1
|
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013; 2013:162750. [PMID: 24470791 PMCID: PMC3891543 DOI: 10.1155/2013/162750] [Citation(s) in RCA: 1933] [Impact Index Per Article: 161.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/07/2013] [Indexed: 02/07/2023] Open
Abstract
There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.
Collapse
|
Review |
12 |
1933 |
2
|
Kumar S, Mishra A, Pandey AK. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:120. [PMID: 23721571 PMCID: PMC3680177 DOI: 10.1186/1472-6882-13-120] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 05/23/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Parthenium hysterophorus L. (Asteraceae) is a common weed occurring throughout the globe. In traditional medicine its decoction has been used for treatment of many infectious and degenerative diseases. This work was therefore designed to assess the phytochemical constitution of P. hysterophorus flower and root extracts and to evaluate their reducing power, radical scavenging activity as well as protective efficacy against membrane lipid damage. METHODS Dried flower and root samples were sequentially extracted with non-polar and polar solvents using Soxhlet apparatus. The phytochemical screening was done using standard chemical methods and thin layer chromatography. Total phenolic content was determined spectrophotometrically. Reducing power and hydroxyl radical scavenging activity assays were used to measure antioxidant activity. Protection against membrane damage was evaluated by inhibition of lipid peroxidation (TBARS assay) in rat kidney homogenate. RESULTS Flavonoids, terpenoids, alkaloids and cardiac glycosides were present in all the extract. The total phenol contents in flower and root extracts were found to be in the range 86.69-320.17 mg propyl gallate equivalent (PGE)/g and 55.47-253.84 mg PGE/g, respectively. Comparatively better reducing power was observed in hexane fractions of flower (0.405) and root (0.282). Benzene extract of flower and ethyl acetate fraction of root accounted for appreciable hydroxyl radical scavenging activity (75-77%). Maximum protection against membrane lipid peroxidative damage among flower and root extracts was provided by ethanol (55.26%) and ethyl acetate (48.95%) fractions, respectively. Total phenolic content showed positive correlations with reducing power and lipid peroxidation inhibition (LPOI) % in floral extracts as well as with hydroxyl radical scavenging activity and LPOI % in root extracts. CONCLUSION Study established that phytochemicals present in P. hysterophorus extracts have considerable antioxidant potential as well as lipo-protective activity against membrane damage.
Collapse
|
research-article |
12 |
97 |
3
|
Kumar S, Pandey AK. Medicinal attributes of Solanum xanthocarpum fruit consumed by several tribal communities as food: an in vitro antioxidant, anticancer and anti HIV perspective. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:112. [PMID: 24678980 PMCID: PMC3973604 DOI: 10.1186/1472-6882-14-112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/24/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Solanum xanthocarpum (Solanaceae) has been used for treatment of many infectious and degenerative diseases in traditional medicine. Present study reports the medicinal efficacy of S. xanthocarpum fruit as antioxidant, anticancer and anti HIV agents. METHODS Extracts were prepared using Soxhlet apparatus and partially characterized by thin layer chromatography (TLC). Total flavonoid content was determined spectrophotometrically. Reducing power, DPPH radical scavenging activity and lipid peroxidation inhibition assays were used for measurement of antioxidant potential. Cytotoxic (SRB assay) and anti-HIV RT inhibition (RT assay kit, Roche) activities were determined using ELISA. RESULTS TLC revealed the diversity of phytoconstituents in various sequential extracts of S. xanthocarpum fruit. Total flavonoid contents in extracts ranged between 10.22-162.49 μg quercetin equivalent/mg. Spectroscopic scanning of water soluble phenolics showed maximum absorbance at 250 and 280 nm. Polar extracts displayed potent radical scavenging activity (>80%). Several sub-fractions (spots) of extracts separated on TLC plates also exhibited powerful radical scavenging activity. Considerable reducing power was observed in extracts. Hexane fraction provided 55% lipoprotection in rat kidney homogenate. Non-polar extracts exhibited appreciable cytotoxic activity (70-91%) against leukemia (THP-1) and lung cancer (HOP-62) cell lines. Lower inhibitory activity was observed in extracts against HIV Reverse Transcriptase enzyme. CONCLUSION The study demonstrated considerable antioxidant and anticancer activities in S. xanthocarpum fruit.
