1
|
Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VMY, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 2005; 120:701-713. [PMID: 15766532 DOI: 10.1016/j.cell.2005.01.015] [Citation(s) in RCA: 644] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 11/17/2004] [Accepted: 01/13/2005] [Indexed: 10/25/2022] [Imported: 07/05/2024]
Abstract
Cerebral deposition of beta-amyloid (Abeta) peptides is an invariant pathological hallmark in brains of patients with Alzheimer's disease (AD) and transgenic mice coexpressing familial AD-linked APP and PS1 variants. We now report that exposure of transgenic mice to an "enriched environment" results in pronounced reductions in cerebral Abeta levels and amyloid deposits, compared to animals raised under "standard housing" conditions. The enzymatic activity of an Abeta-degrading endopeptidase, neprilysin, is elevated in the brains of "enriched" mice and inversely correlated with amyloid burden. Moreover, DNA microarray analysis revealed selective upregulation in levels of transcripts encoded by genes associated with learning and memory, vasculogenesis, neurogenesis, cell survival pathways, Abeta sequestration, and prostaglandin synthesis. These studies provide evidence that environmental enrichment leads to reductions in steady-state levels of cerebral Abeta peptides and amyloid deposition and selective upregulation in levels of specific transcripts in brains of transgenic mice.
Collapse
|
|
20 |
644 |
2
|
Lazarov O, Mattson MP, Peterson DA, Pimplikar SW, van Praag H. When neurogenesis encounters aging and disease. Trends Neurosci 2010; 33:569-579. [PMID: 20961627 PMCID: PMC2981641 DOI: 10.1016/j.tins.2010.09.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 09/02/2010] [Accepted: 09/13/2010] [Indexed: 11/20/2022] [Imported: 07/05/2024]
Abstract
In this review, we consider the evidence that a reduction in neurogenesis underlies aging-related cognitive deficits and impairments in disorders such as Alzheimer's disease (AD). The molecular and cellular alterations associated with impaired neurogenesis in the aging brain are discussed. Dysfunction of presenilin-1, misprocessing of amyloid precursor protein and toxic effects of hyperphosphorylated tau and β-amyloid probably contribute to impaired neurogenesis in AD. Because factors such as exercise, environmental enrichment and dietary energy restriction enhance neurogenesis, and protect against age-related cognitive decline and AD, knowledge of the underlying neurogenic signaling pathways could lead to novel therapeutic strategies for preserving brain function. In addition, manipulation of endogenous neural stem cells and stem cell transplantation, as stand-alone or adjunct treatments, seems promising.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
292 |
3
|
Lazarov O, Marr RA. Neurogenesis and Alzheimer's disease: at the crossroads. Exp Neurol 2010; 223:267-281. [PMID: 19699201 PMCID: PMC2864344 DOI: 10.1016/j.expneurol.2009.08.009] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/29/2009] [Accepted: 08/05/2009] [Indexed: 12/16/2022] [Imported: 07/05/2024]
Abstract
While a massive and progressive neuronal loss in specific areas such as the hippocampus and cortex unequivocally underlies cognitive deterioration and memory loss in Alzheimer's disease, noteworthy alterations take place in the neurogenic microenvironments, namely, the subgranule layer of the dentate gyrus and the subventricular zone. Compromised neurogenesis presumably takes place earlier than onset of hallmark lesions or neuronal loss, and may play a role in the initiation and progression of neuropathology in Alzheimer's disease. Neurogenesis in the adult brain is thought to play a role in numerous forms and aspects of learning and memory and contribute to the plasticity of the hippocampus and olfactory system. Misregulated or impaired neurogenesis on the other hand, may compromise plasticity and neuronal function in these areas and exacerbate neuronal vulnerability. Interestingly, increasing evidence suggests that molecular players in Alzheimer's disease, including PS1, APP and its metabolites, play a role in adult neurogenesis. In addition, recent studies suggest that alterations in tau phosphorylation are pronounced in neurogenic areas, and may interfere with the potential central role of tau proteins in neuronal maturation and differentiation. On the other hand, numerous neurogenic players, such as Notch-1, ErbB4 and L1 are substrates of alpha- beta- and gamma- secretase that play a major role in Alzheimer's disease. This review will discuss current knowledge concerning alterations of neurogenesis in Alzheimer's disease with specific emphasis on the cross-talk between signaling molecules involved in both processes, and the ways by which familial Alzheimer's disease-linked dysfunction of these signaling molecules affect neurogenesis in the adult brain.
Collapse
|
Review |
15 |
233 |
4
|
Lazarov-Spiegler O, Solomon AS, Zeev-Brann AB, Hirschberg DL, Lavie V, Schwartz M. Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J 1996; 10:1296-1302. [PMID: 8836043 DOI: 10.1096/fasebj.10.11.8836043] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] [Imported: 07/05/2024]
Abstract
Macrophages have long been known to play a key role in the healing processes of tissues that regenerate after injury; however, the nature of their involvement in healing of the injured central nervous system (CNS) is still a subject of controversy. Here we show that the absence of regrowth in transected rat optic nerve (which, like all other CNS nerves in mammals, cannot regenerate after injury) can be overcome by local transplantation of macrophages preincubated ex vivo with segments of a nerve (e.g., sciatic nerve) that can regenerate after injury. The observed effect of the transplanted macrophages was found to be an outcome of their stimulated activity, as indicated by phagocytosis. Thus, macrophage phagocytic activity was stimulated by their preincubation with sciatic nerve segments but inhibited by their preincubation with optic nerve segments. We conclude that the inability of nerves of the mammalian CNS to regenerate is related to the failure of their macrophages recruited after injury to acquire growth-supportive activity. We attribute this failure to the presence of a CNS resident macrophage inhibitory activity, which may be the biochemical basis underlying the immune privilege of the CNS. The transplantation of suitably activated macrophages into injured nerves may overcome multiple malfunctioning aspects of the CNS response to trauma, and thus may be developed into a novel, practical, and multipotent therapy for CNS injuries.
Collapse
|
|
29 |
213 |
5
|
Lazarov O, Lee M, Peterson DA, Sisodia SS. Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 2002; 22:9785-9793. [PMID: 12427834 PMCID: PMC6757836 DOI: 10.1523/jneurosci.22-22-09785.2002] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Revised: 08/16/2002] [Accepted: 08/16/2002] [Indexed: 11/21/2022] [Imported: 07/05/2024] Open
Abstract
A neuropathological hallmark of Alzheimer's disease is the deposition of amyloid-beta (Abeta) peptides in senile plaques in the hippocampus and cerebral cortex. Abeta is derived from larger integral membrane proteins termed amyloid precursor proteins (APP). We demonstrated previously that APP, synthesized by neurons in the entorhinal cortex, is transported via the perforant pathway to presynaptic terminals in the dentate gyrus. We reported that, although full-length APP and membrane-tethered, C-terminal APP derivatives (APP-CTFs) accumulate at terminal fields, the production of Abeta peptides at these sites was indeterminate. To test the hypothesis that APP-CTFs, generated from axonally transported APP, are further metabolized to Abeta peptides that are subsequently released and deposited proximal to nerve terminals, we created unilateral knife lesions of the perforant pathway of transgenic mice that exhibit hippocampal amyloid deposits. We observed pronounced reductions in amyloid burden in the ipsilateral dentate gyrus, findings that lead us to conclude that axonally transported APP gives rise to Abeta peptides that are released from presynaptic sites in the dentate gyrus and deposited in extracellular plaques. Moreover, our findings are consistent with the view that Abeta deposits are dynamic structures and that the perforant path lesion alters the equilibrium between Abeta production-deposition toward clearance as a consequence of blocked axonal transport of APP from the entorhinal cortex to terminal fields in the hippocampus.
Collapse
|
research-article |
23 |
200 |
6
|
Lazarov O, Hollands C. Hippocampal neurogenesis: Learning to remember. Prog Neurobiol 2016; 138-140:1-18. [PMID: 26855369 PMCID: PMC4828289 DOI: 10.1016/j.pneurobio.2015.12.006] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 12/15/2015] [Accepted: 12/30/2015] [Indexed: 12/16/2022] [Imported: 07/05/2024]
Abstract
Alzheimer's disease, the most prevalent form of dementia in the elderly, is characterized by progressive memory loss and cognitive dysfunction. It has become increasingly clear that while neuronal cell loss in the entorhinal cortex and hippocampus occurs in Alzheimer's disease, it is preceded by a long period of deficits in the connectivity of the hippocampal formation that contributes to the vulnerability of these circuits. Hippocampal neurogenesis plays a role in the maintenance and function of the dentate gyrus and hippocampal circuitry. This review will examine the evidence suggesting that hippocampal neurogenesis plays a role in cognitive function that is affected in Alzheimer's disease, will discuss the cognitive assessments used for the detection of Alzheimer's disease in humans and rodent models of familial Alzheimer's disease, and their value for unraveling the mechanism underlying the development of cognitive impairments and dementia.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
194 |
7
|
Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, DeBoer SR, Koliatsos VE, Kins S, Lee VMY, Wong PC, Price DL, Brady ST, Sisodia SS. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 2005; 25:2386-2395. [PMID: 15745965 PMCID: PMC6726084 DOI: 10.1523/jneurosci.3089-04.2005] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 01/20/2005] [Accepted: 01/20/2005] [Indexed: 11/21/2022] [Imported: 07/05/2024] Open
Abstract
The sequential enzymatic actions of beta-APP cleaving enzyme 1 (BACE1), presenilins (PS), and other proteins of the gamma-secretase complex liberate beta-amyloid (Abeta) peptides from larger integral membrane proteins, termed beta-amyloid precursor proteins (APPs). Relatively little is known about the normal function(s) of APP or the neuronal compartment(s) in which APP undergoes proteolytic processing. Recent studies have been interpreted as consistent with the idea that APP serves as a kinesin-1 cargo receptor and that PS and BACE1 are associated with the APP-resident membranous cargos that undergo rapid axonal transport. In this report, derived from a collaboration among several independent laboratories, we examined the potential associations of APP and kinesin-1 using glutathione S-transferase pull-down and coimmunoprecipitation assays. In addition, we assessed the trafficking of membrane proteins in the sciatic nerves of transgenic mice with heterozygous or homozygous deletions of APP. In contrast to previous reports, we were unable to find evidence for direct interactions between APP and kinesin-1. Furthermore, the transport of kinesin-1 and tyrosine kinase receptors, previously reported to require APP, was unchanged in axons of APP-deficient mice. Finally, we show that two components of the APP proteolytic machinery, i.e., PS1 and BACE1, are not cotransported with APP in the sciatic nerves of mice. These findings suggest that the hypothesis that APP serves as a kinesin-1 receptor and that the proteolytic processing machinery responsible for generating Abeta is transported in the same vesicular compartment in axons of peripheral nerves requires revision.
Collapse
|
Comparative Study |
20 |
174 |
8
|
Lazarov O, Morfini GA, Pigino G, Gadadhar A, Chen X, Robinson J, Ho H, Brady ST, Sisodia SS. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer's disease-linked mutant presenilin 1. J Neurosci 2007; 27:7011-7020. [PMID: 17596450 PMCID: PMC2801050 DOI: 10.1523/jneurosci.4272-06.2007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 05/20/2007] [Accepted: 05/20/2007] [Indexed: 11/21/2022] [Imported: 07/05/2024] Open
Abstract
Presenilins (PS) play a central role in gamma-secretase-mediated processing of beta-amyloid precursor protein (APP) and numerous type I transmembrane proteins. Expression of mutant PS1 variants causes familial forms of Alzheimer's disease (FAD). In cultured mammalian cells that express FAD-linked PS1 variants, the intracellular trafficking of several type 1 membrane proteins is altered. We now report that the anterograde fast axonal transport (FAT) of APP and Trk receptors is impaired in the sciatic nerves of transgenic mice expressing two independent FAD-linked PS1 variants. Furthermore, FAD-linked PS1 mice exhibit a significant increase in phosphorylation of the cytoskeletal proteins tau and neurofilaments in the spinal cord. Reductions in FAT and phosphorylation abnormalities correlated with motor neuron functional deficits. Together, our data suggests that defects in anterograde FAT may underlie FAD-linked PS1-mediated neurodegeneration through a mechanism involving impairments in neurotrophin signaling and synaptic dysfunction.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
107 |
9
|
Lazarov-Spiegler O, Solomon AS, Schwartz M. Peripheral nerve-stimulated macrophages simulate a peripheral nerve-like regenerative response in rat transected optic nerve. Glia 1998; 24:329-337. [PMID: 9775984 DOI: 10.1002/(sici)1098-1136(199811)24:3<329::aid-glia7>3.0.co;2-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] [Imported: 07/05/2024]
Abstract
We have previously demonstrated that the failure of the mammalian central nervous system (CNS) to regenerate following axonal injury is related to its immunosuppressive nature, which restricts the ability of both recruited blood-borne monocytes and CNS-resident microglia to support a process of repair. In this study we show that transected optic nerve transplanted with macrophages stimulated by spontaneously regenerating nerve tissue, e.g., segments of peripheral nerve (sciatic nerve), exhibit axonal regrowth at least as far as the optic chiasma. Axonal regrowth was confirmed by double retrograde labeling of the injured optic axons, visualized in their cell bodies. Transplanted macrophages exposed to segments of CNS (optic) nerve were significantly less effective in inducing regrowth. Immunocytochemical analysis showed that the induced regrowth was correlated with a wide distribution of macrophages within the transplanted-transected nerves. It was also correlated with an enhanced clearance of myelin, known to be inhibitory for regrowth and poorly eliminated after injury in the CNS. These results suggest that healing of the injured mammalian CNS, like healing of any other injured tissue, requires the partnership of the immune system, which is normally restricted, but that the restriction can be circumvented by transplantation of peripheral nerve-stimulated macrophages.
Collapse
|
|
27 |
90 |
10
|
Lazarov O, Demars MP. All in the Family: How the APPs Regulate Neurogenesis. Front Neurosci 2012; 6:81. [PMID: 22675290 PMCID: PMC3366480 DOI: 10.3389/fnins.2012.00081] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/14/2012] [Indexed: 12/23/2022] [Imported: 07/05/2024] Open
Abstract
Recent intriguing evidence suggests that metabolites of amyloid precursor protein (APP), mutated in familial forms of Alzheimer's disease (AD), play critical roles in developmental and postnatal neurogenesis. Of note is soluble APPα (sAPPα) that regulates neural progenitor cell proliferation. The APP family encompasses a group of ubiquitously expressed and evolutionarily conserved, type I transmembrane glycoproteins, whose functions have yet to be fully elucidated. APP can undergo proteolytic cleavage by mutually exclusive pathways. The subtle structural differences between metabolites generated in the different pathways, as well as their equilibrium, may be crucial for neuronal function. The implications of this new body of evidence are significant. Miscleavage of APP would readily impact developmental and postnatal neurogenesis, which might contribute to cognitive deficits characterizing Alzheimer's disease. This review will discuss the implications of the role of the APP family in neurogenesis for neuronal development, cognitive function, and brain disorders that compromise learning and memory, such as AD.
Collapse
|
review-article |
13 |
62 |
11
|
Lazarov-Spiegler O, Rapalino O, Agranov G, Schwartz M. Restricted inflammatory reaction in the CNS: a key impediment to axonal regeneration? MOLECULAR MEDICINE TODAY 1998; 4:337-342. [PMID: 9755452 DOI: 10.1016/s1357-4310(98)01298-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] [Imported: 07/05/2024]
Abstract
Axons in the central nervous system (CNS) of adult mammals do not regenerate after injury. Mammalian CNS differs in this respect from other mammalian tissues, including the peripheral nervous system (PNS), and from the CNS of lower vertebrates. In most parts of the body, including the nervous system, injury triggers an inflammatory reaction involving macrophages. This reaction is needed for tissue healing; when it is delayed or insufficient, healing is incomplete. The CNS, although needing an efficient inflammatory reaction resembling that in the periphery for tissue healing, appears to have lost the ability to supply it. We suggest that restricted CNS recruitment and activation of macrophages are linked to regeneration failure and might reflect the immune privilege that characterizes the mammalian CNS. As macrophages play a critical role in tissue restoration, and because their recruitment and activation are among the most upstream of the events leading to tissue healing, overcoming the deficiencies in these steps might trigger a self-repair processing leading to recovery after CNS injury.
Collapse
|
Review |
27 |
59 |
12
|
Lazarov O, Marr RA. Of mice and men: neurogenesis, cognition and Alzheimer's disease. Front Aging Neurosci 2013; 5:43. [PMID: 23986699 PMCID: PMC3753540 DOI: 10.3389/fnagi.2013.00043] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/04/2013] [Indexed: 01/18/2023] [Imported: 07/05/2024] Open
Abstract
Neural stem cells are maintained in the subgranular layer of the dentate gyrus and in the subventricular zone in the adult mammalian brain throughout life. Neurogenesis is continuous, but its extent is tightly regulated by environmental factors, behavior, hormonal state, age, and brain health. Increasing evidence supports a role for new neurons in cognitive function in rodents. Recent evidence delineates significant similarities and differences between adult neurogenesis in rodents and humans. Being context-dependent, neurogenesis in the human brain might be manifested differently than in the rodent brain. Decline in neurogenesis may play a role in cognitive deterioration, leading to the development of progressive learning and memory disorders, such as Alzheimer's disease. This review discusses the different observations concerning neurogenesis in the rodent and human brain, and their functional implications for the healthy and diseased brain.
Collapse
|
review-article |
12 |
52 |
13
|
Lazarov O, Peterson LD, Peterson DA, Sisodia SS. Expression of a familial Alzheimer's disease-linked presenilin-1 variant enhances perforant pathway lesion-induced neuronal loss in the entorhinal cortex. J Neurosci 2006; 26:429-434. [PMID: 16407539 PMCID: PMC6674394 DOI: 10.1523/jneurosci.3961-05.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/07/2005] [Accepted: 11/14/2005] [Indexed: 12/11/2022] [Imported: 07/05/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss in the hippocampus and entorhinal cortex that is manifested by progressive memory impairment and cognitive decline. Autosomal-dominant, familial forms of AD (FAD) are caused by mutations in genes encoding amyloid precursor protein, presenilin-1 (PS1), and presenilin 2. Although it is established that expression of mutant PS1 variants leads to increased production of highly fibrillogenic amyloidbeta42 (Abeta42) peptides that deposit in the brains of patients with AD, the mechanism(s) by which Abeta deposition and expression of mutant genes induce lamina- and region-specific vulnerability of neuronal populations is not known. We have examined the hypothesis that expression of transgene-encoded FAD-linked mutant PS1 variants in entorhinal cortex neurons exacerbates the vulnerability of these cells to lesion-induced neuronal loss. To test this notion, we transected the perforant pathway (PP) of transgenic mice harboring either wild-type human PS1 (PS1HWT) or the FAD-linked mutant PS1DeltaE9 variant and examined neuronal survival in layer II of the entorhinal cortex (ECL2). Remarkably, PP transections lead to marked reductions in the numbers of ECL2 neurons in the ECL2 of mice expressing mutant PS1, compared with ECL2 neurons in PP-lesioned PS1HWT mice. Finally, and in contrast to studies in nontransgenic mice and in mice expressing PS1HWT, ECL2 neurons that express mutant PS1 and the calcium binding protein calbindin-D28k in ECL2 are also susceptible to lesion-induced neuronal loss. We conclude that expression of FAD-linked mutant PS1 variants enhances the vulnerability of neurons in the entorhinal cortex to PP lesion-induced cytotoxicity.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
22 |
14
|
Lazarov-Spiegler O, Solomon AS, Schwartz M. Link between optic nerve regrowth failure and macrophage stimulation in mammals. Vision Res 1999; 39:169-175. [PMID: 10211404 DOI: 10.1016/s0042-6989(98)00089-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] [Imported: 07/05/2024]
Abstract
The adult mammalian central nervous system (CNS) fails to regenerate its axons following injury. A comparison between its postinjury response and that of axons of nervous systems capable of regeneration reveals major differences with respect to inflammation. In regenerative systems, a large number of macrophages rapidly invade the injured site during the first few hours and days after the injury. Following their activation/differentiation through interaction with the host tissue, they play a central role in tissue healing through phagocytosis of cell debris and communication with cellular and molecular elements of the damaged tissue. Relative to the peripheral nervous system (PNS), macrophage recruitment in the adult mammalian CNS is delayed and is restricted in amount and activity. It was recently proposed that in injured mammalian CNS tissue, implantation of macrophages stimulated by prior co-culture with segments of peripheral (sciatic) nerves can compensate, at least in part, of the restricted postinjury inflammatory reaction. In the present study, this experimental paradigm is further explored and shows that there is no conflict between the systemic use of anti-inflammatory compounds and treatment with stimulated macrophages to promote regrowth of neuronal tissue.
Collapse
|
|
26 |
17 |
15
|
Lazarov O, Demars MP, Zhao KDT, Ali HM, Grauzas V, Kney A, Larson J. Impaired survival of neural progenitor cells in dentate gyrus of adult mice lacking fMRP. Hippocampus 2012; 22:1220-1224. [PMID: 22128095 PMCID: PMC3291746 DOI: 10.1002/hipo.20989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2011] [Indexed: 11/06/2022] [Imported: 07/05/2024]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability in humans. Individuals affected with the disorder exhibit a deficiency of the fragile X mental retardation protein (FMRP), due to transcriptional silencing of the Fmr1 gene. It is widely accepted that learning deficits in FXS result from impaired synaptic function and/or plasticity in the brain. Interestingly, recent evidence suggests that conditional knockout of Fmr1 in neural progenitor cells in mice impairs hippocampal neurogenesis, which in turn contributes to learning impairments. To examine the nature of the neurogenic impairments and determine whether they impact the morphology of the dentate gyrus, we assessed the extent of neural progenitor cell proliferation, survival, and differentiation in older adult Fmr1 knockout mice. Here, we show that the number of fast-proliferating cells in the subgranular layer of the dentate gyrus, as well as the subsequent survival of these cells, are dramatically reduced in Fmr1 knockout mice. In addition, the number of mature neurons in the granule layer of the dentate gyrus of these mice is significantly smaller than in wild type littermate controls, suggesting that impaired proliferation and survival of neural progenitor cells compromises the structure of the dentate gyrus. Impaired adult neurogenesis may underlie, at least in part, the learning deficits that characterize fragile X syndrome.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
16 |
16
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] [Imported: 07/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
|
Review |
1 |
|