Martin BT, Malmstrom RD, Amaro RE, Wüthrich K. OCRE Domains of Splicing Factors RBM5 and RBM10: Tyrosine Ring-Flip Frequencies Determined by Integrated Use of
1 H NMR Spectroscopy and Molecular Dynamics Simulations.
Chembiochem 2020;
22:565-570. [PMID:
32975902 DOI:
10.1002/cbic.202000517]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Indexed: 11/12/2022]
Abstract
The 55-residue OCRE domains of the splicing factors RBM5 and RBM10 contain 15 tyrosines in compact, globular folds. At 25 °C, all 15 tyrosines show symmetric 1 H NMR spectra, with averaged signals for the pairs of δ- and ϵ-ring hydrogens. At 4 °C, two tyrosines were identified as showing 1 H NMR line-broadening due to lowered frequency of the ring-flipping. For the other 13 tyrosine rings, it was not evident, from the 1 H NMR data alone, whether they were either all flipping at high frequencies, or whether slowed flipping went undetected due to small chemical-shift differences between pairs of exchanging ring hydrogen atoms. Here, we integrate 1 H NMR spectroscopy and molecular dynamics (MD) simulations to determine the tyrosine ring-flip frequencies. In the RBM10-OCRE domain, we found that, for 11 of the 15 tyrosines, these frequencies are in the range 2.0×106 to 1.3×108 s-1 , and we established an upper limit of <1.0×106 s-1 for the remaining four residues. The experimental data and the MD simulation are mutually supportive, and their combined use extends the analysis of aromatic ring-flip events beyond the limitations of routine 1 H NMR line-shape analysis into the nanosecond frequency range.
Collapse