1
|
Liu S, Loo YT, Zhang Y, Ng K. Electrospray alginate microgels co-encapsulating degraded Konjac glucomannan and quercetin modulate human gut microbiota in vitro. Food Chem 2024; 434:137508. [PMID: 37738812 DOI: 10.1016/j.foodchem.2023.137508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Alginate microgels co-encapsulating degraded Konjac glucomannan (KGM60) underwent in vitro fecal fermentation and their effects on human microbiota and metabolites were investigated. KGM60 delayed quercetin release and enhanced phenolic metabolites production. Microgels co-encapsulating KGM60 and quercetin increased linear short chain fatty acid but decreased branched chain fatty acid production. Microgels encapsulated with quercetin with or without KGM60 decreased Firmicutes while increased Bacteroidetes over 24 h of fermentation, at genus level promoted Bacteroides growth at 24 h and decreased the abundance of Negativibacillus, Ruminococcus_NK4A214, and Christensenellaceae R_7. Faecalibacterium and Collinsella levels were exclusively promoted by microgels encapsulating KGM60 with or without quercetin, highlighting prebiotic effect of KGM60. Only microgels co-encapsulating both KGM60 and quercetin enhanced Dialister while inhibited Lachnoclostridium, indicating synergism between KGM60 and quercetin. Our study indicates that co-encapsulating KGM60 and quercetin in alginate microgel is effective in modulating human gut microbiota and metabolites production potentially beneficial to gut health.
Collapse
Affiliation(s)
- Siyao Liu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yit Tao Loo
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yianna Zhang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
2
|
Li J, Zhang H, Liu W, Yang X, Zhu L, Wu G, Zhang H. Methylglyoxal scavenging capacity of fiber-bound polyphenols from highland barley during colonic fermentation and its modulation on methylglyoxal-interfered gut microbiota. Food Chem 2024; 434:137409. [PMID: 37699313 DOI: 10.1016/j.foodchem.2023.137409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/06/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Methylglyoxal (MGO) scavenging capacity of fiber-bound polyphenols from highland barley during colonic fermentation and its potential role in modulating MGO-induced detrimental effects on gut microbiota were studied. Results showed that only 25.3 % of polyphenols were released after 24 h of colonic fermentation. More than 45.5 % of MGO was scavenged by the residual fiber-bound polyphenols in the model system, showing a vital role in scavenging MGO in the colonic lumen compared to the released polyphenols. Moreover, MGO promoted the increase of gut pathogens (Escherichia-Shigella and Klebsiella) and inhibited the proliferation of Megasphaera, Bifidobacterium and Megamonas, as well as reduced short-chain fatty acids (SCFAs) concentration. The addition of fiber-bound polyphenols of highland barley could effectively counteract MGO-induced detrimental consequences on gut microbiota and SCFAs production. These results demonstrate that fiber-bound polyphenols from highland barley can exert beneficial role through scavenging MGO and promises to be a functional ingredient to maintain colon heath.
Collapse
Affiliation(s)
- Jinxin Li
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xijuan Yang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai University, Xining 810000, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Carpena-Istan V, Jurado MM, Estrella-Gonzalez MJ, Salinas J, Martinez-Gallardo MR, Toribio AJ, Lopez-Gonzalez JA, Suarez-Estrella F, Saez JA, Moral R, Lopez MJ. Enhancing earthworm (Lumbricus terrestris) tolerance to plastic contamination through gut microbiome fortification with plastic-degrading microorganisms. J Hazard Mater 2024; 463:132836. [PMID: 37931339 DOI: 10.1016/j.jhazmat.2023.132836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Microorganisms from L. terrestris gut previously exposed to different types of plastic (PET, LDPE, LLDPE, and PS) were studied to be used as probiotics of earthworms in plastic-contaminated soils (LDPE, LLDPE and recycled mulching film) at mesocosm-scale trials. The most abundant morphotypes with enzymatic capacities of interest were identified. Pseudomonas alkylphenolica (PL4) and Pseudomonas putida (PL5) strains were selected to be used as inoculants using Morus alba leaves as carriers to strengthen the intestinal microbiota of earthworms. Culture (selective cetrimide agar medium) and molecular (qPCR) techniques were used to trace the presence of the inoculum in the intestine of the earthworms. Additionally, a metataxonomic analysis was carried out to study the biodiversity and functionality of the earthworm microbiome, and their measure of survival and weight. Probiotics improved the survival rates of earthworms exposed to plastics, which also increased the abundance of microbial groups of interest in plastic bioremediation tasks.
