Dong Z, Luo Y, Zhao L, Wang B, Mao Z, Feng X, Sui X. All-cellulose composite yarn via welding engineering.
Carbohydr Polym 2024;
343:122462. [PMID:
39174135 DOI:
10.1016/j.carbpol.2024.122462]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/24/2024]
Abstract
Due to the wide range of available raw materials and excellent biocompatibility, all-cellulose composites (ACCs) have received significant attention as a kind of renewable and biodegradable candidate to replace petroleum-based synthetic polymers. However, most current research of ACCs is limited to film and bulk materials. Herein, we present a simple, efficient, and scalable welding method for obtaining green, self-reinforced, high performance all-cellulose composite yarns by partially dissolving and regenerating cellulose yarns with phosphoric acid. The in-situ core-shell structure of the welded yarn results in improved strength (134.6 MPa), friction resistance (8000 cycles), moisture regain (11.89 %), and dyeing properties. Moreover, the regeneration and drying procedure can be optimized to further enhance the strength (190.5 MPa) of the welded yarn. This straightforward welding approach provides a promising and convenient route for manufacturing high-performance bio-based yarn.
Collapse