1
|
Samuels L, Kunst L, Jetter R. Sealing plant surfaces: cuticular wax formation by epidermal cells. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:683-707. [PMID: 18251711 DOI: 10.1146/annurev.arplant.59.103006.093219] [Citation(s) in RCA: 601] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The vital importance of plant surface wax in protecting tissue from environmental stresses is reflected in the huge commitment of epidermal cells to cuticle formation. During cuticle deposition, a massive flux of lipids occurs from the sites of lipid synthesis in the plastid and the endoplasmic reticulum to the plant surface. Recent genetic studies in Arabidopsis have improved our understanding of fatty acid elongation and of the subsequent modification of the elongated products into primary alcohols, wax esters, secondary alcohols, and ketones, shedding light on the enzymes involved in these pathways. In contrast, the biosynthesis of alkanes is still poorly understood, as are the mechanisms of wax transport from the site of biosynthesis to the cuticle. Currently, nothing is known about wax trafficking from the endoplasmic reticulum to the plasma membrane, or about translocation through the cell wall to the cuticle. However, a first breakthrough toward an understanding of wax export recently came with the discovery of ATP binding cassette (ABC) transporters that are involved in releasing wax from the plasma membrane into the apoplast. An overview of our present knowledge of wax biosynthesis and transport and the regulation of these processes during cuticle assembly is presented, including the evidence for coordination of cutin polyester and wax production.
Collapse
|
Review |
17 |
601 |
2
|
Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 2009; 12:13-21. [PMID: 19019195 DOI: 10.1111/j.1461-0248.2008.01254.x] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
16 |
290 |
3
|
Jansa J, Smith FA, Smith SE. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? THE NEW PHYTOLOGIST 2008; 177:779-789. [PMID: 18042204 DOI: 10.1111/j.1469-8137.2007.02294.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arbuscular mycorrhizal fungal (AMF) communities were established in pots using fungal isolates from a single field in Switzerland. It was tested whether multispecies mixtures provided more phosphorus and supported greater plant growth than single AMF species. Two host plants, medic (Medicago truncatula) and leek (Allium porrum), were inoculated with three AMF species (Glomus mosseae, G. claroideum and G. intraradices), either separately or in mixtures. The composition of the AMF communities in the roots was assessed using real-time PCR to determine the copy number of large ribosomal subunit genes. Fungal communities in the roots were usually dominated by one AMF species (G. mosseae). The composition of the communities depended on both plant identity and the time of harvest. Leek colonized by a mixture of G. claroideum and G. intraradices acquired more P than with either of the two AMF separately. Direct evidence is provided for functional complementarity among species within the AMF community colonizing a single root system. Competition among the species poses a major challenge in interpreting experiments with mixed inoculations, but this is greatly facilitated by use of real-time PCR.
Collapse
|
|
17 |
206 |
4
|
Hollman PC, van Trijp JM, Mengelers MJ, de Vries JH, Katan MB. Bioavailability of the dietary antioxidant flavonol quercetin in man. Cancer Lett 1997; 114:139-40. [PMID: 9103273 DOI: 10.1016/s0304-3835(97)04644-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Quercetin, a dietary antioxidant flavonoid, has anticarcinogenic properties. We quantified the absorption of quercetin in ileostomists. Absorption was 52 +/- 5% for quercetin glucosides from onions, 17 +/- 15% for quercetin rutinoside, and 24 +/- 9% for quercetin aglycone. The plasma quercetin concentration in subjects with an intact colon, after ingestion of fried onions, apples and pure quercetin rutinoside, decreased slowly with elimination half-lives of about 25 h. Thus, repeated dietary intake of quercetin will lead to accumulation in plasma. The relative bioavailability of quercetin from apples and rutinoside was one-third of that from onions. Absorption kinetics and bioavailibility might be determined by the type of glycoside. Dietary quercetin could increase the antioxidant capacity of blood plasma.
