1
|
Kitte SA, Gao W, Zholudov YT, Qi L, Nsabimana A, Liu Z, Xu G. Stainless Steel Electrode for Sensitive Luminol Electrochemiluminescent Detection of H2O2, Glucose, and Glucose Oxidase Activity. Anal Chem 2017; 89:9864-9869. [DOI: 10.1021/acs.analchem.7b01939] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
|
8 |
130 |
2
|
Zhang Y, Bo X, Nsabimana A, Luhana C, Wang G, Wang H, Li M, Guo L. Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection. Biosens Bioelectron 2013; 53:250-6. [PMID: 24144555 DOI: 10.1016/j.bios.2013.10.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/19/2013] [Accepted: 10/02/2013] [Indexed: 11/17/2022]
Abstract
Two-dimensional ordered mesoporous carbon nitride (OMCN) has been successfully prepared for the first time using SBA-15 mesoporous silica and melamine as template and precursor respectively, by a nano hard-templating approach. A series of OMCN-x samples with different pyrolysis temperatures have been reported. The formation of these composite materials was verified by detailed characterization (e.g., Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, N2 adsorption, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy). The results showed that the materials were structurally well ordered with two-dimensional porous structure, high surface area and large pore volume. The influence of BET surface area and different amounts of N-bonding configurations formed at different pyrolysis temperatures of OMCN-x for the electrocatalysis towards hydrogen peroxide, nitrobenzene, and nicotinamide adenine dinucleotide were investigated in detail. Results indicated that OMCN treated at 800°C with largest BET surface area and highest amounts of pyrindinic N showed improved electrocatalytic activity for H2O2, nitrobenzene, and NADH in neutral solution.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
130 |
3
|
Zhang Y, Bo X, Nsabimana A, Munyentwali A, Han C, Li M, Guo L. Green and facile synthesis of an Au nanoparticles@polyoxometalate/ordered mesoporous carbon tri-component nanocomposite and its electrochemical applications. Biosens Bioelectron 2014; 66:191-7. [PMID: 25460901 DOI: 10.1016/j.bios.2014.11.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/30/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023]
Abstract
The one-pot synthesis of a well-defined Au nanoparticles@polyoxometalates/ordered mesoporous carbon (Au@POMs/OMC) tri-component nanocomposite is reported, which is facile, green and rapid. The polyoxometalates were used as both reductant and bridging molecules. The formation of these composite materials was verified by a comprehensive characterization using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectra, scanning electron microscopy, and transmission electron microscopy. The novel nanohybrids of Au@POMs/OMC can provide new features of electrocatalytic activities, because of the synergetic effects of Au nanoparticles and OMC materials. Most importantly, the amperometric measurements show that the Au@POMs/OMC nanohybrids have a high catalytic activity with a good sensitivity, long-term stability, wide linear range, low detection limit, and fast response towards acetaminophenol, H2O2, and NADH detection for application as an enzyme-free biosensor.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
72 |
4
|
Zhang Y, Nsabimana A, Zhu L, Bo X, Han C, Li M, Guo L. Metal organic frameworks/macroporous carbon composites with enhanced stability properties and good electrocatalytic ability for ascorbic acid and hemoglobin. Talanta 2014; 129:55-62. [DOI: 10.1016/j.talanta.2014.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 11/25/2022]
|
|
11 |
58 |
5
|
Meng T, Shang N, Nsabimana A, Ye H, Wang H, Wang C, Zhang Y. An enzyme-free electrochemical biosensor based on target-catalytic hairpin assembly and Pd@UiO-66 for the ultrasensitive detection of microRNA-21. Anal Chim Acta 2020; 1138:59-68. [PMID: 33161985 DOI: 10.1016/j.aca.2020.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
MicroRNA-21 (miR-21) has been widely investigated as important biomarkers for cancer diagnosis and treatment. Herein, a highly sensitive nonenzymatic electrochemical biosensor based on Pd@metal-organic frameworks (Pd@UiO-66) and target-catalytic hairpin assembly (CHA) with target recycling approach has been proposed for the detection of miR-21. The proposed biosensor integrates the efficient CHA strategy and excellent electrocatalytic performance of Pd@UiO-66 nanocomposites. The concentration of miRNA-21 is related to the amount of the adsorbed electrocatalyst, leading to the different electrochemical signals for readout towards paracetamol (AP). This biosensor shows a low limit of detection of 0.713 fM with the dynamic range of 20 fM -600 pM under the optimal experimental conditions, providing a powerful platform for detecting miR-21. Furthermore, the designed biochemical self-assembly strategy of this electrochemical biosensor is promising candidate for potential applications in the analysis of other important genetic biomarkers for early diagnosis of cancers.