Collapse
|
research-article |
11 |
45 |
4
|
Kumar S, Pandey AK. Phenolic Content, Reducing Power and Membrane Protective Activities of Solanum xanthocarpumRoot Extracts. VEGETOS- AN INTERNATIONAL JOURNAL OF PLANT RESEARCH 2013; 26:301. [DOI: 10.5958/j.2229-4473.26.1.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
|
12 |
40 |
5
|
Kumar S, Kumar R, Dwivedi A, Pandey AK. In vitro antioxidant, antibacterial, and cytotoxic activity and in vivo effect of Syngonium podophyllum and Eichhornia crassipes leaf extracts on isoniazid induced oxidative stress and hepatic markers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:459452. [PMID: 25162013 PMCID: PMC4137625 DOI: 10.1155/2014/459452] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 02/05/2023]
Abstract
The present study reports the in vitro antioxidant, antibacterial, and cytotoxic potential of Syngonium podophyllum (SP) and Eichhornia crassipes (EC) leaf aqueous extracts as well as their in vivo effect on oxidative stress and hepatic biomarkers in isoniazid induced rats. Phytochemical screening of extracts revealed the presence of flavonoids, terpenoids, reducing sugars, alkaloids, and saponins. Phenolic content in SP and EC extracts was 5.36 ± 0.32 and 10.63 ± 0.13 mg PGE/g, respectively, while flavonoid content was 1.26 ± 0.03 and 0.51 ± 0.03 μg QE/mg, respectively. EC extract exhibited comparatively better antioxidant activity as indicated by reducing power (0.197-0.775), DPPH radical scavenging potential (11%-96%), and metal ion chelating ability (42%-93%). Both the extracts provided 13%-65% protection against lipid peroxidation in rat tissue (liver, kidney, and brain) homogenate. SP and EC extracts exhibited 51% and 43% cytotoxicity against lung cancer (NCI-H322) cell line, respectively. Both extracts demonstrated considerable antibacterial activity against Proteus vulgaris, Salmonella typhi, and Bordetella bronchiseptica. Coadministration of E. crassipes extract with isoniazid in rats accounted for 46% decrease in malondialdehyde content and 21% increase in FRAP value of plasma. It also mitigated the isoniazid induced alterations in serum enzymes (SGOT, SGPT, and ALP), total bilirubin, creatinine, and hemoglobin contents. S. podophyllum extract was found to be hepatotoxic.
Collapse
|
research-article |
11 |
38 |
6
|
Kumar S, Gupta A, Pandey AK. Calotropis procera Root Extract Has the Capability to Combat Free Radical Mediated Damage. ISRN PHARMACOLOGY 2013; 2013:691372. [PMID: 24222863 PMCID: PMC3809601 DOI: 10.1155/2013/691372] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/02/2013] [Indexed: 02/05/2023]
Abstract
The present study reports the antioxidant and membrane protective activities of Calotropis procera aqueous root extract using several in vitro assays along with the determination of phenolic as well as flavonoid contents. Total phenol and flavonoid contents in extract were 15.67 ± 1.52 mg propyl gallate equivalent/g and 1.62 ± 0.05 mg quercetin equivalent/g, respectively. UV-visual spectroscopic scanning of the extract indicated the presence of glycoside-linked tannins or flavonoids. The extract exhibited appreciable reducing power signifying hydrogen donating potential. DPPH radical scavenging assay revealed substantial free radical scavenging activity (42-90%) in the extracts. Concentration dependent response was observed in the metal ion chelating activity (16-95%). Extracts also provided protection against iron induced lipid peroxidation in rat tissue (liver, brain, and kidney) homogenates. Comparatively better protective efficacy against peroxidative damage was observed in liver (71%) followed by kidney (65%) and brain (60%) tissues. Positive correlation (r (2) = 0.756) was observed between DPPH free radical scavenging activity and reducing power of extract. Similarly strong positive correlation (r (2) ≈ 0.756) was observed between metal ion chelating ability and percentage lipid peroxidation inhibition in different tissues. The study demonstrated considerable protective efficacy in C. procera root aqueous extracts against free radical and metal ion mediated oxidative damage.