Collapse
|
Clinical Trial |
28 |
156 |
5
|
Song XD, Xue XY, Chen DZ, He PJ, Dai XH. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. CHEMOSPHERE 2014; 109:213-20. [PMID: 24582602 DOI: 10.1016/j.chemosphere.2014.01.070] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 05/24/2023]
Abstract
Applying biochar products from sewage sludge (SS) pyrolysis as soil amendment for plant cultivation was investigated in this study with special attention paid to heavy metal accumulation in the plants when pyrolysis temperature and biochar-to-soil mass ratio (C:S) were changed. Biochar obtained at four different temperatures were adopted as soil amendment for Allium sativum L. garlic plant cultivation. Experimental results revealed that biochars were rich in nutrient contents and they improved garlic yields. Although contents of heavy metals including As, Zn, Pb, Ni, Cd, Cr and Cu, etc. were elevated in the biochars compared to local soil, they fell within the acceptable limits for land application and SS is a suitable biochar resource, especially biochar produced at 450°C had rich micropores, relatively stable functional groups in structure and rugged surface to contact well with soil, conducive to its usage as a biochar. The garlic grew faster when planted in the biochar-amended soil and had higher final dry matter yields than those planted in the reference soil, especially biochar produced at 450°C corresponding to the highest final yields. The C:S ratio related to the highest garlic yields changed when the pyrolysis temperature was changed and this ratio was 1:4 for the biochar produced at 450°C. General heavy metal accumulation in the garlic occurred only for the most enriched Zn and Cu, and mainly in the roots & bulbs; in addition this bioaccumulation was increasing as leaching from biochar increased but not increasing with C:S ratio. The garlic planted in soil amended with biochar of 450°C contained the lowest level of heavy metals compared to other biochars. Those results indicated that heavy metal accumulation in plants can be inhibited through proper pyrolysis temperature choice and prevention of heavy metal leaching from the SS biochar.
Collapse
|
|
11 |
120 |
6
|
Krest I, Glodek J, Keusgen M. Cysteine sulfoxides and alliinase activity of some Allium species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2000; 48:3753-3760. [PMID: 10956182 DOI: 10.1021/jf990521+] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The flavor precursors of 17 species belonging to the Alliaceae family were analyzed by HPLC, and results were evaluated with respect to the classification of species into their genus, subgenus, and section. Identification and quantification of these precursors were carried out by synthetic and natural reference materials. In addition, nine of these species were investigated in terms of their alliinase activity. Alliinase (EC 4.4.1.4) catalyzes the conversion of odorless (+)-S-alk(en)yl-L-cysteine sulfoxides into volatile thiosulfinates. Cysteine sulfoxides as well as alliinase activity were found in all investigated samples, and (+)-S-methyl-L-cysteine sulfoxide was most abundant. (+)-S-Propyl-L-cysteine sulfoxide was detected in only a few, not closely related, species. Analysis of the crude protein extract of nine species gave evidence that alliinase activities of samples were similar in terms of pH and temperature optimum, K(M) value, and substrate specificity. For all investigated protein extracts, the highest specific alliinase activity was found for (+)-S-(2-propenyl)-L-cysteine sulfoxide (alliin). The substrate specificity of these enzymes was not related to relative abundance of the cysteine sulfoxides. However, SDS-PAGE yielded some significant differences among species in terms of their total protein compositions. Species belonging to different subgenera exhibited a specific protein pattern with molecular masses between 13 and 35 kDa.
Collapse
|
|
25 |
90 |
7
|
Chang M, Chou JC, Lee HJ. Cellular Internalization of Fluorescent Proteins via Arginine-rich Intracellular Delivery Peptide in Plant Cells. ACTA ACUST UNITED AC 2005; 46:482-8. [PMID: 15695452 DOI: 10.1093/pcp/pci046] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The protein delivery across cellular membranes or compartments is limited by low biomembrane permeability because of the hydrophobic characteristics of cell membranes. Usually the delivery processes utilize passive protein channels or active transporters to overcome the membrane impediment. In this report, we demonstrate that arginine-rich intracellular delivery (AID) peptide is capable of efficiently delivering fused fluorescent proteins unpreferentially into different plant tissues of both tomato (a dicot plant) and onion (a monocot plant) in a fully bioactive form. Thus, cellular internalization via AID peptide can be a powerful tool characterized by its simplicity, non-invasion and high efficiency to express those bioactive proteins in planta or in plant cells in vivo. This novel method may alternatively provide broader applications of AID chimera in plants without the time-consuming transgenic approaches.