Collapse
Affiliation(s)
- Victor Carpena-Istan
- Department of. Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Macarena M Jurado
- Department of. Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain.
| | - Maria J Estrella-Gonzalez
- Department of. Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Jesus Salinas
- Department of. Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Maria R Martinez-Gallardo
- Department of. Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Ana J Toribio
- Department of. Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Juan A Lopez-Gonzalez
- Department of. Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Francisca Suarez-Estrella
- Department of. Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| | - Jose A Saez
- Department of Agrochemistry and Environment, Miguel Hernández University, EPS-Orihuela, ctra. Beniel Km 3.2, 03312, Orihuela, Alicante, Spain
| | - Raul Moral
- Department of Agrochemistry and Environment, Miguel Hernández University, EPS-Orihuela, ctra. Beniel Km 3.2, 03312, Orihuela, Alicante, Spain
| | - Maria J Lopez
- Department of. Biology and Geology, CITE II-B, University of Almeria, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, ctra. Sacramento s/n, 04120, Almeria, Spain
| |
Collapse
|
4
|
Deng Z, Yin X, Zhang S, Fang H, Gao S, Liu Y, Jiang X, Song G, Jiang W, Wang L. Study on arsenic speciation, bioaccessibility, and gut microbiota in realgar-containing medicines by DGT technique and artificial gastrointestinal extraction (PBET) combine with simulated human intestinal microbial ecosystem (SHIME). J Hazard Mater 2024; 463:132863. [PMID: 37918077 DOI: 10.1016/j.jhazmat.2023.132863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
It is well-known that several Chinese patent medicines use realgar as a specific component. People are more aware of the health dangers associated with realgar since it includes arsenic. Previous research overstated the arsenic toxicity of realgar-containing Chinese prescription medications because little thought was given to the influence of arsenic bioaccessibility by gut microbiota. In light of this, this study examined the total content, bioaccessibility and speciation of targeted medications while also examining intestinal epithelial transit utilizing the diffusive gradients in thin-films (DGT). All samples contained arsenic, and the bioaccessibilities of the colon, intestine and gastric regions ranged from 0.19% to 1.73%, 0.25-1.88% and 0.21-1.70% respectively. The range of DGT-bioaccessibility is 0.01-0.0018%. Three steps of analysis were conducted on inorganic As(III) and As(V). In health risk assessment, the ADDs and HQs of DGT-bioaccessibility were below the threshold levels when compared to computing average daily intake dose (ADD) and hazard quotient (HQ) by bioaccessibility of gastric, intestinal and colon. Additionally, Proteobacteria and Firmicutes were discovered to be the two predominant kinds of gut microbes in this study. Under arsenic exposure, the abundance of Christensenellaceae, Desulfovibrionaceae and Akkermansiaceae increased, but the quantity of Rikenellaceae decreased. These findings revealed that alterations in gut microbiota had an impact on host metabolism.
