1
|
Eizuka M, Toya Y, Akasaka R, Yamada S, Oizumi T, Kasugai S, Yanai S, Sugimura Y, Matsumoto T. A case of a stuck mesh in the rectum after pelvic surgery. DEN Open 2024; 4:e286. [PMID: 37720193 PMCID: PMC10502397 DOI: 10.1002/deo2.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023]
Abstract
A 67-year-old woman was referred to our hospital for further evaluation of a positive fecal occult blood test. Colonoscopy revealed an elevated rectal lesion (10 mm in size) with a central depression. A rod-like object was noted in the center of the lesion. Magnifying endoscopy with narrow-band imaging showed obscure surface structures and dilated vessels. Magnifying endoscopy with crystal violet staining showed that the pit pattern had disappeared. These endoscopic findings suggested that the lesion was comprised of granulation tissue. A detailed medical history revealed that she had undergone a total hysterectomy with mesh placement for bladder prolapse. We reasoned that the mesh used during pelvic surgery might have penetrated the rectum. She underwent subsequent surgery to remove the mesh. Although most foreign bodies in the rectum are swallowed or self-inserted, pelvic surgery is another source of foreign bodies in the rectum.
Collapse
Affiliation(s)
- Makoto Eizuka
- Department of Internal MedicineDivision of Gastroenterology and HepatologySchool of MedicineIwate Medical UniversityIwateJapan
| | - Yosuke Toya
- Department of Internal MedicineDivision of Gastroenterology and HepatologySchool of MedicineIwate Medical UniversityIwateJapan
| | - Risaburo Akasaka
- Department of Internal MedicineDivision of Gastroenterology and HepatologySchool of MedicineIwate Medical UniversityIwateJapan
| | - Shun Yamada
- Department of Internal MedicineDivision of Gastroenterology and HepatologySchool of MedicineIwate Medical UniversityIwateJapan
| | - Tomofumi Oizumi
- Department of Internal MedicineDivision of Gastroenterology and HepatologySchool of MedicineIwate Medical UniversityIwateJapan
| | - Satoshi Kasugai
- Department of Internal MedicineDivision of Gastroenterology and HepatologySchool of MedicineIwate Medical UniversityIwateJapan
| | - Shunichi Yanai
- Department of Internal MedicineDivision of Gastroenterology and HepatologySchool of MedicineIwate Medical UniversityIwateJapan
| | | | - Takayuki Matsumoto
- Department of Internal MedicineDivision of Gastroenterology and HepatologySchool of MedicineIwate Medical UniversityIwateJapan
| |
Collapse
|
2
|
Ishii N, Shiratori Y, Ishikane M, Omata F. Population effectiveness of endoscopy screening for mortality reduction in gastric cancer. DEN Open 2024; 4:e296. [PMID: 37731836 PMCID: PMC10508325 DOI: 10.1002/deo2.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
Objectives No randomized controlled trials have compared endoscopic screening with no screening for gastric cancer on an intention-to-screen basis, and the population-based evidence is insufficient. This study aimed to identify factors contributing to the population effectiveness of cancer screening, estimate the number needed to screen (NNS) to reduce one gastric cancer-related death, and evaluate the expected mortality-rate reduction in endoscopic screening for gastric cancer in 184 countries. Methods Factors contributing to the attributable risk, NNS, and mortality-rate reduction were identified. A rapid review was performed in PubMed to estimate the pooled relative risk of endoscopic screening compared to that of no screening for mortality reduction. NNSs and mortality-rate reduction were estimated using the pooled relative risk and GLOBOCAN data. Results The crude mortality rate, the effectiveness of the screening modality, and the screened rate contributed to the attributable risk, NNS, and mortality-rate reduction in cancer screening. The pooled relative risk was 0.58 in endoscopy screening compared to that in no screening. NNSs and expected mortality-rate reduction differed across countries and ranged from 2522 to 91,575 and 0.2 to 7.9 (per 100,000 individuals) for the screened rate of 20%, respectively. Conclusions In addition to the effectiveness of the used modality, the disease burden and screened rate were important in the population effectiveness of cancer screening. Regarding the high NNSs and the low expected mortality-rate reduction, population-based endoscopic screening seems not to be effective in many countries, and these results are meaningful in decision-making regarding the introduction of endoscopic screening.
Collapse
Affiliation(s)
- Naoki Ishii
- Division of GastroenterologyTokyo Shinagawa HospitalTokyoJapan
| | | | - Masahiro Ishikane
- Disease Control and Prevention CenterNational Center for Global Health and MedicineTokyoJapan
| | | |
Collapse
|
3
|
Matsuoka R, Masuda S, Fujita S, Akiyama N. Trichobezoar effectively treated with direct endoscopic injection of Coca-Cola: A case report. DEN Open 2024; 4:e283. [PMID: 37753229 PMCID: PMC10518563 DOI: 10.1002/deo2.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023]
Abstract
Trichobezoars (hair bezoars) are primarily observed in adolescent girls who pull their hair followed by its ingestion. Endoscopic removal of trichobezoars is challenging, and these masses often require surgical removal. Recently, although it has been reported that Coca-Cola could effectively dissolve persimmon phytobezoars, it was ineffective in dissolving trichobezoars. We report a case in which Coca-Cola was directly injected into a trichobezoar followed by successful endoscopic removal of the mass. A 9-year-old girl visited our hospital with abdominal pain and nausea, wherein abdominal radiography revealed a mass in the stomach. Her mother witnessed her pulling and ingesting her hair 6 months previously. An upper endoscopy was performed for diagnosis of the trichobezoar. Endoscopic removal of the mass was performed under general anesthesia following oral administration of Coca-Cola at a dose of 100 mL thrice a day for 10 days. Initially, we attempted endoscopic extraction using grasping forceps and a radiofrequency snare. However, the bezoar could not be fragmented and did not pass through the cardia. Thus, Coca-Cola was injected directly into the bezoar using a local injection needle, which facilitated the separation of the bezoar and allowed the grasping forceps to fragment it to a size that could pass through the cardia. Owing to the large size of the bezoar, we could remove 180 g of it without complications. The patient received psychological counseling after the procedure, to prevent recurrence. In conclusion, direct injection of Coca-Cola was effective in the complete endoscopic removal of trichobezoars.
