1
|
Pinto-Anwandter BI, Bassetto CAZ, Latorre R, Bezanilla F. Energy landscape of a Kv channel revealed by temperature steps while perturbing its electromechanical coupling. Nat Commun 2025; 16:3379. [PMID: 40204695 PMCID: PMC11982254 DOI: 10.1038/s41467-025-58443-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Voltage-dependent potassium channels (Kv) play a crucial role in membrane repolarization during action potentials. They undergo voltage-dependent structural conformational transitions according to their distribution across their energy landscape. Understanding these transitions helps us comprehend their molecular function. Here, we used sudden and sustained temperature changes (Tstep) combined with different voltage protocols and mutations to dissect the energy landscape of the Shaker K+ channel. We used two mutations, ILT (V369I, I372L, and S376T) and I384N, that affect the coupling between the voltage sensor (VSD) and the pore domain (PD), to obtain the temperature dependence of VSD last transition and the intrinsic temperature dependence of the pore, respectively. Our findings support a loose or tight conformation of the electromechanical coupling. In the loose conformation, the movement of the VSD is necessary but not sufficient to efficiently propagate the electromechanical energy to open the pore. In contrast, this movement is effectively translated into pore opening in the tight conformation. Our results describe the energy landscape of the Shaker channel and how its temperature dependence can be modulated by affecting its electromechanical coupling.
Collapse
Affiliation(s)
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencias de Valparaiso, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile.
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Centro Interdisciplinario de Neurociencias de Valparaiso, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
2
|
Liu Y, Bassetto C, Contreras G, Perozo E, Bezanilla F. Closed State Structure of the Pore Revealed by Uncoupled Shaker K + Channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643777. [PMID: 40166146 PMCID: PMC11956924 DOI: 10.1101/2025.03.17.643777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Voltage gated potassium (Kv) channels play key roles in numerous physiological processes from cellular excitability to immune response and are among the most important pharmaceutical targets. Despite recent advances in the structural determination of Kv channels, the closed state structure of strictly coupled Kv1 family remains elusive. Here, we captured the closed state structure of the pore in the Shaker potassium by uncoupling the voltage sensor domains from the pore domains. Ionic current, gating current and fluorescence measurements show that a conserved isoleucine residue in the S4-S5 linker region, plays a key role controlling the strength of the electromechanical coupling and the channel activation-deactivation equilibrium. Structural determination of completely uncoupled I384R mutant by single particle cryoEM revealed a fully closed pore in the presence of fully activated but non-relaxed voltage sensors. The putative conformational transitions from a fully open pore domain indicates a "roll and turn" movement along the whole length of the pore-forming S6 helices in sharp contrast to canonical gating models based on limited movements of S6. The rotational and translational movement posits two hydrophobic residues, one at inner cavity and the other at the bundle crossing region, directly at the permeation pathway, limiting the pore radius to less than 0.7Å. Voltage clamp fluorimetry of wild type channel incorporating a fluorescent unnatural amino acid strongly supports the cryoEM structural model. Surprisingly, the selectivity filter was captured in a noncanonical state, unlike the previously described dilated or pinched filter conformations. With the present experiment results, we propose a new gating model for strictly coupled Kv1 channels and the molecular mechanism of interactions among different functional states.
Collapse
Affiliation(s)
- Yichen Liu
- Committee on Neurobiology, University of Chicago, Chicago, IL, USA,
| | - Carlos Bassetto
- Department of Physics and Astronomy, University of Texas at SA, TX, US
| | - Gustavo Contreras
- Deptartment Biochemical and molecular biology, University of Chicago, Chicago, IL, USA
| | - Eduardo Perozo
- Deptartment Biochemical and molecular biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Deptartment Biochemical and molecular biology, University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Valparaiso, Chile
| |
Collapse
|
3
|
Wu Y, Yan Y, Yang Y, Bian S, Rivetta A, Allen K, Sigworth FJ. CryoEM structures of Kv1.2 potassium channels, conducting and non-conducting. eLife 2025; 12:RP89459. [PMID: 39945513 PMCID: PMC11825129 DOI: 10.7554/elife.89459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2-2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.
Collapse
Affiliation(s)
- Yangyu Wu
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HavenUnited States
| | - Yangyang Yan
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HavenUnited States
| | - Youshan Yang
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HavenUnited States
| | - Shumin Bian
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HavenUnited States
| | - Alberto Rivetta
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HavenUnited States
| | - Ken Allen
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HavenUnited States
| | - Fred J Sigworth
- Department of Cellular and Molecular Physiology, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
4
|
Godellas NE, Cymes GD, Grosman C. Electrically silent mutants unravel the mechanism of binding-gating coupling in Cys-loop receptors. SCIENCE ADVANCES 2024; 10:eadq8048. [PMID: 39602532 PMCID: PMC11601209 DOI: 10.1126/sciadv.adq8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
The transduction of extracellular chemical signals into intracellular events relies on the communication between neighboring domains of membrane receptors. In the particular case of Cys-loop receptor channels, five short stretches of amino acids, one per subunit, link the extracellular and transmembrane domains in such a way that the ion permeability of the latter and the affinity for neurotransmitters of the former become tied to each other. Here, using direct functional approaches, we set out to understand the molecular bases of this crucial interdependence through the characterization of total loss-of-current mutations at the interface between domains. Our results indicate that domain-domain proximity plays a previously unnoticed critical role inasmuch as inserting a single residue in each linker rendered the two domains independent of each other. In marked contrast, loss-of-current mutations that leave the linkers' length unaltered did not compromise the interdomain coupling, but rather, seemed to cause agonist-bound closed receptors to desensitize without appreciably opening.
Collapse
Affiliation(s)
- Nicole E. Godellas
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gisela D. Cymes
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Claudio Grosman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Treptow W, Liu Y, Bassetto CAZ, Pinto BI, Alves Nunes JA, Uriarte RM, Chipot CJ, Bezanilla F, Roux B. Isoleucine gate blocks K + conduction in C-type inactivation. eLife 2024; 13:e97696. [PMID: 39530849 DOI: 10.7554/elife.97696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Many voltage-gated potassium (Kv) channels display a time-dependent phenomenon called C-type inactivation, whereby prolonged activation by voltage leads to the inhibition of ionic conduction, a process that involves a conformational change at the selectivity filter toward a non-conductive state. Recently, a high-resolution structure of a strongly inactivated triple-mutant channel kv1.2-kv2.1-3m revealed a novel conformation of the selectivity filter that is dilated at its outer end, distinct from the well-characterized conductive state. While the experimental structure was interpreted as the elusive non-conductive state, our molecular dynamics simulations and electrophysiological measurements show that the dilated filter of kv1.2-kv2.1-3m is conductive and, as such, cannot completely account for the inactivation of the channel observed in the structural experiments. The simulation shows that an additional conformational change, implicating isoleucine residues at position 398 along the pore lining segment S6, is required to effectively block ion conduction. The I398 residues from the four subunits act as a state-dependent hydrophobic gate located immediately beneath the selectivity filter. These observations are corroborated by electrophysiological experiments showing that ion permeation can be resumed in the kv1.2-kv2.1-3m channel when I398 is mutated to an asparagine-a mutation that does not abolish C-type inactivation since digitoxin (AgTxII) fails to block the ionic permeation of kv1.2-kv2.1-3m_I398N. As a critical piece of the C-type inactivation machinery, this structural feature is the potential target of a broad class of quaternary ammonium (QA) blockers and negatively charged activators thus opening new research directions toward the development of drugs that specifically modulate gating states of Kv channels.