Collapse
|
|
20 |
77 |
8
|
Jiang W, Liu D. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC PLANT BIOLOGY 2010; 10:40. [PMID: 20196842 PMCID: PMC2848760 DOI: 10.1186/1471-2229-10-40] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 03/02/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10(-5) to 10(-3) M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10(-3) to 10(-4) M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. RESULTS After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. CONCLUSIONS Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are ultimately one of main storage sites of Pb. Root meristematic cells of A. sativum exposed to lower Pb have a rapid and effective defense system, but with the increased level of Pb in the cytosol, cells were seriously injured.
Collapse
|
research-article |
15 |
75 |
9
|
Bordia T, Mohammed N, Thomson M, Ali M. An evaluation of garlic and onion as antithrombotic agents. Prostaglandins Leukot Essent Fatty Acids 1996; 54:183-6. [PMID: 8860105 DOI: 10.1016/s0952-3278(96)90014-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Garlic (Allium sativum) and onion (Allium cepa) have been evaluated as possible antithrombotic agents. Rats were given aqueous extracts of garlic and onion, orally or intraperitoneally, daily for a period of 4 weeks after which the rats were sacrificed. The blood was collected from the heart without anticoagulant and the serum was prepared. The level of thromboxane B2 (TXB2) in the serum was measured by radioimmunoassay. TXB2 levels in serum of rats treated with the low dose of aqueous extract of garlic (50 mg/kg) was significantly inhibited regardless of the mode of administration (orally or intraperitoneally). At the high dose of garlic and onion (500 mg/kg), a further decrease of TXB2 levels in the serum of the rats was observed. Boiled garlic and onion at high concentration (500 mg/ kg) had very little effect on TXB2 synthesis. This shows that garlic and onion should be consumed in a raw rather than cooked form in order to achieve a beneficial effect. Boiling of these plants may cause the decomposition of the potential antithrombotic ingredient present in these herbs. Garlic was found to be more potent than onion in lowering the TXB2 levels. A high dose of garlic and onion produces toxicity in the rats (unpublished observation). These results show that garlic and onion can be taken frequently in low doses without any side effects, and can still produce a significant antithrombotic effect.
Collapse
|
|
29 |
73 |
10
|
Hills BP, Duce SL. The influence of chemical and diffusive exchange on water proton transverse relaxation in plant tissues. Magn Reson Imaging 1990; 8:321-31. [PMID: 2164129 DOI: 10.1016/0730-725x(90)90106-c] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transverse water proton relaxation in parenchyma tissue of courgette, onion and apple shows a dependence on CPMG pulse spacing characteristic of each tissue. An analysis of this dependence suggests that transverse relaxation in these tissues is caused by various combinations of fast proton exchange between water and cell biopolymers (or solutes) and diffusion through internally generated magnetic field gradients. Diffusion between intra- and extracellular water compartments also averages the water proton signal to an extent that depends on cell morphology and membrane permeability and this is calculated using a two-compartment model. No recourse need be made to popular concepts such as exchange between free and "bound" water. The implications of our results for NMR image contrast are discussed.
Collapse
|
|
35 |
60 |
11
|
Whanger PD, Ip C, Polan CE, Uden PC, Welbaum G. Tumorigenesis, metabolism, speciation, bioavailability, and tissue deposition of selenium in selenium-enriched ramps (Allium tricoccum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2000; 48:5723-5730. [PMID: 11087545 DOI: 10.1021/jf000739s] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ramps (Allium tricoccum) were grown either in a mixture of vermiculite and peat moss or hydroponically with various concentrations of selenium as sodium selenate. The concentrations used were from 30 to 300 mg of selenium/kg of vermiculite-peat moss or from 10 to 120 mg/L in the hydroponic solutions. Levels as high as 784 mg of selenium/kg were obtained in the ramp bulbs when grown with high levels of selenium in the vermiculite-peat moss, and up to 600 mg of selenium/kg was obtained hydroponically. The predominant form of selenium in the ramp bulbs at all concentrations of selenium was Se-methylselenocysteine, with lower amounts of selenate, Se-cystathionine, and glutamyl-Se-methylselenocysteine. There was a approximately 43% reduction in chemically induced mammary tumors when rats were fed a diet with Se-enriched ramps. Dietary Se-enriched ramps for rats did not result in excessive tissue selenium accumulation or undesirable side effects. Bioavailability studies with rats indicated that selenium in ramps was 15-28% more available for regeneration of glutathione peroxidase activity than inorganic selenium as selenite. Therefore, Se-enriched ramps appear to have potential for the reduction of cancer in humans.
