1
|
Ballent M, Lifschitz A, Virkel G, Sallovitz J, Lanusse C. Modulation of the P-glycoprotein-mediated intestinal secretion of ivermectin: in vitro and in vivo assessments. Drug Metab Dispos 2006; 34:457-63. [PMID: 16381664 DOI: 10.1124/dmd.105.007757] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The everted gut sac method was used to assess the role of the P-glycoprotein (P-gp) on the intestinal secretion of ivermectin (IVM), an antiparasitic widely used in human and veterinary medicine. The work included the evaluation of two different P-gp modulators [itraconazole (ITZ) and valspodar (PSC833)] used at equimolar doses in the rat. Furthermore, the influence of both P-gp modulator agents on the disposition kinetics of IVM in plasma, liver, and gastrointestinal tissues was characterized. For the in vitro experiments, ileal sacs were incubated with IVM (3 microM) in the presence or absence of either ITZ (10 microM) or PSC833 (10 microM). In the in vivo experiments, male Wistar rats were randomly allocated to three groups (n=18) and subcutaneously treated with IVM (200 microg/kg-1), alone and coadministered with ITZ (5 mg, two doses) or PSC833 (8.6 mg, two doses). Animals were sacrificed between 6 and 96 h. Blood, liver, and gastrointestinal samples were collected. IVM concentrations were determined by high performance liquid chromatography. The rate of IVM accumulation in the intestinal wall of everted sacs was significantly higher after its incubation with ITZ (0.115 nmol/g/min) and PSC833 (0.238 nmol/g/min) than that obtained after the incubation without the P-gp modulators (0.016 nmol/g/min). In agreement with the in vitro experiment, the presence of ITZ and PSC833 induced an enhancement in the concentrations of IVM in plasma and gastrointestinal tissues. The results obtained in the current work, both under in vivo and in vitro conditions, confirm the relevance of P-gp-mediated transport to the intestinal secretion of IVM.
Collapse
|
|
19 |
67 |
2
|
Lifschitz A, Entrocasso C, Alvarez L, Lloberas M, Ballent M, Manazza G, Virkel G, Borda B, Lanusse C. Interference with P-glycoprotein improves ivermectin activity against adult resistant nematodes in sheep. Vet Parasitol 2010; 172:291-8. [PMID: 20605686 DOI: 10.1016/j.vetpar.2010.04.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/24/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
The in vivo co-administration of ivermectin (IVM) with P-glycoprotein (P-gp) modulator agents has been shown to enhance its systemic availability. However, there is no sufficient evidence on the impact that this type of drug-drug interaction may have on the in vivo efficacy against resistant nematodes in ruminant species. The current work reports on the effects of loperamide (LPM), a P-gp modulating agent, on both IVM kinetic behaviour and anthelmintic activity in infected lambs. Eighteen (18) lambs naturally infected with IVM-resistant gastrointestinal nematodes were allocated into three (3) experimental groups. Group A remained as untreated control. Animals in Groups B and C received IVM (200mug/kg, subcutaneously) either alone or co-administered with LPM (0.2 mg/kg, twice every 12h), respectively. Individual faecal samples were collected from experimental animals at days -1 and 14 post-treatment to perform the faecal eggs count reduction test (FECRT). Blood samples were collected between 0 and 14 days post-treatment and IVM plasma concentrations were determined by HPLC. Additionally, at day 14 post-treatment, lambs from all experimental groups were sacrificed and adult gastrointestinal nematode counts were performed. FECRT values increased from 78.6 (IVM alone) to 96% (IVM+LPM). Haemonchus contortus was highly resistant to IVM. The IVM alone treatment was completely ineffective (0% efficacy) against adult H. contortus. This efficacy value increased up to 72.5% in the presence of LPM. The efficacy against Trichostrongylus colubriformis increased from 77.9% (IVM alone) to 96.3% (IVM+LPM). The described favorable tendency towards improved anthelmintic efficacy was in agreement with the enhanced IVM plasma availability (P<0.05) and prolonged elimination half-life (P<0.05) induced by LPM in infected lambs. A LPM-induced P-gp modulation increases IVM systemic exposure in the host but also it may reduce P-gp efflux transport over-expressed in target resistant nematodes.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
51 |
3
|
Lifschitz A, Virkel G, Ballent M, Sallovitz J, Imperiale F, Pis A, Lanusse C. Ivermectin (3.15%) long-acting formulations in cattle: absorption pattern and pharmacokinetic considerations. Vet Parasitol 2007; 147:303-10. [PMID: 17524559 DOI: 10.1016/j.vetpar.2007.04.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/09/2007] [Accepted: 04/09/2007] [Indexed: 11/18/2022]
Abstract
