1
|
Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 1996; 272:719-22. [PMID: 8614832 DOI: 10.1126/science.272.5262.719] [Citation(s) in RCA: 626] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Signal transducers and activators of transcription (STAT) proteins can be conditionally activated in response to epidermal growth factor (EGF) and interferon (IFN)-gamma. STAT activation was correlated with cell growth inhibition in response to EGF and IFN-gamma. Activated STAT proteins specifically recognized the conserved STAT-responsive elements in the promoter of the gene encoding the cyclin-dependent kinase (CDK) inhibitor p21 WAF1/CIP1 and regulated the induction of p21 messenger RNA. IFN-gamma did not inhibit the growth of U3A cells, which are deficient in STAT1, but did inhibit the growth of U3A cells into which STAT1 alpha was reintroduced. Thus, STAT1 protein is essential for cell growth suppression in response to IFN-gamma. The STAT signaling pathway appears to negatively regulate the cell cycle by inducing CDK inhibitors in response to cytokines.
Collapse
|
|
29 |
626 |
2
|
Staswick PE, Su W, Howell SH. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci U S A 1992; 89:6837-40. [PMID: 11607311 PMCID: PMC49599 DOI: 10.1073/pnas.89.15.6837] [Citation(s) in RCA: 563] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Jasmonic acid and its methyl ester, methyl jasmonate (MeJA), are plant signaling molecules that affect plant growth and gene expression. Primary root growth of wild-type Arabidopsis thaliana seedlings was inhibited 50% when seedlings were grown on agar medium containing 0.1 M MeJA. An ethyl methanesulfonate mutant (jar1) with decreased sensitivity to MeJA inhibition of root elongation was isolated and characterized. Genetic data indicated the trait was recessive and controlled by a single Mendelian factor. MeJA-induced polypeptides were detected in Arabidopsis leaves by antiserum to a MeJA-inducible vegetative storage protein from soybean. The induction of these proteins by MeJA in the mutant was at least 4-fold less in jar1 compared to wild type. In contrast, seeds of jar1 plants were more sensitive than wild type to inhibition of germination by abscisic acid. These results suggest that the defect in jar1 affects a general jasmonate response pathway, which may regulate multiple genes in different plant organs.
Collapse
|
research-article |
33 |
563 |
3
|
Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TMS, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 2014; 4:e121. [PMID: 24979150 PMCID: PMC4079931 DOI: 10.1038/nutd.2014.23] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/OBJECTIVES High dietary fibre intakes may protect against obesity by influencing colonic fermentation and the colonic microbiota. Though, recent studies suggest that increased colonic fermentation contributes to adiposity. Diet influences the composition of the gut microbiota. Previous research has not evaluated dietary intakes, body mass index (BMI), faecal microbiota and short chain fatty acid (SCFA) in the same cohort. Our objectives were to compare dietary intakes, faecal SCFA concentrations and gut microbial profiles in healthy lean (LN, BMI⩽25) and overweight or obese (OWOB, BMI>25) participants. DESIGN We collected demographic information, 3-day diet records, physical activity questionnaires and breath and faecal samples from 94 participants of whom 52 were LN and 42 OWOB. RESULTS Dietary intakes and physical activity levels did not differ significantly between groups. OWOB participants had higher faecal acetate (P=0.05), propionate (P=0.03), butyrate (P=0.05), valerate (P=0.03) and total short chain fatty acid (SCFA; P=0.02) concentrations than LN. No significant differences in Firmicutes to Bacteroides/Prevotella (F:B) ratio was observed between groups. However, in the entire cohort, Bacteroides/Prevotella counts were negatively correlated with faecal total SCFA (r=-0.32, P=0.002) and F:B ratio was positively correlated with faecal total SCFA (r=0.42, P<0.0001). Principal component analysis identified distinct gut microbiota and SCFA-F:B ratio components, which together accounted for 59% of the variation. F:B ratio loaded with the SCFA and not with the microbiota suggesting that SCFA and F:B ratio vary together and may be interrelated. CONCLUSIONS The results support the hypothesis that colonic fermentation patterns may be altered, leading to different faecal SCFA concentrations in OWOB compared with LN humans. More in-depth studies looking at the metabolic fate of SCFA produced in LN and OWOB participants are needed in order to determine the role of SCFA in obesity.