Collapse
|
|
25 |
58 |
12
|
Mongrand S, Cassagne C, Bessoule JJ. Import of lyso-phosphatidylcholine into chloroplasts likely at the origin of eukaryotic plastidial lipids. PLANT PHYSIOLOGY 2000; 122:845-52. [PMID: 10712548 PMCID: PMC58920 DOI: 10.1104/pp.122.3.845] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/1999] [Accepted: 11/09/1999] [Indexed: 05/18/2023]
Abstract
Plastids rely on the import of extraplastidial precursor for the synthesis of their own lipids. This key phenomenon in the formation of plastidial phosphatidylcholine (PC) and of the most abundant lipids on earth, namely galactolipids, is poorly understood. Various suggestions have been made on the nature of the precursor molecule(s) transferred to plastids, but despite general agreement that PC or a close metabolite plays a central role, there is no clear-cut answer to this question because of a lack of conclusive experimental data. We therefore designed experiments to discriminate between a transfer of PC, 1-acylglycero phosphorylcholine (lyso-PC), or glycerophosphorylcholine. After pulse-chase experiments with glycerol and acetate, plastids of leek (Allium porrum L.) seedlings were purified. The labels of the glycerol moiety and the sn-1- and sn-2-bound fatty acids of plastidial lipids were determined and compared with those associated with the extraplastidial PC. After import, plastid lipids contained the glycerol moiety and the fatty acids esterified to the sn-1 position originating from the extraplastidial PC; no import of sn-2-bound fatty acid was detected. These results rule out a transfer of PC or glycerophosphorylcholine, and are totally explained by an import of lyso-PC molecules used subsequently as precursor for the synthesis of eukaryotic plastid lipids.
Collapse
|
research-article |
25 |
57 |
13
|
Wierzbicka MH, Przedpełska E, Ruzik R, Ouerdane L, Połeć-Pawlak K, Jarosz M, Szpunar J, Szakiel A. Comparison of the toxicity and distribution of cadmium and lead in plant cells. PROTOPLASMA 2007; 231:99-111. [PMID: 17370112 DOI: 10.1007/s00709-006-0227-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 04/25/2006] [Indexed: 05/04/2023]
Abstract
The toxicity of heavy metals (Cd, Zn, and Pb) was assessed by in vivo observations of their effect on cytoplasmic streaming in Allium cepa L. bulb scale epidermal cells. On the basis of our results, the order of toxicity of the studied cations is Zn < Pb << Cd. The difference in toxicity between cadmium and lead was found to be very large. When cytoplasmic streaming was assessed, this difference was threefold. When the total content of cadmium and lead (determined by inductively coupled plasma mass spectrometry) was the criterion, the difference in toxicity was 15-fold. Fractionation of the tissue and enzymatic digestion of the cells revealed that the largest proportion of cadmium was located in the cell walls (56%), whereas almost all of the lead (97.6%) was accumulated in an insoluble form. The speciation of water-soluble Pb and Cd fractions is discussed on the basis of analysis by capillary zone electrophoresis interfaced with inductively coupled plasma mass spectrometry of water extracts from epidermal cells. Lead and cadmium appeared to be bound mainly to salts, which explains their toxicity. Cadmium was complexed (detoxified) by organic acids, while thiols were the metal-complexing species for lead. Histidine formed complexes with both cadmium and lead. Ultrastructural analyses showed that lead was encapsulated in small vesicles in the cytoplasm. Fluorescence studies of the endoplasmic reticulum (ER) revealed that it underwent extensive fragmentation under the influence of lead, with numerous ER vesicles appearing in the cells. In other words, the lead deposits in the cytoplasm were contained in vesicles arising from fragmentation of the ER. These observations indicate that epidermal cells have a rapid and effective mechanism for detoxifying lead involving the ER, and this may be one of the mechanisms accounting for the lower toxicity of lead in comparison with cadmium. The suitability of Allium cepa bulb scale epidermal cells for use in ecotoxicological studies is also discussed. Step-by-step directions for this test are given.