Collapse
Affiliation(s)
- Zhiwen Deng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xixiang Yin
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan 250101, China
| | - Shuxi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongke Fang
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan 250101, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, China
| | - Yuanyuan Liu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiyan Jiang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guangmin Song
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan 250101, China
| | - Wenqiang Jiang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Lihong Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
5
|
Jia ZF, Wang JL, Pan W, Hu J. Croton tiglium L. seeds ameliorate loperamide-induced constipation via regulating gastrointestinal hormones and gut microbiota before and after processing. J Ethnopharmacol 2024; 319:117378. [PMID: 37923254 DOI: 10.1016/j.jep.2023.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crotonis Fructus (CF), the seeds of Croton tiglium L., have been commonly used in the treatment of constipation for more than two thousand years in traditional Chinese medicine (TCM). CF needs to be processed before clinical use and Crotonis Semen Pulveratum (CP) is the processed cream of CF, which could reduce the drastic purgative action and gastrointestinal damages. However, the mechanism of CF and CP in the treatment of constipation is still unclear. AIM OF THE STUDY This study was to evaluate the effects of CF and CP on loperamide-induced constipation and the underlying mechanism. MATERIALS AND METHODS The chemical compositions of CF and CP were analyzed by UPLC-Q-TOF-MS. Constipated mouse model was established by loperamide (9.6 mg/kg, b.w., i.g.) for two weeks. After successful modeling, the mice were treated with CF or CP (45.5 and 136.5 mg/kg, b.w., i.g.) once a day for seven days. The physiological status, defecation indices, defecation time, and intestinal propulsion rate in mice were measured. Histopathologic examination and serum biochemical parameters were further estimated. 16S rDNA gene sequencing was carried out to characterize the effects of CF and CP on intestinal microbiome structure. Spearman correlation analysis was also performed to explore the association between gut microbiotic abundance and serum indices. RESULTS The results verified the therapeutic effects of CF and CP on loperamide-induced constipation. CF and CP could significantly ameliorate the reduction of fecal number, fecal weight, fecal water content, and intestinal propulsion rate in mice with constipation, and the first stool defecation time was also obviously reduced. Moreover, CF and CP could regulate the secretion of gastrointestinal hormones and inflammatory factors induced by constipation. Histopathologic examination showed that CP was superior to CF in relieving pathological injury and inflammatory cell infiltration. According to 16S rDNA sequencing, CF and CP treatment could improve gut microbiota disturbance in mice with constipation and the abundance of opportunistic pathogens such as Parabacteroides, Parasutterella and Bacillus remarkably declined, while the levels of beneficial bacterial such as Candidatus_Arthromitus significantly increased. Besides, CP may play a better role in correcting the intestinal flora disorder than CF, which was more obvious in the high-dose group. In addition, phytochemical analysis revealed the presence of diterpenoids and alkaloids in CF and CP. CONCLUSIONS CF and CP could ameliorate loperamide-induced constipation by regulating gastrointestinal hormones secretion, reducing the levels of inflammatory cytokines and improving the disturbance of gut microbiota. Moreover, CP was superior to CF in the enrichment of beneficial bacteria and reduction of harmful bacteria and histopathological damage induced by constipation, which may be related to the changes in the species and content of diterpenoids after processing. The study provides new evidence for the processing mechanism and clinical application of CF and CP.
Collapse
Affiliation(s)
- Ze-Fei Jia
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jia-Li Wang
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Wen Pan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jing Hu
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
| |
Collapse
|
6
|