Collapse
|
Journal Article |
5 |
37 |
6
|
Nsabimana A, Bo X, Zhang Y, Li M, Han C, Guo L. Electrochemical properties of boron-doped ordered mesoporous carbon as electrocatalyst and Pt catalyst support. J Colloid Interface Sci 2014; 428:133-40. [DOI: 10.1016/j.jcis.2014.04.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/21/2014] [Indexed: 11/16/2022]
|
|
11 |
33 |
7
|
Kitte SA, Li S, Nsabimana A, Gao W, Lai J, Liu Z, Xu G. Stainless steel electrode for simultaneous stripping analysis of Cd(II), Pb(II), Cu(II) and Hg(II). Talanta 2019; 191:485-490. [DOI: 10.1016/j.talanta.2018.08.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
|
6 |
31 |
8
|
Nsabimana A, Lai J, Li S, Hui P, Liu Z, Xu G. Surfactant-free synthesis of three-dimensional nitrogen-doped hierarchically porous carbon and its application as an electrode modification material for simultaneous sensing of ascorbic acid, dopamine and uric acid. Analyst 2017; 142:478-484. [DOI: 10.1039/c6an02584f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3D N-doped hierarchically porous carbon modified electrode enables simultaneous sensitive detection of ascorbic acid, dopamine and uric acid.
Collapse
|
|
8 |
29 |
9
|
Zhao J, Gilani MRHS, Lai J, Nsabimana A, Liu Z, Luque R, Xu G. Autocatalysis Synthesis of Poly(benzoxazine-co-resol)-Based Polymer and Carbon Spheres. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01239] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
|
7 |
27 |
10
|
Han C, Bo X, Zhang Y, Li M, Nsabimana A, Guo L. N-doped graphitic layer encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline media. NANOSCALE 2015; 7:5607-5611. [PMID: 25751169 DOI: 10.1039/c4nr07571d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nitrogen doped graphitic layer encased cobalt (N-C@Co) nanoparticles, as novel non-precious-metal catalysts for the oxygen reduction reaction (ORR), were fabricated by a facile method using cyanamide and cobalt nitrate as precursors. The N-C@Co catalysts exhibited comparable catalytic performance, better stability and improved methanol tolerance towards the ORR than those of the commercial Pt/C catalyst.
Collapse
|
|
10 |
23 |
11
|
Zhang Y, Bo X, Nsabimana A, Wang H, Li M, Guo L. Preparation of copper oxide anchored on surfactant-functionalized macroporous carbon composite and its electrochemical applications. Analyst 2013; 138:3633-7. [DOI: 10.1039/c3an00487b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
12 |
16 |
12
|
Kitte SA, Zafar MN, Zholudov YT, Ma X, Nsabimana A, Zhang W, Xu G. Determination of Concentrated Hydrogen Peroxide Free from Oxygen Interference at Stainless Steel Electrode. Anal Chem 2018; 90:8680-8685. [PMID: 29923395 DOI: 10.1021/acs.analchem.8b02038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
H2O2 is frequently used at high concentrations in various applications. It is very challenging to detect high concentrations of H2O2 and to eliminate oxygen interference for H2O2 detection through electrochemical reduction. In the present investigation, the electrochemistry of H2O2 at stainless steel electrode has been carried out for the first time. A cathodic peak for H2O2 reduction was observed at about -0.40 V, and no cathodic peak for dissolved oxygen reduction was observed on type 304 stainless steel electrode. Amperometric determination of H2O2 on type 304 stainless steel electrode displayed a linear range from 0.05 up to 733 mM with a detection limit of 0.02 mM (S/N = 3) and a sensitivity of 16.7 μA mM-1 cm-2. The type 304 stainless steel electrode not only shows much higher upper limit than other reported electrodes for the detection of concentrated H2O2 but also is free from oxygen interference, which is of great importance for practical applications. This method could detect H2O2 in wound wash and lake water with excellent recoveries. Moreover, we successfully applied the stainless steel electrode to determine glucose using glucose oxidase to catalyze the oxidation of glucose to generate hydrogen peroxide. The linear range for glucose is between 0.5 and 25 mM, which covers clinically important blood glucose concentrations well.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