Ivermectin (IVM) is a broad-spectrum antiparasitic drug extensively used in veterinary medicine. The composition of the pharmaceutical preparation affects IVM absorption and its systemic availability. After the introduction of the first approved IVM formulation (propylene glycol/glycerol formal 60:40) used at 200 microg/kg, different pharmaceutical modifications have been assayed to extend IVM persistent endectocide activity. Recently, IVM 3.15% long-acting (IVM-LA) preparations to be administered at 630 microg/kg to cattle were introduced into the veterinary pharmaceutical market. The work reported here was designed to evaluate the comparative IVM absorption pattern and plasma concentration profiles obtained after subcutaneous administration of the classic pioneer IVM formulation (1%) and two different commercially available IVM-LA preparations (3.15%) to cattle. Twenty-eight Holstein heifers were divided in four experimental groups (n=7) and treated subcutaneously as follows--Group A: IVM 1% given at 200 microg/kg, Group B: IVM 1% administered at 630 microg/kg, Group C: IVM-LA (A) injected at 630 microg/kg and Group D: IVM-LA (B) given at 630 microg/kg. Blood samples were taken between 0.5 and 90 days post-treatment and IVM plasma concentrations were determined by HPLC with fluorescence detection. There were no differences in the persistence of IVM plasma concentrations after the administration of IVM 1% formulation at the two used dose levels (200 and 630 microg/kg). Higher peak plasma concentration (C(max)) and shorter mean residence time (MRT) were obtained for IVM 1% given at 630 microg/kg (Group B) compared to the treatments with both IVM-LA preparations. The IVM-LA (A) formulation showed a more extended absorption process than IVM-LA (B) preparation, which accounted for a longer persistence of detectable IVM plasma concentrations. The parasitological implications of the observed differences in peak plasma concentrations (C(max) values) and in the IVM concentration levels measured from day 20, and afterwards until day 90 post-treatment, between the different preparations assayed need to be elucidated. The characterization of the absorption patterns and kinetic behaviour obtained after injection of these novel long-acting formulations used at three times the therapeutic dose recommended for the classic IVM preparation in cattle is a further contribution to the field.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
44 |
4
|
Ballent M, Lifschitz A, Virkel G, Sallovitz J, Lanusse C. Involvement of P-glycoprotein on ivermectin kinetic behaviour in sheep: itraconazole-mediated changes on gastrointestinal disposition. J Vet Pharmacol Ther 2007; 30:242-8. [PMID: 17472656 DOI: 10.1111/j.1365-2885.2007.00848.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Different pharmacological approaches have been used in an attempt to increase the systemic availability of anthelmintic drugs. The comparative effect of the itraconazole (ITZ)-mediated modulation of P-glycoprotein (P-gp) activity on the in vivo kinetic behaviour of ivermectin (IVM) administered by the intravenous (i.v.) and intraruminal (i.r.) routes to sheep was assessed in the current work. Corriedale sheep received IVM (50 microg/kg) by the i.v. route either alone (group A) or co-administered with the P-gp modulator ITZ (100 mg orally three times every 12 h) (group B). Animals in groups C and D were intraruminally treated with IVM (50 microg/kg) alone or co-administered with ITZ (100 mg orally three times every 12 h) respectively. Jugular blood and gastrointestinal tissue samples (animals treated by the i.r. route) were collected. The samples were analysed by HPLC using fluorescence detection. The plasma disposition of IVM given intravenously was unaffected by the presence of ITZ. However, after the i.r. treatment the co-administration with ITZ resulted in markedly higher IVM plasma concentration profiles compared to the control group. Likewise, the presence of ITZ enhanced the IVM concentration profiles measured in the gastrointestinal mucosal tissues. An ITZ-induced reduction on the P-gp efflux activity at the intestinal lining may have accounted for the greater absorption and enhanced systemic availability observed for IVM in the intraruminally treated animals.
Collapse
|
|
18 |
36 |
5
|
Mesa LM, Lindt I, Negro L, Gutierrez MF, Mayora G, Montalto L, Ballent M, Lifschitz A. Aquatic toxicity of ivermectin in cattle dung assessed using microcosms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:422-429. [PMID: 28654874 DOI: 10.1016/j.ecoenv.2017.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 05/25/2023]
Abstract
Ivermectin (IVM) is a parasiticide widely used for livestock. It is a semisynthetic derivative of avermectin, a macrocyclic lactone produced by Streptomyces avermitilis. This drug is only partly metabolized by livestock; considerable amounts of parent drug are excreted mostly via feces. To simulate exposure of aquatic invertebrates and macrophytes to direct excretion of cattle dung into surface waters, a microcosm experiment with IVM spiked in cattle dung was conducted. The objectives of this study were to characterize accumulation of IVM in water, sediment+dung, roots of the floating fern Salvinia and the zooplankton Ceriodaphnia dubia, the amphipod Hyalella and the apple snail Pomacea; to determine the effect of this drug spiked in cattle dung on life-history traits of these invertebrates; and to evaluate the influence of IVM on aquatic nutrient cycling. Dung was spiked with IVM to attain concentrations of 1150, 458, 50 and 22µgkg-1dung fresh weight, approximating those found in cattle dung at days 3, 7, 16 and 29 following subcutaneous injection. Concentrations found in dung during the first week of excretion were lethally toxic to Ceriodaphnia dubia and Hyalella, whereas no mortality was observed in Pomacea. Concentrations of IVM in roots, sediment + dung and Pomacea increased significantly from the lowest to the highest treatment level. The effect of this drug on decomposition and release of nutrients from dung would have negative consequences for nutrient cycling in water. Increasing concentrations in sediment + dung with days of the experiment suggested that toxic concentrations would persist for an extended period in the water-sediment system. IVM represents an ecological risk for aquatic ecosystems, underscoring the need for livestock management strategies to limit its entry into water bodies.