Collapse
Affiliation(s)
- Ryo Matsuoka
- Department of PediatricsFuji City General HospitalShizuokaJapan
- Department of PediatricsThe Jikei Medical School of MedicineTokyoJapan
| | - Saori Masuda
- Department of PediatricsFuji City General HospitalShizuokaJapan
- Department of PediatricsThe Jikei Medical School of MedicineTokyoJapan
| | - Satoshi Fujita
- Department of PediatricsFuji City General HospitalShizuokaJapan
- Department of PediatricsThe Jikei Medical School of MedicineTokyoJapan
| | - Naoe Akiyama
- Department of PediatricsFuji City General HospitalShizuokaJapan
- Department of PediatricsThe Jikei Medical School of MedicineTokyoJapan
| |
Collapse
|
4
|
Sugimura N, Kubota E, Sasaki M, Fukusada S, Mizuno Y, Iwasaki H, Tanaka M, Ozeki K, Shimura T, Kataoka H. A case of asymptomatic gastric plexiform fibromyxoma followed up for 3 years. DEN Open 2024; 4:e291. [PMID: 37731837 PMCID: PMC10508324 DOI: 10.1002/deo2.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
Plexiform fibromyxoma is a rare mesenchymal tumor identified in recent years and presents as a gastrointestinal submucosal tumor that is typically located in the gastric antrum. We report a case of gastric plexiform fibromyxoma in which the diagnosis was difficult despite repeated tissue sampling. Before visiting our hospital, the patient had been followed up for 3 years without a definitive diagnosis despite serial examinations, including computed tomography, endoscopy, endoscopic ultrasound, and endoscopic ultrasound-guided fine-needle aspiration. Endoscopic ultrasound-guided fine-needle aspiration was reperformed, and endoscopic submucosal dissection for deep biopsy was conducted for differential diagnosis of the tumor. However, histological analysis with immunostaining of tumor samples obtained using these techniques cannot provide a reliable diagnosis. Finally, the tumor was resected surgically because of its increasing size, and subsequent microscopic analysis revealed a multinodular plexiform growth pattern of spindle-like cells with myxoid stroma. Immunohistochemically, the tumor cells were positive for smooth muscle actin but negative for c-kit, CD34, and S100. Based on these findings, the patient was diagnosed with plexiform fibromyxoma. No evidence of residual or recurrent tumors was observed at 24 months postoperatively.
Collapse
Affiliation(s)
- Naomi Sugimura
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesAichiJapan
| | - Eiji Kubota
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesAichiJapan
| | - Makiko Sasaki
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesAichiJapan
| | - Shigeki Fukusada
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesAichiJapan
| | - Yusuke Mizuno
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesAichiJapan
| | - Hiroyasu Iwasaki
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesAichiJapan
| | - Mamoru Tanaka
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesAichiJapan
| | - Keiji Ozeki
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesAichiJapan
| | - Takaya Shimura
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesAichiJapan
| | - Hiromi Kataoka
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesAichiJapan
| |
Collapse
|
5
|
Feng M, Zhou Q, Xie H, Liu C, Zheng M, Zhang S, Zhou S, Zhao J. Role of CD36 in central nervous system diseases. Neural Regen Res 2024; 19:512-518. [PMID: 37721278 DOI: 10.4103/1673-5374.380821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases. CD36 was recently found to be widely expressed in various cell types in the nervous system, including endothelial cells, pericytes, astrocytes, and microglia. CD36 mediates a number of regulatory processes, such as endothelial dysfunction, oxidative stress, mitochondrial dysfunction, and inflammatory responses, which are involved in many central nervous system diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and spinal cord injury. CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand, thereby achieving inhibition of CD36-mediated pathways or functions. Here, we reviewed the mechanisms of action of CD36 antagonists, such as Salvianolic acid B, tanshinone IIA, curcumin, sulfosuccinimidyl oleate, antioxidants, and small-molecule compounds. Moreover, we predicted the structures of binding sites between CD36 and antagonists. These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Min Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huimin Xie
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shuyu Zhang
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology; Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Guo Y, Sun L, Zhong W, Zhang N, Zhao Z, Tian W. Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges. Neural Regen Res 2024; 19:663-670. [PMID: 37721299 DOI: 10.4103/1673-5374.380909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury. Specifically, it can be used to analyze and process data regarding peripheral nerve injury and repair, while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms. To investigate advances in the use of artificial intelligence in the diagnosis, rehabilitation, and scientific examination of peripheral nerve injury, we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994-2023. We identified the following research hotspots in peripheral nerve injury and repair: (1) diagnosis, classification, and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques, such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy; (2) motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms, such as wearable devices and assisted wheelchair systems; (3) improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning, such as implantable peripheral nerve interfaces; (4) the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility, enabling them to control devices such as networked hand prostheses; (5) artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation, thereby reducing surgical risk and complications, and facilitating postoperative recovery. Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair, there are some limitations to this technology, such as the consequences of missing or imbalanced data, low data accuracy and reproducibility, and ethical issues (e.g., privacy, data security, research transparency). Future research should address the issue of data collection, as large-scale, high-quality clinical datasets are required to establish effective artificial intelligence models. Multimodal data processing is also necessary, along with interdisciplinary collaboration, medical-industrial integration, and multicenter, large-sample clinical studies.
