useful tools to predict higher risks of worst outcomes.
Collapse
Affiliation(s)
- Daniela Ligi
- Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, Urbino, Italy
| | - Bruna Lo Sasso
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, BiND, University of Palermo, Palermo, Italy
| | - Chiara Della Franca
- Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, Urbino, Italy
| | - Rosaria Vincenza Giglio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, BiND, University of Palermo, Palermo, Italy
| | - Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, BiND, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, BiND, University of Palermo, Palermo, Italy
| | - Ferdinando Mannello
- Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
31
|
Liao YE, Liu J, Arnold K. Heparan sulfates and heparan sulfate binding proteins in sepsis. Front Mol Biosci 2023; 10:1146685. [PMID: 36865384 PMCID: PMC9971734 DOI: 10.3389/fmolb.2023.1146685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy.
Collapse
|