Collapse
|
|
8 |
25 |
6
|
Lifschitz A, Virkel G, Ballent M, Sallovitz J, Pis A, Lanusse C. Moxidectin and ivermectin metabolic stability in sheep ruminal and abomasal contents. J Vet Pharmacol Ther 2005; 28:411-8. [PMID: 16207302 DOI: 10.1111/j.1365-2885.2005.00674.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oral administration of macrocyclic lactones to sheep leads to poorer efficacy and shorter persistence of the antiparasitic activity compared to the subcutaneous treatment. Gastrointestinal biotransformation occurring after oral treatment to ruminant species has been considered as a possible cause of the differences observed between routes of administration. The current work was addressed to evaluate on a comparative basis the in vitro metabolism of moxidectin (MXD) and ivermectin (IVM) in sheep ruminal and abomasal contents. Both compounds were incubated under anaerobic conditions during 2, 6 and 24 h in ruminal and abomasal contents collected from untreated adult sheep. Drug concentrations were measured by high-performance liquid chromatography with fluorescence detection after sample clean up and solid phase extraction. Neither MXD nor IVM suffered metabolic conversion and/or chemical degradation after 24-h incubation in ruminal and abomasal contents collected from adult sheep. Unchanged MXD and IVM parent compounds represented between 95.5 and 100% of the total drug recovered in the ruminal and abomasal incubation mixtures compared with those measured in inactive control incubations. The partition of both molecules between the solid and fluid phases of both sheep digestive contents was assessed. MXD and IVM were extensively bound (>90%) to the solid material of both ruminal and abomasal contents collected from sheep fed on lucerne hay. The results reported here confirm the extensive degree of association to the solid digestive material and demonstrates a high chemical stability without evident metabolism and/or degradation for both MXD and IVM in ruminal and abomasal contents.
Collapse
|
|
20 |
22 |
7
|
Virkel G, Lifschitz A, Sallovitz J, Ballent M, Scarcella S, Lanusse C. Inhibition of cytochrome P450 activity enhances the systemic availability of triclabendazole metabolites in sheep. J Vet Pharmacol Ther 2009; 32:79-86. [PMID: 19161459 DOI: 10.1111/j.1365-2885.2008.01006.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the disposition kinetics and the pattern of metabolism is critical to optimise the flukicidal activity of triclabendazole (TCBZ) in ruminants. TCBZ is metabolised by both flavin-monooxygenase (FMO) and cytochrome P450 (P450) in the liver. Interference with these metabolic pathways may be useful to increase the systemic availabilities of TCBZ metabolites, which may improve the efficacy against Fasciola hepatica. The plasma disposition of TCBZ metabolites was evaluated following TCBZ co-administration with FMO [methimazole (MTZ)] and P450 [piperonyl butoxyde (PB) and ketoconazole (KTZ)] inhibitors in sheep. Twenty (20) healthy Corriedale x Merino weaned female lambs were randomly allocated into four experimental groups. Animals of each group were treated as follow: Group A, TCBZ alone (5 mg/kg, IV route); Group B, TCBZ (5 mg/kg, IV) + MTZ (3 mg/kg, IV); Group C, TCBZ (5 mg/kg, IV) + PB (30 mg/kg, IV) and Group D, TCBZ (5 mg/kg, IV) + KTZ (10 mg/kg, orally). Blood samples were taken over 240 h post-treatment and analysed by HPLC. TCBZ sulphoxide and sulphone were the main metabolites recovered in plasma. MTZ did not affect TCBZ disposition kinetics. TCBZ sulphoxide Cmax values were significantly increased (P < 0.05) after the TCBZ + PB (62%) and TCBZ + KTZ (37%) treatments compared to those measured in the TCBZ alone treatment. TCBZ sulphoxide plasma AUCs were higher (P < 0.05) in the presence of both PB (99%) and KTZ (41%). Inhibition of TCBZ P450-mediated oxidation in the liver accounted for the increased systemic availability of its active metabolite TCBZ sulphoxide. This work contributes to the search of different strategies to improve the use of this flukicidal drug in ruminants.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
20 |
8
|
Lifschitz A, Ballent M, Virkel G, Sallovitz J, Viviani P, Lanusse C. Accumulation of monepantel and its sulphone derivative in tissues of nematode location in sheep: pharmacokinetic support to its excellent nematodicidal activity. Vet Parasitol 2014; 203:120-6. [PMID: 24647279 DOI: 10.1016/j.vetpar.2014.02.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022]
Abstract
The amino-acetonitrile derivatives (AADs) are a new class of anthelmintic molecules active against a wide range of sheep gastrointestinal (GI) nematodes including those that are resistant to other anthelmintic families. The plasma disposition of monepantel (MNP) has been previously characterized in sheep. However, information on drug concentration profiles attained at tissues of parasite location is necessary to fully understand the pharmacological action of this novel compound. The current work aimed to study the relationship between the concentrations of MNP parent drug and its main metabolite monepantel sulphone (MNPSO₂), measured in the bloodstream and in different GI tissues of parasite location in sheep. Twenty two (22) uninfected healthy Romney Marsh lambs received MNP (Zolvix, Novartis Animal Health) orally administered at 2.5 mg/kg. Blood samples were collected from six animals between 0 and 14 days post-treatment to characterize the drug/metabolite plasma disposition kinetics. Additionally, 16 lambs were sacrificed at 8, 24, 48 and 96 h post-administration to assess the drug concentrations in the GI fluid contents and tissues. MNP and MNPSO₂ concentrations were determined by HPLC. MNP parent compound was rapidly oxidized into MNPSO₂. MNP systemic availability was significantly lower than that observed for MNPSO₂. The peak