Collapse
|
research-article |
11 |
442 |
4
|
Su W, Jackson S, Tjian R, Echols H. DNA looping between sites for transcriptional activation: self-association of DNA-bound Sp1. Genes Dev 1991; 5:820-6. [PMID: 1851121 DOI: 10.1101/gad.5.5.820] [Citation(s) in RCA: 272] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Sp1 protein activates transcription from many eukaryotic promoters. Sp1 can act in vivo from enhancer sites that are distal to the promoter and exhibit synergistic interaction with promoter-proximal binding sites. To investigate possible protein-protein interactions between DNA-bound Sp1 molecules, we have used electron microscopy to visualize the DNA-protein complexes. At the SV40 promoter, we observed the expected localized interaction at the Sp1 sites; in addition, we found that DNA-bound Sp1 served to associate two or more DNA molecules. At a modified thymidine kinase promoter, we observed a localized interaction at each of two binding locations that were separated by 1.8 kbp; in addition, we noted a substantial fraction of DNA molecules in which the distant binding regions were joined by a DNA loop. As judged by studies with mutant Sp1 proteins, the distant interactions depended on the glutamine-rich regions of Sp1 required for transcriptional activation. We conclude that DNA-bound Sp1 can self-associate, bringing together distant DNA segments. From the correlation between DNA looping in vitro and synergistic activation of the modified thymidine kinase promoter shown previously in vivo, we suggest that Sp1 exerts its transcriptional synergism by a direct protein-protein association that loops the intervening DNA. Our experiments support the DNA-looping model for the function of transcriptional enhancers.
Collapse
|
|
34 |
272 |
5
|
Hong M, Zhao Y, Su W, Cao R, Fujita M, Zhou Z, Chan AS. A Silver(I) Coordination Polymer Chain Containing Nanosized Tubes with Anionic and Solvent Molecule Guests This work was supported by the National Nature Science Foundation of China. M.C.H. thanks the Croucher Foundation of Hong Kong for financial support. Angew Chem Int Ed Engl 2000; 39:2468-2470. [PMID: 10941104 DOI: 10.1002/1521-3773(20000717)39:14<2468::aid-anie2468>3.0.co;2-i] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
25 |
266 |
6
|
Su WC, Kitagawa M, Xue N, Xie B, Garofalo S, Cho J, Deng C, Horton WA, Fu XY. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997; 386:288-92. [PMID: 9069288 DOI: 10.1038/386288a0] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The achondroplasia class of chondrodysplasias comprises the most common genetic forms of dwarfism in humans and includes achondroplasia, hypochondroplasia and thanatophoric dysplasia types I and II (TDI and TDII), which are caused by different mutations in a fibroblast growth-factor receptor FGFR3 (ref. 1). The molecular mechanism and the mediators of these FGFR3-related growth abnormalities are not known. Here we show that mutant TDII FGFR3 has a constitutive tyrosine kinase activity which can specifically activate the transcription factor Stat1 (for signal transducer and activator of transcription). Furthermore, expression of TDII FGFR3 induced nuclear translocation of Stat1, expression of the cell-cycle inhibitor p21(WAF1/CIP1), and growth arrest of the cell. Thus, TDII FGFR3 may use Stat1 as a mediator of growth retardation in bone development. Consistent with this, Stat1 activation and increased p21(WAF1/CIP1) expression was found in the cartilage cells from the TDII fetus, but not in those from the normal fetus. Thus, abnormal STAT activation and p21(WAF1/CIP1) expression by the TDII mutant receptor may be responsible for this FGFR3-related bone disease.
