1
|
Rodríguez-López ER, López P, Rodríguez Y, Sánchez R, Acevedo VS, Encarnación J, Tirado G, Ortiz-Sánchez C, Mesplède T, Rivera-Amill V. HIV-1 Integrase T218I/S Polymorphisms Do Not Reduce HIV-1 Integrase Inhibitors' Phenotypic Susceptibility. AIDS Res Hum Retroviruses 2025; 41:43-54. [PMID: 39086253 PMCID: PMC11807902 DOI: 10.1089/aid.2023.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The recently Food and Drug Administration (FDA)-approved cabotegravir (CAB) has demonstrated efficacy as an antiretroviral agent for HIV treatment and prevention, becoming an important tool to stop the epidemic in the United States of America (USA). However, the effectiveness of CAB can be compromised by the presence of specific integrase natural polymorphisms, including T97A, L74M, M50I, S119P, and E157Q, particularly when coupled with the primary drug-resistance mutations G140S and Q148H. CAB's recent approval as a pre-exposure prophylaxis (PrEP) may increase the number of individuals taking CAB, which, at the same time, could increase the number of epidemiological implications. In this context, where resistance mutations, natural polymorphisms, and the lack of drug-susceptibility studies prevail, it becomes imperative to comprehensively investigate concerns related to the use of CAB. We used molecular and cell-based assays to assess the impact of T218I and T218S in the context of major resistance mutations G140S/Q148H on infectivity, integration, and resistance to CAB. Our findings revealed that T218I and T218S, either individually or in combination with G140S/Q148H, did not significantly affect infectivity, integration, or resistance to CAB. Notably, these polymorphisms also exhibited neutrality concerning other widely used integrase inhibitors, namely raltegravir, elvitegravir, and dolutegravir. Thus, our study suggests that the T218I and T218S natural polymorphisms are unlikely to undermine the effectiveness of CAB as a treatment and PrEP strategy.
Collapse
Affiliation(s)
- Elliott R. Rodríguez-López
- RCMI Center for Research Resources, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Pablo López
- RCMI Center for Research Resources, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Yadira Rodríguez
- RCMI Center for Research Resources, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Raphael Sánchez
- RCMI Center for Research Resources, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Van-Sergei Acevedo
- RCMI Center for Research Resources, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Jarline Encarnación
- RCMI Center for Research Resources, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Grissell Tirado
- RCMI Center for Research Resources, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Carmen Ortiz-Sánchez
- RCMI Center for Research Resources, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Thibault Mesplède
- Viroscience Department, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vanessa Rivera-Amill
- RCMI Center for Research Resources, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
2
|
Grandgenett DP, Engelman AN. Brief Histories of Retroviral Integration Research and Associated International Conferences. Viruses 2024; 16:604. [PMID: 38675945 PMCID: PMC11054761 DOI: 10.3390/v16040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.
Collapse
Affiliation(s)
- Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Jing T, Shan Z, Dinh T, Biswas A, Jang S, Greenwood J, Li M, Zhang Z, Gray G, Shin HJ, Zhou B, Passos D, Aiyer S, Li Z, Craigie R, Engelman AN, Kvaratskhelia M, Lyumkis D. Oligomeric HIV-1 Integrase Structures Reveal Functional Plasticity for Intasome Assembly and RNA Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577436. [PMID: 38328132 PMCID: PMC10849644 DOI: 10.1101/2024.01.26.577436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Integrase (IN) performs dual essential roles during HIV-1 replication. During ingress, IN functions within an oligomeric "intasome" assembly to catalyze viral DNA integration into host chromatin. During late stages of infection, tetrameric IN binds viral RNA and orchestrates the condensation of ribonucleoprotein complexes into the capsid core. The molecular architectures of HIV-1 IN assemblies that mediate these distinct events remain unknown. Furthermore, the tetramer is an important antiviral target for allosteric IN inhibitors. Here, we determined cryo-EM structures of wildtype HIV-1 IN tetramers and intasome hexadecamers. Our structures unveil a remarkable plasticity that leverages IN C-terminal domains and abutting linkers to assemble functionally distinct oligomeric forms. Alteration of a newly recognized conserved interface revealed that both IN functions track with tetramerization in vitro and during HIV-1 infection. Collectively, our findings reveal how IN plasticity orchestrates its diverse molecular functions, suggest a working model for IN-viral RNA binding, and provide atomic blueprints for allosteric IN inhibitor development.
Collapse
Affiliation(s)
- Tao Jing
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Zelin Shan
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tung Dinh
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Avik Biswas
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Juliet Greenwood
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive Diseases, Bethesda, MD, 20892, USA
| | - Zeyuan Zhang
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gennavieve Gray
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Hye Jeong Shin
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Bo Zhou
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Dario Passos
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sriram Aiyer
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Zhen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive Diseases, Bethesda, MD, 20892, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Kumar S, Ansari S, Narayanan S, Ranjith-Kumar CT, Surjit M. Antiviral activity of zinc against hepatitis viruses: current status and future prospects. Front Microbiol 2023; 14:1218654. [PMID: 37908540 PMCID: PMC10613677 DOI: 10.3389/fmicb.2023.1218654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Viral hepatitis is a major public health concern globally. World health organization aims at eliminating viral hepatitis as a public health threat by 2030. Among the hepatitis causing viruses, hepatitis B and C are primarily transmitted via contaminated blood. Hepatitis A and E, which gets transmitted primarily via the feco-oral route, are the leading cause of acute viral hepatitis. Although vaccines are available against some of these viruses, new cases continue to be reported. There is an urgent need to devise a potent yet economical antiviral strategy against the hepatitis-causing viruses (denoted as hepatitis viruses) for achieving global elimination of viral hepatitis. Although zinc was known to mankind for a long time (since before Christ era), it was identified as an element in 1746 and its importance for human health was discovered in 1963 by the pioneering work of Dr. Ananda S. Prasad. A series of follow up studies involving zinc supplementation as a therapy demonstrated zinc as an essential element for humans, leading to establishment of a recommended dietary allowance (RDA) of 15 milligram zinc [United States RDA for zinc]. Being an essential component of many cellular enzymes and transcription factors, zinc is vital for growth and homeostasis of most living organisms, including human. Importantly, several studies indicate potent antiviral activity of zinc. Multiple studies have demonstrated antiviral activity of zinc against viruses that cause hepatitis. This article provides a comprehensive overview of the findings on antiviral activity of zinc against hepatitis viruses, discusses the mechanisms underlying the antiviral properties of zinc and summarizes the prospects of harnessing the therapeutic benefit of zinc supplementation therapy in reducing the disease burden due to viral hepatitis.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shabnam Ansari
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sriram Narayanan
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
5
|
Bera S, Shi K, Aihara H, Grandgenett DP, Pandey KK. Molecular determinants for Rous sarcoma virus intasome assemblies involved in retroviral integration. J Biol Chem 2023; 299:104730. [PMID: 37084813 PMCID: PMC10209032 DOI: 10.1016/j.jbc.2023.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023] Open
Abstract
Integration of retroviral DNA into the host genome involves the formation of integrase (IN)-DNA complexes termed intasomes. Further characterization of these complexes is needed to understand their assembly process. Here, we report the single-particle cryo-EM structure of the Rous sarcoma virus (RSV) strand transfer complex (STC) intasome produced with IN and a preassembled viral/target DNA substrate at 3.36 Å resolution. The conserved intasome core region consisting of IN subunits contributing active sites interacting with viral/target DNA has a resolution of 3 Å. Our structure demonstrated the flexibility of the distal IN subunits relative to the IN subunits in the conserved intasome core, similar to results previously shown with the RSV octameric cleaved synaptic complex intasome produced with IN and viral DNA only. An extensive analysis of higher resolution STC structure helped in the identification of nucleoprotein interactions important for intasome assembly. Using structure-function studies, we determined the mechanisms of several IN-DNA interactions critical for assembly of both RSV intasomes. We determined the role of IN residues R244, Y246, and S124 in cleaved synaptic complex and STC intasome assemblies and their catalytic activities, demonstrating differential effects. Taken together, these studies advance our understanding of different RSV intasome structures and molecular determinants involved in their assembly.