Collapse
Affiliation(s)
- Yang Guo
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Liying Sun
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Wenyao Zhong
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Nan Zhang
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Zongxuan Zhao
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Wen Tian
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
7
|
Göttle P, Dietrich M, Küry P. Multiple sclerosis drug repurposing for neuroregeneration. Neural Regen Res 2024; 19:507-508. [PMID: 37721276 DOI: 10.4103/1673-5374.380901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Li Y, Li M, Feng S, Xu Q, Zhang X, Xiong X, Gu L. Ferroptosis and endoplasmic reticulum stress in ischemic stroke. Neural Regen Res 2024; 19:611-618. [PMID: 37721292 DOI: 10.4103/1673-5374.380870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Ferroptosis is a form of non-apoptotic programmed cell death, and its mechanisms mainly involve the accumulation of lipid peroxides, imbalance in the amino acid antioxidant system, and disordered iron metabolism. The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum, and the progression of inflammatory diseases can trigger endoplasmic reticulum stress. Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival. Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke. However, there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke. This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke, aiming to provide a reference for developing treatments for ischemic stroke.
Collapse
Affiliation(s)
- Yina Li
- Central Laboratory; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingyang Li
- Central Laboratory; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shi Feng
- Central Laboratory; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qingxue Xu
- Central Laboratory; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xu Zhang
- Central Laboratory; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Chang J, Li Y, Shan X, Chen X, Yan X, Liu J, Zhao L. Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer's disease. Neural Regen Res 2024; 19:619-628. [PMID: 37721293 DOI: 10.4103/1673-5374.380874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Recent studies have demonstrated that neuroplasticity, such as synaptic plasticity and neurogenesis, exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer's disease. Hence, promoting neuroplasticity may represent an effective strategy with which Alzheimer's disease can be alleviated. Due to their significant ability to self-renew, differentiate, and migrate, neural stem cells play an essential role in reversing synaptic and neuronal damage, reducing the pathology of Alzheimer's disease, including amyloid-β, tau protein, and neuroinflammation, and secreting neurotrophic factors and growth factors that are related to plasticity. These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain. Consequently, neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer's disease in the clinic.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xi Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuhe Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
10
|
Cui Y, Liu J, Lei X, Liu S, Chen H, Wei Z, Li H, Yang Y, Zheng C, Li Z. Dual-directional regulation of spinal cord injury and the gut microbiota. Neural Regen Res 2024; 19:548-556. [PMID: 37721283 DOI: 10.4103/1673-5374.380881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
There is increasing evidence that the gut microbiota affects the incidence and progression of central nervous system diseases via the brain-gut axis. The spinal cord is a vital important part of the central nervous system; however, the underlying association between spinal cord injury and gut interactions remains unknown. Recent studies suggest that patients with spinal cord injury frequently experience intestinal dysfunction and gut dysbiosis. Alterations in the gut microbiota can cause disruption in the intestinal barrier and trigger neurogenic inflammatory responses which may impede recovery after spinal cord injury. This review summarizes existing clinical and basic research on the relationship between the gut microbiota and spinal cord injury. Our research identified three key points. First, the gut microbiota in patients with spinal cord injury presents a key characteristic and gut dysbiosis may profoundly influence multiple organs and systems in patients with spinal cord injury. Second, following spinal cord injury, weakened intestinal peristalsis, prolonged intestinal transport time, and immune dysfunction of the intestine caused by abnormal autonomic nerve function, as well as frequent antibiotic treatment, may induce gut dysbiosis. Third, the gut microbiota and associated metabolites may act on central neurons and affect recovery after spinal cord injury; cytokines and the Toll-like receptor ligand pathways have been identified as crucial mechanisms in the communication between the gut microbiota and central nervous system. Fecal microbiota transplantation, probiotics, dietary interventions, and other therapies have been shown to serve a neuroprotective role in spinal cord injury by modulating the gut microbiota. Therapies targeting the gut microbiota or associated metabolites are a promising approach to promote functional recovery and improve the complications of spinal cord injury.
Collapse
Affiliation(s)
- Yinjie Cui
- Academy of Medical Engineering and Translational Medicine, Tianjin University; School of Medical Technology; Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Lei
- International Cooperation and Exchange Office, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China, India
| | - Shuwen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haixia Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhijian Wei
- International Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hongru Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhongzheng Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Liu J, Xin X, Sun J, Fan Y, Zhou X, Gong W, Yang M, Li Z, Wang Y, Yang Y, Gao C. Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury. Neural Regen Res 2024; 19:629-635. [PMID: 37721294 DOI: 10.4103/1673-5374.380907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury results in neuronal loss and glial scar formation. Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury. Neuronal reprogramming is a promising strategy to convert glial scars to neural tissue. However, previous studies have reported inconsistent results. In this study, an AAV9P1 vector incorporating an astrocyte-targeting P1 peptide and glial fibrillary acidic protein promoter was used to achieve dual-targeting of astrocytes and the glial scar while minimizing off-target effects. The results demonstrate that AAV9P1 provides high selectivity of astrocytes and reactive astrocytes. Moreover, neuronal reprogramming was induced by downregulating the polypyrimidine tract-binding protein 1 gene via systemic administration of AAV9P1 in a mouse model of traumatic brain injury. In summary, this approach provides an improved gene delivery vehicle to study neuronal programming and evidence of its applications for traumatic brain injury.