Collapse
|
|
28 |
255 |
7
|
Liang Y, Cao R, Su W, Hong M, Zhang W. Syntheses, Structures, and Magnetic Properties of Two Gadolinium(III)-Copper(II) Coordination Polymers by a Hydrothermal Reaction This work is supported by the NNSF of China, the NSF of Fujian Province, and the Key Project from the CAS. Angew Chem Int Ed Engl 2000; 39:3304-3307. [PMID: 11028085 DOI: 10.1002/1521-3773(20000915)39:18<3304::aid-anie3304>3.0.co;2-h] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
25 |
242 |
8
|
Su W, Porter S, Kustu S, Echols H. DNA-looping and enhancer activity: association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Proc Natl Acad Sci U S A 1990; 87:5504-8. [PMID: 2164685 PMCID: PMC54353 DOI: 10.1073/pnas.87.14.5504] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The NtrC protein activates transcription of the glnA operon of enteric bacteria by stimulating the formation of stable "open" complexes by RNA polymerase (sigma 54-holoenzyme form). To regulate the glnA promoter, NtrC binds to sites that have the properties of transcriptional enhancers: the sites will function far from the promoter and in an orientation-independent fashion. To investigate the mechanism of enhancer function, we have used electron microscopy to visualize the interactions of purified NtrC and RNA polymerase with their DNA binding sites and with each other. Under conditions that allow the formation of open complexes, about 30% of DNA molecules carry both RNA polymerase and NtrC bound to their specific sites. Of these, about 15% form looped structures in which NtrC and the RNA polymerase-promoter complex are in contact. The length of the looped DNA is that predicted from the spacing that was engineered between the enhancer and the glnA promoter (390 base pairs). As expected for activation intermediates, the looped structures disappear when RNA polymerase is allowed to transcribe the DNA. We conclude that the NtrC enhancer functions by means of a direct association between DNA-bound NtrC and RNA polymerase (DNA-looping model). Association of DNA-bound proteins appears to be the major mechanism by which different types of site-specific DNA transactions are localized and controlled.
Collapse
|
research-article |
35 |
220 |
9
|
|
|
25 |
195 |
10
|
Kersulyte D, Mukhopadhyay AK, Velapatiño B, Su W, Pan Z, Garcia C, Hernandez V, Valdez Y, Mistry RS, Gilman RH, Yuan Y, Gao H, Alarcón T, López-Brea M, Balakrish Nair G, Chowdhury A, Datta S, Shirai M, Nakazawa T, Ally R, Segal I, Wong BC, Lam SK, Olfat FO, Borén T, Engstrand L, Torres O, Schneider R, Thomas JE, Czinn S, Berg DE. Differences in genotypes of Helicobacter pylori from different human populations. J Bacteriol 2000; 182:3210-8. [PMID: 10809702 PMCID: PMC94509 DOI: 10.1128/jb.182.11.3210-3218.2000] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA motifs at several informative loci in more than 500 strains of Helicobacter pylori from five continents were studied by PCR and sequencing to gain insights into the evolution of this gastric pathogen. Five types of deletion, insertion, and substitution motifs were found at the right end of the H. pylori cag pathogenicity island. Of the three most common motifs, type I predominated in Spaniards, native Peruvians, and Guatemalan Ladinos (mixed Amerindian-European ancestry) and also in native Africans and U.S. residents; type II predominated among Japanese and Chinese; and type III predominated in Indians from Calcutta. Sequences in the cagA gene and in vacAm1 type alleles of the vacuolating cytotoxin gene (vacA) of strains from native Peruvians were also more like those from Spaniards than those from Asians. These indications of relatedness of Latin American and Spanish strains, despite the closer genetic relatedness of Amerindian and Asian people themselves, lead us to suggest that H. pylori may have been brought to the New World by European conquerors and colonists about 500 years ago. This thinking, in turn, suggests that H. pylori infection might have become widespread in people quite recently in human evolution.