Collapse
|
Comparative Study |
18 |
55 |
14
|
Kubec R, Hrbácová M, Musah RA, Velísek J. Allium discoloration: precursors involved in onion pinking and garlic greening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:5089-5094. [PMID: 15291480 DOI: 10.1021/jf0497455] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Precursors involved in the formation of pink and green-blue pigments generated during onion and garlic processing, respectively, have been studied. It has been confirmed that the formations of both pigments are of very similar natures, with (E)-S-(1-propenyl)cysteine sulfoxide (isoalliin) serving as the primary precursor. Upon disruption of the tissue, isoalliin and other S-alk(en)ylcysteine sulfoxides are enzymatically cleaved, yielding 1-propenyl-containing thiosulfinates [CH3CH=CHS(O)SR; R = methyl, allyl, propyl, 1-propenyl] among others. The latter compounds have been shown to subsequently react with amino acids to produce the pigments. Whereas the propyl, 1-propenyl, and methyl derivatives form pink, pink-red, and magenta compounds, those containing the allyl group give rise to blue products after reacting with glycine at pH 5.0. The role of other thiosulfinates [RS(O)SR'] (R, R' = methyl, allyl, propyl) and (Z)-thiopropanal S-oxide (the onion lachrymatory principle) in the formation of the pigments is also discussed.
Collapse
|
|
21 |
50 |
15
|
Eichert T, Burkhardt J. Quantification of stomatal uptake of ionic solutes using a new model system. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:771-781. [PMID: 11413213 DOI: 10.1093/jexbot/52.357.771] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Evidence for stomatal uptake of solutes by leaves without the application of surfactants or pressure has recently been provided (Eichert et al., 1998). In the present study, experimental conditions were refined in that the water potential was held at <0 on the physiologically inner side of the epidermal strips (ES) by use of a ceramic plate or the proper mesophyll of the plant. The penetrated substances were immobilized on the inner side by ion exchange membranes. The influence of humidity, light, stomatal density, and re-wetting on the uptake of anions (fluorescein) and cations (Fe(3+)) was investigated, using leaves of Allium porrum, Commelina communis and Sedum telephium. Uptake increased with humidity, stomatal aperture and stomatal density. It was restricted to stomatal areas, and was especially high below the rims of drying droplets. Again, penetration of stomatal pores was observed. Uptake was strongly correlated with the number of penetrated stomata, although usually less than 10% of the stomata contributed to uptake. The number of stomata that had been penetrated was highly variable, increasing extremely significantly with the number of repeated drying/ wetting cycles. These results indicate that stomatal uptake can be a major pathway for the foliar uptake of ionic solutes. It is a dynamic process, depending on environmental conditions and history of the residues on the leaf, aspects that had been neglected in previous concepts.
Collapse
|
|
24 |
45 |
16
|
Phang M, Lazarus S, Wood LG, Garg M. Diet and thrombosis risk: nutrients for prevention of thrombotic disease. Semin Thromb Hemost 2011; 37:199-208. [PMID: 21455854 DOI: 10.1055/s-0031-1273084] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An increased prothrombotic state is a major risk factor for the development of heart attacks, strokes, and venous thromboembolism. Platelet activation and aggregation play an important role in determining a prothrombotic state. Although pharmaceutical agents such as aspirin, heparin, and warfarin are able to reduce prothrombotic tendency, long-term drug treatment may produce a variety of side effects, including bleeding. Diet is generally recognized to be significantly involved in modifying the individual risk for the development of thrombotic diseases, although its influence during the treatment of these disorders is probably less important. Dietary intervention has proven effective in lowering serum lipid levels, which are otherwise essential elements in the pathogenesis of cardiovascular disease. Likewise, certain dietary components have also been proven effective in decreasing platelet activation through various mechanisms and therefore may contribute to attenuating the future risk of thrombosis. This article provides an up-to-date review of the role of nutrient and nonnutrient supplements on platelet aggregation and risk of thrombosis.