15 |
13
|
Meng T, Nsabimana A, Zeng T, Jia H, An S, Wang H, Zhang Y. Preparation of Pt anchored on cerium oxide and ordered mesoporous carbon tri-component composite for electrocatalytic oxidation of adrenaline. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110747. [DOI: 10.1016/j.msec.2020.110747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/07/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
|
|
5 |
14 |
14
|
Godeffroy L, Ciocci P, Nsabimana A, Miranda Vieira M, Noël JM, Combellas C, Lemineur JF, Kanoufi F. Deciphering Competitive Routes for Nickel-Based Nanoparticle Electrodeposition by an Operando Optical Monitoring. Angew Chem Int Ed Engl 2021; 60:16980-16983. [PMID: 34101324 DOI: 10.1002/anie.202106420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 11/09/2022]
Abstract
Electrodeposition of earth-abundant iron group metals such as nickel is difficult to characterize by simple electrochemical analyses since the reduction of their metal salts often competes with inhibiting reactions. This makes the mechanistic interpretation sometimes contradictory, preventing unambiguous predictions about the nature and structure of the electrodeposited material. Herein, the complexity of Ni nanoparticles (NPs) electrodeposition on indium tin oxide (ITO) is unraveled operando and at a single entity NP level by optical microscopy correlated to ex situ SEM imaging. Our correlative approach allows differentiating the dynamics of formation of two different NP populations, metallic Ni and Ni(OH)2 with a <25 nm limit of detection, their formation being ruled by the competition between Ni2+ and water reduction. At the single NP level this results in a self-terminated growth, an information which is most often hidden in ensemble averaged measurements.
Collapse
|
|
4 |
13 |
15
|
Nsabimana A, Ma X, Yuan F, Du F, Abdussalam A, Lou B, Xu G. Nanomaterials-based Electrochemical Sensing of Cardiac Biomarkers for Acute Myocardial Infarction: Recent Progress. ELECTROANAL 2018. [DOI: 10.1002/elan.201800641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
7 |
13 |
16
|
Fereja TH, Kitte SA, Gao W, Yuan F, Snizhko D, Qi L, Nsabimana A, Liu Z, Xu G. Artesunate-luminol chemiluminescence system for the detection of hemin. Talanta 2019; 204:379-385. [PMID: 31357309 DOI: 10.1016/j.talanta.2019.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
Fabricating simple, accurate and user-friendly diagnostic device for "point of care testing" (POCT) applications is one of the most challenging objectives in the analytical field. Hemin detection is important for drugs monitoring, diagnosis, and forensic latent bloodstain imaging. Herein is developed, luminol chemiluminescence biosensor for hemin detection using artesunate as coreactant. A possible mechanism to account for the chemiluminescence reaction is discussed. Hemin was detected using both photomultiplier tube (PMT) and smartphone as detector. The detection limit for hemin using smartphone as detector is 20 nM, enabling the visual detection of hemin in blood sample with a dilution factor of blood up to 120,000. While PMT detector is used, the system is able to detect hemin down to 0.22 nM. In addition to high sensitivity, this sensing system exhibit high selectivity. It can successfully distinguish bloodstain from other stains while applying the system for point of care testing using smart phone as detector. Moreover, the system can detect artesunate with a linear range from 0.1 nM to 1.0 μM with a limit of detection of 0.078 nM.