Collapse
Affiliation(s)
- Werner Treptow
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília, Brasilia, Brazil
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Yichen Liu
- Department of Neurobiology, The University of Chicago, Chicago, United States
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Joao Antonio Alves Nunes
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília, Brasilia, Brazil
| | - Ramon Mendoza Uriarte
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Christophe J Chipot
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche No. 7019, Université de Lorraine, Université de Lorraine, Vandœuvre-lès-Nancy, France
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Benoit Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
6
|
Golluscio A, Eldstrom J, Jowais JJ, Perez ME, Cunningham KP, De La Cruz A, Wu X, Corradi V, Tieleman DP, Fedida D, Larsson HP. PUFA stabilizes a conductive state of the selectivity filter in IKs channels. eLife 2024; 13:RP95852. [PMID: 39480699 PMCID: PMC11527429 DOI: 10.7554/elife.95852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
In cardiomyocytes, the KCNQ1/KCNE1 channel complex mediates the slow delayed-rectifier current (IKs), pivotal during the repolarization phase of the ventricular action potential. Mutations in IKs cause long QT syndrome (LQTS), a syndrome with a prolonged QT interval on the ECG, which increases the risk of ventricular arrhythmia and sudden cardiac death. One potential therapeutical intervention for LQTS is based on targeting IKs channels to restore channel function and/or the physiological QT interval. Polyunsaturated fatty acids (PUFAs) are potent activators of KCNQ1 channels and activate IKs channels by binding to two different sites, one in the voltage sensor domain - which shifts the voltage dependence to more negative voltages - and the other in the pore domain - which increases the maximal conductance of the channels (Gmax). However, the mechanism by which PUFAs increase the Gmax of the IKs channels is still poorly understood. In addition, it is unclear why IKs channels have a very small single-channel conductance and a low open probability or whether PUFAs affect any of these properties of IKs channels. Our results suggest that the selectivity filter in KCNQ1 is normally unstable, contributing to the low open probability, and that the PUFA-induced increase in Gmax is caused by a stabilization of the selectivity filter in an open-conductive state.
Collapse
Affiliation(s)
- Alessia Golluscio
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
- Department of Biomedical and Clinical Sciences, Linköping UniversityLinköpingSweden
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Jessica J Jowais
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
| | - Marta Elena Perez
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
| | - Kevin Peter Cunningham
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
- School of Life Sciences, University of WestminsterLondonUnited Kingdom
| | - Alicia De La Cruz
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
- Department of Biomedical and Clinical Sciences, Linköping UniversityLinköpingSweden
| | - Xiaoan Wu
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
| | - Valentina Corradi
- Department of Biological Sciences and Centre for Molecular Simulation, University of CalgaryCalgaryCanada
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of CalgaryCalgaryCanada
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - H Peter Larsson
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
- Department of Biomedical and Clinical Sciences, Linköping UniversityLinköpingSweden
| |
Collapse
|
7
|
Iwamuro T, Itohara K, Furukawa Y. Stability of N-type inactivation and the coupling between N-type and C-type inactivation in the Aplysia Kv1 channel. Pflugers Arch 2024; 476:1493-1516. [PMID: 39008084 PMCID: PMC11639194 DOI: 10.1007/s00424-024-02982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
The voltage-dependent potassium channels (Kv channels) show several different types of inactivation. N-type inactivation is a fast inactivating mechanism, which is essentially an open pore blockade by the amino-terminal structure of the channel itself or the auxiliary subunit. There are several functionally discriminatable slow inactivation (C-type, P-type, U-type), the mechanism of which is supposed to include rearrangement of the pore region. In some Kv1 channels, the actual inactivation is brought about by coupling of N-type and C-type inactivation (N-C coupling). In the present study, we focused on the N-C coupling of the Aplysia Kv1 channel (AKv1). AKv1 shows a robust N-type inactivation, but its recovery is almost thoroughly from C-type inactivated state owing to the efficient N-C coupling. In the I8Q mutant of AKv1, we found that the inactivation as well as its recovery showed two kinetic components apparently correspond to N-type and C-type inactivation. Also, the cumulative inactivation which depends on N-type mechanism in AKv1 was hindered in I8Q, suggesting that N-type inactivation of I8Q is less stable. We also found that Zn2 + specifically accelerates C-type inactivation of AKv1 and that H382 in the pore turret is involved in the Zn2 + binding. Because the region around Ile8 (I8) in AKv1 has been suggested to be involved in the pre-block binding of the amino-terminal structure, our results strengthen a hypothesis that the stability of the pre-block state is important for stable N-type inactivation as well as the N-C coupling in the Kv1 channel inactivation.
Collapse
Affiliation(s)
- Tokunari Iwamuro
- Laboratory of Neurobiology, Graduate School of Integrated Sciences of Life, Hiroshima University, Kagamiyama 1-7-1, 739-8521, Higashi-Hiroshima, Japan
| | - Kazuki Itohara
- Laboratory of Neurobiology, Graduate School of Integrated Sciences of Life, Hiroshima University, Kagamiyama 1-7-1, 739-8521, Higashi-Hiroshima, Japan
| | - Yasuo Furukawa
- Laboratory of Neurobiology, Graduate School of Integrated Sciences of Life, Hiroshima University, Kagamiyama 1-7-1, 739-8521, Higashi-Hiroshima, Japan.
| |
Collapse
|
8
|
Wu Y, Yan Y, Yang Y, Bian S, Rivetta A, Allen K, Sigworth FJ. Cryo-EM structures of Kv1.2 potassium channels, conducting and non-conducting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.02.543446. [PMID: 37398110 PMCID: PMC10312591 DOI: 10.1101/2023.06.02.543446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We present near-atomic-resolution cryo-EM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2-2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.
Collapse
Affiliation(s)
- Yangyu Wu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Yangyang Yan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Youshan Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Shumin Bian
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Alberto Rivetta
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Ken Allen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Fred J Sigworth
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut USA
| |
Collapse
|
9
|
Pinto-Anwandter BI, Bassetto CAZ, Latorre R, Bezanilla F. Turning a Kv channel into hot and cold receptor by perturbing its electromechanical coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607202. [PMID: 39149297 PMCID: PMC11326270 DOI: 10.1101/2024.08.08.607202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Voltage-dependent potassium channels (Kv) are extremely sensitive to membrane voltage and play a crucial role in membrane repolarization during action potentials. Kv channels undergo voltage-dependent transitions between closed states before opening. Despite all we have learned using electrophysiological methods and structural studies, we still lack a detailed picture of the energetics of the activation process. We show here that even a single mutation can drastically modify the temperature response of the Shaker Kv channel. Using rapid cell membrane temperature steps (Tsteps), we explored the effects of temperature on the ILT mutant (V369I, I372L, and S376T) and the I384N mutant. The ILT mutant produces a significant separation between the transitions of the voltage sensor domain (VSD) activation and the I384N uncouples its movement from the opening of the domain (PD). ILT and I384N respond to temperature in drastically different ways. In ILT, temperature facilitates the opening of the channel akin to a "hot" receptor, reflecting the temperature dependence of the voltage sensor's last transition and facilitating VSD to PD coupling (electromechanical coupling). In I384N, temperature stabilizes the channel closed configuration analogous to a "cold" receptor. Since I384N drastically uncouples the VSD from the pore opening, we reveal the intrinsic temperature dependence of the PD itself. Here, we propose that the electromechanical coupling has either a "loose" or "tight" conformation. In the loose conformation, the movement of the VSD is necessary but not sufficient to efficiently propagate the electromechanical energy to the S6 gate. In the tight conformation the VSD activation is more effectively translated into the opening of the PD. This conformational switch can be tuned by temperature and modifications of the S4 and S4-S5 linker. Our results show that we can modulate the temperature dependence of Kv channels by affecting its electromechanical coupling.