Collapse
|
Review |
14 |
41 |
17
|
Ding JP, Pickard BG. Modulation of mechanosensitive calcium-selective cation channels by temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1993; 3:713-720. [PMID: 8397037 DOI: 10.1111/j.1365-313x.1993.00713.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gating of associations of mechanosensitive Ca(2+)-selective cation co-channels in the plasmalemma of onion epidermis has a strong and unusual temperature dependence. Tension-dependent activity rises steeply as temperature is lowered from 25 degrees C to about 6 degrees C, but drops to a low level at about 5 degrees C. Under the conditions tested (with Mg2+ and K+ at the cytosolic face of outside-out membrane patches), promotion results both from more bursting at all observed linkage levels and from longer duration of bursts of co-channels linked as quadruplets and quintuplets. Co-channel conductance decreases linearly, but only modestly, with declining temperature. It is proposed that these and related mechanosensitive channels may participate in a variety of responses to temperature, including thermonasty, thermotropism, hydrotropism, and both cold damage and cold acclimation.
Collapse
|
|
32 |
40 |
18
|
Kápolna E, Fodor P. Bioavailability of selenium from selenium-enriched green onions (Allium fistulosum) and chives (Allium schoenoprasum) after ‘in vitro’ gastrointestinal digestion. Int J Food Sci Nutr 2009; 58:282-96. [PMID: 17566890 DOI: 10.1080/09637480601154335] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Three sample preparation methods--proteolysis to determine the initial species distribution, and an in vitro gastric and gastrointestinal digestion to assess the bioavailability of selenium--were applied to extract the selenium from selenized green onion and chive samples. Ion exchange chromatography was coupled to a high-performance liquid chromatography-ICP-MS system to analyze the selenium species of Allium samples. The difference in the selenium accumulation capability of green onions and chives was significant. Chive accumulated a one order of magnitude higher amount of selenium than did green onion. After proteolysis of both types of Allium plants, high amounts of organic selenium species such as MeSeCys, SeCys2 and SeMet became accessible. In the case of Se(VI)-enrichment, selenate was the main species in the proteolytic extract. After simulating the human digestion, the organic species were just slightly bioavailable compared with the results from proteolysis. The inorganic selenium content of the selenized samples increased significantly and SeOMet could be detected from the extracts. As an effect of the significant pH change between the gastric and the intestinal tracts, two oxidation processes took place: selenite oxidized to selenate, while SeMet oxidized to SeOMet.
Collapse
|
|
16 |
35 |
19
|
Liu D, Kottke I. Subcellular localization of chromium and nickel in root cells of Allium cepa by EELS and ESI. Cell Biol Toxicol 2004; 19:299-311. [PMID: 14703117 DOI: 10.1023/b:cbto.0000004984.87619.15] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ultrastructural investigation of the root cells of Allium cepa L. exposed to two different concentrations of chromium + nickel (Cr+Ni) (10 micromol/L and 100 micromol/L) revealed that toxic symptoms were induced by increasing heavy metal concentration and treatment time. Several significant ultrastructural changes were caused by 100 micromol/L Cr+Ni - deposition of electron dense material in cell walls; larger vacuolar precipitates surrounded by membranes inside vacuoles; increment of disintegrated organelles and high vacuolization in cytoplasm. The localization of the precipitates in which the metal ions were detected by electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) was investigated. Chromium and nickel were localized in the electron dense precipitates of the root cells exposed to only 100 micromol/L Cr+Ni. None were found in the root cells exposed to 10 micromol/L Cr+Ni. Higher amounts of Cr+Ni were mainly accumulated in the cell walls and vacuoles of the fourth or fifth cortical layer.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
34 |
20
|
Cerdido A, Medina FJ. Subnucleolar location of fibrillarin and variation in its levels during the cell cycle and during differentiation of plant cells. Chromosoma 1995; 103:625-34. [PMID: 7587585 DOI: 10.1007/bf00357689] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nucleolar protein fibrillarin has been studied in onion cells; it is detected as an M(r) 37,000 protein by immunoblotting using a human autoimmune serum. Quantitative immunoelectron microscopy showed that most fibrillarin is localized in the transition zone between the fibrillar center (FC) and the dense fibrillar component (DFC) as well as in the proximal zone of the DFC, where the labeling shows a gradual decrease outward until it reaches insignificant levels in the distal zone of the DFC. Thus, fibrillarin is not uniformly distributed throughout the DFC of plant cells. This result supports the hypothesis that the morphologically homogeneous DFC may not be uniform in function; it is also in agreement with the hypothesized vectorial flow of ribosome biogenesis through the same compartments. Data are also presented showing that the amount of fibrillarin increases when nucleolar activity increases in G2, and probably decreases when nucleolar activity decreases during differentiation.
Collapse
|
|
30 |
34 |
21
|
Yiu JC, Liu CW, Fang DYT, Lai YS. Waterlogging tolerance of Welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:710-6. [PMID: 19356940 DOI: 10.1016/j.plaphy.2009.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/19/2009] [Accepted: 03/18/2009] [Indexed: 05/20/2023]
Abstract
Soil flooding is a seasonal factor that negatively affects plant performance and crop yields. In order to investigate the effects of spermidine (Spd) and spermine (Spm) on the waterlogging stress, it was checked that the content of relative water content (RWC), proline, chlorophyll and malondialdehyde (MDA), net photosynthesis, the rate of hydrogen peroxide (H(2)O(2)) and superoxide radicals (O(2)(-)) generation and the antioxidant enzyme activities of superoxide dismutase (SOD) (EC 1.15.1.1), catalase (CAT) (EC 1.11.1.6), ascorbate peroxidase (APX) (EC 1.11.1.11) and glutathione reductase (GR) (EC 1.6.4.2) in Welsh onion (Allium fistulosum L) plants. Pretreatment with 2 mM of Spd and Spm effectively maintained the balance of water content in plant leaves and roots under flooding stress. In addition, the data indicate that the protective role of proline should be considered minimal, as its accumulation was found to be inversely correlated with tolerance to stress; it also significantly retarded the loss of chlorophyll, enhanced photosynthesis, decreased the rate of O(2)(-) generation and H(2)O(2) content, and prevented flooding-induced lipid peroxidation. Spd and Spm helped to maintain antioxidant enzyme activities under flooding; however, APX activity was found to increase slightly in response to Spm. The antioxidant system, an important component of the water-stress-protective mechanism, can be changed by PAs, which are able to moderate the radical scavenging system and to lessen in this way the oxidative stress. The results suggest that pretreatment with Spd and Spm prevents oxidative damage, and the protective effect of Spd was found to be greater than that of Spm.
Collapse
|
|
16 |
34 |
22
|
Stajner D, Igić R, Popović BM, Malencić D. Comparative study of antioxidant properties of wild growing and cultivated Allium species. Phytother Res 2008; 22:113-7. [PMID: 17726730 DOI: 10.1002/ptr.2278] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Allium species are cultivated for the edible bulb, which is used mainly as flavoring in foods. Besides that, they could prevent tumor promotion and some processes that are associated with free radicals, such as cardiovascular diseases and aging. Therefore, different Allium species, both cultivated (Allium nutans L., A. fistulosum L., A. vineale L., A. pskemense B. Fedtsch, A. schoenoprasum L., A. cepa L. and A. sativum L.) and wild (A. flavum L., A. sphaerocephalum L., A. atroviolaceum Boiss, A. vineale L., A. ursinum L., A. scorodoprasum L., A. roseum L. and A. subhirsutum L.), were investigated in order to evaluate the antioxidant properties of their bulbs. This study reports on the results obtained for the bulb antioxidant enzyme activities (superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase), the quantities of non-enzymatic plant antioxidants (reduced glutathione and total flavonoids), the contents of soluble proteins, vitamin C, carotenoids, chlorophylls a and b, as well as for the quantities of malonyldialdehyde and .OH and O2.- radicals.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
30 |
23
|
Tang XY, Huang WD, Guo JJ, Yang Y, Tao R, Feng X. Use of Fe-Impregnated Biochar To Efficiently Sorb Chlorpyrifos, Reduce Uptake by Allium fistulosum L., and Enhance Microbial Community Diversity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5238-5243. [PMID: 28562038 DOI: 10.1021/acs.jafc.7b01300] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fe-impregnated biochar was assessed as a method to remove the pesticide pollutant chlorpyrifos, utilizing biochar/FeOx composite synthesized via chemical coprecipitation of Fe3+/Fe2+ onto Cyperus alternifolius biochar. Fe-impregnated biochar exhibited a higher sorption capacity than pristine biochar, resulting