Collapse
Affiliation(s)
- Sibes Bera
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Duane P Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Krishan K Pandey
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Alalmaie A, Diaf S, Khashan R. Insight into the molecular mechanism of the transposon-encoded type I-F CRISPR-Cas system. J Genet Eng Biotechnol 2023; 21:60. [PMID: 37191877 DOI: 10.1186/s43141-023-00507-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
CRISPR-Cas9 is a popular gene-editing tool that allows researchers to introduce double-strand breaks to edit parts of the genome. CRISPR-Cas9 system is used more than other gene-editing tools because it is simple and easy to customize. However, Cas9 may produce unintended double-strand breaks in DNA, leading to off-target effects. There have been many improvements in the CRISPR-Cas system to control the off-target effect and improve the efficiency. The presence of a nuclease-deficient CRISPR-Cas system in several bacterial Tn7-like transposons inspires researchers to repurpose to direct the insertion of Tn7-like transposons instead of cleaving the target DNA, which will eventually limit the risk of off-target effects. Two transposon-encoded CRISPR-Cas systems have been experimentally confirmed. The first system, found in Tn7 like-transposon (Tn6677), is associated with the variant type I-F CRISPR-Cas system. The second one, found in Tn7 like-transposon (Tn5053), is related to the variant type V-K CRISPR-Cas system. This review describes the molecular and structural mechanisms of DNA targeting by the transposon-encoded type I-F CRISPR-Cas system, from assembly around the CRISPR-RNA (crRNA) to the initiation of transposition.
Collapse
Affiliation(s)
- Amnah Alalmaie
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA, 19131, USA
| | - Saousen Diaf
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA, 19131, USA
| | - Raed Khashan
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Long Island University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
7
|
Singer MR, Dinh T, Levintov L, Annamalai AS, Rey JS, Briganti L, Cook NJ, Pye VE, Taylor IA, Kim K, Engelman AN, Kim B, Perilla JR, Kvaratskhelia M, Cherepanov P. The Drug-Induced Interface That Drives HIV-1 Integrase Hypermultimerization and Loss of Function. mBio 2023; 14:e0356022. [PMID: 36744954 PMCID: PMC9973045 DOI: 10.1128/mbio.03560-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an emerging class of small molecules that disrupt viral maturation by inducing the aberrant multimerization of IN. Here, we present cocrystal structures of HIV-1 IN with two potent ALLINIs, namely, BI-D and the drug candidate Pirmitegravir. The structures reveal atomistic details of the ALLINI-induced interface between the HIV-1 IN catalytic core and carboxyl-terminal domains (CCD and CTD). Projecting from their principal binding pocket on the IN CCD dimer, the compounds act as molecular glue by engaging a triad of invariant HIV-1 IN CTD residues, namely, Tyr226, Trp235, and Lys266, to nucleate the CTD-CCD interaction. The drug-induced interface involves the CTD SH3-like fold and extends to the beginning of the IN carboxyl-terminal tail region. We show that mutations of HIV-1 IN CTD residues that participate in the interface with the CCD greatly reduce the IN-aggregation properties of Pirmitegravir. Our results explain the mechanism of the ALLINI-induced condensation of HIV-1 IN and provide a reliable template for the rational development of this series of antiretrovirals through the optimization of their key contacts with the viral target. IMPORTANCE Despite the remarkable success of combination antiretroviral therapy, HIV-1 remains among the major causes of human suffering and loss of life in poor and developing nations. To prevail in this drawn-out battle with the pandemic, it is essential to continue developing advanced antiviral agents to fight drug resistant HIV-1 variants. Allosteric integrase inhibitors (ALLINIs) are an emerging class of HIV-1 antagonists that are orthogonal to the current antiretroviral drugs. These small molecules act as highly specific molecular glue, which triggers the aggregation of HIV-1 integrase. In this work, we present high-resolution crystal structures that reveal the crucial interactions made by two potent ALLINIs, namely, BI-D and Pirmitegravir, with HIV-1 integrase. Our results explain the mechanism of drug action and will inform the development of this promising class of small molecules for future use in antiretroviral regimens.
Collapse
Affiliation(s)
- Matthew R. Singer
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tung Dinh
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Lev Levintov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Arun S. Annamalai
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Nicola J. Cook
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Valerie E. Pye
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Baek Kim
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Taoda Y, Sugiyama S, Seki T. New designs for HIV-1 integrase inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2023; 33:51-66. [PMID: 36750766 DOI: 10.1080/13543776.2023.2178300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Combination antiretroviral therapy (cART) has dramatically reduced morbidity and mortality of HIV-1-infected patients. Integrase strand transfer inhibitors (INSTIs) play an important role as a key drug in cART. The second-generation INSTIs are very potent, but due to the emergence of highly resistant viruses and the demand for more conveniently usable drugs, the development of 'third-generation' INSTIs and mechanistically different inhibitors is actively being pursued. AREAS COVERED This article reviews the patents (from 2018 to the present) for two classes of HIV-1 integrase inhibitors of INSTIs and integrase-LEDGF/p75 allosteric inhibitors (INLAIs). EXPERT OPINION Since the approval of the second-generation INSTI dolutegravir, the design of new INSTIs has been mostly focused on its scaffold, carbamoylpyridone (CAP). This CAP scaffold is used not only for HIV-1 INSTIs but also for drug discoveries targeting other viral enzymes. With the approval of cabotegravir as a regimen of long-acting injection in combination with rilpivirine, there is a growing need for longer-acting agents. INLAIs have been intensely studied by many groups but have yet to reach the market. However, INLAIs have recently been reported to also function as a latency promoting agent (LPA), indicating further development possibilities.
Collapse
Affiliation(s)
- Yoshiyuki Taoda
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, Toyonaka-shi, Japan
| | - Shuichi Sugiyama
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, Toyonaka-shi, Japan
| | - Takahiro Seki
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, Toyonaka-shi, Japan
| |
Collapse
|
9
|
Richetta C, Tu NQ, Delelis O. Different Pathways Conferring Integrase Strand-Transfer Inhibitors Resistance. Viruses 2022; 14:v14122591. [PMID: 36560595 PMCID: PMC9785060 DOI: 10.3390/v14122591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Integrase Strand Transfer Inhibitors (INSTIs) are currently used as the most effective therapy in the treatment of human immunodeficiency virus (HIV) infections. Raltegravir (RAL) and Elvitegravir (EVG), the first generation of INSTIs used successfully in clinical treatment, are susceptible to the emergence of viral resistance and have a high rate of cross-resistance. To counteract these resistant mutants, second-generation INSTI drugs have been developed: Dolutegravir (DTG), Cabotegravir (CAB), and Bictegravir (BIC). However, HIV is also able to develop resistance mechanisms against the second-generation of INSTIs. This review describes the mode of action of INSTIs and then summarizes and evaluates some typical resistance mutations, such as substitution and insertion mutations. The role of unintegrated viral DNA is also discussed as a new pathway involved in conferring resistance to INSTIs. This allows us to have a more detailed understanding of HIV resistance to these inhibitors, which may contribute to the development of new INSTIs in the future.
Collapse
|
10
|
Rocchi C, Louvat C, Miele AE, Batisse J, Guillon C, Ballut L, Lener D, Negroni M, Ruff M, Gouet P, Fiorini F. The HIV-1 Integrase C-Terminal Domain Induces TAR RNA Structural Changes Promoting Tat Binding. Int J Mol Sci 2022; 23:13742. [PMID: 36430221 PMCID: PMC9692563 DOI: 10.3390/ijms232213742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Recent evidence indicates that the HIV-1 Integrase (IN) binds the viral genomic RNA (gRNA), playing a critical role in the morphogenesis of the viral particle and in the stability of the gRNA once in the host cell. By combining biophysical, molecular biology, and biochemical approaches, we found that the 18-residues flexible C-terminal tail of IN acts as a sensor of the peculiar apical structure of the trans-activation response element RNA (TAR), interacting with its hexaloop. We show that the binding of the whole IN C-terminal domain modifies TAR structure, exposing critical nucleotides. These modifications favour the subsequent binding of the HIV transcriptional trans-activator Tat to TAR, finally displacing IN from TAR. Based on these results, we propose that IN assists the binding of Tat to TAR RNA. This working model provides a mechanistic sketch accounting for the emerging role of IN in the early stages of proviral transcription and could help in the design of anti-HIV-1 therapeutics against this new target of the viral infectious cycle.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Camille Louvat
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Adriana Erica Miele
- Institute of Analytical Sciences, UMR 5280 CNRS UCBL University of Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Julien Batisse
- Chromatin Stability and DNA Mobility, Department of Integrated Structural Biology, IGBMC, CNRS, UMR 7104—Inserm U 158, University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Christophe Guillon
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Daniela Lener
- RNA Architecture and Reactivity, IBMC, CNRS, UPR 9002, University of Strasbourg, 2, Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Matteo Negroni
- RNA Architecture and Reactivity, IBMC, CNRS, UPR 9002, University of Strasbourg, 2, Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Marc Ruff
- Chromatin Stability and DNA Mobility, Department of Integrated Structural Biology, IGBMC, CNRS, UMR 7104—Inserm U 158, University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| |
Collapse
|
11
|
Complex Relationships between HIV-1 Integrase and Its Cellular Partners. Int J Mol Sci 2022; 23:ijms232012341. [PMID: 36293197 PMCID: PMC9603942 DOI: 10.3390/ijms232012341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
RNA viruses, in pursuit of genome miniaturization, tend to employ cellular proteins to facilitate their replication. HIV-1, one of the most well-studied retroviruses, is not an exception. There is numerous evidence that the exploitation of cellular machinery relies on nucleic acid-protein and protein-protein interactions. Apart from Vpr, Vif, and Nef proteins that are known to regulate cellular functioning via interaction with cell components, another viral protein, integrase, appears to be crucial for proper virus-cell dialog at different stages of the viral life cycle. The goal of this review is to summarize and systematize existing data on known cellular partners of HIV-1 integrase and their role in the HIV-1 life cycle.
Collapse
|
12
|
Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022; 14:v14071397. [PMID: 35891378 PMCID: PMC9316232 DOI: 10.3390/v14071397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Vincent Parissi
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Fundamental Microbiology and Pathogenicity (MFP), CNRS, University of Bordeaux, UMR5234, 33405 Bordeaux, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Correspondence: ; Tel.: +33-4-72722624; Fax: +33-4-72722616
| |
Collapse
|
13
|
Ballandras-Colas A, Chivukula V, Gruszka DT, Shan Z, Singh PK, Pye VE, McLean RK, Bedwell GJ, Li W, Nans A, Cook NJ, Fadel HJ, Poeschla EM, Griffiths DJ, Vargas J, Taylor IA, Lyumkis D, Yardimci H, Engelman AN, Cherepanov P. Multivalent interactions essential for lentiviral integrase function. Nat Commun 2022; 13:2416. [PMID: 35504909 PMCID: PMC9065133 DOI: 10.1038/s41467-022-29928-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
A multimer of retroviral integrase (IN) synapses viral DNA ends within a stable intasome nucleoprotein complex for integration into a host cell genome. Reconstitution of the intasome from the maedi-visna virus (MVV), an ovine lentivirus, revealed a large assembly containing sixteen IN subunits1. Herein, we report cryo-EM structures of the lentiviral intasome prior to engagement of target DNA and following strand transfer, refined at 3.4 and 3.5 Å resolution, respectively. The structures elucidate details of the protein-protein and protein-DNA interfaces involved in lentiviral intasome formation. We show that the homomeric interfaces involved in IN hexadecamer formation and the α-helical configuration of the linker connecting the C-terminal and catalytic core domains are critical for MVV IN strand transfer activity in vitro and for virus infectivity. Single-molecule microscopy in conjunction with photobleaching reveals that the MVV intasome can bind a variable number, up to sixteen molecules, of the lentivirus-specific host factor LEDGF/p75. Concordantly, ablation of endogenous LEDGF/p75 results in gross redistribution of MVV integration sites in human and ovine cells. Our data confirm the importance of the expanded architecture observed in cryo-EM studies of lentiviral intasomes and suggest that this organization underlies multivalent interactions with chromatin for integration targeting to active genes.
Collapse
Affiliation(s)
- Allison Ballandras-Colas
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Institut de Biologie Structurale (IBS) CNRS, CEA, University Grenoble, Grenoble, France
| | - Vidya Chivukula
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Dominika T Gruszka
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, UK
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Zelin Shan
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Parmit K Singh
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Rebecca K McLean
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Gregory J Bedwell
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wen Li
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Nicola J Cook
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Hind J Fadel
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Eric M Poeschla
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Javier Vargas
- Departmento de Óptica, Universidad Complutense de Madrid, Madrid, Spain
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, UK.
| | - Alan N Engelman
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK.
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK.
| |
Collapse
|
14
|
Engelman AN, Kvaratskhelia M. Multimodal Functionalities of HIV-1 Integrase. Viruses 2022; 14:926. [PMID: 35632668 PMCID: PMC9144474 DOI: 10.3390/v14050926] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.
Collapse
Affiliation(s)
- Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Pre-Treatment Integrase Inhibitor Resistance and Natural Polymorphisms among HIV-1 Subtype C Infected Patients in Ethiopia. Viruses 2022; 14:v14040729. [PMID: 35458459 PMCID: PMC9029575 DOI: 10.3390/v14040729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Dolutegravir-based antiretroviral therapy (ART) has been scaled up in many developing countries, including Ethiopia. However, subtype-dependent polymorphic differences might influence the occurrence of HIV-drug-resistance mutations (HIVDRMs). We analyzed the prevalence of pre-treatment integrase strand transfer inhibitor (INSTI) HIVDRMs and naturally occurring polymorphisms (NOPs) of the integrase gene, using plasma samples collected as part of the national HIVDR survey in Ethiopia in 2017. We included a total of 460 HIV-1 integrase gene sequences from INSTI-naïve (n = 373 ART-naïve and n = 87 ART-experienced) patients. No dolutegravir-associated HIVDRMs were detected, regardless of previous exposure to ART. However, we found E92G in one ART-naïve patient specimen and accessory mutations in 20/460 (4.3%) of the specimens. Moreover, among the 288 integrase amino acid positions of the subtype C, 187/288 (64.9%) were conserved (<1.0% variability). Analysis of the genetic barrier showed that the Q148H/K/R dolutegravir resistance pathway was less selected in subtype C. Docking analysis of the dolutegravir showed that protease- and reverse-transcriptase-associated HIVDRMs did not affect the native structure of the HIV-1 integrase. Our results support the implementation of a wide scale-up of dolutegravir-based regimes. However, the detection of polymorphisms contributing to INSTI warrants the continuous surveillance of INSTI resistance.
Collapse
|
16
|
Advances in the development of HIV integrase strand transfer inhibitors. Eur J Med Chem 2021; 225:113787. [PMID: 34425310 DOI: 10.1016/j.ejmech.2021.113787] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
HIV-1 integrase (IN) is a key enzyme in viral replication that catalyzes the covalent integration of viral cDNA into the host genome. Currently, five HIV-1 IN strand transfer inhibitors (INSTIs) are approved for clinical use. These drugs represent an important addition to the armamentarium for antiretroviral therapy. This review briefly illustrates the development history of INSTIs. The characteristics of the currently approved INSTIs, as well as their future perspectives, are critically discussed.
Collapse
|
17
|
Passos DO, Li M, Craigie R, Lyumkis D. Retroviral integrase: Structure, mechanism, and inhibition. Enzymes 2021; 50:249-300. [PMID: 34861940 DOI: 10.1016/bs.enz.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.
Collapse
Affiliation(s)
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, United States; The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
18
|
Mahboubi-Rabbani M, Abbasi M, Hajimahdi Z, Zarghi A. HIV-1 Reverse Transcriptase/Integrase Dual Inhibitors: A Review of Recent Advances and Structure-activity Relationship Studies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:333-369. [PMID: 34567166 PMCID: PMC8457747 DOI: 10.22037/ijpr.2021.115446.15370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The significant threat to humanity is HIV infection, and it is uncertain whether a definitive treatment or a safe HIV vaccine is. HIV-1 is continually evolving and resistant to commonly used HIV-resistant medications, presenting significant obstacles to HIV infection management. The drug resistance adds to the need for new anti-HIV drugs; it chooses ingenious approaches to fight the emerging virus. Highly Active Antiretroviral Therapy (HAART), a multi-target approach for specific therapies, has proved effective in AIDS treatment. Therefore, it is a dynamic system with high prescription tension, increased risk of medication reactions, and adverse effects, leading to poor compliance with patients. In the HIV-1 lifecycle, two critical enzymes with high structural and functional analogies are reverse transcriptase (RT) and integrase (IN), which can be interpreted as druggable targets for modern dual-purpose inhibitors. Designed multifunctional ligand (DML) is a new technique that recruited many targets to be achieved by one chemical individual. A single chemical entity that acts for multiple purposes can be much more successful than a complex multidrug program. The production of these multifunctional ligands as antiretroviral drugs is valued with the advantage that the viral-replication process may end in two or more phases. This analysis will discuss the RT-IN dual-inhibitory scaffolds' developments documented so far.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wang Y, Guo C, Wang X, Xu L, Li R, Wang J. The Zinc Content of HIV-1 NCp7 Affects Its Selectivity for Packaging Signal and Affinity for Stem-Loop 3. Viruses 2021; 13:v13101922. [PMID: 34696351 PMCID: PMC8540335 DOI: 10.3390/v13101922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The nucleocapsid (NC) protein of human immunodeficiency (HIV) is a small, highly basic protein containing two CCHC zinc-finger motifs, which is cleaved from the NC domain of the Gag polyprotein during virus maturation. We previously reported that recombinant HIV-1 Gag and NCp7 overexpressed in an E. coli host contains two and one zinc ions, respectively, and Gag exhibited much higher selectivity for packaging signal (Psi) and affinity for the stem-loop (SL)-3 of Psi than NCp7. In this study, we prepared NCp7 containing 0 (0NCp7), 1 (NCp7) or 2 (2NCp7) zinc ions, and compared their secondary structure, Psi-selectivity and SL3-affinity. Along with the decrease of the zinc content, less ordered conformations were detected. Compared to NCp7, 2NCp7 exhibited a much higher Psi-selectivity and SL3-affinity, similar to Gag, whereas 0NCp7 exhibited a lower Psi-selectivity and SL3-affinity, similar to the H23&H44K double mutant of NCp7, indicating that the different RNA-binding property of Gag NC domain and the mature NCp7 may be resulted, at least partially, from their different zinc content. This study will be helpful to elucidate the critical roles that zinc played in the viral life cycle, and benefit further investigations of the functional switch from the NC domain of Gag to the mature NCp7.
Collapse
Affiliation(s)
- Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Chao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China;
| | - Xing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
| | - Lianmei Xu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
| | - Rui Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
| | - Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
- Correspondence:
| |
Collapse
|
20
|
Pereira-Vaz J, Crespo P, Mocho L, Martinho P, Fidalgo T, Correia L, Rodrigues F, Duque V. Identification of a new 2-amino acid insertion in the integrase coding region of HIV-1 subtype G isolates. J Med Virol 2021; 93:6388-6392. [PMID: 34260070 DOI: 10.1002/jmv.27205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 11/11/2022]
Abstract
Amino acid insertions have been rarely found in the integrase (IN) coding region of Human immunodeficiency virus 1 (HIV-1), and have been considered as natural polymorphisms. It is still unclear the potential impact of these insertion mutations on the viral replication capacity and/or susceptibility to integrase strand transfer inhibitors (INSTIs). The objective of this study was to describe a previously unreported amino acid insertion in the IN coding region of HIV-1 isolates obtained from antiretroviral treatment-naïve infected individuals. Nucleotide sequences of HIV-1 isolates obtained from two infected individuals were analyzed for genotypic resistance to antiretroviral drugs. Phylogenetic inference was carried out for HIV-1 genetic variant identification. An unreported insertion of a threonine (T) and an asparagine (N) between codon 255 and 256 (S255N_TN) was identified in the IN C-terminal domain of HIV-1 subtype G isolates. No resistance-associated mutations to INSTIs were detected in the inserted sequences. Both individuals maintained undetectable HIV-1 RNA viral load, 24 months after undergoing antiretroviral treatment with an INSTI containing regimen. The results demonstrated the possibility of transmission of this insertion mutation and suggested that the codon 255 insert by itself may not affect susceptibility to INSTIs.
Collapse
Affiliation(s)
- João Pereira-Vaz
- Laboratory of Virology, Clinical Pathology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Pedro Crespo
- Infectious Diseases Unit, Centro Hospitalar Tondela Viseu, Viseu, Portugal
| | - Luísa Mocho
- Infectious Diseases Unit, Centro Hospitalar Tondela Viseu, Viseu, Portugal
| | - Patrícia Martinho
- Molecular Hematology Laboratory, Clinical Hematology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Teresa Fidalgo
- Molecular Hematology Laboratory, Clinical Hematology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Lurdes Correia
- Laboratory of Virology, Clinical Pathology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fernando Rodrigues
- Clinical Pathology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vítor Duque
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Infectious Diseases Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Mikasi SG, Isaacs D, Ikomey GM, Shimba H, Cloete R, Jacobs GB. Short Communication: HIV-1 Drug Resistance Mutation Analyses of Cameroon-Derived Integrase Sequences. AIDS Res Hum Retroviruses 2021; 37:54-56. [PMID: 32640829 DOI: 10.1089/aid.2020.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
HIV-1 integrase (IN) is a primary target for combination antiretroviral therapy. Only a limited number of studies report on the emergence of resistance-associated mutations (RAMs) in Cameroon. We observed that 1.4% of sequence from treatment-naive patients had IN strand transfer inhibitor (INSTI) RAMs. These mutations confer resistance to raltegravir and elvitegravir. We also observed that 10.1% of the sequences have INSTI accessory RAMs. HIV-1 CRF02_AG was the predominant subtype (44.7%) in this study analyses. The occurrence of INSTI RAMs among the sequences at baseline needs to be monitored carefully.
Collapse
Affiliation(s)
- Sello Given Mikasi
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Darren Isaacs
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - George Mondinde Ikomey
- Centre for the Study and Control of Communicable Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaounde, Cameroon
| | - Henerico Shimba
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Bugando Medical Centre, Mwanza, United Republic of Tanzania
| | - Ruben Cloete
- Centre for the Study and Control of Communicable Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaounde, Cameroon
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
22
|
NKNK: a New Essential Motif in the C-Terminal Domain of HIV-1 Group M Integrases. J Virol 2020; 94:JVI.01035-20. [PMID: 32727879 DOI: 10.1128/jvi.01035-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Using coevolution network interference based on comparison of two phylogenetically distantly related isolates, one from the main group M and the other from the minor group O of HIV-1, we identify, in the C-terminal domain (CTD) of integrase, a new functional motif constituted by four noncontiguous amino acids (N222K240N254K273). Mutating the lysines abolishes integration through decreased 3' processing and inefficient nuclear import of reverse-transcribed genomes. Solution of the crystal structures of wild-type (wt) and mutated CTDs shows that the motif generates a positive surface potential that is important for integration. The number of charges in the motif appears more crucial than their position within the motif. Indeed, the positions of the K's could be permutated or additional K's could be inserted in the motif, generally without affecting integration per se Despite this potential genetic flexibility, the NKNK arrangement is strictly conserved in natural sequences, indicative of an effective purifying selection exerted at steps other than integration. Accordingly, reverse transcription was reduced even in the mutants that retained wt integration levels, indicating that specifically the wt sequence is optimal for carrying out the multiple functions that integrase exerts. We propose that the existence of several amino acid arrangements within the motif, with comparable efficiencies of integration per se, might have constituted an asset for the acquisition of additional functions during viral evolution.IMPORTANCE Intensive studies of HIV-1 have revealed its extraordinary ability to adapt to environmental and immunological challenges, an ability that is also at the basis of antiviral treatment escape. Here, by deconvoluting the different roles of the viral integrase in the various steps of the infectious cycle, we report how the existence of alternative equally efficient structural arrangements for carrying out one function opens up the possibility of adapting to the optimization of further functionalities exerted by the same protein. Such a property provides an asset to increase the efficiency of the infectious process. On the other hand, though, the identification of this new motif provides a potential target for interfering simultaneously with multiple functions of the protein.
Collapse
|
23
|
Luis A. The Old and the New: Prospects for Non-Integrating Lentiviral Vector Technology. Viruses 2020; 12:v12101103. [PMID: 33003492 PMCID: PMC7600637 DOI: 10.3390/v12101103] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Lentiviral vectors have been developed and used in multiple gene and cell therapy applications. One of their main advantages over other vectors is the ability to integrate the genetic material into the genome of the host. However, this can also be a disadvantage as it may lead to insertional mutagenesis. To address this, non-integrating lentiviral vectors (NILVs) were developed. To generate NILVs, it is possible to introduce mutations in the viral enzyme integrase and/or mutations on the viral DNA recognised by integrase (the attachment sites). NILVs are able to stably express transgenes from episomal DNA in non-dividing cells or transiently if the target cells divide. It has been shown that these vectors are able to transduce multiple cell types and tissues. These characteristics make NILVs ideal vectors to use in vaccination and immunotherapies, among other applications. They also open future prospects for NILVs as tools for the delivery of CRISPR/Cas9 components, a recent revolutionary technology now widely used for gene editing and repair.
Collapse
Affiliation(s)
- Apolonia Luis
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
24
|
Influence of the amino-terminal sequence on the structure and function of HIV integrase. Retrovirology 2020; 17:28. [PMID: 32867805 PMCID: PMC7457537 DOI: 10.1186/s12977-020-00537-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Antiretroviral therapy (ART) can mitigate the morbidity and mortality caused by the human immunodeficiency virus (HIV). Successful development of ART can be accelerated by accurate structural and biochemical data on targets and their responses to inhibitors. One important ART target, HIV integrase (IN), has historically been studied in vitro in a modified form adapted to bacterial overexpression, with a methionine or a longer fusion protein sequence at the N-terminus. In contrast, IN present in viral particles is produced by proteolytic cleavage of the Pol polyprotein, which leaves a phenylalanine at the N-terminus (IN 1F). Inspection of available structures suggested that added residues on the N-terminus might disrupt proper protein folding and formation of multimeric complexes. Results We purified HIV-1 IN 1F1–212 and solved its structure at 2.4 Å resolution, which showed extension of an N-terminal helix compared to the published structure of IN1–212. Full-length IN 1F showed increased in vitro catalytic activity in assays of coupled joining of the two viral DNA ends compared to two IN variants containing additional N-terminal residues. IN 1F was also altered in its sensitivity to inhibitors, showing decreased sensitivity to the strand-transfer inhibitor raltegravir and increased sensitivity to allosteric integrase inhibitors. In solution, IN 1F exists as monomers and dimers, in contrast to other IN preparations which exist as higher-order oligomers. Conclusions The structural, biochemical, and biophysical characterization of IN 1F reveals the conformation of the native HIV-1 IN N-terminus and accompanying unique biochemical and biophysical properties. IN 1F thus represents an improved reagent for use in integration reactions in vitro and the development of antiretroviral agents.