Collapse
Affiliation(s)
- Bernardo I Pinto-Anwandter
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- These authors contributed equally to this work
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- These authors contributed equally to this work
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencias de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| |
Collapse
|
10
|
Huffer K, Tan XF, Fernández-Mariño AI, Dhingra S, Swartz KJ. Dilation of ion selectivity filters in cation channels. Trends Biochem Sci 2024; 49:417-430. [PMID: 38514273 PMCID: PMC11069442 DOI: 10.1016/j.tibs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Ion channels establish the voltage gradient across cellular membranes by providing aqueous pathways for ions to selectively diffuse down their concentration gradients. The selectivity of any given channel for its favored ions has conventionally been viewed as a stable property, and in many cation channels, it is determined by an ion-selectivity filter within the external end of the ion-permeation pathway. In several instances, including voltage-activated K+ (Kv) channels, ATP-activated P2X receptor channels, and transient receptor potential (TRP) channels, the ion-permeation pathways have been proposed to dilate in response to persistent activation, dynamically altering ion permeation. Here, we discuss evidence for dynamic ion selectivity, examples where ion selectivity filters exhibit structural plasticity, and opportunities to fill gaps in our current understanding.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Surbhi Dhingra
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Stix R, Tan XF, Bae C, Fernández-Mariño AI, Swartz KJ, Faraldo-Gómez JD. Eukaryotic Kv channel Shaker inactivates through selectivity filter dilation rather than collapse. SCIENCE ADVANCES 2023; 9:eadj5539. [PMID: 38064553 PMCID: PMC10708196 DOI: 10.1126/sciadv.adj5539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Eukaryotic voltage-gated K+ channels have been extensively studied, but the structural bases for some of their most salient functional features remain to be established. C-type inactivation, for example, is an auto-inhibitory mechanism that confers temporal resolution to their signal-firing activity. In a recent breakthrough, studies of a mutant of Shaker that is prone to inactivate indicated that this process entails a dilation of the selectivity filter, the narrowest part of the ion conduction pathway. Here, we report an atomic-resolution cryo-electron microscopy structure that demonstrates that the wild-type channel can also adopt this dilated state. All-atom simulations corroborate this conformation is congruent with the electrophysiological characteristics of the C-type inactivated state, namely, residual K+ conductance and altered ion specificity, and help rationalize why inactivation is accelerated or impeded by certain mutations. In summary, this study establishes the molecular basis for an important self-regulatory mechanism in eukaryotic K+ channels, laying a solid foundation for further studies.
Collapse
Affiliation(s)
- Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana I. Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Fernández-Mariño AI, Tan XF, Bae C, Huffer K, Jiang J, Swartz KJ. Inactivation of the Kv2.1 channel through electromechanical coupling. Nature 2023; 622:410-417. [PMID: 37758949 PMCID: PMC10567553 DOI: 10.1038/s41586-023-06582-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The Kv2.1 voltage-activated potassium (Kv) channel is a prominent delayed-rectifier Kv channel in the mammalian central nervous system, where its mechanisms of activation and inactivation are critical for regulating intrinsic neuronal excitability1,2. Here we present structures of the Kv2.1 channel in a lipid environment using cryo-electron microscopy to provide a framework for exploring its functional mechanisms and how mutations causing epileptic encephalopathies3-7 alter channel activity. By studying a series of disease-causing mutations, we identified one that illuminates a hydrophobic coupling nexus near the internal end of the pore that is critical for inactivation. Both functional and structural studies reveal that inactivation in Kv2.1 results from dynamic alterations in electromechanical coupling to reposition pore-lining S6 helices and close the internal pore. Consideration of these findings along with available structures for other Kv channels, as well as voltage-activated sodium and calcium channels, suggests that related mechanisms of inactivation are conserved in voltage-activated cation channels and likely to be engaged by widely used therapeutics to achieve state-dependent regulation of channel activity.
Collapse
Affiliation(s)
- Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Liu Y, Bassetto CAZ, Pinto BI, Bezanilla F. A mechanistic reinterpretation of fast inactivation in voltage-gated Na + channels. Nat Commun 2023; 14:5072. [PMID: 37604801 PMCID: PMC10442390 DOI: 10.1038/s41467-023-40514-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
The hinged-lid model was long accepted as the canonical model for fast inactivation in Nav channels. It predicts that the hydrophobic IFM motif acts intracellularly as the gating particle that binds and occludes the pore during fast inactivation. However, the observation in recent high-resolution structures that the bound IFM motif is located far from the pore, contradicts this preconception. Here, we provide a mechanistic reinterpretation of fast inactivation based on structural analysis and ionic/gating current measurements. We demonstrate that in Nav1.4 the final inactivation gate is comprised of two hydrophobic rings at the bottom of S6 helices. These rings function in series and close downstream of IFM binding. Reducing the volume of the sidechain in both rings leads to a partially conductive, leaky inactivated state and decreases the selectivity for Na+ ion. Altogether, we present an alternative molecular framework to describe fast inactivation.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
14
|
Szanto TG, Papp F, Zakany F, Varga Z, Deutsch C, Panyi G. Molecular rearrangements in S6 during slow inactivation in Shaker-IR potassium channels. J Gen Physiol 2023; 155:e202313352. [PMID: 37212728 PMCID: PMC10202832 DOI: 10.1085/jgp.202313352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023] Open
Abstract
Voltage-gated K+ channels have distinct gates that regulate ion flux: the activation gate (A-gate) formed by the bundle crossing of the S6 transmembrane helices and the slow inactivation gate in the selectivity filter. These two gates are bidirectionally coupled. If coupling involves the rearrangement of the S6 transmembrane segment, then we predict state-dependent changes in the accessibility of S6 residues from the water-filled cavity of the channel with gating. To test this, we engineered cysteines, one at a time, at S6 positions A471, L472, and P473 in a T449A Shaker-IR background and determined the accessibility of these cysteines to cysteine-modifying reagents MTSET and MTSEA applied to the cytosolic surface of inside-out patches. We found that neither reagent modified either of the cysteines in the closed or the open state of the channels. On the contrary, A471C and P473C, but not L472C, were modified by MTSEA, but not by MTSET, if applied to inactivated channels with open A-gate (OI state). Our results, combined with earlier studies reporting reduced accessibility of residues I470C and V474C in the inactivated state, strongly suggest that the coupling between the A-gate and the slow inactivation gate is mediated by rearrangements in the S6 segment. The S6 rearrangements are consistent with a rigid rod-like rotation of S6 around its longitudinal axis upon inactivation. S6 rotation and changes in its environment are concomitant events in slow inactivation of Shaker KV channels.