Collapse
|
research-article |
25 |
170 |
11
|
King M, Su W, Chang A, Zuckerman A, Pasternak GW. Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci 2001; 4:268-74. [PMID: 11224543 DOI: 10.1038/85115] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many peptides and transmitters found within the brain also have peripheral sites of action. We now demonstrate that the brain releases functionally active neurotransmitters/neuromodulators directly from the brain into the blood through a saturable P-glycoprotein (Pgp) transport system. Downregulating Pgp1 expression with antisense reduced the brain-to-blood transport of morphine, beta-endorphin and other opioids. Lowering Pgp expression significantly enhanced systemic morphine analgesia and prevented tolerance, but diminished the analgesic activity of centrally administered morphine, implying that supraspinal analgesia resulted from a combination of central and peripheral mechanisms activated by morphine transported from the brain to the blood. Similarly, mice with a disruption of the Mdr1a gene were more sensitive to systemic morphine and less sensitive to morphine given centrally. This ability of the Pgp transport system to pump functionally active compounds from the brain to periphery defines a potentially important mechanism for the central nervous system to modulate peripheral systems.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/drug effects
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Biological Transport/drug effects
- Biological Transport/physiology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/physiology
- Brain/drug effects
- Brain/metabolism
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacokinetics
- Enkephalin, D-Penicillamine (2,5)-/pharmacokinetics
- Male
- Mice
- Mice, Knockout
- Morphine/pharmacokinetics
- Narcotics/blood
- Narcotics/pharmacokinetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- beta-Endorphin/pharmacokinetics
Collapse
|
|
24 |
148 |
12
|
Abstract
The time dependence of the orientation of Earth's inner core relative to the mantle was determined using a recently discovered 10-degree tilt in the axis of symmetry of the inner core's seismic-velocity anisotropy. Two methods of analyzing travel-time variations for rays traversing the inner core, on the basis of 29 years of data from the International Seismological Centre (1964-1992), reveal that the inner core appears to rotate about 3 degrees per year faster than the mantle. An anomalous variation in inner-core orientation from 1969 to 1973 coincides in time with a sudden change ("jerk") in the geomagnetic field.
Collapse
|
|
29 |
140 |
13
|
Huang Y, Wang J, Li G, Zheng Z, Su W. Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2001; 31:163-7. [PMID: 11549424 DOI: 10.1111/j.1574-695x.2001.tb00513.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this work was to screen the endophytic fungi having antitumor or antifungal activity, which were isolated from the inner barks of three kinds of pharmaceutical plants, Taxus mairei, Cephalataxus fortunei and Torreya grandis, collected from Fujian province, China. Antitumor activity was studied by the MTT assay and antifungal activity was determined by observing fungal growth inhibition. 13.4% of endophytic fungi fermentation broths displayed cytotoxic activity on HL-60 cells at and below a dilution of 1:50, and 6.4% on KB cells. 52.3% of endophytic fungi fermentation broths displayed growth inhibition on at least one pathogenic fungi, such as Neurospora sp., Trichoderma sp. and Fusarium sp. Among all endophytic fungi isolated, the genus Paecilomyces sp. has the highest positive rate of antitumor and antifungal activity. These results indicate that endophytic fungi could be a promising source for antitumor and antifungal bioactive agents.
Collapse
|
|
24 |
133 |
14
|
Campbell KS, Ogris E, Burke B, Su W, Auger KR, Druker BJ, Schaffhausen BS, Roberts TM, Pallas DC. Polyoma middle tumor antigen interacts with SHC protein via the NPTY (Asn-Pro-Thr-Tyr) motif in middle tumor antigen. Proc Natl Acad Sci U S A 1994; 91:6344-8. [PMID: 8022784 PMCID: PMC44198 DOI: 10.1073/pnas.91.14.6344] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyomavirus middle tumor antigen (MT) transforms a large number of cell types by binding to and modulating the activities of cellular proteins. Previous genetic analysis defined in MT an independent motif, NPTY (Asn-Pro-Thr-Tyr), required for transformation. This report demonstrates that NPTY is required for interaction between MT and SHC protein, a Src homology 2 (SH2)-containing protooncogene product implicated in activating Ras via association with GRB2 protein. SHC is phosphorylated on tyrosine and associates with GRB2 in MT-transformed cells. These effects require an intact NPTY motif in MT. SHC immunoprecipitates from MT-transformed cells possess kinase activity that phosphorylates not only SHC and MT but also the 85-kDa subunit of phosphatidylinositol 3-kinase. This result suggests that a complex exists that contains, at a minimum, MT, Src family tyrosine kinases, phosphatidylinositol 3-kinase, and SHC.