Collapse
|
research-article |
12 |
32 |
7
|
Kumar S, Chashoo G, Saxena AK, Pandey AK. Parthenium hysterophorus: a probable source of anticancer, antioxidant and anti-HIV agents. BIOMED RESEARCH INTERNATIONAL 2013; 2013:810734. [PMID: 24350290 PMCID: PMC3848086 DOI: 10.1155/2013/810734] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/03/2013] [Indexed: 02/05/2023]
Abstract
The present work reports the anticancer, antioxidant, lipo-protective, and anti-HIV activities of phytoconstituents present in P. hysterophorus leaf. Dried leaf samples were sequentially extracted with nonpolar and polar solvents. Ethanol fraction showed noticeable cytotoxic activity (81-85%) in SRB assay against MCF-7 and THP-1 cancer cell lines at 100 μg/ml concentration, while lower activity was observed with DU-145 cell line. The same extract exhibited 17-98% growth inhibition of HL-60 cancer cell lines in MTT assay, showing concentration dependent response. Ethanol extract caused 12% reduction in mitochondrial membrane potential and 10% increment in sub G1 population of HL-60 cell lines. Several leaf fractions, namely, ethyl acetate, ethanol, and aqueous fractions exhibited considerable reducing capability at higher concentrations. Most of the extracts demonstrated appreciable (>75%) metal ion chelating and hydroxyl radical scavenging activities at 200 µg/ml. All the extracts except aqueous fraction accounted for about 70-80% inhibition of lipid peroxidation in rat liver homogenate indicating protective response against membrane damage. About 40% inhibition of reverse transcriptase (RT) activity was observed in hexane fraction in anti-HIV assay at 6.0 µg/ml concentration. The study showed that phytochemicals present in P. hysterophorus leaf have considerable potential as cytotoxic and antioxidant agents with low to moderate anti-HIV activity.
Collapse
|
research-article |
12 |
31 |
8
|
Kumar S, Prajapati KS, Singh AK, Kushwaha PP, Shuaib M, Gupta S. Long non-coding RNA regulating androgen receptor signaling in breast and prostate cancer. Cancer Lett 2021; 504:15-22. [PMID: 33556545 DOI: 10.1016/j.canlet.2020.11.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 02/05/2023]
Abstract
The human genome transcribe an array of RNAs that do not encode proteins and may act as mediators in the regulation of gene expression. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs consisting of more than 200 nucleotides of RNA transcripts that play important role in tumor development. Numerous lncRNAs have been characterized as functional transcripts associated with several biological processes and pathologic stages. Although the biological function and molecular mechanisms of lncRNAs remains to be explored, recent studies demonstrate aberrant expression of several lncRNAs linked with various human cancers. The present review summarizes the current knowledge of lncRNA expression patterns and mechanisms that contribute to carcinogenesis. In particular, we focus on lncRNAs regulating androgen receptor signaling pathways in prostate and breast cancer subtype having prognostic and therapeutic implications.
Collapse
|
Review |
4 |
21 |
9
|
Kumar S, Kushwaha PP, Gupta S. Emerging targets in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:161-177. [PMID: 35582722 PMCID: PMC8992633 DOI: 10.20517/cdr.2018.27] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
Drug resistance is a complex phenomenon that frequently develops as a failure to chemotherapy during cancer treatment. Malignant cells increasingly generate resistance to various chemotherapeutic drugs through distinct mechanisms and pathways. Understanding the molecular mechanisms involved in drug resistance remains an important area of research for identification of precise targets and drug discovery to improve therapeutic outcomes. This review highlights the role of some recent emerging targets and pathways which play critical role in driving drug resistance.
Collapse
|
Review |
6 |
20 |
10
|
Kumar S, Pandey S, Pandey AK. In vitro antibacterial, antioxidant, and cytotoxic activities of Parthenium hysterophorus and characterization of extracts by LC-MS analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495154. [PMID: 24895583 PMCID: PMC4033558 DOI: 10.1155/2014/495154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/16/2014] [Indexed: 02/05/2023]
Abstract
Present work reports the biological activities of P. hysterophorus leaf, stem, flower, and root. Dried samples were sequentially extracted with many solvents. Hexane (HX), benzene (BZ), and chloroform (CH) extracts of leaf showed considerable antibacterial activity against Streptococcus mutans (MTCC 497), Proteus vulgaris (MTCC 7299), and Salmonella typhi (MTCC 3917). Flower extracts exhibited presence of higher amount of flavonoids (13.9-59.6 μgQE/mg) followed by leaf, stem, and root. Stem (HX, BZ, and CH), leaf ethanol (ET), and root (HX, BZ, and CH) fractions showed noticeable antioxidant capacity in phosphomolybdate assay. Most of the extracts demonstrated beta carotene bleaching inhibition capability. BZ, ethyl acetate (EA), and ET fractions of leaves, stem aqueous (AQ), and flower EA extracts showed membrane protective activities (40-55%). Middle fractions of the plant parts displayed moderate antihemolytic potential. Most of the flower extracts exhibited cytotoxic activity (80-100%) against lung and colon cancer cell lines. Root (HX and ET) and leaf ET extracts showed considerable inhibition (90-99%) of colon and ovary cancer cell lines. The LC-MS scan demonstrated presence of different compounds showing 3-20 min retention time. The study revealed considerable antibacterial, antioxidant, lipo-protective, antihemolytic, and anticancer potential in all parts of P. hysterophorus.
Collapse
|
research-article |
11 |
18 |
11
|
Kumar S, Prajapati KS, Shuaib M, Kushwaha PP, Tuli HS, Singh AK. Five-Decade Update on Chemopreventive and Other Pharmacological Potential of Kurarinone: a Natural Flavanone. Front Pharmacol 2021; 12:737137. [PMID: 34646138 PMCID: PMC8502857 DOI: 10.3389/fphar.2021.737137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
In the present article we present an update on the role of chemoprevention and other pharmacological activities reported on kurarinone, a natural flavanone (from 1970 to 2021). To the best of our knowledge this is the first and exhaustive review of kurarinone. The literature was obtained from different search engine platforms including PubMed. Kurarinone possesses anticancer potential against cervical, lung (non-small and small), hepatic, esophageal, breast, gastric, cervical, and prostate cancer cells. In vivo anticancer potential of kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models. In in vitro anticancer studies, kurarinone showed IC50 in the range of 2-62 µM while in vivo efficacy was studied in the range of 20-500 mg/kg body weight of the experimental organism. The phytochemical showed higher selectivity toward cancer cells in comparison to respective normal cells. kurarinone inhibits cell cycle progression in G2/M and Sub-G1 phase in a cancer-specific context. It induces apoptosis in cancer cells by modulating molecular players involved in apoptosis/anti-apoptotic processes such as NF-κB, caspase 3/8/9/12, Bcl2, Bcl-XL, etc. The phytochemical inhibits metastasis in cancer cells by modulating the protein expression of Vimentin, N-cadherin, E-cadherin, MMP2, MMP3, and MMP9. It produces a cytostatic effect by modulating p21, p27, Cyclin D1, and Cyclin A proteins in cancer cells. Kurarinone possesses stress-mediated anticancer activity and modulates STAT3 and Akt pathways. Besides, the literature showed that kurarinone possesses anti-inflammatory, anti-drug resistance, anti-microbial (fungal, yeast, bacteria, and Coronavirus), channel and transporter modulation, neuroprotection, and estrogenic activities as well as tyrosinase/diacylglycerol acyltransferase/glucosidase/aldose reductase/human carboxylesterases 2 inhibitory potential. Kurarinone also showed therapeutic potential in the clinical study. Further, we also discussed the isolation, bioavailability, metabolism, and toxicity of Kurarinone in experimental models.