Collapse
|
Journal Article |
6 |
12 |
17
|
Nsabimana A, Wu F, Lai J, Liu Z, Luque R, Xu G. Simple synthesis of nitrogen-doped porous carbon from Chinese steamed bread flour and its catalytic application for hydrogen evolution reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
|
7 |
11 |
18
|
Wang C, Zholudov YT, Nsabimana A, Xu G, Li J. Sensitive and selective electrochemical detection of artemisinin based on its reaction with p-aminophenylboronic acid. Anal Chim Acta 2016; 937:39-42. [PMID: 27590543 DOI: 10.1016/j.aca.2016.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
The electrochemical detection of artemisinin generally requires high oxidation potential or the use of complex electrode modification. We find that artemisinin can react with p-aminophenylboronic acid to produce easily electrochemically detectable aminophenol for the first time. By making use of the new reaction, we report an alternative method to detect artemisinin through the determination of p-aminophenol. The calibration curve for the determination of artemisinin is linear in the range of 2 μmol L(-1) to 200 μmol L(-1) with the detection limit of 0.8 μmol L(-1), which is more sensitive than other reported electrochemical methods. The relative standard deviation is 4.83% for the determination of 10 μM artemisinin. Because the oxidation potential of p-aminophenol is around 0 V, the present method is high selective. When 40 μM, 90 μM and 140 μM of artemisinin were spiked to compound naphthoquine phosphate tablet samples, the recoveries are 107.6%, 105.4% and 101.7%, respectively. This detection strategy is attractive for the detection of artemisinin and its derivatives. The finding that artemisinin can react with aromatic boronic acid has the potential to be exploited for the development of other sensors, such as fluorescence artemisinin sensors.
Collapse
|
Journal Article |
9 |
9 |
19
|
Jia H, Shang N, He X, Nsabimana A, Sun D, Wang H, Zhang Y. Epoxy-functionalized macroporous carbon with embedded platinum nanoparticles for electrochemical detection of telomerase activity via telomerase-triggered catalytic hairpin assembly. Talanta 2021; 225:121957. [PMID: 33592712 DOI: 10.1016/j.talanta.2020.121957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 01/14/2023]
Abstract
Telomerase is regarded as a crucial biomarker for the early diagnosis of malignant tumors and a valuable therapeutic target. In this work, a telomerase-triggered amplification strategy was designed on the basis of a catalyzed hairpin assembly (CHA) for bridging a signal probe of platinum nanoparticles (Pt NPs) anchored on three-dimensional (3D) epoxy-functionalized macroporous carbon (Pt/MPC-COOH) in an ultrasensitive electrochemical biosensor. Pt/MPC-COOH nanomaterials with interconnected macroporous structure not only immobilized hairpin DNA probe 2 (H2) via an amide reaction (Pt/MPC-COOH-H2), but they also generated an obvious electrochemical signal in response to acetaminophen (AP) oxidation. After the introduction of telomerase, telomerase primer (TP) was extended to a telomerase extension product (TEP) with several hexamer repeats (TTAGGG)n to initiate the CHA cycle, leading to signal amplification. Subsequently, with the TEP-triggered CHA cycle amplification strategy, a large amount of Pt/MPC-COOH-H2 was introduced on the electrode surface for the construction of the electrochemical platform, which realized the sensitive detection of telomerase activity from 102 to107 cells mL-1 with a limit of detection (LOD) of 9.02 cells mL-1. This strategy provides a sensitive method for the detection of biomolecules that could be useful for bioanalysis and early clinical diagnoses of diseases.
Collapse
|
|
4 |
7 |
20
|
Jia Y, Shang N, He X, Nsabimana A, Gao Y, Ju J, Yang X, Zhang Y. Electrocatalytically active cuprous oxide nanocubes anchored onto macroporous carbon composite for hydrazine detection. J Colloid Interface Sci 2022; 606:1239-1248. [PMID: 34492462 DOI: 10.1016/j.jcis.2021.08.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/24/2023]
Abstract
Cuprous oxide (Cu2O) is a p-type semiconductor with excellent catalytic activity and stability that has gained much attention because it is non-toxic, abundant, and inexpensive. Porous carbon materials have large specific surface areas, which offer abundant electroactive sites, enhance the electrical conductivity of materials, and prevent the aggregation of Cu2O nanocubes. In this study, a composite with high electrocatalytic activity was prepared based on Cu2O nanocubes anchored onto three-dimensional macroporous carbon (MPC) by a simple, eco-friendly, and cheap method for hydrazine detection. Due to the synergistic effect of MPC and Cu2O, the sensor exhibited high electrocatalytic activity, sensitivity, better selectivity, and low limit of detection. The resulting sensor could be a sensitive and effective platform for detecting hydrazine and promising practical applications.