Collapse
|
research-article |
31 |
132 |
15
|
Liang Y, Hong M, Su W, Cao R, Zhang W. Preparations, structures, and magnetic properties of a series of novel copper(II)-lanthanide(III) coordination polymers via hydrothermal reaction. Inorg Chem 2001; 40:4574-82. [PMID: 11511201 DOI: 10.1021/ic0100929] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrothermal reaction of Ln2O3 (Ln = Er, Gd, and Sm), pyridine-2,5-dicarboxylic acid (H2pydc), and Cu(II) reagents (CuO, Cu(OAc)2-2H2O, or CuCl2-2H2O) with a mole ratio of 1:2:4 resulted in the formation of six polymeric Cu(II)-Ln(III) complexes, [(Ln2Cu3(pydc)6(H2O)12)-4H2O]n (Ln = Er (1); Ln = Gd (2)), [(Ln4Cu2(pydc)8(H2O)12)-4H2O]n (Ln = Sm (3); Ln = Gd (4); Ln = Er (5)), and [(Gd2Cu2(pydc)4(H2O)8)-Cu(pydc)2-12H2O]n (6). 1 and 2 are isomorphous and crystallize in triclinic space group Ponebar. Compounds 3-5 are isomorphous and crystallize in monoclinic space group P2(1)/c. Compound 6 crystallizes in triclinic space group Ponebar. Complexes 1 and 2 have one-dimensional zigzag chain structures and compounds 3-5 display three-dimensional wavelike polymeric structures, while 6 has an infinite sandwich-type structure. The different structures of the complexes are induced by the different forms of Cu(II) reagents; the reactions of Cu(OAc)2-2H2O yield high Cu/Ln ratio products 1, 2, and 6, while the reactions of CuO or CuCl2-2H2O/2,2'-bipyridine results in low Cu/Ln ratio compounds 3-5. Temperature-dependent magnetic susceptibilities for 2, 4, and 5 were studied, and the thermal stabilities of complexes 2 and 4 were examined.
Collapse
|
|
24 |
130 |
16
|
Martin LJ, Su W, Jones PJ, Lockwood GA, Tritchler DL, Boyd NF. Comparison of energy intakes determined by food records and doubly labeled water in women participating in a dietary-intervention trial. Am J Clin Nutr 1996; 63:483-90. [PMID: 8599310 DOI: 10.1093/ajcn/63.4.483] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The accuracy of estimates of usual energy intake derived from food records in participants of a long-term dietary-intervention trial was studied in a subset of 29 women aged 48.7+/-5.0 y and weighing 61.9+/-6.5 kg. This sample was similar to the population in the whole trial (n=715), from which it was selected in terms of age, weight, body mass index (BMI), and reported energy and fat intakes. During the validation study, reported energy intake was derived from 7 consecutive days of food records, and total energy expenditure was measured by the doubly labeled water method over 13 d. Reported energy intake (6.98+/-1.58 MJ/d) was significantly lower than energy expenditure (9.00+/-2.08MJ/d) and represented 79.8+/-17.6% of expenditure. The correlation between reported energy intake and expenditure was 0.46 (P=0.01, 95% CI: 0.15, 0.71). Body weight, BMI, height, length of time in the dietary trial, and percentage of energy from fat and carbohydrate were not significantly associated with the accuracy of reporting. These results indicate that energy intake derived from food records is an imprecise measure that substantially underestimates energy intake in middle-aged women participating in a long-term dietary-intervention trial.
Collapse
|
Clinical Trial |
29 |
117 |
17
|
Abstract
The new versatile multidentate nonchelating ligand 1,2-bis[(2-pyr-imidinyl)-sulfanylmethyl]benzene (bpsb) was designed and prepared for supramolecular syntheses. Self-assembly between silver nitrate and the bpsb ligand resulted in the polymer [Ag4(bpsb)2-(NO3)4]n (1) with a single-stranded helical chain structure. Each bpsb ligand in 1 acts as a tetradentate ligand, in which two sulfur atoms and two nitrogen atoms from different pyrimidine groups coordinate to four Ag atoms in four different directions. The nitrate anions serve as a template for the formation of the helix and are either embedded in the interior of the helix or located in the flank of the helix. Self-assembly between silver perchlorate and the bpsb ligand under the same conditions gave rise to the polymer [Ag2(bpsb)3(ClO4)2]n (2) comprising a two-dimensional lamellar network containing crownlike cavities. The silver atoms in two adjacent layers are arranged staggered in 2. The two-dimensional lamellar network comprising isolated cavities of [Ag6(bpsb)6] is very different from that of usual honeycomb structures.
