1
|
Li Y, Bertozzi A, Mann MRW, Kühn B. Interdependent changes of nuclear lamins, nuclear pore complexes, and ploidy regulate cellular regeneration and stress response in the heart. Nucleus 2023; 14:2246310. [PMID: 37606283 PMCID: PMC10446781 DOI: 10.1080/19491034.2023.2246310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
In adult mammals, many heart muscle cells (cardiomyocytes) are polyploid, do not proliferate (post-mitotic), and, consequently, cannot contribute to heart regeneration. In contrast, fetal and neonatal heart muscle cells are diploid, proliferate, and contribute to heart regeneration. We have identified interdependent changes of the nuclear lamina, nuclear pore complexes, and DNA-content (ploidy) in heart muscle cell maturation. These results offer new perspectives on how cells alter their nuclear transport and, with that, their gene regulation in response to extracellular signals. We present how changes of the nuclear lamina alter nuclear pore complexes in heart muscle cells. The consequences of these changes for cellular regeneration and stress response in the heart are discussed.
Collapse
Affiliation(s)
- Yao Li
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Bertozzi
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mellissa RW Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Bernhard Kühn
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Tang Y. Plant nuclear envelope as a hub connecting genome organization with regulation of gene expression. Nucleus 2023; 14:2178201. [PMID: 36794966 PMCID: PMC9980628 DOI: 10.1080/19491034.2023.2178201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Eukaryotic cells organize their genome within the nucleus with a double-layered membrane structure termed the nuclear envelope (NE) as the physical barrier. The NE not only shields the nuclear genome but also spatially separates transcription from translation. Proteins of the NE including nucleoskeleton proteins, inner nuclear membrane proteins, and nuclear pore complexes have been implicated in interacting with underlying genome and chromatin regulators to establish a higher-order chromatin architecture. Here, I summarize recent advances in the knowledge of NE proteins that are involved in chromatin organization, gene regulation, and coordination of transcription and mRNA export. These studies support an emerging view of plant NE as a central hub that contributes to chromatin organization and gene expression in response to various cellular and environmental cues.
Collapse
Affiliation(s)
- Yu Tang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China,CONTACT Yu Tang Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| |
Collapse
|
3
|
Kaneshiro JM, Capitanio JS, Hetzer MW. Lamin B1 overexpression alters chromatin organization and gene expression. Nucleus 2023; 14:2202548. [PMID: 37071033 PMCID: PMC10114975 DOI: 10.1080/19491034.2023.2202548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Peripheral heterochromatin positioning depends on nuclear envelope associated proteins and repressive histone modifications. Here we show that overexpression (OE) of Lamin B1 (LmnB1) leads to the redistribution of peripheral heterochromatin into heterochromatic foci within the nucleoplasm. These changes represent a perturbation of heterochromatin binding at the nuclear periphery (NP) through a mechanism independent from altering other heterochromatin anchors or histone post-translational modifications. We further show that LmnB1 OE alters gene expression. These changes do not correlate with different levels of H3K9me3, but a significant number of the misregulated genes were likely mislocalized away from the NP upon LmnB1 OE. We also observed an enrichment of developmental processes amongst the upregulated genes. ~74% of these genes were normally repressed in our cell type, suggesting that LmnB1 OE promotes gene de-repression. This demonstrates a broader consequence of LmnB1 OE on cell fate, and highlights the importance of maintaining proper levels of LmnB1.
Collapse
Affiliation(s)
- Jeanae M Kaneshiro
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Juliana S Capitanio
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Paul F. Glenn Center for Biology of Aging Research, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
4
|
Kim JR, Kim PH, Presnell A, Tu Y, Young SG. Revisiting the truncated lamin A produced by a commonly used strain of Lmna knockout mice. Nucleus 2023; 14:2262308. [PMID: 37754663 PMCID: PMC10538457 DOI: 10.1080/19491034.2023.2262308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
The Lmna knockout mouse (Lmna-/-) created by Sullivan and coworkers in 1999 has been widely used to examine lamin A/C function. The knockout allele contains a deletion of Lmna intron 7-exon 11 sequences and was reported to be a null allele. Later, Jahn and coworkers discovered that the mutant allele produces a 54-kDa truncated lamin A and identified, by RT-PCR, a Lmna cDNA containing exon 1-7 + exon 12 sequences. Because exon 12 encodes prelamin A's CaaX motif, the mutant lamin A is assumed to be farnesylated. In the current study, we found that the truncated lamin A in Lmna-/- mouse embryonic fibroblasts (MEFs) was predominantly nucleoplasmic rather than at the nuclear rim, leading us to hypothesize that it was not farnesylated. Our study revealed that the most abundant Lmna transcripts in Lmna-/- MEFs contain exon 1-7 but not exon 12 sequences. Exon 1-7 + exon 12 transcripts were detectable by PCR but in trace amounts. We suspect that these findings explain the nucleoplasmic distribution of the truncated lamin A in Lmna-/- MEFs, and subsequent cell transduction experiments support this suspicion. A truncated lamin A containing exon 1-7 sequence was nucleoplasmic, whereas a lamin A containing exon 1-7 + exon 12 sequences was located along the nuclear rim. Our study explains the nucleoplasmic targeting of truncated lamin A in Lmna-/- MEFs and adds to our understanding of a commonly used strain of Lmna-/- mice.