Chen M, Li Y, Li L, Ma Q, Zhou X, Ding F, Mo X, Zhu W, Bian Q, Zou X, Xue F, Yan L, Li X, Chen J. Qi-Zhi-Wei-Tong granules alleviates chronic non-atrophic gastritis in mice by altering the gut microbiota and bile acid metabolism. J Ethnopharmacol 2024; 319:117304. [PMID: 37838294 DOI: 10.1016/j.jep.2023.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, Qi-zhi-wei-tong granule (QZWT) significantly reduced the major gastrointestinal and psychological symptoms of functional dyspepsia. AIM OF THE STUDY We aimed to explore the therapeutic effect of QZWT treated chronic non-atrophic gastritis (CNAG) and to elucidate its potential mechanism. MATERIALS AND METHODS The composition of QZWT was analysed by UPLC-Q/TOF-MS. The CNAG mice model was established by chronic restraint stress (CRS) in combination with iodoacetamide (IAA). Morphological staining was utilized to reveal the impact of QZWT on stomach and gut integrity. RT‒qPCR and ELISA were used to measure proinflammatory cytokines in the stomach, colon tissues and serum of CNAG mice. Next-generation sequencing of 16 S rDNA was applied to analyse the gut microbiota community of faecal samples. Finally, we investigated the faecal bile acid composition using GC‒MS. RESULTS Twenty-one of the compounds from QZWT were successfully identified by UPLC-Q/TOF-MS analysis. QZWT enhanced gastric and intestinal integrity and suppressed inflammatory responses in CNAG mice. Moreover, QZWT treatment reshaped the gut microbiota structure by increasing the levels of the Akkermansia genus and decreasing the populations of the Desulfovibrio genus in CNAG mice. The alteration of gut microbiota was associated with gut bacteria BA metabolism. In addition, QZWT reduced BAs and especially decreased conjugated BAs in CNAG mice. Spearman's correlation analysis further confirmed the links between the changes in the gut microbiota and CNAG indices. CONCLUSIONS QZWT can effectively inhibited gastrointestinal inflammatory responses of CNAG symptoms in mice; these effects may be closely related to restoring the balance of the gut microbiota and regulating BA metabolism to protect the gastric mucosa. This study provides a scientific reference for the pathogenesis of CNAG and the mechanism of QZWT treatment.
Collapse
Affiliation(s)
- Man Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Ying Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Lan Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Xuan Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Fengmin Ding
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Wenjun Zhu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Qinglai Bian
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Xiaojuan Zou
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Feifei Xue
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Li Yan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Jiaxu Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
7
|
Gao Q, Tian W, Yang H, Hu H, Zheng J, Yao X, Hu B, Liu H. Shen-Ling-Bai-Zhu-San alleviates the imbalance of intestinal homeostasis in dextran sodium sulfate-induced colitis mice by regulating gut microbiota and inhibiting the NLRP3 inflammasome activation. J Ethnopharmacol 2024; 319:117136. [PMID: 37704122 DOI: 10.1016/j.jep.2023.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shen-Ling-Bai-Zhu-San (SLBZS) is a classic formula for strengthening the spleen and dispelling dampness, which has shown excellent efficacy in inflammatory bowel disease (IBD) in traditional Chinese medicine clinical studies. However, its exact pharmacological mechanism needs to be further elucidated. AIM OF THE STUDY This study aims to investigate the restorative effect and mechanism of SLBZS on disturbed intestinal homeostasis in DSS-induced colitis mice. MATERIALS AND METHODS A colitis model was induced by 3% dextran sulfate sodium (DSS) for seven days, and SLBZS was administered by gavage. The influence of SLBZS on DSS-induced clinical symptoms and disease activity index (DAI) was monitored and analyzed. Alcian blue and fluorescein isothiocyanate-conjugated wheat germ agglutinin (FITC-WGA) staining were used to assess intestinal mucus changes. The expression of intestinal barrier function indexes and immune-associated indexes were determined by H&E staining, real-time quantitative PCR (RT-qPCR), and Western blot. And gut microbiota changes were detected by 16S rDNA sequencing technology. The antibiotic experiment was used to explore the role of gut microbiota in SLBZS treatment. RESULTS The results showed that SLBZS significantly improved the physiological indexes including body weight, DAI score, and colon length of colitis mice. We focused on the effects of SLBZS on intestinal homeostasis in colitis mice. First, SLBZS could enhance the secretion of intestinal mucin and the expression levels of tight junctions and adhesive junctions. Second, SLBZS inhibited the expression level of inflammatory factors and reduced the protein expression level of NLRP3 inflammasome. Third, 16S rDNA sequencing analysis revealed that SLBZS repaired the dysfunctional gut microbiota of colitis mice, such as enhancing the abundance of short-chain fatty acid-producing bacteria including Faecalibaculum, Colidextribacter, and Coprococcus. Further, by gut microbiota-depleted mice, we found that SLBZS could not exert an anti-colitis effect when gut microbiota was absent. CONCLUSIONS SLBZS restored intestinal environmental homeostasis by enhancing intestinal barrier function, inhibiting NLRP3 inflammasome, and restoring disturbed gut microbiota. And SLBZS could not ameliorate colitis mice with depleted gut microbiota. Our finding provided a theoretical basis for the clinical application of SLBZS in IBD.
Collapse
Affiliation(s)
- Qianru Gao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Weiyi Tian
- College of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dongqing Road 4, Guiyang, 550025, PR China.
| | - Huabing Yang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Haiming Hu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Junping Zheng
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Xiaowei Yao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Baifei Hu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Hongtao Liu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| |
Collapse
|
8
|
Wang C, Jiang S, Zheng H, An Y, Zheng W, Zhang J, Liu J, Lin H, Wang G, Wang F. Integration of gut microbiome and serum metabolome revealed the effect of Qing-Wei-Zhi-Tong Micro-pills on gastric ulcer in rats. J Ethnopharmacol 2024; 319:117294. [PMID: 37839771 DOI: 10.1016/j.jep.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Wei-Zhi-Tong Micro-pills (QWZT) is herbal compound used in the treatment of GU, whose functions include clearing the stomach and fire, softening the liver and relieving pain. However, its mechanistic profile on host intestinal microbiota and metabolism has not been determined. AIM OF THE STUDY The present study aimed to observe the healing effect of QWZT on acetic acid-induced gastric ulcer in a rat model and to preliminarily elucidate its possible therapeutic mechanism from the perspective of host intestinal microbiota and metabolism. MATERIALS AND METHODS The Wistar male rats (7 weeks old; weight 180-200 g) were randomly divided into normal control group (NC), acetic acid-induced gastric ulcer group (GU), and QWZT treatment group (High dose: 1250 mg/kg/day, Middle dose: 625 mg/kg/day, Low dose: 312.5 mg/kg/day) of 6 rats each. An acetic acid-induced gastric ulcer rat model was constructed based on anatomical surgery. QWZT (High dose, Middle dose, and Low dose) was used to treat gastric ulcer rats for 7 days by gavage. At the end of treatment, the body weight, macroscopic condition of gastric tissue ulcers, pathological changes (HE staining), inflammatory factors, oxidative stress factors, and endocrine factors were assessed in each group of rats. Fresh feces and serum from each group of rats were collected for microbiome and metabolome analysis on the machine, respectively. Drug-disease common targets and functional pathways were captured based on network pharmacology. The complex network of Herbs-Targets-Pathways-Metabolites-Microbiota interactions was constructed. Ultimately, Fecal Microbiota Transplantation (FMT) evaluated the contribution of gut microbiota in disease. RESULTS QWZT increased the abundance of beneficial bacteria (Bacteroides, Alloprevotella, Rikenellaceae_RC9_gut_group, Lactobacillus, Lachnospiraceae_NK4A136_group, Parabacteroides, etc.), reduced the abundance of harmful bacteria (Micromonospora, Geobacter, Nocardioides, and Arenimonas, etc.), reduced the levels of inflammatory mediators (12,13-EpOME, 9,10-Epoxyoctadecenoic acid, SM(d18:1/16:0) and Leukotriene A4, etc.), restored host metabolic disorders (Linoleic acid metabolism, Glycerophospholipid metabolism, and Arachidonic acid metabolism), and regulated the level of cytokines (IL-6, TNF-a, SOD, MDA, PEG-2 and NO), ultimately exerting an anti-ulcer effect. Apart from that, FMT improved acetic acid-induced gastric ulcers in rats. CONCLUSION QWZT improved acetic acid-induced gastric ulcers in rats by remodeling intestinal microbiota and regulating host metabolism. This work may promote the process of developing and utilizing clinical applications of QWZT.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Wenxue Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jiaqi Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jianming Liu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| |
Collapse
|
9
|