Collapse
|
|
25 |
117 |
18
|
Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 2000; 193:249-53. [PMID: 11111032 DOI: 10.1111/j.1574-6968.2000.tb09432.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The diterpenoid taxol is an important anticancer agent used widely in the clinic. The purpose of this work was to identify a taxol-producing endophytic fungus (strain TF5) isolated from Taxus mairei and study its anticancer activities. Strain TF5 was identified as a Tubercularia sp. according to the morphology of the fungal culture, the mechanism of spore production and the characteristics of the spores. Strain TF5 produced taxol, when grown in potato dextrose liquid medium and analyzed by thin layer chromatography, high performance liquid chromatography, ultraviolet and mass spectrometry. The fungal taxol, which was isolated from the organic extract of the TF5 culture, had strong cytotoxic activity towards KB and P388 cancer cells in vitro, tested by the MTT assay. Observed with immunofluorescence and electron microscopy, the fungal taxol enhanced microtubule stability and bundling in culture cells and induced tubulin polymerization in vitro similar to the authentic taxol.
Collapse
|
|
25 |
103 |
19
|
Su W, Middleton T, Sugden B, Echols H. DNA looping between the origin of replication of Epstein-Barr virus and its enhancer site: stabilization of an origin complex with Epstein-Barr nuclear antigen 1. Proc Natl Acad Sci U S A 1991; 88:10870-4. [PMID: 1660153 PMCID: PMC53033 DOI: 10.1073/pnas.88.23.10870] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epstein-Barr nuclear antigen 1 (EBNA-1) is the only viral protein required to support replication of Epstein-Barr virus during the latent phase of its life cycle. The DNA segment required for latent replication, oriP, contains two essential binding regions for EBNA-1, termed FR and DS, that are separated by 1 kilobase pair. The FR site appears to function as a replicational enhancer providing for the start of replication at the DS site. We have used electron microscopy to visualize the interaction of EBNA-1 with its binding sites and to study the mechanism for communication between the FR and DS sites. We have found that DNA-bound EBNA-1 forms a DNA loop between the FR and DS sites. From these results, we suggest that EBNA-1 bound to the replicational enhancer acts by a DNA-looping mechanism to facilitate the initiation of DNA replication. Occupancy of the DS site alone is highly sensitive to competition with nonspecific DNA. In contrast, occupancy of the DS site by looping from FR is largely resistant to the competitor DNA. These experiments support the concept that enhancers act in cis from nearby sites to provide a high local concentration of regulatory proteins at their target sites and to stabilize regulatory interactions.
Collapse
MESH Headings
- Animals
- Antigens, Viral/metabolism
- Antigens, Viral/ultrastructure
- Base Sequence
- Binding, Competitive
- Cell Line
- Cell Nucleus/ultrastructure
- DNA Replication
- DNA, Viral/genetics
- DNA, Viral/ultrastructure
- Enhancer Elements, Genetic
- Epstein-Barr Virus Nuclear Antigens
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Herpesvirus 4, Human/ultrastructure
- Microscopy, Electron
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation
- Virus Replication
Collapse
|
research-article |
34 |
90 |
20
|
Casula S, Shmukler BE, Wilhelm S, Stuart-Tilley AK, Su W, Chernova MN, Brugnara C, Alper SL. A dominant negative mutant of the KCC1 K-Cl cotransporter: both N- and C-terminal cytoplasmic domains are required for K-Cl cotransport activity. J Biol Chem 2001; 276:41870-8. [PMID: 11551954 DOI: 10.1074/jbc.m107155200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
K-Cl cotransport regulates cell volume and chloride equilibrium potential. Inhibition of erythroid K-Cl cotransport has emerged as an important adjunct strategy for the treatment of sickle cell anemia. However, structure-function relationships among the polypeptide products of the four K-Cl cotransporter (KCC) genes are little understood. We have investigated the importance of the N- and C-terminal cytoplasmic domains of mouse KCC1 to its K-Cl cotransport function expressed in Xenopus oocytes. Truncation of as few as eight C-terminal amino acids (aa) abolished function despite continued polypeptide accumulation and surface expression. These C-terminal loss-of-function mutants lacked a dominant negative phenotype. Truncation of the N-terminal 46 aa diminished function. Removal of 89 or 117 aa (Delta(N)117) abolished function despite continued polypeptide accumulation and surface expression and exhibited dominant negative phenotypes that required the presence of the C-terminal cytoplasmic domain. The dominant negative loss-of-function mutant Delta(N)117 was co-immunoprecipitated with wild type KCC1 polypeptide, and its co-expression did not reduce wild type KCC1 at the oocyte surface. Delta(N)117 also exhibited dominant negative inhibition of human KCC1 and KCC3 and, with lower potency, mouse KCC4 and rat KCC2.