Collapse
|
25
|
Molecular dynamic simulations to investigate the structural impact of known drug resistance mutations on HIV-1C Integrase-Dolutegravir binding. PLoS One 2020; 15:e0223464. [PMID: 32379830 PMCID: PMC7205217 DOI: 10.1371/journal.pone.0223464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Resistance associated mutations (RAMs) threaten the long-term success of combination antiretroviral therapy (cART) outcomes for HIV-1 treatment. HIV-1 Integrase (IN) strand transfer inhibitors (INSTIs) have proven to be a viable option for highly specific HIV-1 therapy. The INSTI, Dolutegravir is recommended by the World Health Organization for use as first-line cART. This study aims to understand how RAMs affect the stability of IN, as well as the binding of the drug Dolutegravir to the catalytic pocket of the protein. A homology model of HIV-1 subtype C IN was successfully constructed and validated. The site directed mutator webserver was used to predict destabilizing and/or stabilizing effects of known RAMs while FoldX confirmed any changes in protein energy upon introduction of mutation. Also, interaction analysis was performed between neighbouring residues. Three mutations known to be associated with Raltegravir, Elvitegravir and Dolutegravir resistance were selected; E92Q, G140S and Y143R, for molecular dynamics simulations. The structural quality assessment indicated high reliability of the HIV-1C IN tetrameric structure, with more than 90% confidence in modelled regions. Change in free energy for the three mutants indicated different effects, while simulation analysis showed G140S to have the largest affect on protein stability and flexibility. This was further supported by weaker non-bonded pairwise interaction energy and binding free energy values between the drug DTG and E92Q, Y143R and G140S mutants suggesting reduced binding affinity, as indicated by interaction analysis in comparison to the WT. Our findings suggest the G140S mutant has the strongest effect on the HIV-1C IN protein structure and Dolutegravir binding. To the best of our knowledge, this is the first study that uses the consensus wild type HIV-1C IN sequence to build an accurate 3D model to understand the effect of three known mutations on DTG drug binding in a South Africa context.
Collapse
|
26
|
Khan N, Chen X, Geiger JD. Role of Divalent Cations in HIV-1 Replication and Pathogenicity. Viruses 2020; 12:E471. [PMID: 32326317 PMCID: PMC7232465 DOI: 10.3390/v12040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Divalent cations are essential for life and are fundamentally important coordinators of cellular metabolism, cell growth, host-pathogen interactions, and cell death. Specifically, for human immunodeficiency virus type-1 (HIV-1), divalent cations are required for interactions between viral and host factors that govern HIV-1 replication and pathogenicity. Homeostatic regulation of divalent cations' levels and actions appear to change as HIV-1 infection progresses and as changes occur between HIV-1 and the host. In people living with HIV-1, dietary supplementation with divalent cations may increase HIV-1 replication, whereas cation chelation may suppress HIV-1 replication and decrease disease progression. Here, we review literature on the roles of zinc (Zn2+), iron (Fe2+), manganese (Mn2+), magnesium (Mg2+), selenium (Se2+), and copper (Cu2+) in HIV-1 replication and pathogenicity, as well as evidence that divalent cation levels and actions may be targeted therapeutically in people living with HIV-1.
Collapse
Affiliation(s)
| | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA; (N.K.); (X.C.)
| |
Collapse
|
27
|
Acharya A, Tagny CT, Mbanya D, Fonsah JY, Nchindap E, Kenmogne L, Jihyun M, Njamnshi AK, Kanmogne GD. Variability in HIV-1 Integrase Gene and 3'-Polypurine Tract Sequences in Cameroon Clinical Isolates, and Implications for Integrase Inhibitors Efficacy. Int J Mol Sci 2020; 21:ijms21051553. [PMID: 32106437 PMCID: PMC7084836 DOI: 10.3390/ijms21051553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
Integrase strand-transfer inhibitors (INSTIs) are now included in preferred first-line antiretroviral therapy (ART) for HIV-infected adults. Studies of Western clade-B HIV-1 show increased resistance to INSTIs following mutations in integrase and nef 3′polypurine tract (3′-PPT). With anticipated shifts in Africa (where 25.6-million HIV-infected people resides) to INSTIs-based ART, it is critical to monitor patients in African countries for resistance-associated mutations (RAMs) affecting INSTIs efficacy. We analyzed HIV-1 integrase and 3′-PPT sequences in 345 clinical samples from INSTIs-naïve HIV-infected Cameroonians for polymorphisms and RAMs that affect INSTIs. Phylogeny showed high genetic diversity, with the predominance of HIV-1 CRF02_AG. Major INSTIs RAMs T66A and N155K were found in two (0.6%) samples. Integrase polymorphic and accessory RAMs found included T97A, E157Q, A128T, M50I, S119R, L74M, L74I, S230N, and E138D (0.3′23.5% of samples). Ten (3.2%) samples had both I72V+L74M, L74M+T97A, or I72V+T97A mutations; thirty-one (9.8%) had 3′-PPT mutations. The low frequency of major INSTIs RAMs shows that INSTIs-based ART can be successfully used in Cameroon. Several samples had ≥1 INSTIs accessory RAMs known to reduce INSTIs efficacy; thus, INSTIs-based ART would require genetic surveillance. The 3′-PPT mutations could also affect INSTIs. For patients failing INSTIs-based ART with no INSTIs RAMs, monitoring 3′-PPT sequences could reveal treatment failure etiology.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Claude T. Tagny
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364 Yaoundé, Cameroon (D.M.); (J.Y.F.); (A.K.N.)
- Yaoundé University Teaching Hospital, Department of Haematology, P.O. Box 5739 Yaoundé, Cameroon; (E.N.); (L.K.)
| | - Dora Mbanya
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364 Yaoundé, Cameroon (D.M.); (J.Y.F.); (A.K.N.)
- Yaoundé University Teaching Hospital, Department of Haematology, P.O. Box 5739 Yaoundé, Cameroon; (E.N.); (L.K.)
| | - Julius Y. Fonsah
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364 Yaoundé, Cameroon (D.M.); (J.Y.F.); (A.K.N.)
- Department of Neurology, Yaoundé Central Hospital/Brain Research Africa Initiative (BRAIN), P.O. Box 25625 Yaoundé, Cameroon
| | - Emilienne Nchindap
- Yaoundé University Teaching Hospital, Department of Haematology, P.O. Box 5739 Yaoundé, Cameroon; (E.N.); (L.K.)
| | - Léopoldine Kenmogne
- Yaoundé University Teaching Hospital, Department of Haematology, P.O. Box 5739 Yaoundé, Cameroon; (E.N.); (L.K.)
| | - Ma Jihyun
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Alfred K. Njamnshi
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364 Yaoundé, Cameroon (D.M.); (J.Y.F.); (A.K.N.)
- Department of Neurology, Yaoundé Central Hospital/Brain Research Africa Initiative (BRAIN), P.O. Box 25625 Yaoundé, Cameroon
| | - Georgette D. Kanmogne
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Correspondence: ; Tel.: +402-559-4084
| |
Collapse
|
28
|
Sorenson AE, Schaeffer PM. A new bivalent fluorescent fusion protein for differential Cu(II) and Zn(II) ion detection in aqueous solution. Anal Chim Acta 2019; 1101:120-128. [PMID: 32029102 DOI: 10.1016/j.aca.2019.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/15/2022]
Abstract
Simple and easy to engineer metal-sensing molecules that are capable of differentiating metal ions and producing metal-specific signals are highly desirable. Metal ions affect the thermal stability of proteins by increasing or decreasing their resistance to unfolding. This work illustrates a new strategy for designing bivalent fluorescent fusion proteins capable of differentiating metal ions in solution through their distinct effects on a protein's thermal stability. A new dual purpose metal sensor was developed consisting of biotin protein ligase (BirA) from B. pseudomallei (Bp) fused to green fluorescent protein (GFP). When coupled with differential scanning fluorimetry of GFP-tagged proteins (DSF-GTP) for signal-transduction detection, Bp BirA-GFP yields distinct protein unfolding signatures with Zn(II) and Cu(II) ions in aqueous solutions. The limit of detection of the system is ∼1 μM for both metal species. The system can be used in a variety of high-throughput assay formats including for the screening of metal-binding proteins and chelators. Bp BirA-GFP has also the additional benefit of being useful in Cu(II) ion field-testing applications through simple visual observation of a temperature-dependent loss of fluorescence. Bp BirA-GFP is the first example of a 2protein-based dual purpose Cu(II) and Zn(II) ion sensor compatible with two different yet complementary signal-transduction detection systems.
Collapse
Affiliation(s)
- A E Sorenson
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, 4811, Australia
| | - P M Schaeffer
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, 4811, Australia.
| |
Collapse
|
29
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
30
|
Agapkina YY, Pustovarova MA, Korolev SP, Zyryanova DP, Ivlev VV, Totmenin AV, Gashnikova NM, Gottikh MB. Consensus Integrase of a New HIV-1 Genetic Variant CRF63_02A1. Acta Naturae 2019; 11:14-22. [PMID: 31024744 PMCID: PMC6475865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
The high genetic variability of the human immunodeficiency virus (HIV-1) leads to a constant emergence of new genetic variants, including the recombinant virus CRF63_02A1, which is widespread in the Siberian Federal District of Russia. We studied HIV-1 CRF63_02A1 integrase (IN_CRF) catalyzing the incorporation of viral DNA into the genome of an infected cell. The consensus sequence was designed, recombinant integrase was obtained, and its DNA-binding and catalytic activities were characterized. The stability of the IN_CRF complex with the DNA substrate did not differ from the complex stability for subtype A and B integrases; however, the rate of complex formation was significantly higher. The rates and efficiencies of 3'-processing and strand transfer reactions catalyzed by IN_CRF were found to be higher, too. Apparently, all these distinctive features of IN_CRF may result from specific amino acid substitutions in its N-terminal domain, which plays an important role in enzyme multimerization and binding to the DNA substrate. It was also found that the drug resistance mutations Q148K/G140S and G118R/E138K significantly reduce the catalytic activity of IN_CRF and its sensitivity to the strand transfer inhibitor raltegravir. Reduction in sensitivity to raltegravir was found to be much stronger in the case of double-mutation Q148K/G140S.
Collapse
Affiliation(s)
- Y. Y. Agapkina
- Lomonosov Moscow State University, Chemistry Department and Belozersky Institute of Physical Chemical Biology, Leninskie gory 1/40, 119991, Moscow, Russia
| | - M. A. Pustovarova
- Lomonosov Moscow State University, Chemistry Department and Belozersky Institute of Physical Chemical Biology, Leninskie gory 1/40, 119991, Moscow, Russia
| | - S. P. Korolev
- Lomonosov Moscow State University, Chemistry Department and Belozersky Institute of Physical Chemical Biology, Leninskie gory 1/40, 119991, Moscow, Russia
| | - D. P. Zyryanova
- State Research Center of Virology and Biotechnology “Vector”, 630559, Koltsovo, Russia
| | - V. V. Ivlev
- State Research Center of Virology and Biotechnology “Vector”, 630559, Koltsovo, Russia
| | - A. V. Totmenin
- State Research Center of Virology and Biotechnology “Vector”, 630559, Koltsovo, Russia
| | - N. M. Gashnikova
- State Research Center of Virology and Biotechnology “Vector”, 630559, Koltsovo, Russia
| | - M. B. Gottikh
- Lomonosov Moscow State University, Chemistry Department and Belozersky Institute of Physical Chemical Biology, Leninskie gory 1/40, 119991, Moscow, Russia
| |
Collapse
|
31
|
Kalathiya U, Padariya M, Baginski M. Extracting functional groups of ALLINI to design derivatives of FDA-approved drugs: Inhibition of HIV-1 integrase. Biotechnol Appl Biochem 2018; 65:594-607. [DOI: 10.1002/bab.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/23/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Umesh Kalathiya
- Department of Pharmaceutical Technology and Biochemistry; Faculty of Chemistry; Gdansk University of Technology; Gdansk Poland
| | - Monikaben Padariya
- Department of Pharmaceutical Technology and Biochemistry; Faculty of Chemistry; Gdansk University of Technology; Gdansk Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry; Faculty of Chemistry; Gdansk University of Technology; Gdansk Poland
| |
Collapse
|
32
|
Kaushik N, Anang S, Ganti KP, Surjit M. Zinc: A Potential Antiviral Against Hepatitis E Virus Infection? DNA Cell Biol 2018; 37:593-599. [PMID: 29897788 DOI: 10.1089/dna.2018.4175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is a major cause of viral hepatitis worldwide. Owing to its feco oral transmission route, sporadic as well as epidemic outbreaks recurrently occur. No specific antiviral therapy is available against the disease caused by HEV. Broad spectrum antivirals such as ribavirin and interferon alfa are prescribed in severe and chronic HEV cases. However, the side effects, cost, and limitations of usage render the available treatment unsuitable for several categories of patients. We recently reported the ability of zinc to inhibit viral replication in mammalian cell culture models of HEV infection. Zinc will be a safe and economical antiviral therapy option if it inhibits HEV replication during the natural course of infection. This essay discusses the putative mechanism(s) by which zinc inhibits HEV replication and provides an overview of the possible therapeutic potential of zinc in HEV patients.
Collapse
Affiliation(s)
- Nidhi Kaushik
- 1 Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute , NCR Biotech Science Cluster, Faridabad, India
| | - Saumya Anang
- 1 Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute , NCR Biotech Science Cluster, Faridabad, India
| | | | - Milan Surjit
- 1 Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute , NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
33
|
Ciubotaru M, Musat MG, Surleac M, Ionita E, Petrescu AJ, Abele E, Abele R. The Design of New HIV-IN Tethered Bifunctional Inhibitors Using Multiple Microdomain Targeted Docking. Curr Med Chem 2018; 26:2574-2600. [PMID: 29623824 DOI: 10.2174/0929867325666180406114405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
Abstract
Currently, used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes changes these viral enzymes, which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects.
Collapse
Affiliation(s)
- Mihai Ciubotaru
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Life and Environmental Physics, National Institute for Physics and Nuclear Engineering Horia Hulubei, Bucharest-Magurele, Romania
| | - Mihaela Georgiana Musat
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Marius Surleac
- Department of Bio-informatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Elena Ionita
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Life and Environmental Physics, National Institute for Physics and Nuclear Engineering Horia Hulubei, Bucharest-Magurele, Romania
| | - Andrei Jose Petrescu
- Department of Bio-informatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Edgars Abele
- Modern Catalysis Method Mihai Ciubotaru group, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Ramona Abele
- Modern Catalysis Method Mihai Ciubotaru group, Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
34
|
Craigie R. Nucleoprotein Intermediates in HIV-1 DNA Integration: Structure and Function of HIV-1 Intasomes. Subcell Biochem 2018; 88:189-210. [PMID: 29900498 DOI: 10.1007/978-981-10-8456-0_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Integration of a DNA copy of the viral genome into host DNA is an essential step in the replication cycle of HIV-1 and other retroviruses and is an important therapeutic target for drugs. DNA integration is catalyzed by the viral integrase protein and proceeds through a series of stable nucleoprotein complexes of integrase, viral DNA ends and target DNA. These nucleoprotein complexes are collectively called intasomes. Retroviral intasomes undergo a series of transitions between initial formation and catalysis of the DNA cutting and joining steps of DNA integration. Intasomes, rather than free integrase protein, are the target of currently approved drugs that target HIV-1 DNA integration. High-resolution structures of HIV-1 intasomes are needed to understand their detailed mechanism of action and how HIV-1 may escape by developing resistance. Here, we focus on our current knowledge of the structure and function of HIV-1 intasomes, with reference to related systems as required to put this knowledge in context.
Collapse
Affiliation(s)
- Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Abstract
Integration of the reverse-transcribed viral cDNA into the host's genome is a critical step in the lifecycle of all retroviruses. Retrovirus integration is carried out by integrase (IN), a virus-encoded enzyme that forms an oligomeric 'intasome' complex with both ends of the linear viral DNA to catalyze their concerted insertions into the backbones of the host's DNA. IN also forms a complex with host proteins, which guides the intasome to the host's chromosome. Recent structural studies have revealed remarkable diversity as well as conserved features among the architectures of the intasome assembly from different genera of retroviruses. This chapter will review how IN oligomerizes to achieve its function, with particular focus on alpharetrovirus including the avian retrovirus Rous sarcoma virus. Another chapter (Craigie) will focus on the structure and function of IN from HIV-1.
Collapse
Affiliation(s)
- Duane P Grandgenett
- Saint Louis University Health Sciences Center, Department of Microbiology and Immunology, Institute for Molecular Virology, Doisy Research Center, St. Louis, MO, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
36
|
Panwar U, Singh SK. Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75). J Biomol Struct Dyn 2017; 36:3199-3217. [PMID: 28948865 DOI: 10.1080/07391102.2017.1384400] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
HIV-1 integrase is a unique promising component of the viral replication cycle, catalyzing the integration of reverse transcribed viral cDNA into the host cell genome. Generally, IN activity requires both viral as well as a cellular co-factor in the processing replication cycle. Among them, the human lens epithelium-derived growth factor (LEDGF/p75) represented as promising cellular co-factor which supports the viral replication by tethering IN to the chromatin. Due to its major importance in the early steps of HIV replication, the interaction between IN and LEDGF/p75 has become a pleasing target for anti-HIV drug discovery. The present study involves the finding of novel inhibitor based on the information of dimeric CCD of IN in complex with known inhibitor, which were carried out by applying a structure-based virtual screening concept with molecular docking. Additionally, Free binding energy, ADME properties, PAINS analysis, Density Functional Theory, and Enrichment Calculations were performed on selected compounds for getting a best lead molecule. On the basis of these analyses, the current study proposes top 3 compounds: Enamine-Z742267384, Maybridge-HTS02400, and Specs-AE-848/37125099 with acceptable pharmacological properties and enhanced binding affinity to inhibit the interaction between IN and LEDGF/p75. Furthermore, Simulation studies were carried out on these molecules to expose their dynamics behavior and stability. We expect that the findings obtained here could be future therapeutic agents and may provide an outline for the experimental studies to stimulate the innovative strategy for research community.
Collapse
Affiliation(s)
- Umesh Panwar
- a Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics , Alagappa University , Karaikudi 630004 , Tamil Nadu , India
| | - Sanjeev Kumar Singh
- a Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics , Alagappa University , Karaikudi 630004 , Tamil Nadu , India
| |
Collapse
|
37
|
Zosel F, Haenni D, Soranno A, Nettels D, Schuler B. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein. J Chem Phys 2017; 147:152708. [DOI: 10.1063/1.4992800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Franziska Zosel
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Dominik Haenni
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Center for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Soranno
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
38
|
Wang Z, Hou X, Wang Y, Xu A, Cao W, Liao M, Zhang R, Tang J. Ubiquitination of non-lysine residues in the retroviral integrase. Biochem Biophys Res Commun 2017; 494:57-62. [PMID: 29054407 DOI: 10.1016/j.bbrc.2017.10.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Retroviral integrase catalyzes the integration of retroviral genome into host chromosomal DNA, which is a prerequisite of effective viral replication and infection. The human immunodeficiency virus type 1 (HIV-1) integrase has previously been reported to be regulated by the ubiquitination, but the molecular characterization of integrase ubiquitination is still unclear. In this study, we analyzed the ubiquitination of avian leukosis virus (ALV) integrase in detail. The ubiquitination assay showed that, like HIV-1, ALV integrase could also be modified by ubiquitination when expressed in 293 T and DF-1 cells. Domain mapping analysis revealed that the ubiquitination of ALV integrase might mainly occurred in the catalytic core and the N-terminal zinc-binding domains. Both lysine and non-lysine residues within integrase of ALV and HIV-1 were responsible for the ubiquitin conjugation, and the N-terminal HHCC zinc-binding motif might play an important role in mediating integrase ubiquitination. Interestingly, mass spectrometry analysis identified the Thr10 and Cys37 residues in the HHCC zinc-binding motif as the ubiquitination sites, indicating that ubiquitin may be conjugated to ALV integrase through direct interaction with the non-lysine residues. These findings revealed the detailed features of retroviral integrase ubiquitination and found a novel mechanism of ubiquitination mediated by the non-lysine residues within the N-terminal zinc-binding domain of integrase.
Collapse
Affiliation(s)
- Zhanxin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Xinhui Hou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yingchun Wang
- Center for Molecular Systems Biology and State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aotian Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Weisheng Cao
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Rui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
39
|
Pommier Y, Pilon A, Bajaj K, Mazumder A, Neamati N. HIV-1 Integrase as a Target for Antiviral Drugs. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/095632029700800601] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Aa Pilon
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - K Bajaj
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - A Mazumder
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - N Neamati
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| |
Collapse
|
40
|
Mechanisms of LTR-Retroelement Transposition: Lessons from Drosophila melanogaster. Viruses 2017; 9:v9040081. [PMID: 28420154 PMCID: PMC5408687 DOI: 10.3390/v9040081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/02/2023] Open
Abstract
Long terminal repeat (LTR) retrotransposons occupy a special place among all mobile genetic element families. The structure of LTR retrotransposons that have three open reading frames is identical to DNA forms of retroviruses that are integrated into the host genome. Several lines of evidence suggest that LTR retrotransposons share a common ancestry with retroviruses and thus are highly relevant to understanding mechanisms of transposition. Drosophila melanogaster is an exceptionally convenient model for studying the mechanisms of retrotransposon movement because many such elements in its genome are transpositionally active. Moreover, two LTRretrotransposons of D. melanogaster, gypsy and ZAM, have been found to have infectious properties and have been classified as errantiviruses. Despite numerous studies focusing on retroviral integration process, there is still no clear understanding of integration specificity in a target site. Most LTR retrotransposons non-specifically integrate into a target site. Site-specificity of integration at vertebrate retroviruses is rather relative. At the same time, sequence-specific integration is the exclusive property of errantiviruses and their derivatives with two open reading frames. The possible basis for the errantivirus integration specificity is discussed in the present review.
Collapse
|
41
|
Keightley MC, Carradice DP, Layton JE, Pase L, Bertrand JY, Wittig JG, Dakic A, Badrock AP, Cole NJ, Traver D, Nutt SL, McCoey J, Buckle AM, Heath JK, Lieschke GJ. The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger. Nat Commun 2017; 8:14911. [PMID: 28382966 PMCID: PMC5384227 DOI: 10.1038/ncomms14911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
In response to infection and injury, the neutrophil population rapidly expands and then quickly re-establishes the basal state when inflammation resolves. The exact pathways governing neutrophil/macrophage lineage outputs from a common granulocyte-macrophage progenitor are still not completely understood. From a forward genetic screen in zebrafish, we identify the transcriptional repressor, ZBTB11, as critical for basal and emergency granulopoiesis. ZBTB11 sits in a pathway directly downstream of master myeloid regulators including PU.1, and TP53 is one direct ZBTB11 transcriptional target. TP53 repression is dependent on ZBTB11 cys116, which is a functionally critical, metal ion-coordinating residue within a novel viral integrase-like zinc finger domain. To our knowledge, this is the first description of a function for this domain in a cellular protein. We demonstrate that the PU.1–ZBTB11–TP53 pathway is conserved from fish to mammals. Finally, Zbtb11 mutant rescue experiments point to a ZBTB11-regulated TP53 requirement in development of other organs. Neutrophils are increased in response to injury and infection but how they form from a common granulocyte-macrophage progenitor is unclear. Here, the authors identify a role for the transcriptional repressor ZBTB11 in zebrafish, which is regulated by master myeloid regulators and represses TP53.
Collapse
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Duncan P Carradice
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Judith E Layton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Luke Pase
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva-CMU, 1211 Geneva 4, Switzerland
| | - Johannes G Wittig
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Aleksandar Dakic
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Andrew P Badrock
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Nicholas J Cole
- Motor Neuron Disease Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julia McCoey
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Joan K Heath
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| |
Collapse
|
42
|
Grawenhoff J, Engelman AN. Retroviral integrase protein and intasome nucleoprotein complex structures. World J Biol Chem 2017; 8:32-44. [PMID: 28289517 PMCID: PMC5329712 DOI: 10.4331/wjbc.v8.i1.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/24/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Retroviral replication proceeds through the integration of a DNA copy of the viral RNA genome into the host cellular genome, a process that is mediated by the viral integrase (IN) protein. IN catalyzes two distinct chemical reactions: 3’-processing, whereby the viral DNA is recessed by a di- or trinucleotide at its 3’-ends, and strand transfer, in which the processed viral DNA ends are inserted into host chromosomal DNA. Although IN has been studied as a recombinant protein since the 1980s, detailed structural understanding of its catalytic functions awaited high resolution structures of functional IN-DNA complexes or intasomes, initially obtained in 2010 for the spumavirus prototype foamy virus (PFV). Since then, two additional retroviral intasome structures, from the α-retrovirus Rous sarcoma virus (RSV) and β-retrovirus mouse mammary tumor virus (MMTV), have emerged. Here, we briefly review the history of IN structural biology prior to the intasome era, and then compare the intasome structures of PFV, MMTV and RSV in detail. Whereas the PFV intasome is characterized by a tetrameric assembly of IN around the viral DNA ends, the newer structures harbor octameric IN assemblies. Although the higher order architectures of MMTV and RSV intasomes differ from that of the PFV intasome, they possess remarkably similar intasomal core structures. Thus, retroviral integration machineries have adapted evolutionarily to utilize disparate IN elements to construct convergent intasome core structures for catalytic function.
Collapse
|
43
|
Yamamoto M, Koga R, Fujino H, Shimagaki K, Ciftci HI, Kamo M, Tateishi H, Otsuka M, Fujita M. Zinc-binding site of human immunodeficiency virus 2 Vpx prevents instability and dysfunction of the protein. J Gen Virol 2017; 98:275-283. [DOI: 10.1099/jgv.0.000701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Minami Yamamoto
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryoko Koga
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Haruna Fujino
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kazunori Shimagaki
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Halil Ibrahim Ciftci
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masahiro Kamo
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Tateishi
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mikako Fujita
- Research Institute for Drug Discovery, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
44
|
Thierry E, Deprez E, Delelis O. Different Pathways Leading to Integrase Inhibitors Resistance. Front Microbiol 2017; 7:2165. [PMID: 28123383 PMCID: PMC5225119 DOI: 10.3389/fmicb.2016.02165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information.
Collapse
Affiliation(s)
- Eloïse Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| |
Collapse
|
45
|
Bray S, Turnbull M, Hebert S, Douville RN. Insight into the ERVK Integrase - Propensity for DNA Damage. Front Microbiol 2016; 7:1941. [PMID: 27990140 PMCID: PMC5131560 DOI: 10.3389/fmicb.2016.01941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
Retroviruses create permanently integrated proviruses that exist in the host genome. Retroviral genomes encode for functionally conserved gag, pro, pol, and env regions, as well as integrase (IN), which is required for retroviral integration. IN mediates viral genome insertion through 3′ end processing of the viral DNA and the strand transfer reaction. This process requires the formation of a pre-integration complex, comprised of IN, viral DNA, and cellular proteins. Viral insertion causes DNA damage, leading to the requirement of host DNA repair mechanisms. Therefore, a failure of DNA repair pathways may result in genomic instability and potentially cause host cell death. Considering the numerous human diseases associated with genomic instability, the endogenous retrovirus-K (ERVK) IN should be considered as a putative contributor to DNA damage in human cells. Future research and drug discovery should focus on ERVK IN activity and its role in human conditions, such as neurological disease and cancers.
Collapse
Affiliation(s)
- Samantha Bray
- Douville Lab, Department of Biology, University of Winnipeg, Winnipeg MB, Canada
| | - Matthew Turnbull
- Douville Lab, Department of Biology, University of Winnipeg, Winnipeg MB, Canada
| | - Sherry Hebert
- Douville Lab, Department of Biology, University of Winnipeg, Winnipeg MB, Canada
| | - Renée N Douville
- Douville Lab, Department of Biology, University of Winnipeg, WinnipegMB, Canada; Department of Immunology, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
46
|
Galilee M, Britan-Rosich E, Griner SL, Uysal S, Baumgärtel V, Lamb DC, Kossiakoff AA, Kotler M, Stroud RM, Marx A, Alian A. The Preserved HTH-Docking Cleft of HIV-1 Integrase Is Functionally Critical. Structure 2016; 24:1936-1946. [PMID: 27692964 DOI: 10.1016/j.str.2016.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
HIV-1 integrase (IN) catalyzes viral DNA integration into the host genome and facilitates multifunctional steps including virus particle maturation. Competency of IN to form multimeric assemblies is functionally critical, presenting an approach for anti-HIV strategies. Multimerization of IN depends on interactions between the distinct subunit domains and among the flanking protomers. Here, we elucidate an overlooked docking cleft of IN core domain that anchors the N-terminal helix-turn-helix (HTH) motif in a highly preserved and functionally critical configuration. Crystallographic structure of IN core domain in complex with Fab specifically targeting this cleft reveals a steric overlap that would inhibit HTH-docking, C-terminal domain contacts, DNA binding, and subsequent multimerization. While Fab inhibits in vitro IN integration activity, in vivo it abolishes virus particle production by specifically associating with preprocessed IN within Gag-Pol and interfering with early cytosolic Gag/Gag-Pol assemblies. The HTH-docking cleft may offer a fresh hotspot for future anti-HIV intervention strategies.
Collapse
Affiliation(s)
- Meytal Galilee
- Department of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Elena Britan-Rosich
- Department of Immunology and Pathology, The Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Sarah L Griner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Serdar Uysal
- Department of Biophysics, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Viola Baumgärtel
- Physical Chemistry, Department of Chemistry, Nanosystem Initiative Munich (NIM), Center for Integrated Protein Science Munich (CiPSM), Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Nanosystem Initiative Munich (NIM), Center for Integrated Protein Science Munich (CiPSM), Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Moshe Kotler
- Department of Immunology and Pathology, The Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ailie Marx
- Department of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Akram Alian
- Department of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel.
| |
Collapse
|
47
|
Ueda S, Ebina H, Kanemura Y, Misawa N, Koyanagi Y. Anti-HIV-1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication. Microbiol Immunol 2016; 60:483-96. [PMID: 27278725 DOI: 10.1111/1348-0421.12395] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/25/2016] [Accepted: 06/04/2016] [Indexed: 11/27/2022]
Abstract
The range of genome-editing tools has recently been expanded. In particular, an RNA-guided genome-editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, has many applications for human diseases. In this study, guide RNA (gRNA) to target gag, pol and a long terminal repeat of HIV-1 was designed and used to generate gRNA-expressing lentiviral vectors. An HIV-1-specific gRNA and Cas9 were stably dually transduced into a highly HIV-1-susceptible human T-cell line and the inhibitory ability of the anti-HIV-1 CRISPR/Cas9 lentiviral vector assessed. Although clear inhibition of the early phase of HIV-1 infection was observed, as evaluated by a VSV-G-pseudotyped HIV-1 reporter system, the anti-HIV-1 potency in multiple rounds of wild type (WT) viral replication was insufficient, either because of generation of resistant viruses or overcoming of the activity of the WT virus. Thus, there are potential difficulties that must be addressed when considering anti-HIV-1 treatment with the CRISPR/Cas9 system alone.
Collapse
Affiliation(s)
- Shuhei Ueda
- Institute for Virus Research
- Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
| | | | | | | | | |
Collapse
|
48
|
Thierry E, Deprez E, Delelis O. Different Pathways Leading to Integrase Inhibitors Resistance. Front Microbiol 2016. [PMID: 28123383 DOI: 10.3389/fmicb.2016.02165/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information.
Collapse
Affiliation(s)
- Eloïse Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| |
Collapse
|
49
|
Hajimahdi Z, Zarghi A. Progress in HIV-1 Integrase Inhibitors: A Review of their Chemical Structure Diversity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:595-628. [PMID: 28243261 PMCID: PMC5316242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress has been made, which has facilitated and led to the approval of three drugs. This review focused on the structural features of the most important IN inhibitors and categorized them structurally in 10 scaffolds. We also briefly discussed the structural and functional properties of HIV-1 IN and binding modes of IN inhibitors. The SAR analysis of the known IN inhibitors provides some useful clues to the possible future discovery of novel IN inhibitors.
Collapse
|
50
|
Williams SL, Essex JW. Study of the Conformational Dynamics of the Catalytic Loop of WT and G140A/G149A HIV-1 Integrase Core Domain Using Reversible Digitally Filtered Molecular Dynamics. J Chem Theory Comput 2015; 5:411-21. [PMID: 26610114 DOI: 10.1021/ct800162v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The HIV-1 IN enzyme is one of three crucial virally encoded enzymes (HIV-1 IN, HIV-1 PR, and HIV-1 RT) involved in the life-cycle of the HIV-1 virus, making it an attractive target in the development of drugs against the AIDS virus. The structure and mechanism of the HIV-1 IN enzyme is the least understood of the three enzymes due to the lack of three-dimensional structural information. X-ray cystallographic studies have not yet been able to resolve the full-length structure, and studies have been mainly focused on the catalytic domain. This central domain possesses an important catalytic loop observed to overhang the active site, and experimental studies have shown that its dynamics affects the catalytic activity of mutant HIV-1 IN enzymes. In this study, the enhanced sampling technique, Reversible Digitally Filtered Molecular Dynamics (RDFMD), has been applied to the catalytic domain of the WT and G140A/G149A HIV-1 IN enzymes and has highlighted significant differences between the behavior of the catalytic loop which may explain the decrease of activity observed in experimental studies for this mutant.
Collapse
Affiliation(s)
- Sarah L Williams
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|