Collapse
Affiliation(s)
- Joonyoung R Kim
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Paul H Kim
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ashley Presnell
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yiping Tu
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephen G Young
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Departments of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Kiseleva AA, Cheng YC, Smith CL, Katz RA, Poleshko A. PRR14 organizes H3K9me3-modified heterochromatin at the nuclear lamina. Nucleus 2023; 14:2165602. [PMID: 36633363 PMCID: PMC9839372 DOI: 10.1080/19491034.2023.2165602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The eukaryotic genome is organized in three dimensions within the nucleus. Transcriptionally active chromatin is spatially separated from silent heterochromatin, a large fraction of which is located at the nuclear periphery. However, the mechanisms by which chromatin is localized at the nuclear periphery remain poorly understood. Here we demonstrate that Proline Rich 14 (PRR14) protein organizes H3K9me3-modified heterochromatin at the nuclear lamina. We show that PRR14 dynamically associates with both the nuclear lamina and heterochromatin, and is able to reorganize heterochromatin in the nucleus of interphase cells independent of mitosis. We characterize two functional HP1-binding sites within PRR14 that contribute to its association with heterochromatin. We also demonstrate that PPR14 forms an anchoring surface for heterochromatin at the nuclear lamina where it interacts dynamically with HP1-associated chromatin. Our study proposes a model of dynamic heterochromatin organization at the nuclear lamina via the PRR14 tethering protein.
Collapse
Affiliation(s)
- Anna A. Kiseleva
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu-Chia Cheng
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cheryl L. Smith
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard A. Katz
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Andrey Poleshko Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, SCTR 09-188, 3400 Civic Center Blvd. Philadelphia, PA19104
| |
Collapse
|
6
|
Blunt EL, Choi J, Sussman H, Christopherson RC, Keen P, Rahmati Ishka M, Li LY, Idrovo JM, Julkowska MM, Van Eck J, Richards EJ. The nuclear lamina is required for proper development and nuclear shape distortion in tomato. J Exp Bot 2023; 74:5500-5513. [PMID: 37503569 PMCID: PMC10540737 DOI: 10.1093/jxb/erad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis. Moreover, depletion of NMCP1-type nuclear lamina proteins leads to distinct developmental phenotypes in tomato, including leaf morphology defects and reduced root growth rate (in nmcp1b mutants), compared with cognate mutants in Arabidopsis. These findings suggest that the nuclear lamina interfaces with different developmental and signaling pathways in tomato compared with Arabidopsis. At the subcellular level, however, tomato nmcp mutants resembled their Arabidopsis counterparts in displaying smaller and more spherical nuclei in differentiated cells. This result argues that the plant nuclear lamina facilitates nuclear shape distortion in response to forces exerted on the organelle within the cell.
Collapse
Affiliation(s)
- Endia L Blunt
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Junsik Choi
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Hayley Sussman
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Patricia Keen
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Linda Y Li
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Joanna M Idrovo
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Joyce Van Eck
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Eric J Richards
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Manjón AG, Manzo SG, Prekovic S, Potgeter L, van Schaik T, Liu NQ, Flach K, Peric-Hupkes D, Joosten S, Teunissen H, Friskes A, Ilic M, Hintzen D, Franceschini-Santos VH, Zwart W, de Wit E, van Steensel B, Medema RH. Perturbations in 3D genome organization can promote acquired drug resistance. Cell Rep 2023; 42:113124. [PMID: 37733591 DOI: 10.1016/j.celrep.2023.113124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/05/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Acquired drug resistance is a major problem in the treatment of cancer. hTERT-immortalized, untransformed RPE-1 cells can acquire resistance to Taxol by derepressing the ABCB1 gene, encoding for the multidrug transporter P-gP. Here, we investigate how the ABCB1 gene is derepressed. ABCB1 activation is associated with reduced H3K9 trimethylation, increased H3K27 acetylation, and ABCB1 displacement from the nuclear lamina. While altering DNA methylation and H3K27 methylation had no major impact on ABCB1 expression, nor did it promote resistance, disrupting the nuclear lamina component Lamin B Receptor did promote the acquisition of a Taxol-resistant phenotype in a subset of cells. CRISPRa-mediated gene activation supported the notion that lamina dissociation influences ABCB1 derepression. We propose a model in which nuclear lamina dissociation of a repressed gene allows for its activation, implying that deregulation of the 3D genome topology could play an important role in tumor evolution and the acquisition of drug resistance.