Collapse
|
|
24 |
79 |
21
|
Matsui SM, Kim JP, Greenberg HB, Su W, Sun Q, Johnson PC, DuPont HL, Oshiro LS, Reyes GR. The isolation and characterization of a Norwalk virus-specific cDNA. J Clin Invest 1991; 87:1456-61. [PMID: 2010555 PMCID: PMC295196 DOI: 10.1172/jci115152] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Norwalk virus, an important cause of epidemic, acute, nonbacterial gastroenteritis in adults and children, has eluded adaptation to tissue culture, the development of an animal model, and molecular cloning. In this study, a portion of the Norwalk viral genome encoding an immunoreactive region was cloned from very small quantities of infected stool using sequence-independent single primer amplification. Six overlapping complementary DNA (cDNA) clones were isolated by immunologic screening. The expressed recombinant protein from a representative clone reacted with six of seven high titer. Norwalk-specific, postinfection sera but not with corresponding preinfection sera. Nucleic acid sequence for all clones defined a single open reading frame contiguous with the lambda gt11-expressed beta-galactosidase protein. Only oligonucleotide probes specific for the positive strand (defined by the open reading frame) hybridized to an RNaseA-sensitive, DNaseI-resistant nucleic acid sequence extracted from Norwalk-infected stool. Furthermore, RNA extracted from serial postinfection, but not preinfection, stools from three of five volunteers hybridized to a Norwalk virus cDNA probe. Clone-specific oligonucleotide probes hybridized with cesium chloride gradient fractions containing purified Norwalk virion. In conclusion, an antigenic, protein-coding region of the Norwalk virus genome has been identified. This epitope has potential utility in future sero- and molecular epidemiologic studies of Norwalk viral gastroenteritis.
Collapse
|
research-article |
34 |
77 |
22
|
|
|
29 |
71 |
23
|
Mandal N, Su W, Haber R, Adhya S, Echols H. DNA looping in cellular repression of transcription of the galactose operon. Genes Dev 1990; 4:410-8. [PMID: 2186968 DOI: 10.1101/gad.4.3.410] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Communication between distant DNA sites is a central feature of many DNA transactions. Negative regulation of the galactose (gal) operon of Escherichia coli requires repressor binding to two operator sites located on opposite sides of the promoter. The proposed mechanism for regulation involves binding of the repressor to both operator sites, followed by a protein-protein association that loops the intervening promoter DNA (double occupancy plus association). To assess these requirements in vivo, we have previously converted gal operator sites to lac and shown that both operator sites must be occupied by the homologous repressor protein (Lac or Gal) for negative regulation of the gal operon. We have now addressed more directly the need for protein-protein association by the use of the converted operator sites and a mutant Lac repressor defective in association of the DNA-binding dimers. We have compared the biological and biochemical activity of two Lac repressors: the wild-type (tetramer) I+ form, in which the DNA-binding dimer units are tightly associated; and the mutant Iadi repressor, in which the dimer units do not associate effectively. The I+ repressor is an efficient negative regulator of the gal operon in vivo, but the Iadi mutant is an ineffective repressor. Purified I+ repressor efficiently forms DNA loops between operator sites that we have visualized by electron microscopy; the Iadi repressor fails to form DNA loops, although the protein binds effectively to both operator sites. From the clear correlation between looping in vitro and repression in vivo, we conclude that regulation of the gal operon depends on the association of repressor proteins bound to the two operator sites.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
35 |
71 |
24
|