Collapse
Affiliation(s)
- Tibor G. Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Liu Y, Bassetto CAZ, Pinto BI, Bezanilla F. A Mechanistic Reinterpretation of Fast Inactivation in Voltage-Gated Na+ Channels. RESEARCH SQUARE 2023:rs.3.rs-2924505. [PMID: 37292679 PMCID: PMC10246267 DOI: 10.21203/rs.3.rs-2924505/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hinged-lid model is long accepted as the canonical model for fast inactivation in Nav channels. It predicts that the hydrophobic IFM motif acts intracellularly as the gating particle that binds and occludes the pore during fast inactivation. However, the observation in recent high-resolution structures that the bound IFM motif locates far from the pore, contradicts this preconception. Here, we provide a mechanistic reinterpretation of fast inactivation based on structural analysis and ionic/gating current measurements. We demonstrate that in Nav1.4 the final inactivation gate is comprised of two hydrophobic rings at the bottom of S6 helices. These rings function in series and close downstream of IFM binding. Reducing the volume of the sidechain in both rings leads to a partially conductive "leaky" inactivated state and decreases the selectivity for Na + ion. Altogether, we present an alternative molecular framework to describe fast inactivation.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Valparaiso, Chile
| |
Collapse
|
16
|
Abrahamyan A, Eldstrom J, Sahakyan H, Karagulyan N, Mkrtchyan L, Karapetyan T, Sargsyan E, Kneussel M, Nazaryan K, Schwarz JR, Fedida D, Vardanyan V. Mechanism of external K+ sensitivity of KCNQ1 channels. J Gen Physiol 2023; 155:213880. [PMID: 36809486 PMCID: PMC9960071 DOI: 10.1085/jgp.202213205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
KCNQ1 voltage-gated K+ channels are involved in a wide variety of fundamental physiological processes and exhibit the unique feature of being markedly inhibited by external K+. Despite the potential role of this regulatory mechanism in distinct physiological and pathological processes, its exact underpinnings are not well understood. In this study, using extensive mutagenesis, molecular dynamics simulations, and single-channel recordings, we delineate the molecular mechanism of KCNQ1 modulation by external K+. First, we demonstrate the involvement of the selectivity filter in the external K+ sensitivity of the channel. Then, we show that external K+ binds to the vacant outermost ion coordination site of the selectivity filter inducing a diminution in the unitary conductance of the channel. The larger reduction in the unitary conductance compared to whole-cell currents suggests an additional modulatory effect of external K+ on the channel. Further, we show that the external K+ sensitivity of the heteromeric KCNQ1/KCNE complexes depends on the type of associated KCNE subunits.
Collapse
Affiliation(s)
- Astghik Abrahamyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC, Canada
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Nare Karagulyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Liana Mkrtchyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Tatev Karapetyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Ernest Sargsyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg , Hamburg, Germany
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Jürgen R Schwarz
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg , Hamburg, Germany
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC, Canada
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| |
Collapse
|
17
|
Liu Y, Bassetto CAZ, Pinto BI, Bezanilla F. A Mechanistic Reinterpretation of Fast Inactivation in Voltage-Gated Na + Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538555. [PMID: 37162849 PMCID: PMC10168311 DOI: 10.1101/2023.04.27.538555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fast Inactivation in voltage-gated Na + channels plays essential roles in numerous physiological functions. The canonical hinged-lid model has long predicted that a hydrophobic motif in the DIII-DIV linker (IFM) acts as the gating particle that occludes the permeation pathway during fast inactivation. However, the fact that the IFM motif is located far from the pore in recent high-resolution structures of Nav + channels contradicts this status quo model. The precise molecular determinants of fast inactivation gate once again, become an open question. Here, we provide a mechanistic reinterpretation of fast inactivation based on ionic and gating current data. In Nav1.4 the actual inactivation gate is comprised of two hydrophobic rings at the bottom of S6. These function in series and closing once the IFM motif binds. Reducing the volume of the sidechain in both rings led to a partially conductive inactivated state. Our experiments also point to a previously overlooked coupling pathway between the bottom of S6 and the selectivity filter.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Valparaiso, Chile
| |
Collapse
|
18
|
Short B. Kv1 channel inactivation: Slow and slower. J Gen Physiol 2022; 154:e202213271. [PMID: 36223075 PMCID: PMC9574567 DOI: 10.1085/jgp.202213271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JGP study suggests that Kv1 channels share a common mechanism of slow inactivation, but that some family members are less prone to inactivate than others.
Collapse
|
19
|
Wu X, Gupta K, Swartz KJ. Mutations within the selectivity filter reveal that Kv1 channels have distinct propensities to slow inactivate. J Gen Physiol 2022; 154:e202213222. [PMID: 36197416 PMCID: PMC9539455 DOI: 10.1085/jgp.202213222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023] Open
Abstract
Voltage-activated potassium (Kv) channels open in response to membrane depolarization and subsequently inactivate through distinct mechanisms. For the model Shaker Kv channel from Drosophila, fast N-type inactivation is thought to occur by a mechanism involving blockade of the internal pore by the N-terminus, whereas slow C-type inactivation results from conformational changes in the ion selectivity filter in the external pore. Kv channel inactivation plays critical roles in shaping the action potential and regulating firing frequency, and has been implicated in a range of diseases including episodic ataxia and arrhythmias. Although structures of the closely related Shaker and Kv1.2 channels containing mutations that promote slow inactivation both support a mechanism involving dilation of the outer selectivity filter, mutations in the outer pores of these two Kv channels have been reported to have markedly distinct effects on slow inactivation, raising questions about the extent to which slow inactivation is related in both channels. In this study, we characterized the influence of a series of mutations within the external pore of Shaker and Kv1.2 channels and observed many distinct mutant phenotypes. We find that mutations at four positions near the selectivity filter promote inactivation less dramatically in Kv1.2 when compared to Shaker, and they identify one key variable position (T449 in Shaker and V381 in Kv1.2) underlying the different phenotypes in the two channels. Collectively, our results suggest that Kv1.2 is less prone to inactivate compared to Shaker, yet support a common mechanism of inactivation in the two channels.
Collapse
Affiliation(s)
- Xiaosa Wu
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Kanchan Gupta
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Accili E. When Is a Potassium Channel Not a Potassium Channel? FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac052. [PMID: 36325512 PMCID: PMC9614928 DOI: 10.1093/function/zqac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 01/06/2023]
Abstract
Ever since they were first observed in Purkinje fibers of the heart, funny channels have had close connections to potassium channels. Indeed, funny channels were initially thought to produce a potassium current in the heart called I K2. However, funny channels are completely unlike potassium channels in ways that make their contributions to the physiology of cells unique. An important difference is the greater ability for sodium to permeate funny channels. Although it does not flow through the funny channel as easily as does potassium, sodium does permeate well enough to allow for depolarization of cells following a strong hyperpolarization. This is critical for the function of funny channels in places like the heart and brain. Computational analyses using recent structures of the funny channels have provided a possible mechanism for their unusual permeation properties.
Collapse
|
21
|
Coonen L, Martinez-Morales E, Van De Sande DV, Snyders DJ, Cortes DM, Cuello LG, Labro AJ. The nonconducting W434F mutant adopts upon membrane depolarization an inactivated-like state that differs from wild-type Shaker-IR potassium channels. SCIENCE ADVANCES 2022; 8:eabn1731. [PMID: 36112676 PMCID: PMC9481120 DOI: 10.1126/sciadv.abn1731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Voltage-gated K+ (Kv) channels mediate the flow of K+ across the cell membrane by regulating the conductive state of their activation gate (AG). Several Kv channels display slow C-type inactivation, a process whereby their selectivity filter (SF) becomes less or nonconductive. It has been proposed that, in the fast inactivation-removed Shaker-IR channel, the W434F mutation epitomizes the C-type inactivated state because it functionally accelerates this process. By introducing another pore mutation that prevents AG closure, P475D, we found a way to record ionic currents of the Shaker-IR-W434F-P475D mutant at hyperpolarized membrane potentials as the W434F-mutant SF recovers from its inactivated state. This W434F conductive state lost its high K+ over Na+ selectivity, and even NMDG+ can permeate, features not observed in a wild-type SF. This indicates that, at least during recovery from inactivation, the W434F-mutant SF transitions to a widened and noncationic specific conformation.
Collapse
Affiliation(s)
- Laura Coonen
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Evelyn Martinez-Morales
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Dieter V. Van De Sande
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Dirk J. Snyders
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - D. Marien Cortes
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Luis G. Cuello
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alain J. Labro
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Basic and Applied Medical Sciences, Faculty of Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Selvakumar P, Fernández-Mariño AI, Khanra N, He C, Paquette AJ, Wang B, Huang R, Smider VV, Rice WJ, Swartz KJ, Meyerson JR. Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators. Nat Commun 2022; 13:3854. [PMID: 35788586 PMCID: PMC9253088 DOI: 10.1038/s41467-022-31285-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
The Kv1.3 potassium channel is expressed abundantly on activated T cells and mediates the cellular immune response. This role has made the channel a target for therapeutic immunomodulation to block its activity and suppress T cell activation. Here, we report structures of human Kv1.3 alone, with a nanobody inhibitor, and with an antibody-toxin fusion blocker. Rather than block the channel directly, four copies of the nanobody bind the tetramer's voltage sensing domains and the pore domain to induce an inactive pore conformation. In contrast, the antibody-toxin fusion docks its toxin domain at the extracellular mouth of the channel to insert a critical lysine into the pore. The lysine stabilizes an active conformation of the pore yet blocks ion permeation. This study visualizes Kv1.3 pore dynamics, defines two distinct mechanisms to suppress Kv1.3 channel activity with exogenous inhibitors, and provides a framework to aid development of emerging T cell immunotherapies.
Collapse
Affiliation(s)
- Purushotham Selvakumar
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nandish Khanra
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Changhao He
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Alice J Paquette
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Ruiqi Huang
- Applied Biomedical Science Institute, San Diego, CA, USA
- Minotaur Therapeutics, San Diego, CA, USA
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA, USA
- Minotaur Therapeutics, San Diego, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - William J Rice
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joel R Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
23
|
Ong ST, Tyagi A, Chandy KG, Bhushan S. Mechanisms Underlying C-type Inactivation in Kv Channels: Lessons From Structures of Human Kv1.3 and Fly Shaker-IR Channels. Front Pharmacol 2022; 13:924289. [PMID: 35833027 PMCID: PMC9271579 DOI: 10.3389/fphar.2022.924289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated potassium (Kv) channels modulate the function of electrically-excitable and non-excitable cells by using several types of “gates” to regulate ion flow through the channels. An important gating mechanism, C-type inactivation, limits ion flow by transitioning Kv channels into a non-conducting inactivated state. Here, we highlight two recent papers, one on the human Kv1.3 channel and the second on the Drosophila Shaker Kv channel, that combined cryogenic electron microscopy and molecular dynamics simulation to define mechanisms underlying C-type inactivation. In both channels, the transition to the non-conducting inactivated conformation begins with the rupture of an intra-subunit hydrogen bond that fastens the selectivity filter to the pore helix. The freed filter swings outwards and gets tethered to an external residue. As a result, the extracellular end of the selectivity filter dilates and K+ permeation through the pore is impaired. Recovery from inactivation may entail a reversal of this process. Such a reversal, at least partially, is induced by the peptide dalazatide. Binding of dalazatide to external residues in Kv1.3 frees the filter to swing inwards. The extracellular end of the selectivity filter narrows allowing K+ to move in single file through the pore typical of conventional knock-on conduction. Inter-subunit hydrogen bonds that stabilize the outer pore in the dalazatide-bound structure are equivalent to those in open-conducting conformations of Kv channels. However, the intra-subunit bond that fastens the filter to the pore-helix is absent, suggesting an incomplete reversal of the process. These mechanisms define how Kv channels self-regulate the flow of K+ by changing the conformation of the selectivity filter.
Collapse
Affiliation(s)
- Seow Theng Ong
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Anu Tyagi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore and Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - K. George Chandy
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- *Correspondence: K. George Chandy, ; Shashi Bhushan,
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore and Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- *Correspondence: K. George Chandy, ; Shashi Bhushan,
| |
Collapse
|
24
|
Catacuzzeno L, Franciolini F. The 70-year search for the voltage sensing mechanism of ion channels. J Physiol 2022; 600:3227-3247. [PMID: 35665931 PMCID: PMC9545881 DOI: 10.1113/jp282780] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
Abstract
This retrospective on the voltage‐sensing mechanisms and gating models of ion channels begins in 1952 with the charged gating particles postulated by Hodgkin and Huxley, viewed as charges moving across the membrane and controlling its permeability to Na+ and K+ ions. Hodgkin and Huxley postulated that their movement should generate small and fast capacitive currents, which were recorded 20 years later as gating currents. In the early 1980s, several voltage‐dependent channels were cloned and found to share a common architecture: four homologous domains or subunits, each displaying six transmembrane α‐helical segments, with the fourth segment (S4) displaying four to seven positive charges invariably separated by two non‐charged residues. This immediately suggested that this segment was serving as the voltage sensor of the channel (the molecular counterpart of the charged gating particle postulated by Hodgkin and Huxley) and led to the development of the sliding helix model. Twenty years later, the X‐ray crystallographic structures of many voltage‐dependent channels allowed investigation of their gating by molecular dynamics. Further understanding of how channels gate will benefit greatly from the acquisition of high‐resolution structures of each of their relevant functional or structural states. This will allow the application of molecular dynamics and other approaches. It will also be key to investigate the energetics of channel gating, permitting an understanding of the physical and molecular determinants of gating. The use of multiscale hierarchical approaches might finally prove to be a rewarding strategy to overcome the limits of the various single approaches to the study of channel gating.
![]()
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| |
Collapse
|
25
|
Tsai WH, Grauffel C, Huang MY, Postić S, Rupnik MS, Lim C, Yang SB. Allosteric coupling between transmembrane segment 4 and the selectivity filter of TALK1 potassium channels regulates their gating by extracellular pH. J Biol Chem 2022; 298:101998. [PMID: 35500647 PMCID: PMC9168622 DOI: 10.1016/j.jbc.2022.101998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Opening of two-pore domain K+ channels (K2Ps) is regulated by various external cues, such as pH, membrane tension, or temperature, which allosterically modulate the selectivity filter (SF) gate. However, how these cues cause conformational changes in the SF of some K2P channels remains unclear. Herein, we investigate the mechanisms by which extracellular pH affects gating in an alkaline-activated K2P channel, TALK1, using electrophysiology and molecular dynamics (MD) simulations. We show that R233, located at the N-terminal end of transmembrane segment 4, is the primary pHo sensor. This residue distally regulates the orientation of the carbonyl group at the S1 potassium-binding site through an interacting network composed of residues on transmembrane segment 4, the pore helix domain 1, and the SF. Moreover, in the presence of divalent cations, we found the acidic pH-activated R233E mutant recapitulates the network interactions of protonated R233. Intriguingly, our data further suggested stochastic coupling between R233 and the SF gate, which can be described by an allosteric gating model. We propose that this allosteric model could predict the hybrid pH sensitivity in heterodimeric channels with alkaline-activated and acidic-activated K2P subunits.