plasma concentrations were 15.1 (MNP) and 61.4 ng/ml (MNPSO₂). The MNPSO₂ to MNP plasma concentration profile ratio (values expressed in AUC) reached a value of 12. Markedly higher concentrations of MNP and MNPSO₂ were measured in both abomasal and duodenal fluid contents, and mucosal tissues compared to those recovered from the bloodstream. A great MNP availability was measured in the abomasal content with concentration values ranging between 2000 and 4000 ng/g during the first 48 h post-treatment. Interestingly, the metabolite MNPSO₂ was also recovered in abomasal content but its concentrations were significantly lower compared to MNP. The parent drug and its sulphone metabolite were detected in the different segments of the sheep intestine. MNPSO₂ concentrations in the different intestine sections sampled were significantly higher compared to those measured in the abomasum. Although MNP is metabolized to MNPSO₂ in the liver, the large concentrations of both anthelmintically active molecules recovered during the first 48 h post-treatment from the abomasum and small intestine may greatly contribute to the well-established pharmacological activity of MNP against GI nematodes.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
17 |
9
|
Mesa LM, Hörler J, Lindt I, Gutiérrez MF, Negro L, Mayora G, Montalto L, Ballent M, Lifschitz A. Effects of the Antiparasitic Drug Moxidectin in Cattle Dung on Zooplankton and Benthic Invertebrates and its Accumulation in a Water-Sediment System. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:316-326. [PMID: 29846763 DOI: 10.1007/s00244-018-0539-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/21/2018] [Indexed: 05/22/2023]
Abstract
Two anthelmintic macrocyclic lactones-ivermectin and moxidectin-have revolutionized parasite control in cattle. These drugs are only partly metabolized by livestock, and the main route of excretion is via feces. In seasonally inundated floodplains, cattle feces come into direct contact with surface water. Important differences in pharmacokinetics and pharmacodynamics between these drugs may bear on their ecotoxicology in aquatic ecosystems. Moxidectin strongly binds to organic matter and thereby may be consumed in aquatic food webs, but there is a scarcity of data on toxicity to freshwater invertebrates. The objectives of this work were to determine the effect of moxidectin spiked in cattle dung on survival and growth of three representative aquatic invertebrates: the zooplankton Ceriodaphnia dubia, the amphipod Hyalella curvispina, and the snail Pomacea canaliculata. Moxidectin-laced dung was added in microcosms and concentrations were measured in water, sediment + dung, roots of the aquatic plant Salvinia biloba, and the aforementioned invertebrates. The influence of moxidectin on nutrient concentrations was also evaluated. Dung was spiked with moxidectin to attain concentrations of 750, 375 and 250 µg kg-1 dung fresh weight, approximating those found in cattle dung at days 2, 3, and 5 following subcutaneous injection. Concentrations of moxidectin in dung during the first week of excretion were lethally toxic for the tested invertebrate taxa. The persistence of moxidectin in the sediment + dung and the uptake of the drug in roots of S. biloba increase its potential exposure to aquatic food webs. Moxidectin also reduced the rate of release of soluble reactive phosphorus to the water.
Collapse
|
|
7 |
15 |
10
|
Maté L, Ballent M, Cantón C, Ceballos L, Lifschitz A, Lanusse C, Alvarez L, Liron J. Assessment of P-glycoprotein gene expression in adult stage of Haemonchus contortus in vivo exposed to ivermectin. Vet Parasitol 2018; 264:1-7. [DOI: 10.1016/j.vetpar.2018.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/04/2018] [Accepted: 10/13/2018] [Indexed: 01/19/2023]
|
|
7 |
15 |
11
|
Wilkens MR, Maté LM, Schnepel N, Klinger S, Muscher-Banse AS, Ballent M, Virkel G, Lifschitz AL. Influence of 25-hydroxyvitamin D 3 and 1,25-dihydroxyvitamin D 3 on expression of P-glycoprotein and cytochrome P450 3A in sheep. J Steroid Biochem Mol Biol 2016; 164:271-276. [PMID: 26319202 DOI: 10.1016/j.jsbmb.2015.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023]
Abstract
In order to improve calcium and phosphorus balance, beef cattle and dairy cows can be supplemented with vitamin D. However, different vitamin D metabolites have been shown to increase expression of P-glycoprotein (P-gp, MDR1, ABCB1) and cytochrome P450 3A (CYP3A) in rodents as well as in cell culture systems. As such interferences might have an impact on pharmacokinetics of some drugs widely-used in veterinary medicine, we investigated the expression of P-gp, CYP3A, vitamin D receptor (VDR), pregnane X receptor (PXR) and retinoid X receptor α (RXRα) in sheep either treated orally with 6μg/kg body weight (BW) 25-hydroxyvitamin D3 (OHD3) for ten days before sacrifice or 12h after intravenous injection of 0.5μg/kg BW 1,25-dihydroxyvitamin D3 (1,25- (OH)2D3). Down-regulation of ruminal, jejunal and hepatic, but not renal P-gp could be found with 25-OHD3 supplementation. Interestingly, this effect on P-gp was not observed in tissues from 1,25-(OH)2D3-treated sheep. In contrast, 1,25-(OH)2D3 induced a significant up-regulation of renal and jejunal CYP3A expression, while 25-OHD3 had no impact. Renal expression of VDR and PXR was also increased by treatment with 1,25-(OH)2D3, while jejunal PXR expression was only stimulated in sheep supplemented with 25-OHD3. Either treatments increased renal, but not ruminal, jejunal or hepatic expression of RXRα. These results demonstrate that the impact of large doses of vitamin D metabolites on different target organs and potential interactions with other medications should be further investigated in vitro and in vivo to understand the effects of vitamin D metabolites on metabolism and excretion pathways in livestock.
