Zieschang AD, Hoffseth KF, Dugas TR, Astete CE, Boldor D. Method for assessing coating uniformity of angioplasty balloons coated with poly(lactic-co-glycolic acid) nanoparticles loaded with quercetin.
BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524614. [PMID:
36711445 PMCID:
PMC9882345 DOI:
10.1101/2023.01.18.524614]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Significance
Drug-coated angioplasty balloons (DCBs) are used to treat peripheral artery disease, and proper dosage depends on coating characteristics like uniformity and number of layers.
Aim
Quantify coating uniformity and correlate fluorescence intensity to drug loading for DCBs coated with 5, 10, 15, or 20 layers of poly(lactic-co-glycolic acid) nanoparticles (NPs) entrapped with quercetin.
Approach
Images of DCBs were acquired using fluorescence microscopy. Coating uniformity was quantified from histograms and horizontal line profiles, and cracks on the balloons were measured and counted. Fluorescence intensity was correlated with the drug loading of quercetin found from gravimetric analysis coupled with high-performance liquid chromatography (HPLC).
Results
Higher numbers of coating layers on DCBs may be associated with less uniform coatings. Cracks in the coating were present on all balloons, and the length of cracks was not significantly different between balloons coated with different numbers of layers or balloons coated with the same number of layers. A strong positive correlation was identified between fluorescence intensity and drug loading.
Conclusion
There may be a relationship between the number of NP layers and the uniformity of the coating, but further investigation is needed to confirm this. Fluorescence intensity appears to be a strong predictor of drug loading on DCBs coated with quercetin-entrapped NPs, demonstrating that fluorescent imaging may be a viable alternative to drug release studies.
Collapse