Peng K, Xia S, Xiao S, Zhang M, Liao J, Yu Q. Kuijie decoction ameliorates ulcerative colitis by affecting intestinal barrier functions, gut microbiota, metabolic pathways and Treg/Th17 balance in mice. J Ethnopharmacol 2024; 319:117316. [PMID: 37852335 DOI: 10.1016/j.jep.2023.117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Currently, the clinical treatment is limited and difficult to achieve satisfactory results for ulcerative colitis (UC). The role of traditional Chinese medicine (TCM) in the treatment of UC is very complex. Kuijie decoction (KJD) as a classic TCM, is widely used in the clinical treatment of UC, but the mechanism of its action is still unclear. AIM OF THE STUDY This study is to investigate the protective effects of KJD on UC and the underlying mechanisms. MATERIALS AND METHODS The experimental model of UC was induced by DSS, and KJD was introduced into the model at the same time. Clinical symptoms, including the body weight, colon length and colon histopathological, were used to measure the severity of colitis. The expression of inflammatory cytokines and tight junction proteins was quantified. The effect of KJD on intestinal flora and intestinal metabolism was determined by 16S rRNA and untargeted metabolomics analysis, respectively. The proportion of Th17 cells and Tregs in the spleen was examined by flow cytometry. RESULTS Mice treated with KJD showed significantly alleviated clinical symptoms and histological damage, such as more body weight gain, lower disease activity index (DAI) score, and longer colon length. The administration of KJD also led to the down-regulation of inflammatory mediators, upregulation of the expression of ZO-1, occludin and decreased claudin-2, as well as altered microbiota composition against DSS challenges (especially an increase of Lachnospiraceae). KJD enhanced the percentage of Treg cells but decreased the proportion of Th17 cells to maintain intestinal homeostasis by improving gut microbiota metabolism. CONCLUSIONS In summary, KJD maintained intestinal epithelial homeostasis by regulating epithelial barrier function, intestinal flora, and restoring Th17/Treg balance. KJD has the potential to be a Chinese medicine treatment for UC.
Collapse
Affiliation(s)
- Kaixin Peng
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Suhong Xia
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Siqi Xiao
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Mingyu Zhang
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Jiazhi Liao
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China.
| | - Qin Yu
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China.
| |
Collapse
|
10
|
Zhao Y, Zhao M, Zhang Y, Fu Z, Jin T, Song J, Huang Y, Zhao C, Wang M. Bile acids metabolism involved in the beneficial effects of Danggui Shaoyao San via gut microbiota in the treatment of CCl 4 induced hepatic fibrosis. J Ethnopharmacol 2024; 319:117383. [PMID: 37925004 DOI: 10.1016/j.jep.2023.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Shaoyao San (DSS) is a traditional Chinese medicine (TCM) first recorded in the Synopsis of the Golden Chamber. DSS has proven efficacy in treating hepatic fibrosis (HF). However, the effects and mechanisms of DSS on HF are not clear. AIM OF THE STUDY To investigate the effect of DSS on HF via gut microbiota and its metabolites (SCFAs, BAs). MATERIALS AND METHODS HF rats were induced with CCl4 and treated with DSS. Firstly, the therapeutic efficacy of DSS in HF rats and the protection of gut barrier were assessed. Then, 16S rRNA gene sequencing and untargeted fecal metabolomics preliminarily explored the mechanism of DSS in treating HF, and identified different microbiota and metabolic pathways. Finally, targeted metabolomics and RT-qPCR were used to further validate the mechanism of DSS for HF based on the metabolism of SCFAs and BAs. RESULTS After 8 weeks of administration, DSS significantly reduced the degree of HF. In addition, DSS alleviated inflammation in the ileum and reduced the levels of LPS and D-lactate. Furthermore, DSS altered the structure of gut microbiota, especially Veillonella, Romboutsia, Monoglobus, Parabacteroides, norank_f_Coriobacteriales_Incertae_Sedis. These bacteria have been linked to the production of SCFAs and the metabolism of BAs. Untargeted metabolomics suggested that DSS may play a role via BAs metabolism. Subsequently, targeted metabolomics and RT-qPCR further confirmed the key role of DSS in increasing SCFAs levels and regulating BAs metabolism. CONCLUSIONS DSS can alleviate CCl4-induced HF and protect the gut barrier. DSS may exert its beneficial effects on HF by affecting the gut microbiota and its metabolites (SCFAs, BAs).