Collapse
|
|
3 |
6 |
21
|
Liu S, Zhang Y, Hao L, Nsabimana A, Shen S. Designing ternary Co-Ni-Fe layered double hydroxides within a novel 3D cross-flower framework for efficient catalytic performance in oxygen evolution reaction. J Colloid Interface Sci 2025; 678:924-933. [PMID: 39326164 DOI: 10.1016/j.jcis.2024.09.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
In this study, we synthesized novel three-dimensional (3D) cross-flowered Co-Ni metal-organic framework (Co-Ni-MOF) precursors using the chemical precipitation method. Subsequently, we obtained Co-Ni-Fe layered double hydroxides (Co-Ni-Fe-LDHs) through an ion exchange strategy, which preserved their original morphology while consisting of ultrathin layered hydroxide nanosheets. The interlayer spacing of the LDH lamellar structure was finely tuned by varying the ratios of Co to Ni. The results demonstrated that Co-Ni-Fe LDHs, characterized by a unique three-dimensional cross-shaped structure and an optimal composition ratio of Co2+:Ni2+ = 2:1, exhibited increased interlayer spacing. This structural characteristic contributed to their excellent electrochemical performance, positioning them as optimal electrode materials for catalytic oxygen evolution reactions (OER). Our observations revealed that Co-Ni-Fe-LDHs exhibited remarkable OER activity, characterized by a low Tafel slope of 41.82 mV dec-1, a low overpotential of 322 mV at a current density of 10 mA cm-2, and outstanding stability over a 48-hour period. In-situ Raman spectroscopy results indicated that the active site of the composite was γ-CoOOH. Additionally, the room temperature stirring and standing strategy employed in this study is easier to scale up and yields a higher quantity of reaction products compared to traditional high-temperature and high-pressure conditions. This investigation provides novel insights into the design and fabrication of Co-Ni-Fe-LDHs catalyst with 3D cross-flower structures, demonstrating enhanced electrocatalytic activity and commendable stability. These findings suggest promising applications in the field of electrolyzed water.
Collapse
|
|
1 |
|
22
|
Nigatu W, Fabiola NS, Flora IJ, Mukahirwa MA, Omar M, Nsengimana J, Nsabimana A. COMPARATIVE STUDY ON THE LEVEL OF BACTERIOLOGICAL CONTAMINATION OF AUTOMATIC TELLER MACHINES, PUBLIC TOILETS AND PUBLIC TRANSPORT COMMERCIAL MOTORCYCLE CRASH HELMETS IN KIGALI CITY, RWANDA. EAST AFRICAN MEDICAL JOURNAL 2014; 91:467-476. [PMID: 26859015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
BACKGROUND The environments can be contaminated by infectious agents that constitute a major health hazards as sources of community and hospital-acquired infections due to various activities. OBJECTIVE A comparative study on the level of bacteriological contamination of automatic teller machines (ATMs), public toilets and commercial motorcycle crash helmets were conducted in Kigali city during the period of January to March, 2013. DESIGN Samples were collected from selected ATMs, public toilets and commercial motorcycle crash helmets surfaces. Micro-organisms identified from these samples were associated to infecting organisms recovered from unwashed hands surfaces and recorded results in the nearby hospital. SETTING Samples from each device and subject were transported to the laboratory where they were analysed for the presence of coliforms and other airborne, human skin and intestinal disease causing microorganisms. Microbiological methods including spread plate techniques and some biochemical tests were used to partially identify the microorganisms. SUBJECTS Subjects involved in this study were consented students from University of Rwanda and Kigali motorcyclists for collections of samples from hands and crash helmets respectively. RESULTS The following pathogenic bacteria have been found on the devices, Staphylococcus aureus, Staphylococcus epidermis, Streptococcus species, Escherichia coli, Salmonella, Klebsiella, Enterobacter aerogenes, Pseudomonas. The commercial motorcycle crash helmets had the highest level of bacteriological contamination compared to ATMs and public toilets. There was no growth observed on samples collected after treatment from ATMs, public toilets, and commercial motorcycle crash helmets. Attempt to correlate this finding with infecting organisms recovered from unwashed hands surfaces and recorded results in the nearby hospital show that the presences of some of these infectious pathogens. CONCLUSION This study has revealed the ability of these public devices to serve as vehicle of transmission of microorganisms with serious health implications. To improve and ensure the safety of these public devices the use of disinfectants is of high importance on reducing bacteriological load on those public devices. Proper cleaning regimen to sanitise these facilities regularly and public education on their hygienic usage are recommended to reduce the associated risks.