Collapse
Affiliation(s)
- Jingzhou Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Xin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiejie Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xun Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Ahn SI, Kim Y. On-chip physiological mimicry of neurovascular unit: challenges and perspectives. Neural Regen Res 2024; 19:499-500. [PMID: 37721272 DOI: 10.4103/1673-5374.380892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Song Ih Ahn
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering; Parker H. Petit Institute for Bioengineering and Bioscience; Wallace H. Coulter Department of Biomedical Engineering; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
13
|
Jourdi G, Fleury S, Boukhatem I, Lordkipanidzé M. Soluble p75 neurotrophic receptor as a reliable biomarker in neurodegenerative diseases: what is the evidence? Neural Regen Res 2024; 19:536-541. [PMID: 37721281 DOI: 10.4103/1673-5374.380873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Neurodegenerative diseases are often misdiagnosed, especially when the diagnosis is based solely on clinical symptoms. The p75 neurotrophic receptor (p75NTR) has been studied as an index of sensory and motor nerve development and maturation. Its cleavable extracellular domain (ECD) is readily detectable in various biological fluids including plasma, serum and urine. There is evidence for increased p75NTR ECD levels in neurodegenerative diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, age-related dementia, schizophrenia, and diabetic neuropathy. Whether p75NTR ECD could be used as a biomarker for diagnosis and/or prognosis in these disorders, and whether it could potentially lead to the development of targeted therapies, remains an open question. In this review, we present and discuss published studies that have evaluated the relevance of this emerging biomarker in the context of various neurodegenerative diseases. We also highlight areas that require further investigation to better understand the role of p75NTR ECD in the clinical diagnosis and management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Georges Jourdi
- Research Center, Montreal Heart Institute; Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada; Université Paris Cité, INSERM, Innovative Therapies in Haemostasis; Service d'Hématologie Biologique, AP-HP, Hôpital Lariboisière, Paris, France
| | - Samuel Fleury
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Imane Boukhatem
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
14
|
Gu Y, Zhang J, Zhao X, Nie W, Xu X, Liu M, Zhang X. Olfactory dysfunction and its related molecular mechanisms in Parkinson's disease. Neural Regen Res 2024; 19:583-590. [PMID: 37721288 DOI: 10.4103/1673-5374.380875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Changes in olfactory function are considered to be early biomarkers of Parkinson's disease. Olfactory dysfunction is one of the earliest non-motor features of Parkinson's disease, appearing in about 90% of patients with early-stage Parkinson's disease, and can often predate the diagnosis by years. Therefore, olfactory dysfunction should be considered a reliable marker of the disease. However, the mechanisms responsible for olfactory dysfunction are currently unknown. In this article, we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson's disease. On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels, we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson's disease. The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson's disease. Therefore, therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson's disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms, highlighting the potential of identifying effective targets for treating Parkinson's disease by inhibiting the deterioration of olfactory dysfunction.
Collapse
Affiliation(s)
- Yingying Gu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaying Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xinru Zhao
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Wenyuan Nie
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaole Xu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Mingxuan Liu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoling Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
15
|
Mu J, Hao L, Wang Z, Fu X, Li Y, Hao F, Duan H, Yang Z, Li X. Visualizing Wallerian degeneration in the corticospinal tract after sensorimotor cortex ischemia in mice. Neural Regen Res 2024; 19:636-641. [PMID: 37721295 DOI: 10.4103/1673-5374.380903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Stroke can cause Wallerian degeneration in regions outside of the brain, particularly in the corticospinal tract. To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke, we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract. We first used a routine, sensitive marker of axonal injury, amyloid precursor protein, to examine Wallerian degeneration of the corticospinal tract. An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex, with no positive signal in distal parts of the corticospinal tract, at all time points. To improve visualization of Wallerian degeneration, we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons. Using this approach, we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke. In addition, microglia mobilized and activated early, from day 7 after stroke, but did not maintain a phagocytic state over time. Meanwhile, astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration. Moreover, no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract. In conclusion, our data provide evidence for dynamic, pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.
Collapse
Affiliation(s)
- Jiao Mu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Liufang Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xuyang Fu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yusen Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University; Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Song L, Tang Y, Law BYK. Targeting calcium signaling in Alzheimer's disease: challenges and promising therapeutic avenues. Neural Regen Res 2024; 19:501-502. [PMID: 37721273 DOI: 10.4103/1673-5374.380898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- LinLin Song
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| | - YongPei Tang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| |
Collapse
|
17
|
Liu C, Guo S, Liu R, Guo M, Wang Q, Chai Z, Xiao B, Ma C. Fasudil-modified macrophages reduce inflammation and regulate the immune response in experimental autoimmune encephalomyelitis. Neural Regen Res 2024; 19:671-679. [PMID: 37721300 DOI: 10.4103/1673-5374.379050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system. Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis, a traditional experimental model of multiple sclerosis. This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis. We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type, as shown by reduced expression of inducible nitric oxide synthase/nitric oxide, interleukin-12, and CD16/32 and increased expression of arginase-1, interleukin-10, CD14, and CD206, which was linked to inhibition of Rho kinase activity, decreased expression of toll-like receptors, nuclear factor-κB, and components of the mitogen-activated protein kinase signaling pathway, and generation of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6. Crucially, Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis, resulting in later onset of disease, lower symptom scores, less weight loss, and reduced demyelination compared with unmodified macrophages. In addition, Fasudil-modified macrophages decreased interleukin-17 expression on CD4+ T cells and CD16/32, inducible nitric oxide synthase, and interleukin-12 expression on F4/80+ macrophages, as well as increasing interleukin-10 expression on CD4+ T cells and arginase-1, CD206, and interleukin-10 expression on F4/80+ macrophages, which improved immune regulation and reduced inflammation. These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response, thereby providing new insight into cell immunotherapy for multiple sclerosis.
Collapse
Affiliation(s)
- Chunyun Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Shangde Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Rong Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Minfang Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Datong University, Datong; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| |
Collapse
|
18
|
Silva Oliveira Junior M, Reiche L, Daniele E, Kortebi I, Faiz M, Küry P. Star power: harnessing the reactive astrocyte response to promote remyelination in multiple sclerosis. Neural Regen Res 2024; 19:578-582. [PMID: 37721287 DOI: 10.4103/1673-5374.380879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Astrocytes are indispensable for central nervous system development and homeostasis. In response to injury and disease, astrocytes are integral to the immunological- and the, albeit limited, repair response. In this review, we will examine some of the functions reactive astrocytes play in the context of multiple sclerosis and related animal models. We will consider the heterogeneity or plasticity of astrocytes and the mechanisms by which they promote or mitigate demyelination. Finally, we will discuss a set of biomedical strategies that can stimulate astrocytes in their promyelinating response.