Collapse
|
Review |
4 |
13 |
12
|
Kumar S, Sharma UK, Sharma AK, Pandey AK. Protective efficacy of Solanum xanthocarpum root extracts against free radical damage: phytochemical analysis and antioxidant effect. Cell Mol Biol (Noisy-le-grand) 2012; 58:174-181. [PMID: 23273209 DOI: 10.1170/t938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/24/2012] [Indexed: 02/06/2023]
Abstract
Free radicals have been implicated in many diseases. They attack biological macromolecules in healthy human cells and cause protein and DNA damage along with lipid peroxidation. Present study reports the phytochemical analysis as well as free radical scavenging and antioxidant activities of Solanum xanthocarpum root extracts. Tannins, flavonoids, terpenoids, alkaloids, saponins and steroids were present in different extracts. Total flavonoid content in extracts was quantified and maximum contents were found in ethyl acetate fraction followed by chloroform and ethyl alcohol fractions, respectively. Dose dependent response was observed in metal ion chelating activity of extracts. Comparatively better chelating activity was found in polar extracts. Most of the extracts exhibited significant free radical scavenging activity in DPPH radical scavenging assay. Ethanolic and aqueous extracts accounted for about 40—50% lipid peroxidation inhibition (LPOI) in rat liver homogenate. Antioxidant activity did not show direct correlation with the amount of flavonoid contents in the extracts. However, direct correlation was observed between DPPH free radical scavenging activity and LPOI. Antioxidant activity of the extracts was compared with standard antioxidants. The differential activity observed in extracts could be attributed to the presence of other phytochemicals such as tannins and terpenoids in addition to flavonoids. The study demonstrated appreciable protective efficacy in S. xanthocarpum root extracts against free radical damage.
Collapse
|
|
13 |
7 |
13
|
Kumar S, Gupta S. Dietary phytochemicals and their role in cancer chemoprevention. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:10.20517/2394-4722.2021.125. [PMID: 34888417 PMCID: PMC8654095 DOI: 10.20517/2394-4722.2021.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
research-article |
4 |
6 |
14
|
Kumar S, Shuaib M, Prajapati KS, Singh AK, Choudhary P, Singh S, Gupta S. A candidate triple-negative breast cancer vaccine design by targeting clinically relevant cell surface markers: an integrated immuno and bio-informatics approach. 3 Biotech 2022; 12:72. [PMID: 35223358 PMCID: PMC8859024 DOI: 10.1007/s13205-022-03140-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Triple-negative breast cancer (TNBC) is an aggressive, metastatic/invasive sub-class of breast cancer (BCa). Cell surface protein-derived multi-epitope vaccine-mediated targeting of TNBC cells could be a better strategy against the disease. Literature-based identified potential cell surface markers for TNBC cells were subjected to expression pattern and survival analysis in BCa patient sample using TCGA database. The cytotoxic and helper T-lymphocytes antigenic epitopes in the test proteins were identified, selected and fused together with the appropriate linkers and an adjuvant, to construct the multi-epitope vaccine (MEV). The immune profile, physiochemical property (PP) and world population coverage of the MEV was studied. Immune simulation, cloning in a suitable vector, molecular docking (against Toll-like receptors, MHC (I/II) molecules), and molecular dynamics simulations of the MEV was performed. Cell surface markers were differentially expressed in TNBC samples and showed poor survival in TNBC patients. Satisfactory PP and WPC (up to 89 and 99%) was observed. MEV significant stable binding with the immune molecules and induced the immune cells in silico. The designed vaccine has capability to elicit immune response which could be utilized to target TNBC alone/combination with other therapy. The experimental studies are required to check the efficacy of the vaccine. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03140-3.