Collapse
|
|
9 |
14 |
12
|
Ballent M, Maté L, Virkel G, Sallovitz J, Viviani P, Lanusse C, Lifschitz A. Intestinal drug transport: ex vivo evaluation of the interactions between ABC transporters and anthelmintic molecules. J Vet Pharmacol Ther 2014; 37:332-7. [PMID: 24611483 DOI: 10.1111/jvp.12112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/14/2014] [Indexed: 11/29/2022]
Abstract
The family of ATP-binding cassette (ABC) transporters is composed of several transmembrane proteins that are involved in the efflux of a large number of drugs including ivermectin, a macrocyclic lactone (ML) endectocide, widely used in human and livestock antiparasitic therapy. The aim of the work reported here was to assess the interaction between three different anthelmintic drugs with substrates of the P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP). The ability of ivermectin (IVM), moxidectin (MOX) and closantel (CST) to modulate the intestinal transport of both rhodamine 123 (Rho 123), a P-gp substrate, and danofloxacin (DFX), a BCRP substrate, across rat ileum was studied by performing the Ussing chamber technique. Compared to the controls, Rho 123 efflux was significantly reduced by IVM (69%), CST (51%) and the positive control PSC833 (65%), whereas no significant differences were observed in the presence of MOX (30%). In addition, DFX efflux was reduced between 59% and 72% by all the assayed drug molecules, showing a higher potency than that observed in the presence of the specific BCRP inhibitor pantoprazole (PTZ) (52%). An ex vivo intestinal transport approach based on the diffusion chambers technique may offer a complementary tool to study potential drug interactions with efflux transporters such as P-gp and BCRP.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
13 |
13
|
Lifschitz A, Ballent M, Virkel G, Sallovitz J, Lanusse C. Sex-related differences in the gastrointestinal disposition of ivermectin in the rat: P-glycoprotein involvement and itraconazole modulation. J Pharm Pharmacol 2010; 58:1055-62. [PMID: 16872551 DOI: 10.1211/jpp.58.8.0005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Ivermectin (IVM), a macrocyclic lactone used as antiparasite agent, has been reported as a P-glycoprotein (P-gp) substrate. The participation of P-gp in the IVM excretion process has been previously demonstrated. Sex-related differences in the kinetic behaviour of some macrocyclic lactone compounds have been observed. The aim of this work was to characterize in-vivo the comparative gastrointestinal disposition of IVM in male and female rats. The sex-related influence on the itraconazole (ITZ) modulation of P-gp-mediated IVM intestinal transport was also assessed. Sixty Wistar rats (30 male, 30 female) received IVM alone or co-administered with ITZ. Rats were killed between 6 and 72h after treatment and blood, gastrointestinal tissues and lumen contents were collected. IVM concentrations were determined by high performance liquid chromatography. Substantial sex-related differences in the IVM disposition kinetics were observed. Higher IVM systemic availability was observed in female rats. The ITZ-mediated modulation of the IVM disposition kinetics had a differential impact between male and female rats. Co-administration with ITZ resulted in a marked increase in the IVM concentrations in the wall tissue from different portions of the gastrointestinal tract of male rats. The presence of ITZ induced drastic sex-related changes on the P-gp-mediated IVM gastrointestinal disposition.
Collapse
|
|
15 |
13 |
14
|
Gamboa GVU, Palma SD, Lifschitz A, Ballent M, Lanusse C, Passirani C, Benoit JP, Allemandi DA. Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications. Parasitol Res 2016; 115:1945-53. [PMID: 26852126 DOI: 10.1007/s00436-016-4937-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/20/2016] [Indexed: 01/06/2023]
Abstract
Ivermectin (IVM) is probably one of the most widely used antiparasitic drugs worldwide, and its efficacy is well established. However, slight differences in formulation may change the plasma kinetics, the biodistribution, and in consequence, the efficacy of this compound. The present study focuses on the development of a novel nanocarrier for the delivery of lipophilic drugs such as IVM and its potential application in antiparasitic control. Lipid nanocapsules (LNC) were prepared by a new phase inversion procedure and characterized in terms of size, surface potential, encapsulation efficiency, and physical stability. A complement activation assay (CH50) and uptake experiments by THP-1 macrophage cells were used to assess the stealth properties of this nanocarrier in vitro. Finally, a pharmacokinetics and biodistribution study was carried out as a proof of concept after subcutaneous (SC) injection in a rat model. The final IVM-LNC suspension displayed a narrow size distribution and an encapsulation rate higher than 90 % constant over the evaluated time (60 days). Through flow cytometry and blood permanence measurements, it was possible to confirm the ability of these particles to avoid the macrophage uptake. Moreover, the systemic disposition of IVM in the LNC administered by the SC route was higher (p < 0.05) (1367 ng h/ml) compared to treatment with a commercial formulation (CF) (1193 ng.h/ml), but no significant differences in the biodistribution pattern were found. In conclusion, this new carrier seems to be a promising therapeutic approach in antiparasitic control and to delay the appearance of resistance.
