1
|
Flinois A, Méan I, Mutero-Maeda A, Guillemot L, Citi S. Paracingulin recruits CAMSAP3 to tight junctions and regulates microtubule and polarized epithelial cell organization. J Cell Sci 2024; 137:jcs260745. [PMID: 37013686 PMCID: PMC10184829 DOI: 10.1242/jcs.260745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Paracingulin (CGNL1) is recruited to tight junctions (TJs) by ZO-1 and to adherens junctions (AJs) by PLEKHA7. PLEKHA7 has been reported to bind to the microtubule minus-end-binding protein CAMSAP3, to tether microtubules to the AJs. Here, we show that knockout (KO) of CGNL1, but not of PLEKHA7, results in the loss of junctional CAMSAP3 and its redistribution into a cytoplasmic pool both in cultured epithelial cells in vitro and mouse intestinal epithelium in vivo. In agreement, GST pulldown analyses show that CGNL1, but not PLEKHA7, interacts strongly with CAMSAP3, and the interaction is mediated by their respective coiled-coil regions. Ultrastructure expansion microscopy shows that CAMSAP3-capped microtubules are tethered to junctions by the ZO-1-associated pool of CGNL1. The KO of CGNL1 results in disorganized cytoplasmic microtubules and irregular nuclei alignment in mouse intestinal epithelial cells, altered cyst morphogenesis in cultured kidney epithelial cells, and disrupted planar apical microtubules in mammary epithelial cells. Together, these results uncover new functions of CGNL1 in recruiting CAMSAP3 to junctions and regulating microtubule cytoskeleton organization and epithelial cell architecture.
Collapse
Affiliation(s)
- Arielle Flinois
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Annick Mutero-Maeda
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Laurent Guillemot
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
2
|
Cheng JH, Li J, Sun DW. In vivo biological analysis of cold plasma on allergenicity reduction of tropomyosin in shrimp. Food Chem 2024; 432:137210. [PMID: 37659333 DOI: 10.1016/j.foodchem.2023.137210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
In vivo biological regulations of the allergenicity of tropomyosin (TM) treated by cold plasma (CP) were investigated by in vivo mouse model. The sensitization models of Balb/c mice were successfully established. CP treatment reduced the allergic symptoms of mice and regulated the Th1/Th2 balance to prevent allergy by activating Treg cells, which was deduced by serum and cytokines analysis. For intestinal flora analysis, allergy occurrence was accompanied by the decreased species abundance and the increased species diversity of intestinal flora. The significant species composition difference between the TM group and the PBS group showed a possible connection between bacterial diversity and allergy. Furthermore, Firmicutes, Bacteroidetes, Parabacteroides, Alloprevotella, Bacteroides, and Lachnospiraceae could relate to allergy occurrence. Intestinal section analysis suggested that allergy occurrence was accompanied by the damaged intestinal structure, and CP treatment could relieve the damage caused by an allergy.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Chang Y, Deng H, He Y, Zhou B, Yuan D, Wu J, Zhang C, Zhao H. Wuzi Yanzong administration alleviates Sertoli cell injury by recovering AKT/mTOR-mediated autophagy and the mTORC1-mTROC2 balance in aging-induced testicular dysfunction. J Ethnopharmacol 2024; 318:116865. [PMID: 37422101 DOI: 10.1016/j.jep.2023.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuzi Yanzong Prescription (WZ), a classic traditional Chinese medicine formula, has the properties of kidney nourishing and essence strengthening, and it is widely used to treat male infertility with a long history. Sertoli cells are injured with aging, resulting in testicular dysfunction, and WZ effectively rejuvenates the age-related decline of testicular function. However, whether the therapeutic effects of WZ on aging-related testicular dysfunction are dependent on the restoration of Sertoli cell function remains unclear. AIM OF THE STUDY In a mouse model of natural aging, we explored the protective effects of WZ and its potential mechanisms. MATERIALS AND METHODS Fifteen-month-old C57BL/6 mice were randomized to receive either standard diet or WZ (2 and 8 g/kg) for 3 months. Meanwhile, 10 1-month-old mice were considered the adult control group and received standard diet for 3 months. The testis and epididymis were rapidly collected, and the sperm quality, testicular histology, Sertoli cell numbers, tight junction (TJ) ultrastructure, and blood-testis barrier-associated protein expression and localization were assessed. RESULTS WZ significantly increased sperm concentration and sperm viability, improved the degenerative histomorphology and elevated the seminiferous epithelium height. Furthermore, WZ increased the number of Sertoli cells, restored the ultrastructure of the Sertoli cell TJ, and upregulated the expression of TJ-associated proteins (zonula occludens-1 and Claudin11), ectoplasm specialized-associated proteins (N-Cadherin, E-Cadherin and β-Catenin), and gap junction-associated protein (connexin 43), but did not affect the expression of Occludin and cytoskeletal protein (Vimentin). In addition, WZ did not change the localization of zonula occludens-1 and β-Catenin in aged testis. Moreover, WZ increased the expression of autophagy-associated proteins (light chain 3 beta and autophagy related 5) and decreased the expression of p62, phosphorylated mammalian target of rapamycin, and phosphorylated AKT in Sertoli cells. Finally, we found that WZ attenuated mTOR complex 1 (mTORC1) activity and upregulated mTORC2 activity, as evidenced by inhibition of the expression of the regulatory-associated protein of mTOR, phosphorylated p70 S6K, and phosphorylated ribosomal protein s6 and enhancement of the expression of Rictor in the Sertoli cells of aging mice. CONCLUSIONS WZ improves the injury of Sertoli cells by restoring AKT/mTOR-mediated autophagy and the mTORC1-mTROC2 balance in Sertoli cells during aging. Our findings provide a new mechanism of WZ in the treatment of aging-induced testicular dysfunction.
Collapse
Affiliation(s)
- Yanyu Chang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - He Deng
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China; College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Benwen Zhou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Ding Yuan
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Jie Wu
- Analysis and Testing Center, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Changcheng Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Haixia Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, 443002, China; College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China.
| |
Collapse
|
4
|
Yang XY, An JR, Dong Q, Gou YJ, Jia CL, Song JX, Tan M, Sun MF, Li BL, Zhang Z, Ji ES, Zhao Y. Banxia-Houpu decoction inhibits iron overload and chronic intermittent hypoxia-induced neuroinflammation in mice. J Ethnopharmacol 2024; 318:117078. [PMID: 37625604 DOI: 10.1016/j.jep.2023.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [ |