1
|
Zhu T, Hu P, Mi Y, Zhang J, Xu A, Gao M, Zhang Y, Shen S, Yang G, Pan Y. Telomerase reverse transcriptase gene knock-in unleashes enhanced longevity and accelerated damage repair in mice. Aging Cell 2025; 24:e14445. [PMID: 39660787 PMCID: PMC11984681 DOI: 10.1111/acel.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
While previous research has demonstrated the therapeutic efficacy of telomerase reverse transcriptase (TERT) overexpression using adeno-associated virus and cytomegalovirus vectors to combat aging, the broader implications of TERT germline gene editing on the mammalian genome, proteomic composition, phenotypes, lifespan extension, and damage repair remain largely unexplored. In this study, we elucidate the functional properties of transgenic mice carrying the Tert transgene, guided by precise gene targeting into the Rosa26 locus via embryonic stem (ES) cells under the control of the elongation factor 1α (EF1α) promoter. The Tert knock-in (TertKI) mice harboring the EF1α-Tert gene displayed elevated telomerase activity, elongated telomeres, and extended lifespan, with no spontaneous genotoxicity or carcinogenicity. The TertKI mice showed also enhanced wound healing, characterized by significantly increased expression of Fgf7, Vegf, and collagen. Additionally, TertKI mice exhibited robust resistance to the progression of colitis induced by dextran sodium sulfate (DSS), accompanied by reduced expression of disease-deteriorating genes. These findings foreshadow the potential of TertKI as an extraordinary rejuvenation force, promising not only longevity but also rejuvenation in skin and intestinal aging.
Collapse
Affiliation(s)
- Tian‐Yi Zhu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Po Hu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yu‐Hui Mi
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Jun‐Li Zhang
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - An‐Na Xu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Ming‐Tong Gao
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Ying‐Ying Zhang
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - San‐Bing Shen
- Regenerative Medicine Institute, School of MedicineUniversity of GalwayGalwayIreland
| | - Guang‐Ming Yang
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yang Pan
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| |
Collapse
|
2
|
Khasawneh AI, Al Shboul S, Himsawi N, Al Rousan A, Shahin NA, El-Sadoni M, Alhesa A, Abu Ghalioun A, Khawaldeh S, Shawish B, Mahfouz SA, Al-Shayeb M, Dawoud SA, Tlilan R, Nuseir M, Alotaibi MR, Abu Al Karsaneh O, Asali F, Mayordomo MY, Barham R, Khasawneh R, Saleh T. Resolution of oncogene-induced senescence markers in HPV-infected cervical cancer tissue. BMC Cancer 2025; 25:111. [PMID: 39838347 PMCID: PMC11752938 DOI: 10.1186/s12885-025-13499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Oncogene-Induced Senescence (OIS) is a form of senescence that occurs as a consequence of oncogenic overstimulation and possibly infection by oncogenic viruses. Whether senescence plays a role in the pathogenesis of cervical cancer (CC) is not well understood. Moreover, whether cervical epithelial cells that are part of the premalignant cervical intraepithelial neoplasia (CIN), exhibit markers of OIS in Human Papillomavirus (HPV)-infected tissue, has not been investigated. METHODS We utilized a set of patient-derived premalignant and malignant tissue samples to investigate the protein (Ki67 and Lamin B1) and gene (TP53, IL1A, CCL2, and MMP9) expression of several OIS-associated biomarkers using immunohistochemistry (IHC) and qRT-PCR, respectively. Furthermore, we characterized the HPV status of all tissue samples. RESULTS Most of the CC samples (34/37) were positive for HPV, mainly HPV-16 which was observed in 62.2% of the CC samples. Among CINs, HPV infection was found in 60.2% of the 32 samples with HPV-16 as the dominant genotype in 58.5% of the CINs. IHC analysis revealed a significant increase in the expression levels of both Ki67 and Lamin B1 proteins in CC tissue compared to CIN. On average, 93% of tumor cells were positive for Ki67 in comparison to only 25% of premalignant cells in CIN samples. Similarly, Lamin B1 expression was observed in 89% of tumor cells in malignant tissue on average, compared to 60% in CIN samples. Importantly, Lamin B1 expression was elevated in nonmalignant cervical tissue suggesting that its downregulation is more predominant in the premalignant state. Furthermore, RT-PCR revealed a significant decrease in the expression of TP53, IL1a, CCL2, and MMP9 markers in CC samples compared to CINs. Specifically, 84% of CC samples showed reduced TP53 expression, 90% showed reduced IL1a expression, 74% showed reduced CCL2 expression, and 76% showed reduced MMP9 expression when compared with their premalignant baseline. Infection of HPV was confirmed in 61% of the tumor tissues while only 25% of the CINs were positive for HPV. CONCLUSION This work shall provide an opportunity to further examine the role of OIS in the process of HPV-driven CC development.
Collapse
Affiliation(s)
- Ashraf I Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Amani Al Rousan
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammed El-Sadoni
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Ala' Abu Ghalioun
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Suzan Khawaldeh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Bayan Shawish
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Salem Abu Mahfouz
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mais Al-Shayeb
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Shatha Abo Dawoud
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Raghad Tlilan
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mohammad Nuseir
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Fida Asali
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | | | - Raghda Barham
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Rame Khasawneh
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13115, Jordan.
| |
Collapse
|
3
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
4
|
Aranda-Anzaldo A, Dent MAR, Segura-Anaya E, Martínez-Gómez A. Protein folding, cellular stress and cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:40-57. [PMID: 38969306 DOI: 10.1016/j.pbiomolbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Proteins are acknowledged as the phenotypical manifestation of the genotype, because protein-coding genes carry the information for the strings of amino acids that constitute the proteins. It is widely accepted that protein function depends on the corresponding "native" structure or folding achieved within the cell, and that native protein folding corresponds to the lowest free energy minimum for a given protein. However, protein folding within the cell is a non-deterministic dissipative process that from the same input may produce different outcomes, thus conformational heterogeneity of folded proteins is the rule and not the exception. Local changes in the intracellular environment promote variation in protein folding. Hence protein folding requires "supervision" by a host of chaperones and co-chaperones that help their client proteins to achieve the folding that is most stable according to the local environment. Such environmental influence on protein folding is continuously transduced with the help of the cellular stress responses (CSRs) and this may lead to changes in the rules of engagement between proteins, so that the corresponding protein interactome could be modified by the environment leading to an alternative cellular phenotype. This allows for a phenotypic plasticity useful for adapting to sudden and/or transient environmental changes at the cellular level. Starting from this perspective, hereunder we develop the argument that the presence of sustained cellular stress coupled to efficient CSRs may lead to the selection of an aberrant phenotype as the resulting adaptation of the cellular proteome (and the corresponding interactome) to such stressful conditions, and this can be a common epigenetic pathway to cancer.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico.
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Edith Segura-Anaya
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Alejandro Martínez-Gómez
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| |
Collapse
|
5
|
Bhartiya D, Raouf S, Pansare K, Tripathi A, Tripathi A. Initiation of Cancer: The Journey From Mutations in Somatic Cells to Epigenetic Changes in Tissue-resident VSELs. Stem Cell Rev Rep 2024; 20:857-880. [PMID: 38457060 DOI: 10.1007/s12015-024-10694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India.
| | | | - Kshama Pansare
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
- 23Ikigai Pte Ltd, 30 Cecil Street, #21-08 Prudentsial Tower, Singapore, 049712, Singapore
| |
Collapse
|
6
|
Martinez P, Baghli I, Gourjon G, Seyfried TN. Mitochondrial-Stem Cell Connection: Providing Additional Explanations for Understanding Cancer. Metabolites 2024; 14:229. [PMID: 38668357 PMCID: PMC11051897 DOI: 10.3390/metabo14040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The cancer paradigm is generally based on the somatic mutation model, asserting that cancer is a disease of genetic origin. The mitochondrial-stem cell connection (MSCC) proposes that tumorigenesis may result from an alteration of the mitochondria, specifically a chronic oxidative phosphorylation (OxPhos) insufficiency in stem cells, which forms cancer stem cells (CSCs) and leads to malignancy. Reviewed evidence suggests that the MSCC could provide a comprehensive understanding of all the different stages of cancer. The metabolism of cancer cells is altered (OxPhos insufficiency) and must be compensated by using the glycolysis and the glutaminolysis pathways, which are essential to their growth. The altered mitochondria regulate the tumor microenvironment, which is also necessary for cancer evolution. Therefore, the MSCC could help improve our understanding of tumorigenesis, metastases, the efficiency of standard treatments, and relapses.
Collapse
Affiliation(s)
- Pierrick Martinez
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | - Ilyes Baghli
- International Society for Orthomolecular Medicine, Toronto, ON M4B 3M9, Canada;
| | - Géraud Gourjon
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | | |
Collapse
|
7
|
Choi W, Lee Y, Choi BK, Park BM, Kim YH, Yun T, Lee WJ, Yoo H, Baek JY, Woo SM, Lim MC, Kwon BS. Phase 1 trial of 4-1BB-based adoptive T-cell therapy targeting human telomerase reverse transcriptase in patients with advanced refractory solid tumors. Cytotherapy 2023; 25:1236-1241. [PMID: 37632518 DOI: 10.1016/j.jcyt.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND AIMS Human telomerase reverse transcriptase (hTERT) is an attractive target for anti-cancer therapies. We developed an effective method for generating hTERT-specific CD8+ T cells (hTERT-induced natural T cells [TERTiNTs]) using peripheral blood mononuclear cells (PBMCs) from patients with solid cancers and investigated their feasibility and safety. METHODS This was a single-center phase 1 trial using a 3 + 3 dose escalation design to evaluate six dose levels of TERTiNTs. PBMCs from each patient were screened using an hTERT peptide panel to select those that stimulated CD8+ T cells. The four most stimulatory peptides were used to produce autologous CD8+ T cells from patients refractory or intolerant to standard therapies. Eligible patients received a single intravenous infusion of TERTiNTs at different dose levels (4 × 108 cells/m2, 8 × 108 cells/m2 and 16 × 108 cells/m2). Pre-conditioning chemotherapy, including cyclophosphamide alone or in combination with fludarabine, was administered to induce lymphodepletion. RESULTS From January 2014 to October 2019, a total of 24 patients with a median of three prior lines of therapy were enrolled. The most common adverse events were lymphopenia (79.2%), nausea (58.3%) and neutropenia (54.2%), mostly caused by pre-conditioning chemotherapy. The TERTiNT infusion was well tolerated, and dose-limiting toxicities were not observed. None of the patients showed objective responses. Seven patients (30.4%) achieved stable disease with a median progression-free survival of 3.9 months (range, 3.2-11.3). At the highest dose level (16 × 108 cells/m2), four of five patients showed disease stabilization. CONCLUSIONS The generation of TERTiNTs was feasible and safe and provided an interesting disease control rate in heavily pre-treated cancer patients.
Collapse
Affiliation(s)
- Wonyoung Choi
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Rare Cancers, National Cancer Center, Goyang, Republic of Korea
| | - Youngjoo Lee
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Beom K Choi
- Immuno-Oncology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Bo-Mi Park
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Young H Kim
- Eutilex Institute for Biomedical Research, Eutilex Co, Ltd, Seoul, Republic of Korea
| | - Tak Yun
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Rare Cancers, National Cancer Center, Goyang, Republic of Korea
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Heon Yoo
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Ji Yeon Baek
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Colorectal Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Myeong Cheol Lim
- Center for Gynecologic Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Byoung S Kwon
- Eutilex Institute for Biomedical Research, Eutilex Co, Ltd, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Yegorov YE. Olovnikov, Telomeres, and Telomerase. Is It Possible to Prolong a Healthy Life? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1704-1718. [PMID: 38105192 DOI: 10.1134/s0006297923110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
The science of telomeres and telomerase has made tremendous progress in recent decades. In this review, we consider it first in a historical context (the Carrel-Hayflick-Olovnikov-Blackburn chain of discoveries) and then review current knowledge on the telomere structure and dynamics in norm and pathology. Central to the review are consequences of the telomere shortening, including telomere position effects, DNA damage signaling, and increased genetic instability. Cell senescence and role of telomere length in its development are discussed separately. Therapeutic aspects and risks of telomere lengthening methods including use of telomerase and other approaches are also discussed.
Collapse
Affiliation(s)
- Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Lenz LS, Wink MR. The other side of the coin: mesenchymal stromal cell immortalization beyond evasion of senescence. Hum Cell 2023; 36:1593-1603. [PMID: 37341871 DOI: 10.1007/s13577-023-00925-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Mesenchymal stromal cells (MSC) are promising options to cellular therapy to several clinical disorders, mainly because of its ability to immunomodulate and differentiate into different cell types. Even though MSC can be isolated from different sources, a major challenge to understanding the biological effects is that the primary cells undergo replicative senescence after a limited number of cell divisions in culture, requiring time-consuming and technically challenging approaches to get a sufficient cell number for clinical applications. Therefore, a new isolation, characterization, and expansion is necessary every time, which increases the variability and is time-consuming. Immortalization is a strategy that can overcome these challenges. Therefore, here, we review the different methodologies available to cellular immortalization, and discuss the literature regarding MSC immortalization and the broader biological consequences that extend beyond the mere increase in proliferation potential.
Collapse
Affiliation(s)
- Luana Suéling Lenz
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
- Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
10
|
Zhang Z, Shayani G, Xu Y, Kim A, Hong Y, Feng H, Zhu H. Induction of Senescence by Loss of Gata4 in Cardiac Fibroblasts. Cells 2023; 12:1652. [PMID: 37371122 PMCID: PMC10297635 DOI: 10.3390/cells12121652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts are a major source of cardiac fibrosis during heart repair processes in various heart diseases. Although it has been shown that cardiac fibroblasts become senescent in response to heart injury, it is unknown how the senescence of cardiac fibroblasts is regulated in vivo. Gata4, a cardiogenic transcription factor essential for heart development, is also expressed in cardiac fibroblasts. However, it remains elusive about the role of Gata4 in cardiac fibroblasts. To define the role of Gata4 in cardiac fibroblasts, we generated cardiac fibroblast-specific Gata4 knockout mice by cross-breeding Tcf21-MerCreMer mice with Gata4fl/fl mice. Using this mouse model, we could genetically ablate Gata4 in Tcf21 positive cardiac fibroblasts in an inducible manner upon tamoxifen administration. We found that cardiac fibroblast-specific deletion of Gata4 spontaneously induces senescence in cardiac fibroblasts in vivo and in vitro. We also found that Gata4 expression in both cardiomyocytes and non-myocytes significantly decreases in the aged heart. Interestingly, when αMHC-MerCreMer mice were bred with Gata4fl/fl mice to generate cardiomyocyte-specific Gata4 knockout mice, no senescent cells were detected in the hearts. Taken together, our results demonstrate that Gata4 deficiency in cardiac fibroblasts activates a program of cellular senescence, suggesting a novel molecular mechanism of cardiac fibroblast senescence.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Gabriella Shayani
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yanping Xu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Ashley Kim
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yurim Hong
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Haiyue Feng
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
11
|
Chai W, Kong Y, Escalona MB, Hu C, Balajee AS, Huang Y. Evaluation of Low-dose Radiation-induced DNA Damage and Repair in 3D Printed Human Cellular Constructs. HEALTH PHYSICS 2023; Publish Ahead of Print:00004032-990000000-00091. [PMID: 37294952 DOI: 10.1097/hp.0000000000001709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
ABSTRACT DNA double-strand breaks (DSBs) induced by ionizing radiation (IR) are considered to be the most critical lesion that when unrepaired or misrepaired leads to genomic instability or cell death depending on the radiation exposure dose. The potential health risks associated with exposures of low-dose radiation are of concern since they are being increasingly used in diverse medical and non-medical applications. Here, we have used a novel human tissue-like 3-dimensional bioprint to evaluate low-dose radiation-induced DNA damage response. For the generation of 3-dimensional tissue-like constructs, human hTERT immortalized foreskin fibroblast BJ1 cells were extrusion printed and further enzymatically gelled in a gellan microgel-based support bath. Low-dose radiation-induced DSBs and repair were analyzed in the tissue-like bioprints by indirect immunofluorescence using a well-known DSB surrogate marker, 53BP1, at different post-irradiation times (0.5 h, 6 h, and 24 h) after treatment with various doses of γ rays (50 mGy, 100 mGy, and 200 mGy). The 53BP1 foci showed a dose dependent induction in the tissue bioprints after 30 min of radiation exposure and subsequently declined at 6 h and 24 h in a dose-dependent manner. The residual 53BP1 foci number observed at 24 h post-irradiation time for the γ-ray doses of 50 mGy, 100 mGy, and 200 mGy was not statistically different from mock treated bioprints illustrative of an efficient DNA repair response at these low-dose exposures. Similar results were obtained for yet another DSB surrogate marker, γ-H2AX (phosphorylated form of histone H2A variant) in the human tissue-like constructs. Although we have primarily used foreskin fibroblasts, our bioprinting approach-mimicking a human tissue-like microenvironment-can be extended to different organ-specific cell types for evaluating the radio-response at low-dose and dose-rates of IR.
Collapse
Affiliation(s)
- Wenxuan Chai
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611
| | - Yunfan Kong
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611
| | - Maria B Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Associated Universities, 1299 Bethel Valley Road, Oak Ridge, TN 37830
| | - Chunshan Hu
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611
| | - Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Associated Universities, 1299 Bethel Valley Road, Oak Ridge, TN 37830
| | | |
Collapse
|
12
|
Garcia-Llorens G, Martínez-Sena T, Pareja E, Tolosa L, Castell JV, Bort R. A robust reprogramming strategy for generating hepatocyte-like cells usable in pharmaco-toxicological studies. Stem Cell Res Ther 2023; 14:94. [PMID: 37072803 PMCID: PMC10114490 DOI: 10.1186/s13287-023-03311-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND High-throughput pharmaco-toxicological testing frequently relies on the use of established liver-derived cell lines, such as HepG2 cells. However, these cells often display limited hepatic phenotype and features of neoplastic transformation that may bias the interpretation of the results. Alternate models based on primary cultures or differentiated pluripotent stem cells are costly to handle and difficult to implement in high-throughput screening platforms. Thus, cells without malignant traits, optimal differentiation pattern, producible in large and homogeneous amounts and with patient-specific phenotypes would be desirable. METHODS We have designed and implemented a novel and robust approach to obtain hepatocytes from individuals by direct reprogramming, which is based on a combination of a single doxycycline-inducible polycistronic vector system expressing HNF4A, HNF1A and FOXA3, introduced in human fibroblasts previously transduced with human telomerase reverse transcriptase (hTERT). These cells can be maintained in fibroblast culture media, under standard cell culture conditions. RESULTS Clonal hTERT-transduced human fibroblast cell lines can be expanded at least to 110 population doublings without signs of transformation or senescence. They can be easily differentiated at any cell passage number to hepatocyte-like cells with the simple addition of doxycycline to culture media. Acquisition of a hepatocyte phenotype is achieved in just 10 days and requires a simple and non-expensive cell culture media and standard 2D culture conditions. Hepatocytes reprogrammed from low and high passage hTERT-transduced fibroblasts display very similar transcriptomic profiles, biotransformation activities and show analogous pattern behavior in toxicometabolomic studies. Results indicate that this cell model outperforms HepG2 in toxicological screening. The procedure also allows generation of hepatocyte-like cells from patients with given pathological phenotypes. In fact, we succeeded in generating hepatocyte-like cells from a patient with alpha-1 antitrypsin deficiency, which recapitulated accumulation of intracellular alpha-1 antitrypsin polymers and deregulation of unfolded protein response and inflammatory networks. CONCLUSION Our strategy allows the generation of an unlimited source of clonal, homogeneous, non-transformed induced hepatocyte-like cells, capable of performing typical hepatic functions and suitable for pharmaco-toxicological high-throughput testing. Moreover, as far as hepatocyte-like cells derived from fibroblasts isolated from patients suffering hepatic dysfunctions, retain the disease traits, as demonstrated for alpha-1-antitrypsin deficiency, this strategy can be applied to the study of other cases of anomalous hepatocyte functionality.
Collapse
Affiliation(s)
- Guillem Garcia-Llorens
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Teresa Martínez-Sena
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Eugenia Pareja
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Bioingenieria, Biomateriales y Nanomedicina (CIBER-Bbn), Instituto de Salud Carlos III, Madrid, Spain
| | - José V Castell
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Roque Bort
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Abstract
Major advances in pathogen identification, treatment, vaccine development, and avian immunology have enabled the enormous expansion in global poultry production over the last 50 years. Looking forward, climate change, reduced feed, reduced water access, new avian pathogens and restrictions on the use of antimicrobials threaten to hamper further gains in poultry productivity and health. The development of novel in vitro cell culture systems, coupled with new genetic tools to investigate gene function, will aid in developing novel interventions for existing and newly emerging poultry pathogens. Our growing capacity to cryopreserve and generate genome-edited chicken lines will also be useful for developing improved chicken breeds for poultry farmers and conserving chicken genetic resources.
Collapse
Affiliation(s)
- Euan Mitchell
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Guillermo Tellez
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Mike J McGrew
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Association of the Telomerase Reverse Transcriptase rs10069690 Polymorphism with the Risk, Age at Onset and Prognosis of Triple Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24031825. [PMID: 36768147 PMCID: PMC9916321 DOI: 10.3390/ijms24031825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) plays a key role in the maintenance of telomere DNA length. The rs10069690 single nucleotide variant, located in intron 4 of TERT, was found to be associated with telomere length and the risk of estrogen receptor-negative but not-positive breast cancer. This study aimed at analysis of the association of rs10069690 genotype and TERT expression with the risk, age at onset, prognosis, and clinically and molecularly relevant subtypes of breast cancer. Accordingly, rs10069690 was genotyped in a hospital-based case-control study of 403 female breast cancer patients and 246 female controls of a Central European (Austrian) study population, and the mRNA levels of TERT were quantified in 106 primary breast tumors using qRT-PCR. We found that in triple-negative breast cancer patients, the minor rs10069690 TT genotype tended to be associated with an increased breast cancer risk (OR, 1.87; 95% CI, 0.75-4.71; p = 0.155) and was significantly associated with 11.7 years younger age at breast cancer onset (p = 0.0002), whereas the CC genotype was associated with a poor brain metastasis-free survival (p = 0.009). Overall, our data show that the rs10069690 CC genotype and a high TERT expression tended to be associated with each other and with a poor prognosis. Our findings indicate a key role of rs10069690 in triple-negative breast cancer.
Collapse
|
15
|
Abstract
Cellular senescence has become a subject of great interest within the ageing research field over the last 60 years, from the first observation in vitro by Leonard Hayflick and Paul Moorhead in 1961, to novel findings of phenotypic sub-types and senescence-like phenotype in post-mitotic cells. It has essential roles in wound healing, tumour suppression and the very first stages of human development, while causing widespread damage and dysfunction with age leading to a raft of age-related diseases. This chapter discusses these roles and their interlinking pathways, and how the observed accumulation of senescent cells with age has initiated a whole new field of ageing research, covering pathologies in the heart, liver, kidneys, muscles, brain and bone. This chapter will also examine how senescent cell accumulation presents in these different tissues, along with their roles in disease development. Finally, there is much focus on developing treatments for senescent cell accumulation in advanced age as a method of alleviating age-related disease. We will discuss here the various senolytic and senostatic treatment approaches and their successes and limitations, and the innovative new strategies being developed to address the differing effects of cellular senescence in ageing and disease.
Collapse
Affiliation(s)
- Rebecca Reed
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
16
|
Sagris M, Theofilis P, Antonopoulos AS, Tsioufis K, Tousoulis D. Telomere Length: A Cardiovascular Biomarker and a Novel Therapeutic Target. Int J Mol Sci 2022; 23:16010. [PMID: 36555658 PMCID: PMC9781338 DOI: 10.3390/ijms232416010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary artery disease (CAD) is a multifactorial disease with a high prevalence, particularly in developing countries. Currently, the investigation of telomeres as a potential tool for the early detection of the atherosclerotic disease seems to be a promising method. Telomeres are repetitive DNA sequences located at the extremities of chromosomes that maintain genetic stability. Telomere length (TL) has been associated with several human disorders and diseases while its attrition rate varies significantly in the population. The rate of TL shortening ranges between 20 and 50 bp and is affected by factors such as the end-replication phenomenon, oxidative stress, and other DNA-damaging agents. In this review, we delve not only into the pathophysiology of TL shortening but also into its association with cardiovascular disease and the progression of atherosclerosis. We also provide current and future treatment options based on TL and telomerase function, trying to highlight the importance of these cutting-edge developments and their clinical relevance.
Collapse
Affiliation(s)
| | | | | | | | - Dimitris Tousoulis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| |
Collapse
|
17
|
Borges G, Criqui M, Harrington L. Tieing together loose ends: telomere instability in cancer and aging. Mol Oncol 2022; 16:3380-3396. [PMID: 35920280 PMCID: PMC9490142 DOI: 10.1002/1878-0261.13299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Telomere maintenance is essential for maintaining genome integrity in both normal and cancer cells. Without functional telomeres, chromosomes lose their protective structure and undergo fusion and breakage events that drive further genome instability, including cell arrest or death. One means by which this loss can be overcome in stem cells and cancer cells is via re-addition of G-rich telomeric repeats by the telomerase reverse transcriptase (TERT). During aging of somatic tissues, however, insufficient telomerase expression leads to a proliferative arrest called replicative senescence, which is triggered when telomeres reach a critically short threshold that induces a DNA damage response. Cancer cells express telomerase but do not entirely escape telomere instability as they often possess short telomeres; hence there is often selection for genetic alterations in the TERT promoter that result in increased telomerase expression. In this review, we discuss our current understanding of the consequences of telomere instability in cancer and aging, and outline the opportunities and challenges that lie ahead in exploiting the reliance of cells on telomere maintenance for preserving genome stability.
Collapse
Affiliation(s)
- Gustavo Borges
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Mélanie Criqui
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Lea Harrington
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
- Departments of Medicine and Biochemistry and Molecular MedicineUniversity of MontrealQCCanada
| |
Collapse
|
18
|
Knight R, Board-Davies E, Brown H, Clayton A, Davis T, Karatas B, Burston J, Tabi Z, Falcon-Perez JM, Paisey S, Stephens P. Oral Progenitor Cell Line-Derived Small Extracellular Vesicles as a Treatment for Preferential Wound Healing Outcome. Stem Cells Transl Med 2022; 11:861-875. [PMID: 35716044 PMCID: PMC9397654 DOI: 10.1093/stcltm/szac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Scar formation during wound repair can be devastating for affected individuals. Our group previously documented the therapeutic potential of novel progenitor cell populations from the non-scarring buccal mucosa. These Oral Mucosa Lamina Propria-Progenitor Cells (OMLP-PCs) are multipotent, immunosuppressive, and antibacterial. Small extracellular vesicles (sEVs) may play important roles in stem cell-mediated repair in varied settings; hence, we investigated sEVs from this source for wound repair. We created an hTERT immortalized OMLP-PC line (OMLP-PCL) and confirmed retention of morphology, lineage plasticity, surface markers, and functional properties. sEVs isolated from OMLP-PCL were analyzed by nanoparticle tracking analysis, Cryo-EM and flow cytometry. Compared to bone marrow-derived mesenchymal stromal cells (BM-MSC) sEVs, OMLP-PCL sEVs were more potent at driving wound healing functions, including cell proliferation and wound repopulation and downregulated myofibroblast formation. A reduced scarring potential was further demonstrated in a preclinical in vivo model. Manipulation of OMLP-PCL sEVs may provide novel options for non-scarring wound healing in clinical settings.
Collapse
Affiliation(s)
- Rob Knight
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Emma Board-Davies
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK
| | - Helen Brown
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK
| | - Aled Clayton
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Terence Davis
- PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Ben Karatas
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - James Burston
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK,Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Zsuzsanna Tabi
- PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Juan M Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain,Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Stephen Paisey
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Phil Stephens
- Corresponding author: Phil Stephens, Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, CF14 4XY, Wales, UK.
| |
Collapse
|
19
|
Monti N, Verna R, Piombarolo A, Querqui A, Bizzarri M, Fedeli V. Paradoxical Behavior of Oncogenes Undermines the Somatic Mutation Theory. Biomolecules 2022; 12:662. [PMID: 35625590 PMCID: PMC9138429 DOI: 10.3390/biom12050662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
The currently accepted theory on the influence of DNA mutations on carcinogenesis (the Somatic Mutation Theory, SMT) is facing an increasing number of controversial results that undermine the explanatory power of mutated genes considered as "causative" factors. Intriguing results have demonstrated that several critical genes may act differently, as oncogenes or tumor suppressors, while phenotypic reversion of cancerous cells/tissues can be achieved by modifying the microenvironment, the mutations they are carrying notwithstanding. Furthermore, a high burden of mutations has been identified in many non-cancerous tissues without any apparent pathological consequence. All things considered, a relevant body of unexplained inconsistencies calls for an in depth rewiring of our theoretical models. Ignoring these paradoxes is no longer sustainable. By avoiding these conundrums, the scientific community will deprive itself of the opportunity to achieve real progress in this important biomedical field. To remedy this situation, we need to embrace new theoretical perspectives, taking the cell-microenvironment interplay as the privileged pathogenetic level of observation, and by assuming new explanatory models based on truly different premises. New theoretical frameworks dawned in the last two decades principally focus on the complex interaction between cells and their microenvironment, which is thought to be the critical level from which carcinogenesis arises. Indeed, both molecular and biophysical components of the stroma can dramatically drive cell fate commitment and cell outcome in opposite directions, even in the presence of the same stimulus. Therefore, such a novel approach can help in solving apparently inextricable paradoxes that are increasingly observed in cancer biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Valeria Fedeli
- Systems Biology Group Lab, Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (N.M.); (R.V.); (A.P.); (A.Q.); (M.B.)
| |
Collapse
|
20
|
Zhang Y, Luo S, Jia Y, Zhang X. Telomere maintenance mechanism dysregulation serves as an early predictor of adjuvant therapy response and a potential therapeutic target in human cancers. Int J Cancer 2022; 151:313-327. [PMID: 35342938 DOI: 10.1002/ijc.34007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Telomere maintenance mechanisms (TMMs) rescue cells from telomere crisis, endow cells immortal property, stabilize genomic integrity. However, TMM-associated molecular profiles and their clinical outcomes in cancer remain elusive. Here, we performed a pan-cancer and integrated analysis of TMM gene expression profiles from 10,107 unique samples with clinicopathological, molecular and outcome features across 7 malignancies from the same microarray platform (Affymetrix GPL570 platform). This resource was divided into Case-Control datasets for obtaining dysregulated TMM genes and Survival datasets for evaluating clinical outcomes. Multidimensional data from The Cancer Genome Atlas (TCGA) were used to elucidate associations between TMM dysregulation and survival, genomic instability. Our results demonstrated that TMMs had a consistent dysregulation spectrum across cancers, based on which we developed the TMM-dysregulation signature TMScore that was positively associated with various tumor adverse features. Two opposite prognostic patterns of TMScore independent of clinicopathological and molecular characteristics were identified, which might be explained by genomic instability: breast and lung cancer patients with elevated TMScore had inferior outcomes, suggesting TMScore-related genes as potential therapeutic targets, on the contrary, colon and stomach cancer patients had superior outcomes. Most important, the prognostic value of TMScore was still significant regardless of whether patients had received adjuvant therapy, which was valuable for discriminating non-responders from responders, and could predict the effectiveness of adjuvant therapy. In summary, our resources delineate TMMs dysregulated landscape across cancers, shed light on the impact of TMMs dysregulation on patient outcomes and adjuvant therapy, and provide novel therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Yajing Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China.,Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shangyi Luo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China.,Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Jia
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China.,Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China.,Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
21
|
Benusiglio PR, Fallet V, Sanchis-Borja M, Coulet F, Cadranel J. Lung cancer is also a hereditary disease. Eur Respir Rev 2021; 30:210045. [PMID: 34670806 PMCID: PMC9488670 DOI: 10.1183/16000617.0045-2021] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pathogenic genetic variants (formerly called mutations) present in the germline of some individuals are associated with a clinically relevant increased risk of developing lung cancer. These germline pathogenic variants are hereditary and are transmitted in an autosomal dominant fashion. There are two major lung cancer susceptibility syndromes, and both seem to be specifically associated with the adenocarcinoma subtype. Li-Fraumeni syndrome is caused by variants in the TP53 tumour-suppressor gene. Carriers are mainly at risk of early-onset breast cancer, sarcoma, glioma, leukaemia, adrenal cortical carcinoma and lung cancer. EGFR variants, T790M in particular, cause the EGFR susceptibility syndrome. Risk seems limited to lung cancer. Emerging data suggest that variants in ATM, the breast and pancreatic cancer susceptibility gene, also increase lung adenocarcinoma risk. As for inherited lung disease, cancer risk is increased in SFTPA1 and SFTPA2 variant carriers independently of the underlying fibrosis. In this review, we provide criteria warranting the referral of a lung cancer patient to the cancer genetics clinic. Pathogenic variants are first identified in patients with cancer, and then in a subset of their relatives. Lung cancer screening should be offered to asymptomatic carriers, with thoracic magnetic resonance imaging at its core.
Collapse
Affiliation(s)
- Patrick R Benusiglio
- UF d'Oncogénétique clinique, Département de Génétique et Institut Universitaire de Cancérologie, DMU BioGeM, GH Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 et SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Paris, France
| | - Vincent Fallet
- Service de Pneumologie et Oncologie Thoracique, DMU APPROCHES, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- GRC04 Theranoscan, Sorbonne Université, Paris, France
| | - Mateo Sanchis-Borja
- Service de Pneumologie et Oncologie Thoracique, DMU APPROCHES, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
| | - Florence Coulet
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 et SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Paris, France
- UF d'Onco-angiogénétique et génomique des tumeurs solides, Département de Génétique, DMU BioGeM, GH Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Jacques Cadranel
- Service de Pneumologie et Oncologie Thoracique, DMU APPROCHES, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- GRC04 Theranoscan, Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Bu F, Cheng Q, Zhang Y, Zhang X, Yan K, Liu F, Li Z, Lu X, Ren Y, Liu S. Discovery of Missing Proteins from an Aneuploidy Cell Line Using a Proteogenomic Approach. J Proteome Res 2021; 20:5329-5339. [PMID: 34748338 DOI: 10.1021/acs.jproteome.1c00772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the steadfast development of proteomic technology, the number of missing proteins (MPs) has been continuously shrinking, with approximately 1470 MPs that have not been explored yet. Due to this phenomenon, the discovery of MPs has been increasingly more difficult and elusive. In order to face this challenge, we have hypothesized that a stable aneuploid cell line with increased chromosomes serves as a useful material for assisting MP exploration. Ker-CT cell line with trisomy at chromosome 5 and 20 was selected for this purpose. With a combination strategy of RNA-Seq and LC-MS/MS, a total of 22 178 transcripts and 8846 proteins were identified in Ker-CT. Although the transcripts corresponding to 15 and 15 MP genes located at chromosome 5 and 20 were detected, none of the MPs were found in Ker-CT. Surprisingly, 3 MPs containing at least two unique non-nest peptides of length ≥9 amino acids were identified in Ker-CT, whose genes are located on chromosome 3 and 10, respectively. Furthermore, the 3 MPs were verified using the method of parallel reaction monitoring (PRM). These results suggest that the abnormal status of chromosomes may not only impact the expression of the corresponding genes in trisomy chromosomes, but also influence that of other chromosomes, which benefits MP discovery. The data obtained in this study are available via ProteomeXchange (PXD028647) and PeptideAtlas (PASS01700), respectively.
Collapse
Affiliation(s)
- Fanyu Bu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Qingqiu Cheng
- Clinical Laboratory Center of Dongguan Eighth People's Hospital, Dongguan 523325, China
| | - Yuxing Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Xia Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Keqiang Yan
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Frank Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Zelong Li
- Biological Resource Center of Plants, Animals and Microorganisms, China National Gene Bank, BGI-Shenzhen, Guangdong 518120, China
| | - Xiaomei Lu
- Clinical Laboratory Center of Dongguan Eighth People's Hospital, Dongguan 523325, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| |
Collapse
|
23
|
Dong X, Zhang Q, Hao J, Xie Q, Xu B, Zhang P, Lu H, Huang Q, Yang T, Wei GH, Na R, Gao P. Large Multicohort Study Reveals a Prostate Cancer Susceptibility Allele at 5p15 Regulating TERT via Androgen Signaling-Orchestrated Chromatin Binding of E2F1 and MYC. Front Oncol 2021; 11:754206. [PMID: 34858826 PMCID: PMC8631195 DOI: 10.3389/fonc.2021.754206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Aberrant telomerase reverse transcriptase (TERT) expression is crucial for tumor survival and cancer cells escaping apoptosis. Multiple TERT-locus variants at 5p15 have been discovered in association with cancer risk, yet the underlying mechanisms and clinical impacts remain unclear. Here, our association studies showed that the TERT promoter variant rs2853669 confers a risk of prostate cancer (PCa) in different ethnic groups. Further functional investigation revealed that the allele-specific binding of MYC and E2F1 at TERT promoter variant rs2853669 associates with elevated level of TERT in PCa. Mechanistically, androgen stimulations promoted the binding of MYC to allele T of rs2853669, thereby activating TERT, whereas hormone deprivations enhanced E2F1 binding at allele C of rs2853669, thus upregulating TERT expression. Notably, E2F1 could cooperate with AR signaling to regulate MYC expression. Clinical data demonstrated synergistic effects of MYC/E2F1/TERT expression or with the TT and CC genotype of rs2853669 on PCa prognosis and severity. Strikingly, single-nucleotide editing assays showed that the CC genotype of rs2853669 obviously promotes epithelial-mesenchymal transition (EMT) and the development of castration-resistant PCa (CRPC), confirmed by unbiased global transcriptome profiling. Our findings thus provided compelling evidence for understanding the roles of noncoding variations coordinated with androgen signaling and oncogenic transcription factors in mis-regulating TERT expression and driving PCa.
Collapse
Affiliation(s)
- Xiaoming Dong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qin Zhang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jinglan Hao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qianwen Xie
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Binbing Xu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Peng Zhang
- Fudan University Shanghai Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Haicheng Lu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Department of Animal Science, School of Life Sciences, Shandong University, Qingdao, China
| | - Tielin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Fudan University Shanghai Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Rong Na
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Gao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
24
|
Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, Noeen S, Kattermann K, Greenberg M, Williams A, Riley AK, Wilson JJ, Mao YQ, Huang RP, Banwait MK, Ho J, Crowther GS, Hariri LP, Heist RS, Kodack DP, Pinello L, Shaw AT, Mino-Kenudson M, Hata AN, Sequist LV, Benes CH, Niederst MJ, Engelman JA. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell 2021; 39:1531-1547.e10. [PMID: 34624218 PMCID: PMC8578451 DOI: 10.1016/j.ccell.2021.09.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are highly heterogeneous. With the lack of a comprehensive understanding of CAFs' functional distinctions, it remains unclear how cancer treatments could be personalized based on CAFs in a patient's tumor. We have established a living biobank of CAFs derived from biopsies of patients' non-small lung cancer (NSCLC) that encompasses a broad molecular spectrum of CAFs in clinical NSCLC. By functionally interrogating CAF heterogeneity using the same therapeutics received by patients, we identify three functional subtypes: (1) robustly protective of cancers and highly expressing HGF and FGF7; (2) moderately protective of cancers and highly expressing FGF7; and (3) those providing minimal protection. These functional differences among CAFs are governed by their intrinsic TGF-β signaling, which suppresses HGF and FGF7 expression. This CAF functional classification correlates with patients' clinical response to targeted therapies and also associates with the tumor immune microenvironment, therefore providing an avenue to guide personalized treatment.
Collapse
Affiliation(s)
- Haichuan Hu
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| | - Zofia Piotrowska
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Patricia J Hare
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Huidong Chen
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA; Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hillary E Mulvey
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aislinn Mayfield
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Sundus Noeen
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Krystina Kattermann
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Max Greenberg
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - August Williams
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Amanda K Riley
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | | | - Ying-Qing Mao
- RayBiotech Inc, Norcross, GA 30092, USA; RayBiotech Inc, Guangzhou, Guangdong 510630, China
| | - Ruo-Pan Huang
- RayBiotech Inc, Norcross, GA 30092, USA; RayBiotech Inc, Guangzhou, Guangdong 510630, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Mandeep K Banwait
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey Ho
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Giovanna S Crowther
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lida P Hariri
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Rebecca S Heist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David P Kodack
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Luca Pinello
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA; Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
25
|
Arakawa F, Miyoshi H, Yoshida N, Nakashima K, Watatani Y, Furuta T, Yamada K, Moritsubo M, Takeuchi M, Yanagida E, Shimasaki Y, Kohno K, Kataoka K, Ohshima K. Expression of telomerase reverse transcriptase in peripheral T-cell lymphoma. Cancer Med 2021; 10:6786-6794. [PMID: 34477310 PMCID: PMC8495278 DOI: 10.1002/cam4.4200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/17/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Telomere length is maintained by the activation of telomerase, which causes continuous cell division and proliferation in many carcinomas. A catalytic reverse transcriptase protein (TERT) encoded by the TERT gene plays a critical role in the activation of telomerase. We performed a molecular and pathological analysis of the TERT against three different peripheral T‐cell lymphoma (PTCL) subtypes: PTCL, not otherwise specified (PTCL‐NOS), angioimmunoblastic T‐cell lymphoma (AITL), and adult T‐cell leukemia/lymphoma (ATLL). Immunohistochemical analysis demonstrated TERT expression in 31% of AITL, 11% of PTCL‐NOS, and 5% of ATLL. Among them, AITL frequently showed high TERT expression with statistical significance. TERT promoter mutation analysis and genomic copy number evaluation were performed. TERT promoter mutation was observed in two cases of PTCL‐NOS (2/40) and not in other PTCLs. Genome copy number amplification was detected in 33% of PTCL‐NOS, 33% of AITL, and 50% of ATLL cases. We evaluated the relationship between the analyzed TERT genomic abnormalities and protein expression; however, no apparent relationship was observed. Furthermore, immunostaining showed TERT expression in the PTCL cytoplasm, suggesting the existence of mechanisms other than the maintenance of telomere length. Statistical analysis of the effect of TERT expression on the prognosis in PTCL cases revealed that TERT expression tended to have a poor prognosis in PTCL‐NOS. Since TERT expression was not an independent factor in multivariate analysis, further research will be needed to clarify the poor prognosis of PTCL‐NOS in TERT expression.
Collapse
Affiliation(s)
- Fumiko Arakawa
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Noriaki Yoshida
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan.,Department of Clinical Studies, Radiation Effects Research Foundation Hiroshima Laboratory, Hiroshima, Japan
| | - Kazutaka Nakashima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Yosaku Watatani
- Departments of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka, Japan
| | - Takuya Furuta
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Kyohei Yamada
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Mayuko Moritsubo
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Mai Takeuchi
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Eriko Yanagida
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Yasumasa Shimasaki
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Kei Kohno
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Keisuke Kataoka
- Division of Hematology Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| |
Collapse
|
26
|
|
27
|
Telomeres: New players in immune-mediated inflammatory diseases? J Autoimmun 2021; 123:102699. [PMID: 34265700 DOI: 10.1016/j.jaut.2021.102699] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Telomeres are repetitive DNA sequences located at the ends of linear chromosomes that preserve the integrity and stability of the genome. Telomere dysfunctions due to short telomeres or altered telomere structures can ultimately lead to replicative cellular senescence and chromosomal instability, both mechanisms being hallmarks of ageing. Chronic inflammation, oxidative stress and finally telomere length (TL) dynamics have been shown to be involved in various age-related non-communicable diseases (NCDs). Immune-mediated inflammatory diseases (IMIDs), including affections such as inflammatory bowel disease, psoriasis, rheumatoid arthritis, spondyloarthritis and uveitis belong to this group of age-related NCDs. Although in recent years, we have witnessed the emergence of studies in the literature linking these IMIDs to TL dynamics, the causality between these diseases and telomere attrition is still unclear and controversial. In this review, we provide an overview of available studies on telomere dynamics and discuss the utility of TL measurements in immune-mediated inflammatory diseases.
Collapse
|
28
|
Evtushenko NA, Beilin AK, Dashinimaev EB, Ziganshin RH, Kosykh AV, Perfilov MM, Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA, Gurskaya NG. hTERT-Driven Immortalization of RDEB Fibroblast and Keratinocyte Cell Lines Followed by Cre-Mediated Transgene Elimination. Int J Mol Sci 2021; 22:3809. [PMID: 33916959 PMCID: PMC8067634 DOI: 10.3390/ijms22083809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
The recessive form of dystrophic epidermolysis bullosa (RDEB) is a crippling disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Using ectopic expression of hTERT/hTERT + BMI-1 in primary cells, we developed expansible cultures of RDEB fibroblasts and keratinocytes. We showed that they display the properties of their founders, including morphology, contraction ability and expression of the respective specific markers including reduced secretion of type VII collagen (C7). The immortalized keratinocytes retained normal stratification in 3D skin equivalents. The comparison of secreted protein patterns from immortalized RDEB and healthy keratinocytes revealed the differences in the contents of the extracellular matrix that were earlier observed specifically for RDEB. We demonstrated the possibility to reverse the genotype of immortalized cells to the state closer to the progenitors by the Cre-dependent hTERT switch off. Increased β-galactosidase activity and reduced proliferation of fibroblasts were shown after splitting out of transgenes. We anticipate our cell lines to be tractable models for studying RDEB from the level of single-cell changes to the evaluation of 3D skin equivalents. Our approach permits the creation of standardized and expandable models of RDEB that can be compared with the models based on primary cell cultures.
Collapse
Affiliation(s)
- Nadezhda A. Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (E.B.D.); (A.V.K.)
| | - Arkadii K. Beilin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (E.B.D.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Erdem B. Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (E.B.D.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (R.H.Z.); (M.M.P.)
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (E.B.D.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Maxim M. Perfilov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (R.H.Z.); (M.M.P.)
| | - Alexandra L. Rippa
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Elena V. Alpeeva
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Andrey V. Vasiliev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Nadya G. Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (E.B.D.); (A.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (R.H.Z.); (M.M.P.)
| |
Collapse
|
29
|
Miyanaga A, Matsumoto M, Beck JA, Horikawa I, Oike T, Okayama H, Tanaka H, Burkett SS, Robles AI, Khan M, Lissa D, Seike M, Gemma A, Mano H, Harris CC. EML4-ALK induces cellular senescence in mortal normal human cells and promotes anchorage-independent growth in hTERT-transduced normal human cells. BMC Cancer 2021; 21:310. [PMID: 33761896 PMCID: PMC7992817 DOI: 10.1186/s12885-021-07905-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chromosomal inversions involving anaplastic lymphoma kinase (ALK) and echinoderm microtubule associated protein like 4 (EML4) generate a fusion protein EML4-ALK in non-small cell lung cancer (NSCLC). The understanding of EML4-ALK function can be improved by a functional study using normal human cells. METHODS Here we for the first time conduct such study to examine the effects of EML4-ALK on cell proliferation, cellular senescence, DNA damage, gene expression profiles and transformed phenotypes. RESULTS The lentiviral expression of EML4-ALK in mortal, normal human fibroblasts caused, through its constitutive ALK kinase activity, an early induction of cellular senescence with accumulated DNA damage, upregulation of p16INK4A and p21WAF1, and senescence-associated β-galactosidase (SA-β-gal) activity. In contrast, when EML4-ALK was expressed in normal human fibroblasts transduced with telomerase reverse transcriptase (hTERT), which is activated in the vast majority of NSCLC, the cells showed accelerated proliferation and acquired anchorage-independent growth ability in soft-agar medium, without accumulated DNA damage, chromosome aberration, nor p53 mutation. EML4-ALK induced the phosphorylation of STAT3 in both mortal and hTERT-transduced cells, but RNA sequencing analysis suggested that the different signaling pathways contributed to the different phenotypic outcomes in these cells. While EML4-ALK also induced anchorage-independent growth in hTERT-immortalized human bronchial epithelial cells in vitro, the expression of EML4-ALK alone did not cause detectable in vivo tumorigenicity in immunodeficient mice. CONCLUSIONS Our data indicate that the expression of hTERT is critical for EML4-ALK to manifest its in vitro transforming activity in human cells. This study provides the isogenic pairs of human cells with and without EML4-ALK expression.
Collapse
Affiliation(s)
- Akihiko Miyanaga
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 3068A, Bethesda, MD, 20892, USA
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masaru Matsumoto
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 3068A, Bethesda, MD, 20892, USA
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Jessica A Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 3068A, Bethesda, MD, 20892, USA
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 3068A, Bethesda, MD, 20892, USA
| | - Takahiro Oike
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 3068A, Bethesda, MD, 20892, USA
| | - Hirokazu Okayama
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 3068A, Bethesda, MD, 20892, USA
| | - Hiromi Tanaka
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sandra S Burkett
- Molecular Cytogenetic Core Facility, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 3068A, Bethesda, MD, 20892, USA
| | - Mohammed Khan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 3068A, Bethesda, MD, 20892, USA
| | - Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 3068A, Bethesda, MD, 20892, USA
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 3068A, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Yegorov YE, Poznyak AV, Nikiforov NG, Starodubova AV, Orekhov AN. Role of Telomeres Shortening in Atherogenesis: An Overview. Cells 2021; 10:395. [PMID: 33671887 PMCID: PMC7918954 DOI: 10.3390/cells10020395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
It is known that the shortening of the telomeres leads to cell senescence, accompanied by acquiring of pro-inflammatory phenotype. The expression of telomerase can elongate telomeres and resist the onset of senescence. The initiation of atherosclerosis is believed to be associated with local senescence of the endothelial cells of the arteries in places with either low or multidirectional oscillatory wall shear stress. The process of regeneration of the artery surface that has begun does not lead to success for several reasons. Atherosclerotic plaques are formed, which, when developed, lead to fatal consequences, which are the leading causes of death in the modern world. The pronounced age dependence of the manifestations of atherosclerosis pushes scientists to try to link the development of atherosclerosis with telomere length. The study of the role of telomere shortening in atherosclerosis is mainly limited to measuring the telomeres of blood cells, and only in rare cases (surgery or post-mortem examination) are the telomeres of local cells available for measurement. The review discusses the basic issues of cellular aging and the interpretation of telomere measurement data in atherosclerosis, as well as the prospects for the prevention and possible treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow 121552, Russia
- Institute of Gene Biology, Center of Collective Usage, Moscow 119334, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow 109240, Russia;
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- Institute of Human Morphology, Moscow 117418, Russia
| |
Collapse
|
31
|
Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064. [PMID: 33482595 PMCID: PMC7948428 DOI: 10.1074/jbc.rev120.014017] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
32
|
Jones DW, Zavros Y. In vivo and in vitro models of gastric cancer. RESEARCH AND CLINICAL APPLICATIONS OF TARGETING GASTRIC NEOPLASMS 2021:157-184. [DOI: 10.1016/b978-0-323-85563-1.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
33
|
Liu H, Wang L, Wang Y, Zhu Q, Aldo P, Ding J, Mor G, Liao A. Establishment and characterization of a new human first trimester Trophoblast cell line, AL07. Placenta 2020; 100:122-132. [PMID: 32927240 PMCID: PMC8237240 DOI: 10.1016/j.placenta.2020.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/20/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The limited cell number of primary trophoblasts and contamination of trophoblast cell lines promote us to develop a novel stable trophoblast cell line. METHOD OF STUDY Primary trophoblast cells were isolated from first-trimester placenta and telomerase-induced immortalization was used to immortalize these cells. Subsets of cells were then evaluated by flow cytometry using CK7, HLA-G, CD45 and CD14, specific markers for trophoblast cells, extra-villous trophoblast, pan leucocyte and monocyte/macrophage, respectively. Immunofluorescence staining and immunocytochemistry were used to detect CK7 expression in trophoblast cells. The level of secreted human Chorionic Gonadotropin (hCG) was measured by electrochemiluminescence (ECL). The Bio-Plex MAGPIX System was used to analyze the cytokines and chemokines produced by AL07 cell line. RESULTS We were able to isolate primary trophoblast cells from several first-trimester placentas. One clone, AL07 trophoblast cells, isolated from a week 7 placenta, was morphologically stable and positive for the expression of CK7 by immunofluorescence and immunocytochemistry staining. Characterization of AL07 cells reveled that they are CD45 or CD14 negative and had constitutive secretion of hCG and low HLA-G expression. Furthermore, clone AL07 secret high levels of several cytokines and chemokines, including IL-6, IL-8 and VEGF, and moderately secreted MCP-1 IP-10 and RANTES. DISCUSSION We report the successful isolation, immortalization and characterization of AL07 cells, a novel cell clone isolated from first trimester human placenta. The clone is free of contamination of immune cells, and exhibits similar cytokine profile as other trophoblast cell lines. This new cytotrophoblast-like AL07 cell, can be a valuable tool for in-vitro trophoblast studies in the future.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yan Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Qian Zhu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
34
|
Kamal S, Junaid M, Ejaz A, Bibi I, Akash MSH, Rehman K. The secrets of telomerase: Retrospective analysis and future prospects. Life Sci 2020; 257:118115. [PMID: 32698073 DOI: 10.1016/j.lfs.2020.118115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Telomerase plays a significant role to maintain and regulate the telomere length, cellular immortality and senescence by the addition of guanine-rich repetitive sequences. Chronic inflammation or oxidative stress-induced infection downregulates TERT gene modifying telomerase activity thus contributing to the early steps of gastric carcinogenesis process. Furthermore, telomere-telomerase system performs fundamental role in the pathogenesis and progression of diabetes mellitus as well as in its vascular intricacy. The cessation of cell proliferation in cultured cells by inhibiting the telomerase activity of transformed cells renders the rationale for culling of telomerase as a target therapy for the treatment of metabolic disorders and various types of cancers. In this article, we have briefly described the role of immune system and malignant cells in the expression of telomerase with critical analysis on the gaps and potential for future studies. The key findings regarding the secrets of the telomerase summarized in this article will help in future treatment modalities for the prevention of various types of cancers and metabolic disorders notably diabetes mellitus.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Junaid
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Arslan Ejaz
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Ismat Bibi
- Department of Chemistry, Islamia University, Bahawalpur, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
35
|
Burns JS, Kassem M. Less is more: Corroborating a genomic biomarker identifying human bone marrow multipotent stromal cells with high scalability. STEM CELLS (DAYTON, OHIO) 2020; 38:E5-E6. [PMID: 32818323 DOI: 10.1002/stem.3265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/28/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jorge S Burns
- Department of Endocrinology, University Hospital of Odense, Odense, Denmark & Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Faculty of Medical Engineering, University Politehnica of Bucharest, Bucharest, Romania
| | - Moustapha Kassem
- Department of Endocrinology, University Hospital of Odense, Odense, Denmark & Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Sato M, Shay JW, Minna JD. Immortalized normal human lung epithelial cell models for studying lung cancer biology. Respir Investig 2020; 58:344-354. [PMID: 32586780 DOI: 10.1016/j.resinv.2020.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 01/06/2023]
Abstract
Primary cultures of human lung epithelial cells are ideal representatives of normal lung epithelial cells, and while there are certain novel approaches for the long-term culture of lung epithelial cells, the cells eventually undergo irreversible growth arrest, limiting their experimental utility, particularly the ability to widely distribute these cultures and their clonal derivatives to the broader research community. Therefore, the establishment of immortalized normal human lung epithelial cell strains has garnered considerable attention. The number and type of oncogenic changes necessary for the tumorigenic transformation of normal cells could be determined using "normal" cell lines immortalized with the simian virus 40 (SV40) large T antigen (LT). A primary report suggested that LT, human telomerase reverse transcriptase (hTERT), and oncogenic RAS transformed normal lung epithelial cells into tumorigenic cells. Since LT inactivates the tumor suppressors p53 and RB, at least four alterations would be necessary. However, the SV40 small T antigen (ST), a different oncoprotein, was also introduced simultaneously with LT in the above-mentioned study. Furthermore, the possible uncharacterized functions of LT remained largely obscure. Therefore, no definitive conclusion could be arrived in these studies. Subsequent studies used methods that did not involve the use of oncoproteins and revealed that at least five genetic changes were necessary for full tumorigenic transformation. hTERT-immortalized normal human lung epithelial cell lines established without using viral oncoproteins were also used for investigating several aspects of lung cancer, such as epithelial to mesenchymal transition and the cancer stem cell theory. The use of immortalized normal lung epithelial cell models has improved our understanding of lung cancer pathogenesis and these models can serve as valuable research tools.
Collapse
Affiliation(s)
- Mitsuo Sato
- Dept. of Pathophysiological Laboratory Sciences Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, 461-8673, Japan.
| | - Jerry W Shay
- Dept. of Cell Biology, University of Texas Southwestern Medical Center, Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
37
|
A Driver Never Works Alone-Interplay Networks of Mutant p53, MYC, RAS, and Other Universal Oncogenic Drivers in Human Cancer. Cancers (Basel) 2020; 12:cancers12061532. [PMID: 32545208 PMCID: PMC7353041 DOI: 10.3390/cancers12061532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The knowledge accumulating on the occurrence and mechanisms of the activation of oncogenes in human neoplasia necessitates an increasingly detailed understanding of their systemic interactions. None of the known oncogenic drivers work in isolation from the other oncogenic pathways. The cooperation between these pathways is an indispensable element of a multistep carcinogenesis, which apart from inactivation of tumor suppressors, always includes the activation of two or more proto-oncogenes. In this review we focus on representative examples of the interaction of major oncogenic drivers with one another. The drivers are selected according to the following criteria: (1) the highest frequency of known activation in human neoplasia (by mutations or otherwise), (2) activation in a wide range of neoplasia types (universality) and (3) as a part of a distinguishable pathway, (4) being a known cause of phenotypic addiction of neoplastic cells and thus a promising therapeutic target. Each of these universal oncogenic factors—mutant p53, KRAS and CMYC proteins, telomerase ribonucleoprotein, proteasome machinery, HSP molecular chaperones, NF-κB and WNT pathways, AP-1 and YAP/TAZ transcription factors and non-coding RNAs—has a vast network of molecular interrelations and common partners. Understanding this network allows for the hunt for novel therapeutic targets and protocols to counteract drug resistance in a clinical neoplasia treatment.
Collapse
|
38
|
Xing M, Zhang F, Liao H, Chen S, Che L, Wang X, Bao Z, Ji F, Chen G, Zhang H, Li W, Chen Z, Liu Y, Hickson ID, Shen H, Ying S. Replication Stress Induces ATR/CHK1-Dependent Nonrandom Segregation of Damaged Chromosomes. Mol Cell 2020; 78:714-724.e5. [PMID: 32353258 DOI: 10.1016/j.molcel.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
Nonrandom DNA segregation (NDS) is a mitotic event in which sister chromatids carrying the oldest DNA strands are inherited exclusively by one of the two daughter cells. Although this phenomenon has been observed across various organisms, the mechanism and physiological relevance of this event remain poorly defined. Here, we demonstrate that DNA replication stress can trigger NDS in human cells. This biased inheritance of old template DNA is associated with the asymmetric DNA damage response (DDR), which derives at least in part from telomeric DNA. Mechanistically, we reveal that the ATR/CHK1 signaling pathway plays an essential role in mediating NDS. We show that this biased segregation process leads to cell-cycle arrest and cell death in damaged daughter cells inheriting newly replicated DNA. These data therefore identify a key role for NDS in the maintenance of genomic integrity within cancer cell populations undergoing replication stress due to oncogene activation.
Collapse
Affiliation(s)
- Meichun Xing
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Fengjiao Zhang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Hongwei Liao
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Sisi Chen
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Luanqing Che
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaohui Wang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Zhengqiang Bao
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Fang Ji
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Gaoying Chen
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Huihui Zhang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510120, China.
| | - Songmin Ying
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China.
| |
Collapse
|
39
|
Ackermann S, Fischer M. Telomere Maintenance in Pediatric Cancer. Int J Mol Sci 2019; 20:E5836. [PMID: 31757062 PMCID: PMC6928840 DOI: 10.3390/ijms20235836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere length has been proposed as a biomarker of biological age and a risk factor for age-related diseases and cancer. Substantial progress has been made in recent decades in understanding the complex molecular relationships in this research field. However, the majority of telomere studies have been conducted in adults. The data on telomere dynamics in pediatric cancers is limited, and interpretation can be challenging, especially in cases where results are contrasting to those in adult entities. This review describes recent advances in the molecular characterization of structure and function of telomeres, regulation of telomerase activity in cancer pathogenesis in general, and highlights the key advances that have expanded our views on telomere biology in pediatric cancer, with special emphasis on the central role of telomere maintenance in neuroblastoma. Furthermore, open questions in the field of telomere maintenance research are discussed in the context of recently published literature.
Collapse
Affiliation(s)
- Sandra Ackermann
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| |
Collapse
|
40
|
Kwon JA, Jeong MS, Yoon SL, Mun JY, Kim MH, Yang GE, Park SH, Chung JW, Choi YH, Cha HJ, Leem SH. The hTERT-VNTR2-2nd alleles are involved in genomic stability in gastrointestinal cancer. Genes Genomics 2019; 41:1517-1525. [DOI: 10.1007/s13258-019-00882-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
|
41
|
Xie R, Tuo B, Yang S, Chen XQ, Xu J. Calcium-sensing receptor bridges calcium and telomerase reverse transcriptase in gastric cancers via Akt. Clin Transl Oncol 2019; 22:1023-1032. [PMID: 31650467 DOI: 10.1007/s12094-019-02226-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/03/2019] [Indexed: 01/27/2023]
Abstract
PURPOSE Human telomerase reverse transcriptase (hTERT) and calcium-sensing receptor (CaSR) act as an oncogene in gastric cancers, however, their relationship in the progression of gastric cancers is yet to be elucidated. Herein, we aimed to access the potential interaction between hTERT and CaSR in the development of gastric cancers. METHODS The clinical data of 41 patients with gastric cancers were analyzed regarding the expressions of hTERT and CaSR by immunohistochemistry. Among them, five patients' specimens were also analyzed by Western blotting. The regulation of calcium on the expression level of hTERT and the possible underlying mechanism via CaSR were explored in gastric cancer cell lines MKN45 and SGC-7901. RESULTS Both hTERT and CaSR were increased and positively correlated in human gastric cancers, which also occurs in gastric cancer cells MKN45 and SGC-7901. Calcium induced hTERT expression at the transcriptional level in a CaSR-dependent manner followed by an increase in telomerase activity, as either a CaSR shRNA or the CaSR antagonist NPS2143 abolished the calcium-mediated regulation of hTERT and telomerase activity. Further studies showed that CaSR-mediated cytosolic calcium rise followed by Akt activation was involved in the regulation of hTERT by extracellular calcium. Finally, neither CaSR overexpression nor shRNA-mediated CaSR downregulation had an effect on the expression level of hTERT. CONCLUSIONS Our findings established a functional linkage between CaSR and hTERT in the development of gastric cancers and CaSR-hTERT coupling might serve as a novel target for therapeutic strategy against human gastric cancers.
Collapse
Affiliation(s)
- R Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - B Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - S Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - X-Q Chen
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, 92093, USA.
| | - J Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
42
|
Abstract
Telomeres, the protective ends of linear chromosomes, shorten throughout an individual's lifetime. Accumulation of critically short telomeres is proposed to be a primary molecular cause of aging and age-associated diseases. Mutations in telomere maintenance genes are associated with pathologies referred to as or telomeropathies. The rate of telomere shortening throughout life is determined by endogenous (genetic) and external (nongenetic) factors. Therapeutic strategies based on telomerase activation are being developed to treat and prevent telomere-associated diseases, namely aging-related diseases and telomeropathies. Here, we review the molecular mechanisms underlying telomere driven diseases with particular emphasis on cardiovascular diseases.
Collapse
Affiliation(s)
- Paula Martínez
- From the Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Maria A Blasco
- From the Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
43
|
West MD, Sternberg H, Labat I, Janus J, Chapman KB, Malik NN, de Grey ADNJ, Larocca D. Toward a unified theory of aging and regeneration. Regen Med 2019; 14:867-886. [DOI: 10.2217/rme-2019-0062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the antagonistic pleiotropy theory of mammalian aging. Accordingly, changes in gene expression following the pluripotency transition, and subsequent transitions such as the embryonic–fetal transition, while providing tumor suppressive and antiviral survival benefits also result in a loss of regenerative potential leading to age-related fibrosis and degenerative diseases. However, reprogramming somatic cells to pluripotency demonstrates the possibility of restoring telomerase and embryonic regeneration pathways and thus reversing the age-related decline in regenerative capacity. A unified model of aging and loss of regenerative potential is emerging that may ultimately be translated into new therapeutic approaches for establishing induced tissue regeneration and modulation of the embryo-onco phenotype of cancer.