Collapse
|
Journal Article |
9 |
13 |
15
|
Lloberas M, Alvarez L, Entrocasso C, Ballent M, Virkel G, Luque S, Lanusse C, Lifschitz A. Comparative pharmacokinetic and pharmacodynamic response of single and double intraruminal doses of ivermectin and moxidectin in nematode-infected lambs. N Z Vet J 2015; 63:227-34. [PMID: 25689407 DOI: 10.1080/00480169.2015.1015645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIMS To compare the pharmacokinetics, distribution and efficacy (pharmacodynamic response) of intraruminal ivermectin (IVM) and moxidectin (MXD) administered at 0.2 and 0.4 mg/kg to naturally nematode-infected lambs, and to determine the ex vivo accumulation of these anthelmintics by Haemonchus contortus. METHODS Romney Marsh lambs, naturally infected with IVM-resistant H. contortus, were allocated to treatment groups based on faecal nematode egg counts. They received 0.2 or 0.4 mg/kg IVM or MXD (n=10 per group), or no treatment (Control; n=6), on Day 0. Samples from four animals from each treatment group, including abomasal parasites, were obtained on Day 1. Plasma samples were also collected from Day 0 to 14, and a faecal egg count reduction test (FECRT) and a controlled efficacy trial were carried out on Day 14. Concentrations of IVM and MXD in plasma, in abomasal and intestinal tissues and in H. contortus were evaluated by high-performance liquid chromatography. Additionally, the ex vivo drug accumulation of IVM and MXD by H. contortus was determined. RESULTS Peak plasma concentrations and the area under the concentration vs. time curve for both IVM and MXD were higher for 0.4 than 0.2 mg/kg treatments (p<0.05), but there were no differences for other parameters. Concentrations of IVM and MXD in the gastrointestinal target tissues and in H. contortus were higher compared to those measured in plasma. Concentrations of both drugs in H. contortus were correlated with those observed in the abomasal content (r=0.86; p<0.0001). The exposure of H. contortus to IVM and MXD was related to the administered dose. Mean FECRT and efficacy for removal of adult H. contortus was 0% for IVM at 0.2 and 0.4 mg/kg. For MXD, FECRT were >95% for both treatments, and efficacy against H. contortus was 85.1% and 98.1% for 0.2 and 0.4 mg/kg, respectively. The ex vivo accumulation of IVM and MXD in H. contortus was directly related to the drug concentration present in the environment and was influenced by the duration of exposure. CONCLUSION Administration of IVM and MXD at 0.4 compared with 0.2 mg/kg accounted for enhanced drug exposure in the target tissues, as well as higher drug concentrations within resistant nematodes. The current work is a further contribution to the evaluation of the relationship between drug efficacy and basic pharmacological issues in the presence of resistant parasite populations.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
12 |
16
|
Lifschitz A, Ballent M, Lanusse C. Macrocyclic lactones and cellular transport-related drug interactions: a perspective from in vitro assays to nematode control in the field. Curr Pharm Biotechnol 2012; 13:912-23. [PMID: 22039788 DOI: 10.2174/138920112800399211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/06/2010] [Indexed: 11/22/2022]
Abstract
Macrocyclic lactones (MLs) are antiparasitic drugs used against endo-ectoparasites. Regarding the wide use of MLs in different species, it is likely that drug-drug interactions may occur after their co-administration with other compounds. A new paradigm was introduced in the study of the pharmacology of MLs during the last years since the interactions of MLs with ATP-binding cassete (ABC) transporters have been described. The current review article gives an update on the available information concerning drug-drug interactions involving the MLs. The basis of the methodological approaches used to evaluate transport interactions, and the impact of the pharmacology-based modulation of drug transport on the MLs disposition kinetics and clinical efficacy, are discussed in an integrated manner. A different number of in vitro and ex vivo methods have been reported to study the characterization of the interactions between MLs and ABC transporters. The production of the ABC transporters knockout mice has provided valuable in vivo tools to study this type of drug-drug interaction. In vivo trials performed in different species corroborated the effects of ABC transporter modulators on the pharmacokinetics behaviour of MLs. Important pharmacokinetic changes on plasma disposition of MLs have been observed when these compounds are co-administered with P-glycoprotein modulators. The modulation of the activity of P-glycoprotein was evaluated as a strategy not only to increase the systemic availability of MLs but also to improve their clinical efficacy. The understanding of the MLs interactions may supply relevant information to optimize their use in veterinary and human therapeutics.
Collapse
|
Review |
13 |
11 |
17
|
Ballent M, Wilkens MR, Maté L, Muscher AS, Virkel G, Sallovitz J, Schröder B, Lanusse C, Lifschitz A. P-glycoprotein in sheep liver and small intestine: gene expression and transport efflux activity. J Vet Pharmacol Ther 2013; 36:576-82. [DOI: 10.1111/jvp.12040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
|
|
12 |
9 |
18
|
Maté ML, Lifschitz A, Sallovitz J, Ballent M, Muscher AS, Wilkens MR, Schröder B, Lanusse C, Virkel G. Cytochrome P450 3A expression and function in liver and intestinal mucosa from dexamethasone-treated sheep. J Vet Pharmacol Ther 2011; 35:319-28. [PMID: 21906085 DOI: 10.1111/j.1365-2885.2011.01334.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of repeated administrations of dexamethasone (DEX) (3 mg/kg/day by i.m. route for 7 days) on the gene expression profile of a cytochrome P450 (CYP) 3A28-like isoenzyme, on the expression of a CYP3A-immunoreactive protein and on CYP3A-dependent metabolic activities in sheep liver and small intestinal mucosa were evaluated in the current work. CYP 3A-dependent metabolic activities (erythromycin and triacetyl-oleandomycin N-demethylations) were assessed in microsomal fractions. The mRNA expression of CYP3A28-like, glucocorticoid receptor, constitutive androstane receptor, pregnane X receptor and retinoic X receptor alpha (RXRα) was determined by quantitative real-time PCR. The expression of a CYP3A-immunoreactive protein was measured by Western blot analyses. In the liver, DEX treatment increased CYP3A28-like mRNA levels (2.67-fold, P<0.01) and CYP3A apoprotein expression (1.34-fold, P<0.05) and stimulated CYP3A-dependent metabolism. High and significant correlation coefficients between CYP3A-dependent activities and CYP3A28-like gene (r=0.835-0.856, P<0.01) or protein (r=0.728-0.855, P<0.05) expression profiles were observed. Among the transcriptional factors, DEX only stimulated (2.1-fold, P<0.01) the mRNA expression of RXRα. In sheep small intestine, DEX caused a slight increment (34.6%, P<0.05) in erythromycin N-demethylase activity in the jejunal mucosa and a significant enhancement (P<0.05) of CYP3A apoprotein level in the duodenal mucosa.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