in more efficient removal of chlorpyrifos from water. Soil was dosed with pristine or Fe-impregnated biochar at 0.1 or 1.0% w/w, to evaluate chlorpyrifos uptake in Allium fistulosum L. (Welsh onion). The results showed that the average concentration of chlorpyrifos and its degradation product, 3,5,6-trichloro-2-pyridinol (TCP), decreased in A. fistulosum L. with increased levels of pristine biochar and Fe-biochar. Fe-biochar was found to be more effective in reducing the uptake of chlorpyrifos by improving the sorption ability and increasing plant root iron plaque. Bioavailability of chlorpyrifos is reduced with both biochar and Fe-biochar soil dosing; however, the greatest persistence of chlorpyrifos residues was observed with 1.0% pristine biochar. Microbial community analysis showed Fe-biochar to have a positive impact on the efficiency of chlorpyrifos degradation in soils, possibly by altering microbial communities.
Collapse
|
|
8 |
29 |
24
|
Kusano M, Kobayashi M, Iizuka Y, Fukushima A, Saito K. Unbiased profiling of volatile organic compounds in the headspace of Allium plants using an in-tube extraction device. BMC Res Notes 2016; 9:133. [PMID: 26928722 PMCID: PMC4772445 DOI: 10.1186/s13104-016-1942-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Plants produce and emit important volatile organic compounds (VOCs), which have an essential role in biotic and abiotic stress responses and in plant-plant and plant-insect interactions. In order to study the bouquets from plants qualitatively and quantitatively, a comprehensive, analytical method yielding reproducible results is required. RESULTS We applied in-tube extraction (ITEX) and solid-phase microextraction (SPME) for studying the emissions of Allium plants. The collected HS samples were analyzed by gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS), and the results were subjected to multivariate analysis. In case of ITEX-method Allium cultivars released more than 300 VOCs, out of which we provisionally identified 50 volatiles. We also used the VOC profiles of Allium samples to discriminate among groups of A. fistulosum, A. chinense (rakkyo), and A. tuberosum (Oriental garlic). As we found 12 metabolite peaks including dipropyl disulphide with significant changes in A. chinense and A. tuberosum when compared to the control cultivar, these metabolite peaks can be used for chemotaxonomic classification of A. chinense, tuberosum, and A. fistulosum. CONCLUSIONS Compared to SPME-method our ITEX-based VOC profiling technique contributes to automatic and reproducible analyses. Hence, it can be applied to high-throughput analyses such as metabolite profiling.
Collapse
|
research-article |
9 |
27 |
25
|
Bastaki SMA, Ojha S, Kalasz H, Adeghate E. Chemical constituents and medicinal properties of Allium species. Mol Cell Biochem 2021; 476:4301-4321. [PMID: 34420186 DOI: 10.1007/s11010-021-04213-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Allium species, belonging to Alliaceae family, are among the oldest cultivated vegetables used as food. Garlic, onions, leeks and chives, which belong to this family, have been reported to have medicinal properties. The Allium species constituents have been shown to have antibacterial and antioxidant activities, and, in addition, other biological properties. These activities are related to their rich organosulfur compounds. These organosulfur compounds are believed to prevent the development of cancer, cardiovascular, neurological, diabetes, liver diseases as well as allergy and arthritis. There have also been reports on toxicities of these compounds. The major active compounds of Allium species includes, diallyl disulfide, diallyl trisulfide, diallyl sulfide, dipropyl disulfide, dipropyl trisulfide, 1-propenylpropyl disulfide, allyl methyl disulfide and dimethyl disulfide. The aim of this review is to focus on a variety of experimental and clinical reports on the effectiveness, toxicities and possible mechanisms of actions of the active compounds of garlic, onions, leek and chives.
Collapse
|
Review |
4 |
25 |