Collapse
Affiliation(s)
- Wen-Hao Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Yueh Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Sandra Postić
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Alma Mater Europaea - European Center Maribor, Maribor, Slovenia
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
26
|
Reddi R, Matulef K, Riederer EA, Whorton MR, Valiyaveetil FI. Structural basis for C-type inactivation in a Shaker family voltage-gated K + channel. SCIENCE ADVANCES 2022; 8:eabm8804. [PMID: 35452285 PMCID: PMC9032944 DOI: 10.1126/sciadv.abm8804] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
C-type inactivation is a process by which ion flux through a voltage-gated K+ (Kv) channel is regulated at the selectivity filter. While prior studies have indicated that C-type inactivation involves structural changes at the selectivity filter, the nature of the changes has not been resolved. Here, we report the crystal structure of the Kv1.2 channel in a C-type inactivated state. The structure shows that C-type inactivation involves changes in the selectivity filter that disrupt the outer two ion binding sites in the filter. The changes at the selectivity filter propagate to the extracellular mouth and the turret regions of the channel pore. The structural changes observed are consistent with the functional hallmarks of C-type inactivation. This study highlights the intricate interplay between K+ occupancy at the ion binding sites and the interactions of the selectivity filter in determining the balance between the conductive and the inactivated conformations of the filter.
Collapse
Affiliation(s)
- Ravikumar Reddi
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Erika A. Riederer
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Matthew R. Whorton
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Francis I. Valiyaveetil
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| |
Collapse
|
27
|
Tan XF, Bae C, Stix R, Fernández-Mariño AI, Huffer K, Chang TH, Jiang J, Faraldo-Gómez JD, Swartz KJ. Structure of the Shaker Kv channel and mechanism of slow C-type inactivation. SCIENCE ADVANCES 2022; 8:eabm7814. [PMID: 35302848 PMCID: PMC8932672 DOI: 10.1126/sciadv.abm7814] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.
Collapse
Affiliation(s)
- Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Ana I. Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Tsg-Hui Chang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Reddi R, Matulef K, Riederer E, Moenne-Loccoz P, Valiyaveetil FI. Structures of Gating Intermediates in a K + channel. J Mol Biol 2021; 433:167296. [PMID: 34627789 DOI: 10.1016/j.jmb.2021.167296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022]
Abstract
Regulation of ion conduction through the pore of a K+ channel takes place through the coordinated action of the activation gate at the bundle crossing of the inner helices and the inactivation gate located at the selectivity filter. The mechanism of allosteric coupling of these gates is of key interest. Here we report new insights into this allosteric coupling mechanism from studies on a W67F mutant of the KcsA channel. W67 is in the pore helix and is highly conserved in K+ channels. The KcsA W67F channel shows severely reduced inactivation and an enhanced rate of activation. We use continuous wave EPR spectroscopy to establish that the KcsA W67F channel shows an altered pH dependence of activation. Structural studies on the W67F channel provide the structures of two intermediate states: a pre- open state and a pre-inactivated state of the KcsA channel. These structures highlight key nodes in the allosteric pathway. The structure of the KcsA W67F channel with the activation gate open shows altered ion occupancy at the second ion binding site (S2) in the selectivity filter. This finding in combination with previous studies strongly support a requirement for ion occupancy at the S2 site for the channel to inactivate.
Collapse
Affiliation(s)
- Ravikumar Reddi
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States. https://twitter.com/Ravi_K_Reddi
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Erika Riederer
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Pierre Moenne-Loccoz
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States.
| |
Collapse
|
29
|
Li J, Shen R, Rohaim A, Mendoza Uriarte R, Fajer M, Perozo E, Roux B. Computational study of non-conductive selectivity filter conformations and C-type inactivation in a voltage-dependent potassium channel. J Gen Physiol 2021; 153:e202112875. [PMID: 34357375 PMCID: PMC8352720 DOI: 10.1085/jgp.202112875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
C-type inactivation is a time-dependent process of great physiological significance that is observed in a large class of K+ channels. Experimental and computational studies of the pH-activated KcsA channel show that the functional C-type inactivated state, for this channel, is associated with a structural constriction of the selectivity filter at the level of the central glycine residue in the signature sequence, TTV(G)YGD. The structural constriction is allosterically promoted by the wide opening of the intracellular activation gate. However, whether this is a universal mechanism for C-type inactivation has not been established with certainty because similar constricted structures have not been observed for other K+ channels. Seeking to ascertain the general plausibility of the constricted filter conformation, molecular dynamics simulations of a homology model of the pore domain of the voltage-gated potassium channel Shaker were performed. Simulations performed with an open intracellular gate spontaneously resulted in a stable constricted-like filter conformation, providing a plausible nonconductive state responsible for C-type inactivation in the Shaker channel. While there are broad similarities with the constricted structure of KcsA, the hypothetical constricted-like conformation of Shaker also displays some subtle differences. Interestingly, those are recapitulated by the Shaker-like E71V KcsA mutant, suggesting that the residue at this position along the pore helix plays a pivotal role in determining the C-type inactivation behavior. Free energy landscape calculations show that the conductive-to-constricted transition in Shaker is allosterically controlled by the degree of opening of the intracellular activation gate, as observed with the KcsA channel. The behavior of the classic inactivating W434F Shaker mutant is also characterized from a 10-μs MD simulation, revealing that the selectivity filter spontaneously adopts a nonconductive conformation that is constricted at the level of the second glycine in the signature sequence, TTVGY(G)D.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Ahmed Rohaim
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Ramon Mendoza Uriarte
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Mikolai Fajer
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| |
Collapse
|
30
|
Suárez-Delgado E, Rangel-Sandín TG, Ishida IG, Rangel-Yescas GE, Rosenbaum T, Islas LD. KV1.2 channels inactivate through a mechanism similar to C-type inactivation. J Gen Physiol 2021; 152:133850. [PMID: 32110806 PMCID: PMC7266152 DOI: 10.1085/jgp.201912499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/02/2020] [Indexed: 01/03/2023] Open
Abstract
Slow inactivation has been described in multiple voltage-gated K+ channels and in great detail in the Drosophila Shaker channel. Structural studies have begun to facilitate a better understanding of the atomic details of this and other gating mechanisms. To date, the only voltage-gated potassium channels whose structure has been solved are KvAP (x-ray diffraction), the KV1.2-KV2.1 “paddle” chimera (x-ray diffraction and cryo-EM), KV1.2 (x-ray diffraction), and ether-à-go-go (cryo-EM); however, the structural details and mechanisms of slow inactivation in these channels are unknown or poorly characterized. Here, we present a detailed study of slow inactivation in the rat KV1.2 channel and show that it has some properties consistent with the C-type inactivation described in Shaker. We also study the effects of some mutations that are known to modulate C-type inactivation in Shaker and show that qualitative and quantitative differences exist in their functional effects, possibly underscoring subtle but important structural differences between the C-inactivated states in Shaker and KV1.2.