Collapse
Affiliation(s)
| | | | - Ivan Labat
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
| | | | | | - Nafees N Malik
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- Juvenescence Ltd, London, UK
| | - Aubrey DNJ de Grey
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | |
Collapse
|
44
|
Abstract
Many recent advances have emerged in the telomere and telomerase fields. This Timeline article highlights the key advances that have expanded our views on the mechanistic underpinnings of telomeres and telomerase and their roles in ageing and disease. Three decades ago, the classic view was that telomeres protected the natural ends of linear chromosomes and that telomerase was a specific telomere-terminal transferase necessary for the replication of chromosome ends in single-celled organisms. While this concept is still correct, many diverse fields associated with telomeres and telomerase have substantially matured. These areas include the discovery of most of the key molecular components of telomerase, implications for limits to cellular replication, identification and characterization of human genetic disorders that result in premature telomere shortening, the concept that inhibiting telomerase might be a successful therapeutic strategy and roles for telomeres in regulating gene expression. We discuss progress in these areas and conclude with challenges and unanswered questions in the field.
Collapse
Affiliation(s)
- Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
45
|
Li M, Yang X, Lu X, Dai N, Zhang S, Cheng Y, Zhang L, Yang Y, Liu Y, Yang Z, Wang D, Wilson DM. APE1 deficiency promotes cellular senescence and premature aging features. Nucleic Acids Res 2019; 46:5664-5677. [PMID: 29750271 PMCID: PMC6009672 DOI: 10.1093/nar/gky326] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Base excision repair (BER) handles many forms of endogenous DNA damage, and apurinic/apyrimidinic endonuclease 1 (APE1) is central to this process. Deletion of both alleles of APE1 (a.k.a. Apex1) in mice leads to embryonic lethality, and deficiency in cells can promote cell death. Unlike most other BER proteins, APE1 expression is inversely correlated with cellular senescence in primary human fibroblasts. Depletion of APE1 via shRNA induced senescence in normal human BJ fibroblasts, a phenotype that was not seen in counterpart cells expressing telomerase. APE1 knock-down in primary fibroblasts resulted in global DNA damage accumulation, and the induction of p16INK4a and p21WAF1 stress response pathways; the DNA damage response, as assessed by γ-H2AX, was particularly pronounced at telomeres. Conditional knock-out of Apex1 in mice at post-natal day 7/12 resulted in impaired growth, reduced organ size, and increased cellular senescence. The effect of Apex1 deletion at post-natal week 6 was less obvious, other than cellular senescence, until ∼8-months of age, when premature aging characteristics, such as hair loss and impaired wound healing, were seen. Low APE1 expression in patient cancer tissue also correlated with increased senescence. Our results point to a key role for APE1 in regulating cellular senescence and aging features, with telomere status apparently affecting the outcome.
Collapse
Affiliation(s)
- Mengxia Li
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Xiao Yang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Xianfeng Lu
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Nan Dai
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Shiheng Zhang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Yi Cheng
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Lei Zhang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Yuxin Yang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD 21224, USA
| | - Zhenzhou Yang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Dong Wang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD 21224, USA
| |
Collapse
|
46
|
Bignoux MJ, Cuttler K, Otgaar TC, Ferreira E, Letsolo BT, Weiss SF. LRP::FLAG Rescues Cells from Amyloid-β-Mediated Cytotoxicity Through Increased TERT Levels and Telomerase Activity. J Alzheimers Dis 2019; 69:729-741. [DOI: 10.3233/jad-190075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Monique J. Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Katelyn Cuttler
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Tyrone C. Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Boitelo T. Letsolo
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Stefan F.T. Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| |
Collapse
|
47
|
Sato M, Saitoh I, Inada E, Nakamura S, Watanabe S. Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-Directed In Vivo Gene Delivery of Transposons in Mice. Stem Cells Int 2019; 2019:5129526. [PMID: 31281376 PMCID: PMC6589260 DOI: 10.1155/2019/5129526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isolation of hepatocytes and their culture in vitro represent important avenues to explore the function of such cells. However, these studies are often difficult to perform because of the inability of hepatocytes to proliferate in vitro. Immortalization of isolated hepatocytes is thus an important step toward continuous in vitro culture. For cellular immortalization, integration of relevant genes into the host chromosomes is a prerequisite. Transposons, which are mobile genetic elements, are known to facilitate integration of genes of interest (GOI) into chromosomes in vitro and in vivo. Here, we proposed that a combination of transposon- and liver-directed introduction of nucleic acids may confer acquisition of unlimited cellular proliferative potential on hepatocytes, enabling the possible isolation of immortalized hepatocyte cell lines, which has often failed using more traditional immortalization methods.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
48
|
Bowman KR, Kim JH, Lim CS. Narrowing the field: cancer-specific promoters for mitochondrially-targeted p53-BH3 fusion gene therapy in ovarian cancer. J Ovarian Res 2019; 12:38. [PMID: 31039796 PMCID: PMC6492428 DOI: 10.1186/s13048-019-0514-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite years of research, the treatment options and mortality rate for ovarian cancer remain relatively stagnant. Resistance to chemotherapy and high heterogeneity in mutations contribute to ovarian cancer's lethality, including many mutations in tumor suppressor p53. Though wild type p53 gene therapy clinical trials failed in ovarian cancer, mitochondrially-targeted p53 fusion constructs, including a fusion with pro-apoptotic protein Bad, have shown much higher apoptotic potential than wild type p53 in vitro. Due to the inherent toxicities of mitochondrial apoptosis, cancer-specificity for the p53 fusion constructs must be developed. Cancer-specific promoters such as hTERT, hTC, Brms1, and Ran have shown promise in ovarian cancer. RESULTS Of five different lengths of hTERT promoter, the - 279/+ 5 length relative to the transcription start site showed the highest activity across a panel of ovarian cancer cells. In addition to - 279/+ 5, promoters hTC (an hTERT/CMV promoter hybrid), Brms1, and Ran were tested as drivers of mitochondrially-targeted p53-Bad and p53-Bad* fusion gene therapy constructs. p53-Bad* displayed cancer-specific killing in all ovarian cancer cell lines when driven by hTC, - 279/+ 5, or Brms1. CONCLUSIONS Cancer-specific promoters hTC, - 279/+ 5, and Brms1 all display promise in driving p53-Bad* gene therapy for treatment of ovarian cancer and should be moved forward into in vivo studies. -279/+ 5 displays lower expression levels in fewer cells, but greater cancer specificity, rendering it most useful for gene therapeutics with high toxicity to normal cells. hTC and Brms1 show higher transfection and expression levels with some cancer specificity, making them ideal for lowering toxicity in order to increase dose without as much of a reduction in the number of cancer cells expressing the gene construct. Having a variety of promoters available means that patient genetic testing can aid in choosing a promoter, thereby increasing cancer-specificity and giving patients with ovarian cancer a greater chance at survival.
Collapse
Affiliation(s)
| | - Ji Hoon Kim
- New York University, 31 Washington Pl, New York, NY 10003 USA
| | - Carol S. Lim
- University of Utah, 30 S 2000 E Room #301, Salt Lake City, UT 84112 USA
| |
Collapse
|
49
|
Burkard M, Bengtson Nash S, Gambaro G, Whitworth D, Schirmer K. Lifetime extension of humpback whale skin fibroblasts and their response to lipopolysaccharide (LPS) and a mixture of polychlorinated biphenyls (Aroclor). Cell Biol Toxicol 2019; 35:387-398. [PMID: 30627956 PMCID: PMC6757015 DOI: 10.1007/s10565-018-09457-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
Marine mammals, such as whales, have a high proportion of body fat and so are susceptible to the accumulation, and associated detrimental health effects, of lipophilic environmental contaminants. Recently, we developed a wild-type cell line from humpback whale fibroblasts (HuWa). Extensive molecular assessments with mammalian wild-type cells are typically constrained by a finite life span, with cells eventually becoming senescent. Thus, the present work explored the possibility of preventing senescence in the HuWa cell line by transfection with plasmids encoding the simian virus large T antigen (SV40T) or telomerase reverse transcriptase (TERT). No stable expression was achieved upon SV40 transfection. Transfection with TERT, on the other hand, activated the expression of telomerase in HuWa cells. At the time of manuscript preparation, the transfected HuWa cells (HuWaTERT) have been stable for at least 59 passages post-transfection. HuWaTERT proliferate rapidly and maintain initial cell characteristics, such as morphology and chromosomal stability. The response of HuWaTERT cells to an immune stimulant (lipopolysaccharide (LPS)) and an immunotoxicant (Aroclor1254) was assessed by measurement of intracellular levels of the pro-inflammatory cytokines interleukin (IL)-6, IL-1β and tumour necrosis factor (TNF)-α. HuWaTERT cells constitutively express IL-6, IL-1β and TNFα. Exposure to neither LPS nor Aroclor1254 had an effect on the levels of these cytokines. Overall, this work supports the diverse applicability of HuWa cell lines in that they display reliable long-term preservation, susceptibility to exogenous gene transfer and enable the study of humpback whale-specific cellular response mechanisms.
Collapse
Affiliation(s)
- Michael Burkard
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia.,Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Susan Bengtson Nash
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Gessica Gambaro
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Deanne Whitworth
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Kristin Schirmer
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600, Dübendorf, Switzerland. .,Institute of Biogechemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland. .,School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland.
| |
Collapse
|
50
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|