Collapse
|
Comparative Study |
11 |
|
23
|
Guo E, Hao L, Huo Y, Nsabimana A, Dong J, Su M, Zhang Y. Simple synthesis of peanut shell-like MoCoFe-HO@CoMo-LDH for efficient alkaline oxygen evolution reaction. J Colloid Interface Sci 2024; 664:748-755. [PMID: 38492376 DOI: 10.1016/j.jcis.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Due to the depletion of fossil energy on earth, it is crucial to develop resource rich and efficient non-precious metal electrocatalysts for oxygen evolution reaction (OER). Herein, we synthesized an efficient and economical electrocatalyst using a simple self-assembly strategy. Firstly, rod-shaped MIL-88A was synthesized by hydrothermal method. Then, the surface of MIL-88A was functionalized and encapsulated in zeolitic imidazolate framework-67 (ZIF-67) by hydrothermal method. The combination of MIL-88A and ZIF-67 resulted in a slight ion-exchange reaction between Co2+ and the surface of MIL-88A to generate CoFe-LDH@ZIF-67 core-shell structure. Afterwards, in the presence of Mo6+, ZIF-67 was converted into CoMo-nanocages through ion-exchange reactions, forming a core-shell structure of MoCoFe hydr (oxy) oxide@CoMo-LDH (MoCoFe-HO@CoMo-LDH). Due to the advantages of core-shell structure and composition, this material exhibits excellent OER characteristics, with a small Tafel slope (45.11 mV dec-1) and low overpotential (324 mV) at 10 mA cm-2. It exhibits good stability in alkaline media. This research work provides a novel approach for the development of efficient and economical non-precious metal electrocatalysts.
Collapse
|
|
1 |
|
24
|
Liu S, Zhang Y, Hao L, Shen W, Nsabimana A, Shen S. Enhanced oxygen evolution reaction performance of Cr-CoFe-layered double hydroxide via the synergistic roles of Fe etching, Cr doping, and anion intercalation. J Colloid Interface Sci 2025; 691:137449. [PMID: 40168899 DOI: 10.1016/j.jcis.2025.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
The development of cost-effective and efficient electrocatalysts for water electrolysis is crucial for sustainable hydrogen production. In this study, we designed a hierarchical Cr-CoFe-LDH composite using a tailored etching and doping strategy to enhance catalytic performance. By integrating mesoporous CoFe-LDH layers with C2O42- anions and Cr dopants, we engineered a structure that optimizes mass transport, strengthens electronic interactions at active sites, and stabilizes key catalytic species. In situ spectroscopic analysis provided direct evidence of active species evolution, offering insights into the underlying reaction mechanisms. As a result, the Cr-CoFe-LDH catalyst exhibited excellent oxygen evolution reaction (OER) activity, demonstrating enhanced intrinsic performance and long-term stability. This work presents a novel approach to designing high-performance LDH-based catalysts and advances the understanding of active site modulation for efficient water electrolysis.
Collapse
|
|
1 |
|
25
|
An S, Shang N, Zhang J, Nsabimana A, Su M, Zhang S, Zhang Y. Fabrication of electrocatalytically active, cobalt-embedded nitrogen-doped ordered macroporous carbon for sensitive detection of nitrobenzene. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
3 |
|