Collapse
Affiliation(s)
- Esteban Suárez-Delgado
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Teriws G Rangel-Sandín
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Gisela E Rangel-Yescas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tamara Rosenbaum
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
31
|
Zhang Y, Zhang X, Liu C, Hu C. Regulation of K + Conductance by a Hydrogen Bond in Kv2.1, Kv2.2, and Kv1.2 Channels. MEMBRANES 2021; 11:190. [PMID: 33803465 PMCID: PMC8001480 DOI: 10.3390/membranes11030190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
The slow inactivation of voltage-gated potassium (Kv) channels plays an important role in controlling cellular excitability. Recently, the two hydrogen bonds (H-bonds) formed by W434-D447 and T439-Y445 have been reported to control the slow inactivation in Shaker potassium channels. The four residues are highly conserved among Kv channels. Our objective was to find the roles of the two H-bonds in controlling the slow inactivation of mammalian Kv2.1, Kv2.2, and Kv1.2 channels by point mutation and patch-clamp recording studies. We found that mutations of the residues equivalent to W434 and T439 in Shaker did not change the slow inactivation of the Kv2.1, Kv2.2, and Kv1.2 channels. Surprisingly, breaking of the inter-subunit H-bond formed by W366 and Y376 (Kv2.1 numbering) by various mutations resulted in the complete loss of K+ conductance of the three Kv channels. In conclusion, we found differences in the H-bonds controlling the slow inactivation of the mammalian Kv channels and Shaker channels. Our data provided the first evidence, to our knowledge, that the inter-subunit H-bond formed by W366 and Y376 plays an important role in regulating the K+ conductance of mammalian Kv2.1, Kv2.2, and Kv1.2 channels.
Collapse
Affiliation(s)
| | | | | | - Changlong Hu
- Department of Physiology and Biophysics, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200032, China; (Y.Z.); (X.Z.); (C.L.)
| |
Collapse
|
32
|
Bassetto CA, Carvalho-de-Souza JL, Bezanilla F. Molecular basis for functional connectivity between the voltage sensor and the selectivity filter gate in Shaker K + channels. eLife 2021; 10:63077. [PMID: 33620313 PMCID: PMC7943188 DOI: 10.7554/elife.63077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
In Shaker K+ channels, the S4-S5 linker couples the voltage sensor (VSD) and pore domain (PD). Another coupling mechanism is revealed using two W434F-containing channels: L361R:W434F and L366H:W434F. In L361R:W434F, W434F affects the L361R VSD seen as a shallower charge-voltage (Q-V) curve that crosses the conductance-voltage (G-V) curve. In L366H:W434F, L366H relieves the W434F effect converting a non-conductive channel in a conductive one. We report a chain of residues connecting the VSD (S4) to the selectivity filter (SF) in the PD of an adjacent subunit as the molecular basis for voltage sensor selectivity filter gate (VS-SF) coupling. Single alanine substitutions in this region (L409A, S411A, S412A, or F433A) are enough to disrupt the VS-SF coupling, shown by the absence of Q-V and G-V crossing in L361R:W434F mutant and by the lack of ionic conduction in the L366H:W434F mutant. This residue chain defines a new coupling between the VSD and the PD in voltage-gated channels.
Collapse
Affiliation(s)
- Carlos Az Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - João Luis Carvalho-de-Souza
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Department of Anesthesiology, University of Arizona, Tucson, United States
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States.,Centro Interdisciplinario de Neurociencias, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile
| |
Collapse
|
33
|
Abstract
Potassium channels are present in every living cell and essential to setting up a stable, non-zero transmembrane electrostatic potential which manifests the off-equilibrium livelihood of the cell. They are involved in other cellular activities and regulation, such as the controlled release of hormones, the activation of T-cells for immune response, the firing of action potential in muscle cells and neurons, etc. Pharmacological reagents targeting potassium channels are important for treating various human diseases linked to dysfunction of the channels. High-resolution structures of these channels are very useful tools for delineating the detailed chemical basis underlying channel functions and for structure-based design and optimization of their pharmacological and pharmaceutical agents. Structural studies of potassium channels have revolutionized biophysical understandings of key concepts in the field - ion selectivity, conduction, channel gating, and modulation, making them multi-modality targets of pharmacological regulation. In this chapter, I will select a few high-resolution structures to illustrate key structural insights, proposed allostery behind channel functions, disagreements still open to debate, and channel-lipid interactions and co-evolution. The known structural consensus allows the inference of conserved molecular mechanisms shared among subfamilies of K+ channels and makes it possible to develop channel-specific pharmaceutical agents.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Laboratory of Molecular Physiology and Biophysics and the Cryo-EM Center, Hauptmann-Woodward Medical Research Institute, Buffalo, NY, USA.
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA.
- Departments of Materials Design and Invention and Physiology and Biophysics, University of Buffalo (SUNY), Buffalo, NY, USA.
| |
Collapse
|
34
|
Lipinsky M, Tobelaim WS, Peretz A, Simhaev L, Yeheskel A, Yakubovich D, Lebel G, Paas Y, Hirsch JA, Attali B. A unique mechanism of inactivation gating of the Kv channel family member Kv7.1 and its modulation by PIP2 and calmodulin. SCIENCE ADVANCES 2020; 6:eabd6922. [PMID: 33355140 PMCID: PMC11206195 DOI: 10.1126/sciadv.abd6922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Inactivation of voltage-gated K+ (Kv) channels mostly occurs by fast N-type or/and slow C-type mechanisms. Here, we characterized a unique mechanism of inactivation gating comprising two inactivation states in a member of the Kv channel superfamily, Kv7.1. Removal of external Ca2+ in wild-type Kv7.1 channels produced a large, voltage-dependent inactivation, which differed from N- or C-type mechanisms. Glu295 and Asp317 located, respectively, in the turret and pore entrance are involved in Ca2+ coordination, allowing Asp317 to form H-bonding with the pore helix Trp304, which stabilizes the selectivity filter and prevents inactivation. Phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+-calmodulin prevented Kv7.1 inactivation triggered by Ca2+-free external solutions, where Ser182 at the S2-S3 linker relays the calmodulin signal from its inner boundary to the external pore to allow proper channel conduction. Thus, we revealed a unique mechanism of inactivation gating in Kv7.1, exquisitely controlled by external Ca2+ and allosterically coupled by internal PIP2 and Ca2+-calmodulin.