Collapse
Affiliation(s)
- Markley Silva Oliveira Junior
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emerson Daniele
- Institute of Medical Science; Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Ines Kortebi
- Institute of Medical Science; Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Maryam Faiz
- Institute of Medical Science; Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Patrick Küry
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
19
|
Mastrorilli V, Farioli Vecchioli S. Physical exercise and traumatic brain injury: is it question of time? Neural Regen Res 2024; 19:475-476. [PMID: 37721260 DOI: 10.4103/1673-5374.380888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Valentina Mastrorilli
- Institute of Biochemistry and Cell Biology, Institute of Biochemistry and Cell Biology, National Research Council (IBBC/CNR), Monterotondo; Plaisant S.R.L., Rome, Italy
| | - Stefano Farioli Vecchioli
- Institute of Biochemistry and Cell Biology, Institute of Biochemistry and Cell Biology, National Research Council (IBBC/CNR), Monterotondo, Rome, Italy
| |
Collapse
|
20
|
Gales L. Detection and clearance in Alzheimer's disease: leading with illusive chemical, structural and morphological features of the targets. Neural Regen Res 2024; 19:497-498. [PMID: 37721271 DOI: 10.4103/1673-5374.380897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Luís Gales
- i3S - Instituto de Investigação e Inovação em Saúde; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| |
Collapse
|
21
|
Manglano-Artuñedo Z, Peña-Díaz S, Ventura S. Small molecules to target tau amyloid aggregation. Neural Regen Res 2024; 19:509-511. [PMID: 37721277 DOI: 10.4103/1673-5374.380900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Zoe Manglano-Artuñedo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
22
|
Li J, Jiang W, Cai Y, Ning Z, Zhou Y, Wang C, Chung SK, Huang Y, Sun J, Deng M, Zhou L, Cheng X. Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism. Neural Regen Res 2024; 19:650-656. [PMID: 37721297 DOI: 10.4103/1673-5374.380906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Vascular etiology is the second most prevalent cause of cognitive impairment globally. Endothelin-1, which is produced and secreted by endothelial cells and astrocytes, is implicated in the pathogenesis of stroke. However, the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood. Here, using mice in which astrocytic endothelin-1 was overexpressed, we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia (1 hour of ischemia; 7 days, 28 days, or 3 months of reperfusion). We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion. Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6, which were differentially expressed in the brain, were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke. Moreover, the levels of the enriched differentially expressed proteins were closely related to lipid metabolism, as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis. Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine, sphingomyelin, and phosphatidic acid. Overall, this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Li
- Guangzhou University of Traditional Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Wen Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuefang Cai
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhenqiu Ning
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yingying Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Chengyi Wang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Sookja Ki Chung
- Faculty of Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| | - Yan Huang
- Guangzhou University of Traditional Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Jingbo Sun
- Guangzhou University of Traditional Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Minzhen Deng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lihua Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Xiao Cheng
- Guangzhou University of Traditional Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| |
Collapse
|
23
|
Han B, Liang W, Hai Y, Sun D, Ding H, Yang Y, Yin P. Neurophysiological, histological, and behavioral characterization of animal models of distraction spinal cord injury: a systematic review. Neural Regen Res 2024; 19:563-570. [PMID: 37721285 DOI: 10.4103/1673-5374.380871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity. With the increased degree and duration of distraction, spinal cord injuries become more serious in terms of their neurophysiology, histology, and behavior. Very few studies have been published on the specific characteristics of distraction spinal cord injury. In this study, we systematically review 22 related studies involving animal models of distraction spinal cord injury, focusing particularly on the neurophysiological, histological, and behavioral characteristics of this disease. In addition, we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury. We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research, and provide reference guidelines for the clinical diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Bo Han
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weishi Liang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Duan Sun
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongtao Ding
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yihan Yang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Yin
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Pavan B. Heterogeneous patterning of blood-brain barrier and adaptive myelination as renewing key in gray and white matter. Neural Regen Res 2024; 19:481-482. [PMID: 37721263 DOI: 10.4103/1673-5374.380884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Barbara Pavan
- Department of Neuroscience and Rehabilitation, University of Ferrara, via L Borsari; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), via Fossato di Mortara, Ferrara, Italy
| |
Collapse
|
25
|
Harland B, Kow CY, Svirskis D. Spinal intradural electrodes: opportunities, challenges and translation to the clinic. Neural Regen Res 2024; 19:503-504. [PMID: 37721274 DOI: 10.4103/1673-5374.380895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Bruce Harland
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Chien Yew Kow
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Reed JL, Qi HX, Kaas JH. Implications for brainstem recovery from studies in primates after sensory loss from arm. Neural Regen Res 2024; 19:479-480. [PMID: 37721262 DOI: 10.4103/1673-5374.380890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
27
|
Schepers M, Vanmierlo T. Novel insights in phosphodiesterase 4 subtype inhibition to target neuroinflammation and stimulate remyelination. Neural Regen Res 2024; 19:493-494. [PMID: 37721269 DOI: 10.4103/1673-5374.380899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium
| |
Collapse
|
28
|
Lim YJ, Park WT, Lee GW. Extracellular vesicles for neural regeneration after spinal cord injury. Neural Regen Res 2024; 19:491-492. [PMID: 37721268 DOI: 10.4103/1673-5374.380894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Young-Ju Lim
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
29
|
Ogunshola OO, Tsao CC. Harnessing the power of pericytes and hypoxia-inducible factor-1 to modulate stroke outcome. Neural Regen Res 2024; 19:473-474. [PMID: 37721259 DOI: 10.4103/1673-5374.380902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Omolara O Ogunshola
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chih-Chieh Tsao
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Lv Y, Yao X, Li X, Ouyang Y, Fan C, Qian Y. Cell metabolism pathways involved in the pathophysiological changes of diabetic peripheral neuropathy. Neural Regen Res 2024; 19:598-605. [PMID: 37721290 DOI: 10.4103/1673-5374.380872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Diabetic peripheral neuropathy is a common complication of diabetes mellitus. Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies. However, existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research. Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy, it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods. This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods. Various metabolic mechanisms (e.g., polyol, hexosamine, protein kinase C pathway) are associated with diabetic peripheral neuropathy, and researchers are looking for more effective treatments through these pathways.