Collapse
Affiliation(s)
- Anna G Manjón
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Stefano Giustino Manzo
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Stefan Prekovic
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Leon Potgeter
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Tom van Schaik
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Ning Qing Liu
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, the Netherlands
| | - Koen Flach
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Daniel Peric-Hupkes
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Stacey Joosten
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Anoek Friskes
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Mila Ilic
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Dorine Hintzen
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - VinÃcius H Franceschini-Santos
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Wilbert Zwart
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Bas van Steensel
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| | - René H Medema
- Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Park BJ. Progerin, an Aberrant Spliced Form of Lamin A, Is a Potential Therapeutic Target for HGPS. Cells 2023; 12:2299. [PMID: 37759521 PMCID: PMC10527460 DOI: 10.3390/cells12182299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder caused by the mutant protein progerin, which is expressed by the abnormal splicing of the LMNA gene. HGPS affects systemic levels, with the exception of cognition or brain development, in children, showing that cellular aging can occur in the short term. Studying progeria could be useful in unraveling the causes of human aging (as well as fatal age-related disorders). Elucidating the clear cause of HGPS or the development of a therapeutic medicine could improve the quality of life and extend the survival of patients. This review aimed to (i) briefly describe how progerin was discovered as the causative agent of HGPS, (ii) elucidate the puzzling observation of the absence of primary neurological disease in HGPS, (iii) present several studies showing the deleterious effects of progerin and the beneficial effects of its inhibition, and (iv) summarize research to develop a therapy for HGPS and introduce clinical trials for its treatment.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| |
Collapse
|
9
|
Koufi FD, Neri I, Ramazzotti G, Rusciano I, Mongiorgi S, Marvi MV, Fazio A, Shin M, Kosodo Y, Cani I, Giorgio E, Cortelli P, Manzoli L, Ratti S. Lamin B1 as a key modulator of the developing and aging brain. Front Cell Neurosci 2023; 17:1263310. [PMID: 37720548 PMCID: PMC10501396 DOI: 10.3389/fncel.2023.1263310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Lamin B1 is an essential protein of the nuclear lamina that plays a crucial role in nuclear function and organization. It has been demonstrated that lamin B1 is essential for organogenesis and particularly brain development. The important role of lamin B1 in physiological brain development and aging has only recently been at the epicenter of attention and is yet to be fully elucidated. Regarding the development of brain, glial cells that have long been considered as supporting cells to neurons have overturned this representation and current findings have displayed their active roles in neurogenesis and cerebral development. Although lamin B1 has increased levels during the differentiation of the brain cells, during aging these levels drop leading to senescent phenotypes and inciting neurodegenerative disorders such as Alzheimer's and Parkinson's disease. On the other hand, overexpression of lamin B1 leads to the adult-onset neurodegenerative disease known as Autosomal Dominant Leukodystrophy. This review aims at highlighting the importance of balancing lamin B1 levels in glial cells and neurons from brain development to aging.
Collapse
Affiliation(s)
- Foteini-Dionysia Koufi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Irene Neri
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Minkyung Shin
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Yoichi Kosodo
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Ilaria Cani
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Boyle E, Wilfling F. Autophagy as a caretaker of nuclear integrity. FEBS Lett 2023. [PMID: 37567863 DOI: 10.1002/1873-3468.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Due to their essential functions, dysregulation of nuclear pore complexes (NPCs) is strongly associated with numerous human diseases, including neurodegeneration and cancer. On a cellular level, longevity of scaffold nucleoporins in postmitotic cells of both C. elegans and mammals renders them vulnerable to age-related damage, which is associated with an increase in pore leakiness and accumulation of intranuclear aggregates in rat brain cells. Thus, understanding the mechanisms which underpin the homeostasis of this complex, as well as other nuclear proteins, is essential. In this review, autophagy-mediated degradation pathways governing nuclear components in yeast will be discussed, with a particular focus on NPCs. Furthermore, the various nuclear degradation mechanisms identified thus far in diverse eukaryotes will also be highlighted.