9 |
19
|
Ballent M, Lifschitz A, Virkel G, Mate L, Lanusse C. Pretreatment with the inducers rifampicin and phenobarbital alters ivermectin gastrointestinal disposition. J Vet Pharmacol Ther 2010; 33:252-9. [PMID: 20557442 DOI: 10.1111/j.1365-2885.2009.01129.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The goal of the study was to evaluate the effects of rifampicin (RFP) and phenobarbital (PBT) on the plasma and gastrointestinal disposition kinetics of ivermectin (IVM) subcutaneously administered to Wistar rats. Fifty seven rats were used. Animals in Group I were the noninduced (control) group. Those in Groups II and III received a treatment with RFP (160 mg/day) and PBT (35 mg/day), respectively, both given orally during eight consecutive days as induction regimen. The IVM pharmacokinetic study was started 24 h after the RFP and PBT last administration. Animals received IVM (200 microg/kg) by subcutaneous injection. Rats were sacrificed between 6 h and 3 days after IVM administration. Blood and samples of liver tissue, intestinal wall and luminal content of jejunum were collected from each animal. IVM concentrations were measured by high performance liquid chromatography. IVM disposition kinetics in plasma and tissues was significantly modified by the PBT treatment, but not by RFP. Despite the enhanced CYP3A activity observed after the pretreatment with RPF and PBT, there were no marked changes on the percentages of IVM metabolites recovered from the bloodstream in induced and noninduced animals. An enhanced P-glycoprotein-mediated intestinal transport activity in pretreated animals (particularly in PBT pretreated rats) may explain the drastic changes observed on IVM disposition.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
9 |
20
|
Ballent M, Virkel G, Maté L, Viviani P, Lanusse C, Lifschitz A. Hepatic biotransformation pathways and ruminal metabolic stability of the novel anthelmintic monepantel in sheep and cattle. J Vet Pharmacol Ther 2016; 39:488-96. [DOI: 10.1111/jvp.12296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022]
|
|
9 |
4 |
21
|
Ballent M, Viviani P, Imperiale F, Dominguez P, Halwachs S, Mahnke H, Honscha W, Lanusse C, Virkel G, Lifschitz A. Pharmacokinetic assessment of the monepantel plus oxfendazole combined administration in dairy cows. J Vet Pharmacol Ther 2017; 41:292-300. [PMID: 29139145 DOI: 10.1111/jvp.12466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022]
Abstract
Monepantel (MNP) is a novel anthelmintic compound launched into the veterinary pharmaceutical market. MNP is not licenced for use in dairy animals due to the prolonged elimination of its metabolite monepantel sulphone (MNPSO2 ) into milk. The goal of this study was to evaluate the presence of potential in vivo drug-drug interactions affecting the pattern of milk excretion after the coadministration of the anthelmintics MNP and oxfendazole (OFZ) to lactating dairy cows. The concentrations of both parent drugs and their metabolites were measured in plasma and milk samples by HPLC. MNPSO2 was the main metabolite recovered from plasma and milk after oral administration of MNP. A high distribution of MNPSO2 into milk was observed. The milk-to-plasma ratio (M/P ratio) for this metabolite was equal to 6.75. Conversely, the M/P ratio of OFZ was 1.26. Plasma concentration profiles of MNP and MNPSO2 were not modified in the presence of OFZ. The pattern of MNPSO2 excretion into milk was also unchanged in animals receiving MNP plus OFZ. The percentage of the total administered dose recovered from milk was 0.09 ± 0.04% (MNP) and 2.79 ± 1.54% (MNPSO2 ) after the administration of MNP alone and 0.06 ± 0.04% (MNP) and 2.34 ± 1.38% (MNPSO2 ) after the combined treatment. The presence of MNP did not alter the plasma and milk disposition kinetics of OFZ. The concentrations of the metabolite fenbendazole sulphone tended to be slightly higher in the coadministered group. Although from a pharmacodynamic point of view the coadministration of MNP and OFZ may be a useful tool, the presence of OFZ did not modify the in vivo pharmacokinetic behaviour of MNP and therefore did not result in reduced milk concentrations of MNPSO2 .
Collapse
|
Journal Article |
8 |
4 |
22
|
Larroza M, Soler P, Robles C, Cabrera R, Ballent M, Lanusse C, Lifschitz A. Doramectin efficacy against Psoroptes ovis in sheep: Evaluation of pharmacological strategies. Exp Parasitol 2020; 218:107998. [PMID: 32941889 DOI: 10.1016/j.exppara.2020.107998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/27/2020] [Accepted: 09/13/2020] [Indexed: 11/25/2022]
Abstract
The aims of this study were to evaluate the efficacy of two injectable formulations of doramectin (DRM) against Psoroptes ovis in sheep infested under controlled experimental conditions and to characterize the DRM plasma disposition kinetics in the infested animals. To this end, sheep were experimentally infested with a P. ovis strain from a farm with a history of treatment failure, and then treated either with DRM 1% (traditional preparation) on days 0 and 7 or with DRM 3.15% (long-acting formulation) on day 0. The efficacy of each treatment was calculated by counting live mites in skin scrapings. Plasma samples were obtained from each animal and DRM concentrations were measured by HPLC. After the two doses of DRM 1%, the maximum efficacy (98.8%) was reached on day 28, whereas after the single dose of DRM 3.15%, the maximum efficacy (100%) was reached on day 35 and ratified on day 42. The long-acting formulation allowed obtaining higher exposure and more sustained concentrations of DRM than the traditional preparation. Although both DRM formulations studied were effective according to international protocols, they did not reach 100% effectiveness in the time required for approved pharmaceutical products against sheep scab, according to Argentine regulations.