Collapse
|
research-article |
3 |
6 |
15
|
Kumar S, Singh AK, Kushwaha PP, Prajapati KS, Senapati S, Mohd SM, Gupta S. Identification of Compounds from Curcuma longa with In Silico Binding Potential against SARS-CoV-2 and Human Host Proteins Involve in Virus Entry and Pathogenesis. Indian J Pharm Sci 2021; 83. [DOI: 10.36468/pharmaceutical-sciences.873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
|
4 |
6 |
16
|
Kumar S, Rizwan Hussain S, Waseem M, Mahdi F, Bansal C, Kaleem Ahmad M. D Allele Frequency in Insertion/Deletion Polymorphism of the Angiotensin Converting Enzyme (ACE) Gene is Associated with Development of Breast Cancer Risk in Indian Women. CURR PROTEOMICS 2016; 13:297-304. [DOI: 10.2174/1570164613666160902125913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
|
9 |
2 |
17
|
Kumar S, Dwivedi A, Kumar R, Pandey AK. Preliminary Evaluation of Biological Activities and Phytochemical Analysis of Syngonium podophyllum Leaf. NATIONAL ACADEMY SCIENCE LETTERS 2015; 38:143-146. [DOI: 10.1007/s40009-014-0318-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
|
10 |
1 |
18
|
Kumar S, Shuaib M, AlAsmari AF, Alqahtani F, Gupta S. GNL3 and PA2G4 as Prognostic Biomarkers in Prostate Cancer. Cancers (Basel) 2023; 15:2723. [PMID: 37345060 PMCID: PMC10216705 DOI: 10.3390/cancers15102723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/23/2023] [Imported: 01/16/2025] Open
Abstract
Prostate cancer is a multifocal and heterogeneous disease common in males and remains the fifth leading cause of cancer-related deaths worldwide. The prognosis of prostate cancer is variable and based on the degree of cancer and its stage at the time of diagnosis. Existing biomarkers for the prognosis of prostate cancer are unreliable and lacks specificity and sensitivity in guiding clinical decision. There is need to search for novel biomarkers having prognostic and predictive capabilities in guiding clinical outcomes. Using a bioinformatics approach, we predicted GNL3 and PA2G4 as biomarkers of prognostic significance in prostate cancer. A progressive increase in the expression of GNL3 and PA2G4 was observed during cancer progression having significant association with poor survival in prostate cancer patients. The Receiver Operating Characteristics of both genes showed improved area under the curve against sensitivity versus specificity in the pooled samples from three different GSE datasets. Overall, our analysis predicted GNL3 and PA2G4 as prognostic biomarkers of clinical significance in prostate cancer.
Collapse
|
Review |
2 |
1 |
19
|
Kumar S, Prajapati KS, Gupta S. The Multifaceted Role of Signal Peptide-CUB-EGF Domain-Containing Protein (SCUBE) in Cancer. Int J Mol Sci 2022; 23:10577. [PMID: 36142489 PMCID: PMC9503623 DOI: 10.3390/ijms231810577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 02/05/2023] Open
Abstract
Signal peptide, CUB, and EGF-like domain-containing proteins (SCUBE) are secretory cell surface glycoproteins that play key roles in the developmental process. SCUBE proteins participate in the progression of several diseases, including cancer, and are recognized for their oncogenic and tumor suppressor functions depending on the cellular context. SCUBE proteins promote cancer cell proliferation, angiogenesis, invasion, or metastasis, stemness or self-renewal, and drug resistance. The association of SCUBE with other proteins alters the expression of signaling pathways, including Hedgehog, Notch, TGF-β/Smad2/3, and β-catenin. Further, SCUBE proteins function as potential prognostic and diagnostic biomarkers for breast cancer, renal cell carcinoma, endometrial carcinoma, and nasopharyngeal carcinoma. This review presents key features of SCUBE family members, and their structure and functions, and highlights their contribution in the development and progression of cancer. A comprehensive understanding of the role of SCUBE family members offers novel strategies for cancer therapy.