Collapse
Affiliation(s)
- Emily Boyle
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| |
Collapse
|
11
|
Subramani A, Cui W, Zhang Y, Friman T, Zhao Z, Huang W, Fonseca P, Lui WO, Narayanan V, Bobrowska J, Lekka M, Yan J, Conway DE, Holmgren L. Modulation of E-Cadherin Function through the AmotL2 Isoforms Promotes Ameboid Cell Invasion. Cells 2023; 12:1682. [PMID: 37443716 DOI: 10.3390/cells12131682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
The spread of tumor cells and the formation of distant metastasis remain the main causes of mortality in cancer patients. However, the mechanisms governing the release of cells from micro-environmental constraints remain unclear. E-cadherin negatively controls the invasion of epithelial cells by maintaining cell-cell contacts. Furthermore, the inactivation of E-cadherin triggers invasion in vitro. However, the role of E-cadherin is complex, as metastasizing cells maintain E-cadherin expression, which appears to have a positive role in the survival of tumor cells. In this report, we present a novel mechanism delineating how E-cadherin function is modulated to promote invasion. We have previously shown that E-cadherin is associated with p100AmotL2, which is required for radial actin formation and the transmission of mechanical force. Here, we present evidence that p60AmotL2, which is expressed in invading tumor cells, binds to the p100AmotL2 isoform and uncouples the mechanical constraint of radial actin filaments. We show for the first time that the coupling of E-cadherin to the actin cytoskeleton via p100AmotL2 is directly connected to the nuclear membrane. The expression of p60AmotL2 inactivates this connection and alters the properties of the nuclear lamina, potentiating the invasion of cells into micropores of the extracellular matrix. In summary, we propose that the balance of the two AmotL2 isoforms is important in the modulation of E-cadherin function and that an imbalance of this axis promotes ameboid cell invasion.
Collapse
Affiliation(s)
- Aravindh Subramani
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden
| | - Weiyingqi Cui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden
| | - Yuanyuan Zhang
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden
| | - Tomas Friman
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden
| | - Zhihai Zhao
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Pedro Fonseca
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden
| | - Weng-Onn Lui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA
| | - Justyna Bobrowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Jie Yan
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA
| | - Lars Holmgren
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden
| |
Collapse
|
12
|
Kiseleva AA, Poleshko A. The secret life of chromatin tethers. FEBS Lett 2023. [PMID: 37339933 DOI: 10.1002/1873-3468.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
The nuclear envelope plays an essential role in organizing the genome inside of the nucleus. The inner nuclear membrane is coated with a meshwork of filamentous lamin proteins that provide a surface to organize a variety of cellular processes. A subset of nuclear lamina- and membrane-associated proteins functions as anchors to hold transcriptionally silent heterochromatin at the nuclear periphery. While most chromatin tethers are integral membrane proteins, a limited number are lamina-bound. One example is the mammalian PRR14 protein. PRR14 is a recently characterized protein with unique function that is different from other known chromatin tethers. Here, we review our current understanding of PRR14 structure and function in organizing heterochromatin at the nuclear periphery.
Collapse
Affiliation(s)
- Anna A Kiseleva
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Dickinson RB, Lele TP. Nuclear shapes are geometrically determined by the excess surface area of the nuclear lamina. Front Cell Dev Biol 2023; 11:1058727. [PMID: 37397244 PMCID: PMC10308086 DOI: 10.3389/fcell.2023.1058727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Nuclei have characteristic shapes dependent on cell type, which are critical for proper cell function, and nuclei lose their distinct shapes in multiple diseases including cancer, laminopathies, and progeria. Nuclear shapes result from deformations of the sub-nuclear components-nuclear lamina and chromatin. How these structures respond to cytoskeletal forces to form the nuclear shape remains unresolved. Although the mechanisms regulating nuclear shape in human tissues are not fully understood, it is known that different nuclear shapes arise from cumulative nuclear deformations post-mitosis, ranging from the rounded morphologies that develop immediately after mitosis to the various nuclear shapes that roughly correspond to cell shape (e.g., elongated nuclei in elongated cells, flat nuclei in flat cells). Methods: We formulated a mathematical model to predict nuclear shapes of cells in various contexts under the geometric constraints of fixed cell volume, nuclear volume and lamina surface area. Nuclear shapes were predicted and compared to experiments for cells in various geometries, including isolated on a flat surface, on patterned rectangles and lines, within a monolayer, isolated in a well, or when the nucleus is impinging against a slender obstacle. Results and Discussion: The close agreement between predicted and experimental shapes demonstrates a simple geometric principle of nuclear shaping: the excess surface area of the nuclear lamina (relative to that of a sphere of the same volume) permits a wide range of highly deformed nuclear shapes under the constraints of constant surface area and constant volume. When the lamina is smooth (tensed), the nuclear shape can be predicted entirely from these geometric constraints alone for a given cell shape. This principle explains why flattened nuclear shapes in fully spread cells are insensitive to the magnitude of the cytoskeletal forces. Also, the surface tension in the nuclear lamina and nuclear pressure can be estimated from the predicted cell and nuclear shapes when the cell cortical tension is known, and the predictions are consistent with measured forces. These results show that excess surface area of the nuclear lamina is the key determinant of nuclear shapes. When the lamina is smooth (tensed), the nuclear shape can be determined purely by the geometric constraints of constant (but excess) nuclear surface area, nuclear volume, and cell volume, for a given cell adhesion footprint, independent of the magnitude of the cytoskeletal forces involved.