Collapse
|
Journal Article |
5 |
2 |
23
|
Ballent M, Canton C, Dominguez P, Bernat G, Lanusse C, Virkel G, Lifschitz A. Pharmacokinetic-pharmacodynamic assessment of the ivermectin and abamectin nematodicidal interaction in cattle. Vet Parasitol 2019; 279:109010. [PMID: 32035291 DOI: 10.1016/j.vetpar.2019.109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022]
Abstract
In a context of nematodicidal resistance, anthelmintic combinations have emerged as a reliable pharmacological strategy to control gastrointestinal nematodes in grazing systems of livestock production. The current work evaluated the potential drug-drug interactions following the coadministration of two macrocyclic lactones (ML) ivermectin (IVM) and abamectin (ABM) to parasitized cattle using a pharmacokinetic/pharmacodynamic (PK/PD) approach. The kinetic behavior of both compounds administered either separately or coadministered was assessed and the therapeutic response of the combination was evaluated under different resistance scenarios. In the pharmacological trial, calves received a single subcutaneous (s.c.) injection of IVM (100 μg/Kg); a single s.c. injection of ABM (100 μg/Kg) or IVM + ABM (50 μg/Kg each) administered in different injection sites to reach a final ML dose of 100 μg/Kg (Farm 1). Plasma samples were taken from those animals up to 20 days post-treatment. IVM and ABM plasma concentrations were quantified by HPLC. A parasitological trial was carried out in three farms with different status of nematodes resistance to IVM. Experimental animals received IVM (200 μg/Kg), ABM (200 μg/Kg) or IVM + ABM (100 μg/Kg each) in Farm 2, and IVM + ABM (200 μg/Kg each) in Farms 3 and 4. The anthelmintic efficacy was determined by fecal egg count reduction test (FECRT). PK analysis showed similar trends for IVM kinetic behavior after coadministration with ABM. Conversely, the ABM elimination half-life was prolonged and the systemic exposure during the elimination phase was increased in the presence of IVM. Although IVM alone failed to control Cooperia spp., the combination IVM + ABM was the only treatment that achieved an efficacy higher than 95% against resistant Cooperia spp. in all farms. In fact, when Cooperia spp. was the main genus within the nematode population and Haemonchus spp. was susceptible or slightly resistant to ML (Farms 2 and 4), the total FECR for the combination IVM + ABM was higher than 90%. Instead, when the predominant nematode genus was a highly resistant Haemonchus spp. (Farm 3), the total FECR after the combined treatment was as low as the single treatments. Therefore, the rational use of these pharmacological tools should be mainly based on the knowledge of the epidemiology and the nematode susceptibility status in each cattle farm.
Collapse
|
Journal Article |
6 |
1 |
24
|
Cosatti MA, Muñoz SA, Tamborenea MT, García M, Curti A, Cappuccio A, Rillo O, Imamura PM, Schneeberger E, Dal Pra F, Ballent M, Cousseau ML, Velasco Zamora J, Saurit V, Toloza S, Danielsen MC, Bellomio VI, Graf C, Paira S, Cavallasca J, Pons Estel B, Cristian Moreno JL, Díaz M, Alba P, Verando M, Tate G, Mysler E, Sarano J, Civit EE, Risueño F, Álvarez Sepúlveda P, Larroude MS, Méndez MF, Conforti A, Sohn D, Helling CA, Roverano S, Malm-Green S, Medina Bornachera D, Alvarez A, Eimon A, Pendón G, Mayer M, Marin J, Pisoni CN. Current smoking is related to severe damage in systemic lupus erythematosus patients. Lupus 2025; 34:28-33. [PMID: 39556029 DOI: 10.1177/09612033241301182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
OBJECTIVE To assess the relationship between smoking exposure and organ damage accrual measured by Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index for Systemic Lupus Erythematosus score (SLICC-SDI) in consecutive patients with systemic lupus erythematosus (SLE) from Argentina. METHODS 623 consecutive SLE patients (fulfilling ≥4, 1997 ACR criteria) were included in this cross-sectional study. Sociodemographic and disease related variables including SLICC-SDI score and smoking status were collected. Patients currently smoking were considered "smokers", and "non-smokers" those who never smoked and former smokers. SLICC-SDI was divided into two categories: <3 and ≥3 was defined as severe damage. RESULTS Six hundred and 23 patients were included in the analysis, 89% women. Eighty-four per cent were non-smokers and 16 % were current smokers 83 percent of patients had SLICC-SDI <3 and 17 % had SLICC-SDI ≥3. Twenty one percent of patients with SLICC-SDI ≥3 and 15% with <3 SLICC-SDI were current smokers (p 0.081). In the multiple regression analysis, current smoking (OR 1.82, CI 95% 1.01-3.31, p 0.046), older age (OR 1.04, CI 95% 1.00-1.05, p 0.034), disease duration (OR 1.03, CI 95% 1.00-1.07, p 0.021) and cyclophosphamide exposure (OR 2.97, CI 95% 1.49-5.88, p 0.002) were related to SLICC-SDI ≥3. CONCLUSION In our sample of patients, current smoking, older age, disease duration and cyclophosphamide were related to severe damage (SLICC-SDI ≥3).
Collapse
|
|
1 |
|