Collapse
Affiliation(s)
- Yaowei Lv
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of attention deficit hyperactivity disorder. Neural Regen Res 2024; 19:557-562. [PMID: 37721284 DOI: 10.4103/1673-5374.380880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Inappropriate levels of hyperactivity, impulsivity, and inattention characterize attention deficit hyperactivity disorder, a common childhood-onset neuropsychiatric disorder. The cognitive function and learning ability of children with attention deficit hyperactivity disorder are affected, and these symptoms may persist to adulthood if they are not treated. The diagnosis of attention deficit hyperactivity disorder is only based on symptoms and objective tests for attention deficit hyperactivity disorder are missing. Treatments for attention deficit hyperactivity disorder in children include medications, behavior therapy, counseling, and education services which can relieve many of the symptoms of attention deficit hyperactivity disorder but cannot cure it. There is a need for a molecular biomarker to distinguish attention deficit hyperactivity disorder from healthy subjects and other neurological conditions, which would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated. Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of attention deficit hyperactivity disorder. The recent studies reviewed had performed microRNA profiling in whole blood, white blood cells, blood plasma, and blood serum of children with attention deficit hyperactivity disorder. A large number of microRNAs were dysregulated when compared to healthy controls and with some overlap between individual studies. From the studies that had included a validation set of patients and controls, potential candidate biomarkers for attention deficit hyperactivity disorder in children could be miR-140-3p, let-7g-5p, -30e-5p, -223-3p, -142-5p, -486-5p, -151a-3p, -151a-5p, and -126-5p in total white blood cells, and miR-4516, -6090, -4763-3p, -4281, -4466, -101-3p, -130a-3p, -138-5p, -195-5p, and -106b-5p in blood serum. Further studies are warranted with children and adults with attention deficit hyperactivity disorder, and consideration should be given to utilizing rat models of attention deficit hyperactivity disorder. Animal studies could be used to confirm microRNA findings in human patients and to test the effects of targeting specific microRNAs on disease progression and behavior.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology; Department of Medicine, University of Nevada-Reno, Reno, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Pérez-Moreno JJ. Presynaptic endoplasmic reticulum architecture and hereditary spastic paraplegia. Neural Regen Res 2024; 19:485-486. [PMID: 37721265 DOI: 10.4103/1673-5374.380885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Juan José Pérez-Moreno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
33
|
Miyajima M, Tabata H, Nakajima K. Migratory mode transition of astrocyte progenitors in the cerebral cortex: an intrinsic or extrinsic cell process? Neural Regen Res 2024; 19:471-472. [PMID: 37721258 DOI: 10.4103/1673-5374.380886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Michio Miyajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hidenori Tabata
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo; Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
34
|
Tang X, Yan T, Wang S, Liu Q, Yang Q, Zhang Y, Li Y, Wu Y, Liu S, Ma Y, Yang L. Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis. Neural Regen Res 2024; 19:642-649. [PMID: 37721296 DOI: 10.4103/1673-5374.380904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
β-Sitosterol is a type of phytosterol that occurs naturally in plants. Previous studies have shown that it has anti-oxidant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, and anti-tumor effects, but it is unknown whether β-sitosterol treatment reduces the effects of ischemic stroke. Here we found that, in a mouse model of ischemic stroke induced by middle cerebral artery occlusion, β-sitosterol reduced the volume of cerebral infarction and brain edema, reduced neuronal apoptosis in brain tissue, and alleviated neurological dysfunction; moreover, β-sitosterol increased the activity of oxygen- and glucose-deprived cerebral cortex neurons and reduced apoptosis. Further investigation showed that the neuroprotective effects of β-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke. In addition, β-sitosterol showed high affinity for NPC1L1, a key transporter of cholesterol, and antagonized its activity. In conclusion, β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
Collapse
Affiliation(s)
- Xiuling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Tao Yan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Saiying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Qingqing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Yongqiang Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yumei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Shuibing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital; Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
35
|
Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res 2024; 19:519-528. [PMID: 37721279 DOI: 10.4103/1673-5374.380869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated. In the human body, the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks. Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability. In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other. Here, we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis. We found that abnormal intestinal flora, the intestinal microenvironment, lung infection, chronic diseases, and mechanical ventilation can worsen the outcome of ischemic stroke. This review also introduces the influence of the brain on the gut and lungs after stroke, highlighting the bidirectional feedback effect among the gut, lungs, and brain.
Collapse
Affiliation(s)
- Xiaodi Xie
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Shanshan Dong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine; Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - ShanChun Ge
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
36
|
Zhang L, Tan X, Song F, Li D, Wu J, Gao S, Sun J, Liu D, Zhou Y, Mei W. Activation of G-protein-coupled receptor 39 reduces neuropathic pain in a rat model. Neural Regen Res 2024; 19:687-696. [PMID: 37721302 DOI: 10.4103/1673-5374.380905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Activated G-protein-coupled receptor 39 (GPR39) has been shown to attenuate inflammation by interacting with sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). However, whether GPR39 attenuates neuropathic pain remains unclear. In this study, we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats. Intrathecal injection of TC-G 1008, a specific agonist of GPR39, significantly alleviated mechanical allodynia in the rats with spared nerve injury, improved spinal cord mitochondrial biogenesis, and alleviated neuroinflammation. These changes were abolished by GPR39 small interfering RNA (siRNA), Ex-527 (SIRT1 inhibitor), and PGC-1α siRNA. Taken together, these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1α pathway in rats with spared nerve injury.