Collapse
Affiliation(s)
- Richard B. Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, FL, United States
| | - Tanmay P. Lele
- Department of Biomedical Engineering, College of Engineering, Texas A&M University College Station, College Station, TX, United States
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Department of Translational Medical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
14
|
Zhang H, Li J, Yu Y, Ren J, Liu Q, Bao Z, Sun S, Liu X, Ma S, Liu Z, Yan K, Wu Z, Fan Y, Sun X, Zhang Y, Ji Q, Cheng F, Wei PH, Ma X, Zhang S, Xie Z, Niu Y, Wang YJ, Han JDJ, Jiang T, Zhao G, Ji W, Izpisua Belmonte JC, Wang S, Qu J, Zhang W, Liu GH. Nuclear lamina erosion-induced resurrection of endogenous retroviruses underlies neuronal aging. Cell Rep 2023; 42:112593. [PMID: 37261950 DOI: 10.1016/j.celrep.2023.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
The primate frontal lobe (FL) is sensitive to aging-related neurocognitive decline. However, the aging-associated molecular mechanisms remain unclear. Here, using physiologically aged non-human primates (NHPs), we depicted a comprehensive landscape of FL aging with multidimensional profiling encompassing bulk and single-nucleus transcriptomes, quantitative proteome, and DNA methylome. Conjoint analysis across these molecular and neuropathological layers underscores nuclear lamina and heterochromatin erosion, resurrection of endogenous retroviruses (ERVs), activated pro-inflammatory cyclic GMP-AMP synthase (cGAS) signaling, and cellular senescence in post-mitotic neurons of aged NHP and human FL. Using human embryonic stem-cell-derived neurons recapitulating cellular aging in vitro, we verified the loss of B-type lamins inducing resurrection of ERVs as an initiating event of the aging-bound cascade in post-mitotic neurons. Of significance, these aging-related cellular and molecular changes can be alleviated by abacavir, a nucleoside reverse transcriptase inhibitor, either through direct treatment of senescent human neurons in vitro or oral administration to aged mice.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Chinese Glioma Genome Atlas Network & Asian Glioma Genome Atlas Network, Beijing 100070, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Cheng
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Hu Wei
- Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China; MAIS, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xibo Ma
- MAIS, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqiang Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China; State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Chinese Glioma Genome Atlas Network & Asian Glioma Genome Atlas Network, Beijing 100070, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy Capital Medical University, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | | | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
15
|
Martino S, Carollo PS, Barra V. A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation. Genes (Basel) 2023; 14:genes14051046. [PMID: 37239406 DOI: 10.3390/genes14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, stem cells undergo the differentiation process so that they can specialize for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, through the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini-review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role the nuclear lamina plays in neurogenesis to ensure the tethering of the chromatin to the nuclear envelope.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Viviana Barra
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
16
|
Wang Y, Dobreva G. Epigenetics in LMNA-Related Cardiomyopathy. Cells 2023; 12:cells12050783. [PMID: 36899919 PMCID: PMC10001118 DOI: 10.3390/cells12050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mutations in the gene for lamin A/C (LMNA) cause a diverse range of diseases known as laminopathies. LMNA-related cardiomyopathy is a common inherited heart disease and is highly penetrant with a poor prognosis. In the past years, numerous investigations using mouse models, stem cell technologies, and patient samples have characterized the phenotypic diversity caused by specific LMNA variants and contributed to understanding the molecular mechanisms underlying the pathogenesis of heart disease. As a component of the nuclear envelope, LMNA regulates nuclear mechanostability and function, chromatin organization, and gene transcription. This review will focus on the different cardiomyopathies caused by LMNA mutations, address the role of LMNA in chromatin organization and gene regulation, and discuss how these processes go awry in heart disease.