Collapse
Affiliation(s)
- Yanhui Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Zixuan Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Tong Jin
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Jiaxi Song
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yihe Huang
- School of Public Health, Shenyang Medical College, Huanghe North Street 146, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Miao Wang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
11
|
Zhao M, Xiang T, Dong Z, Liu G, Wang P, Qi X, Hao Q, Han N, Liu Z, Li S, Yin J, Zhai J. Shenqu xiaoshi oral solution enhances digestive function and stabilizes the gastrointestinal microbiota of juvenile rats with infantile anorexia. J Ethnopharmacol 2024; 319:117112. [PMID: 37739107 DOI: 10.1016/j.jep.2023.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Massa Medicata Fermentata ("Shenqu") has long been applied in the treatment of indigestion in China; in fact, it is the active ingredient in the medicine Shenqu xiaoshi oral solution (SQXSOS). Based on robust clinical evidence, SQXSOS has shown efficacy in treating infantile anorexia (IFA). AIM OF THE STUDY To investigate the underlying mechanisms by which SQXSOS treats IFA. MATERIAL AND METHODS The pharmacodynamic efficacy of SQXSOS was validated through a high-fat diet (HFD)-induced IFA model of juvenile rats, which share physiological similarities to two-year-old humans. Ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UHPLC-TOF MS) was utilized to analyze the blood-dissolved components of SQXSOS in rats. After identification of the blood-dissolved components, the key components and target genes were predicted through network pharmacology analysis. To further validate the predicted key targets of the blood-dissolved components, RT-PCR and Western blotting were employed to measure the changes in their concentrations. Meanwhile, the efficacy of SQXSOS on the structure of gastrointestinal microbiota (GM) in IFA rats was investigated. RESULTS SQXSOS, when administered to the IFA rats at a dosage equivalent to its clinical dose in humans (3.78 mL/kg/day), induced a significant increase in the gastric emptying rate (+1.9-fold) and small intestine advancement rate (+0.5-fold) compared to the IFA rats. Additionally, SQXSOS reversed the pathological changes observed in the serum levels of digestive functioning biochemicals (-32.4%~+250% compared to the model group, p < 0.05). A total of 40 blood-dissolved components were identified by UHPLC-TOF MS. Berberine, oleanolic acid, ganolucidic acid A, slicyluric acid, and glycyrrhetinic acid were identified as the key components of SQXSOS, while AKT1, STAT3, TP53, JUN, and MAPK1 were identified as the key targets enabling the therapeutic efficacy of SQXSOS in treating IFA. In a target validation study, the mRNA transcript levels of the abovementioned target genes were found to be significantly higher in the gastric antrum of IFA rats. However, SQXSOS administration (3.78 and 7.56 mL/kg/day) reduced the elevated mRNA transcript levels of the abovementioned target genes (41.1-77.3% compared to model group, p < 0.05). GM analysis revealed a significant increase in the Firmicutes/Bacteroidota ratio (F/B ratio, +214.2%) in the IFA fecal samples compared to normal rats, but the high dosage of SQXSOS induced a marked decrease in the F/B ratio (-44.1%) compared to IFA rats. Furthermore, the therapeutic efficacy of SQXSOS against IFA might be attributed to the increase in Muribaculaceae abundance and the decrease in Prevotellaceae_UCG_003 abundance. CONCLUSION Mechanistic investigations indicated that the efficacy of SQXSOS in treating IFA could be manifested by regulating the transcription and expression levels of AKT1, MAPK1, STAT3, and TP53 genes in the gastric antrum as well as modulating the abundance of Muribaculaceae and Prevotellaceae_UCG_003 family. Furthermore, there are still some limitations: the contents of the key biochemicals remained to be determined, similar STAT3 transcription levels were observed in both normal rats and IFA rats, and it is crucial to further validate the potential target GM when transitioning from animal populations to humans.
Collapse
|