Collapse
Affiliation(s)
- Longqing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Tan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fanhe Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiayi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shaojie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia Sun
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Daiqiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
37
|
Norte-Muñoz M, García-Bernal D, García-Ayuso D, Vidal-Sanz M, Agudo-Barriuso M. Interplay between mesenchymal stromal cells and the immune system after transplantation: implications for advanced cell therapy in the retina. Neural Regen Res 2024; 19:542-547. [PMID: 37721282 DOI: 10.4103/1673-5374.380876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models. Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration, namely trophic factor deprivation and neuroinflammation. Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement. However, little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system. Here, we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system, focusing on recent work in the retina and the importance of the type of transplantation.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - David García-Bernal
- Grupo de Investigación Trasplante Hematopoyético y Terapia celular, Departamento de Bioquímica e Inmunología. Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|
38
|
Gonzalez-Cano SI, Flores G, Guevara J, Morales-Medina JC, Treviño S, Diaz A. Polyoxidovanadates a new therapeutic alternative for neurodegenerative and aging diseases. Neural Regen Res 2024; 19:571-577. [PMID: 37721286 DOI: 10.4103/1673-5374.380877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Aging is a natural phenomenon characterized by a progressive decline in physiological integrity, leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases, including cardiovascular diseases, osteoporosis, cancer, diabetes, and neurodegeneration. Aging is considered the major risk factor for Parkinson's and Alzheimer's disease develops. Likewise, diabetes and insulin resistance constitute additional risk factors for developing neurodegenerative disorders. Currently, no treatment can effectively reverse these neurodegenerative pathologies. However, some antidiabetic drugs have opened the possibility of being used against neurodegenerative processes. In the previous framework, Vanadium species have demonstrated a notable antidiabetic effect. Our research group evaluated polyoxidovanadates such as decavanadate and metforminium-decavanadate with preventive and corrective activity on neurodegeneration in brain-specific areas from rats with metabolic syndrome. The results suggest that these polyoxidovanadates induce neuronal and cognitive restoration mechanisms. This review aims to describe the therapeutic potential of polyoxidovanadates as insulin-enhancer agents in the brain, constituting a therapeutic alternative for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samuel Treviño
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Alfonso Diaz
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
39
|
Huenchuguala S, Segura-Aguilar J. Single-neuron neurodegeneration as a degenerative model for Parkinson's disease. Neural Regen Res 2024; 19:529-535. [PMID: 37721280 DOI: 10.4103/1673-5374.380878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
The positive effect of levodopa in the treatment of Parkinson's disease, although it is limited in time and has severe side effects, has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons. Successful preclinical studies with coenzyme Q10, mitoquinone, isradipine, nilotinib, TCH346, neurturin, zonisamide, deferiprone, prasinezumab, and cinpanemab prompted clinical trials. However, these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease, despite its severe side effects after 4-6 years of chronic treatment. The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson's disease treatment is a big problem. In our opinion, the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine, that induce a very fast, massive and expansive neurodegenerative process, which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons. The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson's patients is due to (i) a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron, (ii) a neurotoxic event that is not expansive and (iii) the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons. The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome, since it (i) is generated within neuromelanin-containing dopaminergic neurons, (ii) does not cause an expansive neurotoxic effect and (iii) triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson's disease. In conclusion, based on the hypothesis that the neurodegenerative process of idiopathic Parkinson's disease corresponds to a single-neuron neurodegeneration model, we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2. It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras, Osorno, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, Instituto de Ciencias Biomedicas (ICBM), Faculty of medicine, University of Chile, Independencia, Santiago, Chile
| |
Collapse
|
40
|
Antonijevic M, Dallemagne P, Rochais C. Inducing neuronal regeneration and differentiation via the BDNF/TrkB signaling pathway: a key target against neurodegenerative diseases? Neural Regen Res 2024; 19:495-496. [PMID: 37721270 DOI: 10.4103/1673-5374.380896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
|
41
|
Batenburg KL, Scheper W. Neuron-to-astrocyte proteostatic stress signaling in response to tau pathology. Neural Regen Res 2024; 19:505-506. [PMID: 37721275 DOI: 10.4103/1673-5374.377609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Kevin Llewelyn Batenburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
| | - Wiep Scheper
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Gerber YN, Perrin FE. In vivo astrocyte reprogramming following spinal cord injury. Neural Regen Res 2024; 19:487-488. [PMID: 37721266 DOI: 10.4103/1673-5374.380893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Yannick N Gerber
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Florence E Perrin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier; Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
43
|
Bórquez DA, Urrutia PJ. Iron regulatory protein 1: the deadly switch of ferroptosis. Neural Regen Res 2024; 19:477-478. [PMID: 37721261 DOI: 10.4103/1673-5374.380889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Daniel A Bórquez
- Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, Santiago, Chile
| | - Pamela J Urrutia
- Institute of Nutrition & Food Technology (INTA), Universidad de Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
44
|
Hamblin MR. Transcranial photobiomodulation for the brain: a wide range of clinical applications. Neural Regen Res 2024; 19:483-484. [PMID: 37721264 DOI: 10.4103/1673-5374.380891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg-Doornfontein Campus, Doornfontein, South Africa
| |
Collapse
|
45
|
Trakhtenberg EF. Premature axon-oligodendrocyte interaction contributes to stalling of experimental axon regeneration after injury to the white matter. Neural Regen Res 2024; 19:469-470. [PMID: 37721257 DOI: 10.4103/1673-5374.380883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
46
|
Yu H, Shao M, Luo X, Pang C, So KF, Yu J, Zhang L. Treadmill exercise improves hippocampal neural plasticity and relieves cognitive deficits in a mouse model of epilepsy. Neural Regen Res 2024; 19:657-662. [PMID: 37721298 DOI: 10.4103/1673-5374.377771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Epilepsy frequently leads to cognitive dysfunction and approaches to treatment remain limited. Although regular exercise effectively improves learning and memory functions across multiple neurological diseases, its application in patients with epilepsy remains controversial. Here, we adopted a 14-day treadmill-exercise paradigm in a pilocarpine injection-induced mouse model of epilepsy. Cognitive assays confirmed the improvement of object and spatial memory after endurance training, and electrophysiological studies revealed the maintenance of hippocampal plasticity as a result of physical exercise. Investigations of the mechanisms underlying this effect revealed that exercise protected parvalbumin interneurons, probably via the suppression of neuroinflammation and improved integrity of blood-brain barrier. In summary, this work identified a previously unknown mechanism through which exercise improves cognitive rehabilitation in epilepsy.