Collapse
Affiliation(s)
- Yinuo Wang
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| |
Collapse
|
17
|
Eftekharpour E. The neuronal nucleus: a new battlefield in fight against neurodegeneration. Aging (Albany NY) 2023; 15:898-904. [PMID: 36806186 PMCID: PMC10008506 DOI: 10.18632/aging.204519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Aging is an inevitable fact of life which brings along a series of age-associated diseases. Although medical innovations and patient care improvement have increased our life expectancy, the rate of age-associated diseases have also increased. Nervous system is specifically prone to these diseases that cause neuronal loss in different anatomical regions. Alzheimer's disease is the best-known example of age-associated illnesses and is diagnosed by accumulation of intracellular Neurofibrillary tangles and extracellular Amyloid Plaques resulting in dementia. However, therapeutic attempts aiming at the removal of these plaques and tangles to reverse the cognitive decline have generally failed in human patients and may compromise the patient's health. We have learnt that interruption of neuronal housekeeping systems such as autophagy contributes to formation of these aggregates, and therefore understanding the underlying mechanisms that lead to failure of these endogenous protective systems may provide valuable information and novel therapies. The house keeping systems are delicately regulated through gene expression and chromatin modifications in the nucleus, however, the contribution of this largest cellular organelle in pathophysiology of the disease has been overlooked. During the last few years, a wealth of information on neuronal nucleus has emerged that provides a strong rationale for examining its contribution to the pathophysiology of the disease. In this research perspective, I have attempted to summarize the latest research on neuronal nucleus, with a special focus on nuclear lamina damage and its downstream events to rationalize the need for focusing on the neuronal nucleus as a therapeutic target.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Cheng LC, Zhang X, Baboo S, Nguyen JA, Martinez-Bartolom S, Loose E, Diedrich J, Yates JR, Gerace L. Comparative membrane proteomics reveals diverse cell regulators concentrated at the nuclear envelope. bioRxiv 2023:2023. [PMID: 36824861 DOI: 10.1101/2023.02.13.528342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The nuclear envelope (NE) is a subdomain of the ER with prominent roles in nuclear organization, largely mediated by its distinctive protein composition. We developed methods to reveal novel, low abundance transmembrane (TM) proteins concentrated at the NE relative to the peripheral ER. Using label-free proteomics that compared isolated NEs to cytoplasmic membranes, we first identified proteins with apparent NE enrichment. In subsequent authentication, ectopically expressed candidates were analyzed by immunofluorescence microscopy to quantify their targeting to the NE in cultured cells. Ten proteins from a validation set were found to associate preferentially with the NE, including oxidoreductases, enzymes for lipid biosynthesis and regulators of cell growth and survival. We determined that one of the validated candidates, the palmitoyltransferase Zdhhc6, modifies the NE oxidoreductase Tmx4 and thereby modulates its NE levels. This provides a functional rationale for the NE concentration of Zdhhc6. Overall, our methodology has revealed a group of previously unrecognized proteins concentrated at the NE and additional candidates. Future analysis of these can potentially unveil new mechanistic pathways associated with the NE.
Collapse
|
19
|
Madsen-Østerbye J, Abdelhalim M, Pickering SH, Collas P. Gene Regulatory Interactions at Lamina-Associated Domains. Genes (Basel) 2023; 14:genes14020334. [PMID: 36833261 PMCID: PMC9957430 DOI: 10.3390/genes14020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The nuclear lamina provides a repressive chromatin environment at the nuclear periphery. However, whereas most genes in lamina-associated domains (LADs) are inactive, over ten percent reside in local euchromatic contexts and are expressed. How these genes are regulated and whether they are able to interact with regulatory elements remain unclear. Here, we integrate publicly available enhancer-capture Hi-C data with our own chromatin state and transcriptomic datasets to show that inferred enhancers of active genes in LADs are able to form connections with other enhancers within LADs and outside LADs. Fluorescence in situ hybridization analyses show proximity changes between differentially expressed genes in LADs and distant enhancers upon the induction of adipogenic differentiation. We also provide evidence of involvement of lamin A/C, but not lamin B1, in repressing genes at the border of an in-LAD active region within a topological domain. Our data favor a model where the spatial topology of chromatin at the nuclear lamina is compatible with gene expression in this dynamic nuclear compartment.