Su W, Shmukler BE, Chernova MN, Stuart-Tilley AK, de Franceschi L, Brugnara C, Alper SL. Mouse K-Cl cotransporter KCC1: cloning, mapping, pathological expression, and functional regulation. Am J Physiol Cell Physiol 1999; 277:C899-912. [PMID: 10564083 DOI: 10.1152/ajpcell.1999.277.5.c899] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although K-Cl cotransporter (KCC1) mRNA is expressed in many tissues, K-Cl cotransport activity has been measured in few cell types, and detection of endogenous KCC1 polypeptide has not yet been reported. We have cloned the mouse erythroid KCC1 (mKCC1) cDNA and its flanking genomic regions and mapped the mKCC1 gene to chromosome 8. Three anti-peptide antibodies raised against recombinant mKCC1 function as immunoblot and immunoprecipitation reagents. The tissue distributions of mKCC1 mRNA and protein are widespread, and mKCC1 RNA is constitutively expressed during erythroid differentiation of ES cells. KCC1 polypeptide or related antigen is present in erythrocytes of multiple species in which K-Cl cotransport activity has been documented. Erythroid KCC1 polypeptide abundance is elevated in proportion to reticulocyte counts in density-fractionated cells, in bleeding-induced reticulocytosis, in mouse models of sickle cell disease and thalassemia, and in the corresponding human disorders. mKCC1-mediated uptake of (86)Rb into Xenopus oocytes requires extracellular Cl(-), is blocked by the diuretic R(+)-[2-n-butyl-6,7-dichloro-2-cyclopentyl-2, 3-dihydro-1-oxo-1H-indenyl-5-yl-)oxy]acetic acid, and exhibits an erythroid pattern of acute regulation, with activation by hypotonic swelling, N-ethylmaleimide, and staurosporine and inhibition by calyculin and okadaic acid. These reagents and findings will expedite studies of KCC1 structure-function relationships and of the pathobiology of KCC1-mediated K-Cl cotransport.
Collapse
|
|
26 |
70 |
25
|
Bai XL, Zhang Q, Ye LY, Liang F, Sun X, Chen Y, Hu QD, Fu QH, Su W, Chen Z, Zhuang ZP, Liang TB. Myocyte enhancer factor 2C regulation of hepatocellular carcinoma via vascular endothelial growth factor and Wnt/β-catenin signaling. Oncogene 2014; 34:4089-97. [PMID: 25328135 DOI: 10.1038/onc.2014.337] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 08/15/2014] [Accepted: 08/29/2014] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading malignancies worldwide. Myocyte enhancer factor 2C (MEF2C) was traditionally regarded as a development-associated factor and was recently reported to be an oncogene candidate. We have previously reported overexpression of MEF2C in HCC; however, the roles of MEF2C in HCC remain to be clarified. In this study, HCC cell lines and a xenograft mouse model were used to determine the functions of MEF2C in vitro and in vivo, respectively. Specific plasmids and small interfering RNA were used to upregulate and downregulate MEF2C expression, respectively. Functional assays were performed to assess the influence of MEF2C on cell proliferation, and VEGF-induced vasculogenic mimicry, migration/invasion as well as angiogenesis. Co-immunoprecipitation was conducted to identify the interaction of MEF2C and β-catenin. Human HCC tissue microarrays were used to investigate correlations among MEF2C, β-catenin and involved biomarkers. MEF2C was found to mediate VEGF-induced vasculogenic mimicry, angiogenesis and migration/invasion, with involvement of the p38 MAPK and PKC signaling pathways. However, MEF2C itself inhibited tumor growth in vitro and in vivo. MEF2C was upregulated by and directly interacted with β-catenin. The nuclear translocation of β-catenin blocked by MEF2C was responsible for MEF2C-mediated growth inhibition. The nuclear translocation of MEF2C was associated with intracellular calcium signaling induced by β-catenin. HCC microarrays showed correlations of nuclear MEF2C with the angiogenesis-associated biomarker, CD31, and cytosolic MEF2C with the proliferation-associated biomarker, Ki-67. MEF2C showed double-edged activities in HCC, namely mediating VEGF-induced malignancy enhancement while inhibiting cancer proliferation via blockade of Wnt/β-catenin signaling. The overall effect of MEF2C in HCC progression regulation was dictated by its subcellular distribution. This should be determined prior to any MEF2C-associated intervention in HCC.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
68 |