Collapse
Affiliation(s)
- Hang Yu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Mingting Shao
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Chaoqin Pang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Jiandong Yu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Shandong Province, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province; School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
47
|
Lee B, An HJ. Small but big leaps towards neuroglycomics: exploring N-glycome in the brain to advance the understanding of brain development and function. Neural Regen Res 2024; 19:489-490. [PMID: 37721267 DOI: 10.4103/1673-5374.380887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site; Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
48
|
Wu J, Huang Y, Yu H, Li K, Zhang S, Qiao G, Liu X, Duan H, Huang Y, So KF, Yang Z, Li X, Wang L. Chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor for neurotrophic keratopathy. Neural Regen Res 2024; 19:680-686. [PMID: 37721301 DOI: 10.4103/1673-5374.380908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Neurotrophic keratopathy is a persistent defect of the corneal epithelium, with or without stromal ulceration, due to corneal nerve deficiency caused by a variety of etiologies. The treatment options for neurotrophic keratopathy are limited. In this study, an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor (CTH-mNGF). Its effectiveness was evaluated in corneal denervation (CD) mice and patients with neurotrophic keratopathy. In the preclinical setting, CTH-mNGF was assessed in a murine corneal denervation model. CTH-mNGF was transparent, thermosensitive, and ensured sustained release of mNGF for over 20 hours on the ocular surface, maintaining the local mNGF concentration around 1300 pg/mL in vivo. Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice. A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy. Patients received topical CTH-mNGF twice daily for 8 weeks. Fluorescein sodium images, Schirmer's test, intraocular pressure, Cochet-Bonnet corneal perception test, and best corrected visual acuity were evaluated. In total, six patients (total of seven eyes) diagnosed with neurotrophic keratopathy were enrolled. After 8 weeks of CTH-mNGF treatment, all participants showed a decreased area of corneal epithelial defect, as stained by fluorescence. Overall, six out of seven eyes had fluorescence staining scores < 5. Moreover, best corrected visual acuity, intraocular pressure, Schirmer's test and Cochet-Bonnet corneal perception test results showed no significant improvement. An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes. This study demonstrates that CTH-mNGF is transparent, thermosensitive, and has sustained-release properties. Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy, being convenient and cost effective.
Collapse
Affiliation(s)
- Jie Wu
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital; The PLA Medical College, Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing; Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Yulei Huang
- Medical School of Chinese PLA, Beijing, China
| | - Hanrui Yu
- Medical School of Chinese PLA, Beijing, China
| | - Kaixiu Li
- Medical School of Chinese PLA, Beijing, China
| | | | | | - Xiao Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory); Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University; School of Engineering Medicine, Beijing Key Laboratory for Biomaterials and Neural Regeneration; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital; The PLA Medical College, Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| |
Collapse
|
49
|
Wang A, Zhang H, Li X, Zhao Y. Annexin A1 in the nervous and ocular systems. Neural Regen Res 2024; 19:591-597. [PMID: 37721289 DOI: 10.4103/1673-5374.380882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
The therapeutic potential of Annexin A1, an important member of the Annexin superfamily, has become evident in results of experiments with multiple human systems and animal models. The anti-inflammatory and pro-resolving effects of Annexin A1 are characteristic of pathologies involving the nervous system. In this review, we initially describe the expression sites of Annexin A1, then outline the mechanisms by which Annexin A1 maintains the neurological homeostasis through either formyl peptide receptor 2 or other molecular approaches; and, finally, we discuss the neuroregenerative potential qualities of Annexin A1. The eye and the nervous system are anatomically and functionally connected, but the association between visual system pathogenesis, especially in the retina, and Annexin A1 alterations has not been well summarized. Therefore, we explain the beneficial effects of Annexin A1 for ocular diseases, especially for retinal diseases and glaucoma on the basis of published findings, and we explore present and future delivery strategies for Annexin A1 to the retina.
Collapse
Affiliation(s)
- Aijia Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xing Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
50
|
García-Ayuso D, Di Pierdomenico J, Martínez-Vacas A, Vidal-Sanz M, Picaud S, Villegas-Pérez MP. Taurine: a promising nutraceutic in the prevention of retinal degeneration. Neural Regen Res 2024; 19:606-610. [PMID: 37721291 DOI: 10.4103/1673-5374.380820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Taurine is considered a non-essential amino acid because it is synthesized by most mammals. However, dietary intake of taurine may be necessary to achieve the physiological levels required for the development, maintenance, and function of certain tissues. Taurine may be especially important for the retina. The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress, apoptosis, and degeneration of photoreceptors and retinal ganglion cells. Low plasma taurine levels may also underlie retinal degeneration in humans and therefore, taurine administration could exert retinal neuroprotective effects. Taurine has antioxidant, anti-apoptotic, immunomodulatory, and calcium homeostasis-regulatory properties. This review summarizes the role of taurine in retinal health and disease, where it appears that taurine may be a promising nutraceutical.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Johnny Di Pierdomenico
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Ana Martínez-Vacas
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - María P Villegas-Pérez
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| |
Collapse
|