Collapse
Affiliation(s)
- Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Sarah Hazell Pickering
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Correspondence:
| |
Collapse
|
20
|
Battey E, Ross JA, Hoang A, Wilson DGS, Han Y, Levy Y, Pollock RD, Kalakoutis M, Pugh JN, Close GL, Ellison-Hughes GM, Lazarus NR, Iskratsch T, Harridge SDR, Ochala J, Stroud MJ. Myonuclear alterations associated with exercise are independent of age in humans. J Physiol 2023. [PMID: 36597809 DOI: 10.1113/jp284128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Age-related decline in skeletal muscle structure and function can be mitigated by regular exercise. However, the precise mechanisms that govern this are not fully understood. The nucleus plays an active role in translating forces into biochemical signals (mechanotransduction), with the nuclear lamina protein lamin A regulating nuclear shape, nuclear mechanics and ultimately gene expression. Defective lamin A expression causes muscle pathologies and premature ageing syndromes, but the roles of nuclear structure and function in physiological ageing and in exercise adaptations remain obscure. Here, we isolated single muscle fibres and carried out detailed morphological and functional analyses on myonuclei from young and older exercise-trained individuals. Strikingly, myonuclei from trained individuals were more spherical, less deformable, and contained a thicker nuclear lamina than those from untrained individuals. Complementary to this, exercise resulted in increased levels of lamin A and increased myonuclear stiffness in mice. We conclude that exercise is associated with myonuclear remodelling, independently of age, which may contribute to the preservative effects of exercise on muscle function throughout the lifespan. KEY POINTS: The nucleus plays an active role in translating forces into biochemical signals. Myonuclear aberrations in a group of muscular dystrophies called laminopathies suggest that the shape and mechanical properties of myonuclei are important for maintaining muscle function. Here, striking differences are presented in myonuclear shape and mechanics associated with exercise, in both young and old humans. Myonuclei from trained individuals were more spherical, less deformable and contained a thicker nuclear lamina than untrained individuals. It is concluded that exercise is associated with age-independent myonuclear remodelling, which may help to maintain muscle function throughout the lifespan.
Collapse
Affiliation(s)
- E Battey
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - J A Ross
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - A Hoang
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - D G S Wilson
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Y Han
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Y Levy
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - R D Pollock
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - M Kalakoutis
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - J N Pugh
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - G L Close
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - G M Ellison-Hughes
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - N R Lazarus
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - T Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - S D R Harridge
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - J Ochala
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M J Stroud
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| |
Collapse
|
21
|
Carollo PS, Barra V. Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging. Biol Cell 2023; 115:e2200023. [PMID: 36117150 DOI: 10.1111/boc.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023]
Abstract
As the repository of genetic information, the cell nucleus must protect DNA integrity from mechanical stresses. The nuclear lamina, which resides within the nuclear envelope (NE), is made up of lamins, intermediate filaments bound to DNA. The nuclear lamina provides the nucleus with the ability to deal with inward as well as outward mechanical stimuli. Chromatin, in turn, through its degrees of compaction, shares this role with the nuclear lamina, thus, ensuring the plasticity of the nucleus. Perturbation of chromatin condensation or the nuclear lamina has been linked to a plethora of biological conditions, that range from cancer and genetic diseases (laminopathies) to aging, both natural and accelerated, such as the case of Hutchinson-Gilford Progeria Syndrome (HGPS). From the experimental results accumulated so far on the topic, a direct link between variations of the epigenetic pattern and nuclear lamina structure would be suggested, however, it has never been clarified thoroughly. This relationship, instead, has a downstream important implication on nucleus shape, genome preservation, force sensing, and, ultimately, aging-related disease onset. With this review, we aim to collect recent studies on the importance of both nuclear lamina components and chromatin status in nuclear mechanics. We also aim to bring to light evidence of the link between DNA methylation and nuclear lamina in natural and accelerated aging.
Collapse
Affiliation(s)
- Pietro Salvatore Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Pfeifer CR, Tobin MP, Cho S, Vashisth M, Dooling LJ, Vazquez LL, Ricci-De Lucca EG, Simon KT, Discher DE. Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus 2022; 13:129-143. [PMID: 35293271 PMCID: PMC8928808 DOI: 10.1080/19491034.2022.2045726] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nuclear rupture has long been associated with deficits or defects in lamins, with recent results also indicating a role for actomyosin stress, but key physical determinants of rupture remain unclear. Here, lamin-B filaments stably interact with the nuclear membrane at sites of low Gaussian curvature yet dilute at high curvature to favor rupture, whereas lamin-A depletion requires high strain-rates. Live-cell imaging of lamin-B1 gene-edited cancer cells is complemented by fixed-cell imaging of rupture in: iPS-derived progeria patients cells, cells within beating chick embryo hearts, and cancer cells with multi-site rupture after migration through small pores. Data fit a model of stiff filaments that detach from a curved surface.Rupture is modestly suppressed by inhibiting myosin-II and by hypotonic stress, which slow the strain-rates. Lamin-A dilution and rupture probability indeed increase above a threshold rate of nuclear pulling. Curvature-sensing mechanisms of proteins at plasma membranes, including Piezo1, might thus apply at nuclear membranes.Summary statement: High nuclear curvature drives lamina dilution and nuclear envelope rupture even when myosin stress is inhibited. Stiff filaments generally dilute from sites of high Gaussian curvature, providing mathematical fits of experiments.