Collapse
|
Review |
3 |
1 |
20
|
Kumar S, Chaudhri S. Recent update on IGF-1/IGF-1R signaling axis as a promising therapeutic target for triple-negative breast cancer. Pathol Res Pract 2024; 263:155620. [PMID: 39357179 DOI: 10.1016/j.prp.2024.155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] [Imported: 01/16/2025]
Abstract
Insulin-like growth factor 1/Insulin-like growth factor 1-receptor (IGF-1/IGF-1R) pathway is highly breast cancer subtype context-dependent. Triple-negative breast cancer (TNBC) is an aggressive, highly metastatic cancer showing early recurrence and poor prognosis. High expression of IGF-1 and its receptor IGF-1R, their interaction, autophosphorylation, and activation of intracellular signaling cascades have been significantly associated with TNBC pathophysiology. In the last five to seven years, marvelous work has been done to explore the role of IGF-1/IGF-1R axis in TNBC. In the present review, starting from the general introduction to IGF-1/IGF-1R pathway an up-to-date discussion was focused on its role in TNBC pathophysiology. Further we discussed the up/down stream molecular events of IGF-1/IGF-1R axis, clinical relevance of IGF-1 and IGF-1R levels in TNBC patients, anti-TNBC therapy and possible way-out for IGF-1/IGF-1R axis mediate therapy resistance in TNBC. Combination therapy strategy has been researched to overcome direct IGF-1/IGF-1R pathway inhibition mediated therapy resistance and produced promising results in the management of TNBC. The understanding of up/downstream of the IGF-1/IGF-1R axis provide immense focus on the pathway as a therapeutic target. It is expected within the next decade to determine its potentiality, or lack thereof, for TNBC treatment.
Collapse
|
Review |
1 |
|
21
|
Kumar S, Pandey AK. Potential Molecular Targeted Therapy for Unresectable Hepatocellular Carcinoma. Curr Oncol 2023; 30:1363-1380. [PMID: 36826066 PMCID: PMC9955633 DOI: 10.3390/curroncol30020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] [Imported: 01/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers, representing a serious worldwide health concern. The recurrence incidence of hepatocellular carcinoma (HCC) following surgery or ablation is as high as 70%. Thus, the clinical applicability of standard surgery and other locoregional therapy to improve the outcomes of advanced HCC is restricted and far from ideal. The registered trials did not identify a treatment that prolonged recurrence-free survival, the primary outcome of the majority of research. Several investigator-initiated trials have demonstrated that various treatments extend patients' recurrence-free or overall survival after curative therapies. In the past decade, targeted therapy has made significant strides in the treatment of advanced HCC. These targeted medicines produce antitumour effects via specific signals, such as anti-angiogenesis or advancement of the cell cycle. As a typical systemic treatment option, it significantly improves the prognosis of this fatal disease. In addition, the combination of targeted therapy with an immune checkpoint inhibitor is redefining the paradigm of advanced HCC treatment. In this review, we focused on the role of approved targeted medicines and potential therapeutic targets in unresectable HCC.
Collapse
|
Review |
2 |
|
22
|
Kumar S. Editorial: Chromatographic analytical methods for quantifying newly marketed targeted antitumor drugs. Front Pharmacol 2023; 14:1308336. [PMID: 38026981 PMCID: PMC10644766 DOI: 10.3389/fphar.2023.1308336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] [Imported: 01/16/2025] Open
|
Editorial |
2 |
|
23
|
Kumar S, Pandey AK. Pharmacological potential of serially extracted Solanum xanthocarpum fruit extracts and their phytochemical characterization. JOURNAL OF HERBS, SPICES & MEDICINAL PLANTS 2022; 28:427-441. [DOI: 10.1080/10496475.2022.2079793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 02/08/2023]
|
|
3 |
|
24
|
Kumar S, Gupta S, Chandra Gupta S. Editorial: Targeting triple negative breast cancer by natural compounds. Front Pharmacol 2023; 14:1172245. [PMID: 37007036 PMCID: PMC10064129 DOI: 10.3389/fphar.2023.1172245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] [Imported: 01/16/2025] Open
|
Editorial |
2 |
|