Collapse
Affiliation(s)
- Charlotte R. Pfeifer
- Physical Sciences Oncology Center at Penn (PSOC@penn), University of Pennsylvania, Philadelphia, PA, USA,Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA,Graduate Group/Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Tobin
- Physical Sciences Oncology Center at Penn (PSOC@penn), University of Pennsylvania, Philadelphia, PA, USA,Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA,Graduate Group/Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangkyun Cho
- Physical Sciences Oncology Center at Penn (PSOC@penn), University of Pennsylvania, Philadelphia, PA, USA,Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Manasvita Vashisth
- Physical Sciences Oncology Center at Penn (PSOC@penn), University of Pennsylvania, Philadelphia, PA, USA,Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Lawrence J. Dooling
- Physical Sciences Oncology Center at Penn (PSOC@penn), University of Pennsylvania, Philadelphia, PA, USA,Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Lizeth Lopez Vazquez
- Physical Sciences Oncology Center at Penn (PSOC@penn), University of Pennsylvania, Philadelphia, PA, USA,Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma G. Ricci-De Lucca
- Physical Sciences Oncology Center at Penn (PSOC@penn), University of Pennsylvania, Philadelphia, PA, USA,Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Keiann T. Simon
- Physical Sciences Oncology Center at Penn (PSOC@penn), University of Pennsylvania, Philadelphia, PA, USA,Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E. Discher
- Physical Sciences Oncology Center at Penn (PSOC@penn), University of Pennsylvania, Philadelphia, PA, USA,Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA,Graduate Group/Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA,Graduate Group/Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA,CONTACT Dennis E. Discher Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Lavia P, Sciamanna I, Spadafora C. An Epigenetic LINE-1-Based Mechanism in Cancer. Int J Mol Sci 2022; 23:ijms232314610. [PMID: 36498938 PMCID: PMC9738484 DOI: 10.3390/ijms232314610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
In the last fifty years, large efforts have been deployed in basic research, clinical oncology, and clinical trials, yielding an enormous amount of information regarding the molecular mechanisms of cancer and the design of effective therapies. The knowledge that has accumulated underpins the complexity, multifactoriality, and heterogeneity of cancer, disclosing novel landscapes in cancer biology with a key role of genome plasticity. Here, we propose that cancer onset and progression are determined by a stress-responsive epigenetic mechanism, resulting from the convergence of upregulation of LINE-1 (long interspersed nuclear element 1), the largest family of human retrotransposons, genome damage, nuclear lamina fragmentation, chromatin remodeling, genome reprogramming, and autophagy activation. The upregulated expression of LINE-1 retrotransposons and their protein products plays a key role in these processes, yielding an increased plasticity of the nuclear architecture with the ensuing reprogramming of global gene expression, including the reactivation of embryonic transcription profiles. Cancer phenotypes would thus emerge as a consequence of the unscheduled reactivation of embryonic gene expression patterns in an inappropriate context, triggering de-differentiation and aberrant proliferation in differentiated cells. Depending on the intensity of the stressing stimuli and the level of LINE-1 response, diverse degrees of malignity would be generated.
Collapse
Affiliation(s)
- Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: or
| | - Ilaria Sciamanna
- Center for Animal Research and Welfare (BENA), ISS Istituto Superiore di Sanità , 00161 Rome, Italy
| | - Corrado Spadafora
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
| |
Collapse
|
24
|
van Schaik T, Manzo SG, Vouzas AE, Liu NQ, Teunissen H, de Wit E, Gilbert DM, van Steensel B. Dynamic chromosomal interactions and control of heterochromatin positioning by Ki-67. EMBO Rep 2022; 23:e55782. [PMID: 36245428 PMCID: PMC9724667 DOI: 10.15252/embr.202255782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Ki-67 is a chromatin-associated protein with a dynamic distribution pattern throughout the cell cycle and is thought to be involved in chromatin organization. The lack of genomic interaction maps has hampered a detailed understanding of its roles, particularly during interphase. By pA-DamID mapping in human cell lines, we find that Ki-67 associates with large genomic domains that overlap mostly with late-replicating regions. Early in interphase, when Ki-67 is present in pre-nucleolar bodies, it interacts with these domains on all chromosomes. However, later in interphase, when Ki-67 is confined to nucleoli, it shows a striking shift toward small chromosomes. Nucleolar perturbations indicate that these cell cycle dynamics correspond to nucleolar maturation during interphase, and suggest that nucleolar sequestration of Ki-67 limits its interactions with larger chromosomes. Furthermore, we demonstrate that Ki-67 does not detectably control chromatin-chromatin interactions during interphase, but it competes with the nuclear lamina for interaction with late-replicating DNA, and it controls replication timing of (peri)centromeric regions. Together, these results reveal a highly dynamic choreography of genome interactions and roles for Ki-67 in heterochromatin organization.
Collapse
Affiliation(s)
- Tom van Schaik
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Stefano G Manzo
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | |
|