Collapse
Affiliation(s)
- Maya Lipinsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - William Sam Tobelaim
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luba Simhaev
- The Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adva Yeheskel
- The Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Yakubovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Lebel
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav Paas
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
35
|
Maghera J, Li J, Lamothe SM, Braun M, Appendino JP, Au PYB, Kurata HT. Familial neonatal seizures caused by the Kv7.3 selectivity filter mutation T313I. Epilepsia Open 2020; 5:562-573. [PMID: 33336127 PMCID: PMC7733659 DOI: 10.1002/epi4.12438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/14/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE A spectrum of seizure disorders is linked to mutations in Kv7.2 and Kv7.3 channels. Linking functional effects of identified mutations to their clinical presentation requires ongoing characterization of newly identified variants. In this study, we identified and functionally characterized a previously unreported mutation in the selectivity filter of Kv7.3. METHODS Next-generation sequencing was used to identify the Kv7.3[T313I] mutation in a family affected by neonatal seizures. Electrophysiological approaches were used to characterize the functional effects of this mutation on ion channels expressed in Xenopus laevis oocytes. RESULTS Substitution of residue 313 from threonine to isoleucine (Kv7.3[T313I]) likely disrupts a critical intersubunit hydrogen bond. Characterization of the mutation in homomeric Kv7.3 channels demonstrated a total loss of channel function. Assembly in heteromeric channels (with Kv7.2) leads to modest suppression of total current when expressed in Xenopus laevis oocytes. Using a Kv7 activator with distinct effects on homomeric Kv7.2 vs heteromeric Kv7.2/Kv7.3 channels, we demonstrated that assembly of Kv7.2 and Kv7.3[T313I] generates functional channels. SIGNIFICANCE Biophysical and clinical effects of the T313I mutation are consistent with Kv7.3 mutations previously identified in cases of pharmacoresponsive self-limiting neonatal epilepsy. These findings expand our description of functionally characterized Kv7 channel variants and report new methods to distinguish molecular mechanisms of channel mutations.
Collapse
Affiliation(s)
- Jasmine Maghera
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Jingru Li
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Shawn M. Lamothe
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Marvin Braun
- Division of Child NeurologyDepartment of PediatricsWeill Cornell MedicineNew YorkNYUSA
| | - Juan P. Appendino
- Section of NeurologyDepartment of PediatricsCumming School of MedicineUniversity of Calgary, and Alberta Children’s HospitalCalgaryABCanada
| | - P. Y. Billie Au
- Department of Medical GeneticsCumming School of MedicineAlberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
| | - Harley T. Kurata
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
36
|
Meisel E, Tobelaim W, Dvir M, Haitin Y, Peretz A, Attali B. Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions. Channels (Austin) 2019; 12:89-99. [PMID: 29451064 PMCID: PMC5972808 DOI: 10.1080/19336950.2018.1441649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inactivation is an intrinsic property of numerous voltage-gated K+ (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process.
Collapse
Affiliation(s)
- Eshcar Meisel
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| | - William Tobelaim
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| | - Meidan Dvir
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| | - Yoni Haitin
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| | - Asher Peretz
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| | - Bernard Attali
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
37
|
Noncanonical mechanism of voltage sensor coupling to pore revealed by tandem dimers of Shaker. Nat Commun 2019; 10:3584. [PMID: 31395867 PMCID: PMC6687735 DOI: 10.1038/s41467-019-11545-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
In voltage-gated potassium channels (VGKC), voltage sensors (VSD) endow voltage-sensitivity to pore domains (PDs) through a not fully understood mechanism. Shaker-like VGKC show domain-swapped configuration: VSD of one subunit is covalently connected to its PD by the protein backbone (far connection) and non-covalently to the PD of the next subunit (near connection). VSD-to-PD coupling is not fully explained by far connection only, therefore an additional mechanistic component may be based on near connection. Using tandem dimers of Shaker channels we show functional data distinguishing VSD-to-PD far from near connections. Near connections influence both voltage-dependence of C-type inactivation at the selectivity filter and overall PD open probability. We speculate a conserved residue in S5 (S412 in Shaker), within van der Waals distance from next subunit S4 residues is key for the noncanonical VSD-to-PD coupling. Natural mutations of S412-homologous residues in brain and heart VGKC are related to neurological and cardiac diseases.
Collapse
|
38
|
Valiyaveetil FI. A glimpse into the C-type-inactivated state for a Potassium Channel. Nat Struct Mol Biol 2019; 24:787-788. [PMID: 28981075 DOI: 10.1038/nsmb.3480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health &Science University, Portland, Oregon
| |
Collapse
|
39
|
Vitali V, Jozefkowicz C, Canessa Fortuna A, Soto G, González Flecha FL, Alleva K. Cooperativity in proton sensing by PIP aquaporins. FEBS J 2018; 286:991-1002. [PMID: 30430736 DOI: 10.1111/febs.14701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022]
Abstract
One of the most intriguing properties of plasma membrane intrinsic protein (PIP) aquaporins (AQPs) is their ability to modulate water transport by sensing different levels of intracellular pH through the assembly of homo- and heterotetrameric molecular species in the plasma membrane. In this work, using a phenomenological modeling approach, we demonstrate that cooperativity in PIP biological response cannot be directly attributed to a cooperative proton binding, as it is usually considered, since it could also be the consequence of a cooperative conformation transition between open and closed states of the channel. Moreover, our results show that, when mixed populations of homo- and heterotetrameric PIP channels are coexpressed in the plasma membrane of the same cell, the observed decrease in the degree of positive cooperativity would result from the simultaneous presence of molecular species with different levels of proton sensing. Indeed, the random mixing between different PIP paralogues as subunits in a single tetramer, plus the possibility of mixed populations of homo- and heterotetrameric PIP channels widen the spectrum of cooperative responses of a cell membrane. Our approach offers a deep understanding of cooperative transport of AQP channels, as members of a multiprotein family where the relevant proton binding sites of each member have not been clearly elucidated yet.
Collapse
Affiliation(s)
- Victoria Vitali
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Argentina
| | - Cintia Jozefkowicz
- Instituto Nacional de Tecnología Agropecuaria, INTA, Castelar, Argentina.,CONICET, Buenos Aires, Argentina
| | - Agustina Canessa Fortuna
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Argentina
| | - Gabriela Soto
- Instituto Nacional de Tecnología Agropecuaria, INTA, Castelar, Argentina.,CONICET, Buenos Aires, Argentina
| | - F Luis González Flecha
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Argentina
| | - Karina Alleva
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Argentina
| |
Collapse
|
40
|
Kondo HX, Yoshida N, Shirota M, Kinoshita K. Molecular Mechanism of Depolarization-Dependent Inactivation in W366F Mutant of Kv1.2. J Phys Chem B 2018; 122:10825-10833. [PMID: 30395463 DOI: 10.1021/acs.jpcb.8b09446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Voltage-gated potassium channels play crucial roles in regulating membrane potential. They are activated by membrane depolarization, allowing the selective permeation of K+ ions across the plasma membrane, and enter a nonconducting state after lasting depolarization, a process known as inactivation. Inactivation in voltage-activated potassium channels occurs through two distinct mechanisms, N-type and C-type inactivation. C-type inactivation is caused by conformational changes in the extracellular mouth of the channel, whereas N-type inactivation is elicited by changes in the cytoplasmic mouth of the protein. The W434F-mutated Shaker channel is known as a nonconducting mutant and is in a C-type inactivation state at a depolarizing membrane potential. To clarify the structural properties of C-type inactivated protein, we performed molecular dynamics simulations of the wild-type and W366F (corresponding to W434F in Shaker) mutant of the Kv1.2-2.1 chimera channel. The W366F mutant was in a nearly nonconducting state with a depolarizing voltage and recovered from inactivation with a reverse voltage. Our simulations and three-dimensional reference interaction site model analysis suggested that structural changes in the selectivity filter upon membrane depolarization trap K+ ions around the inner mouth of the selectivity filter and prevent ion permeation. This pore restriction is involved in the molecular mechanism of C-type inactivation.
Collapse
Affiliation(s)
- Hiroko X Kondo
- Department of Applied Information Sciences, Graduate School of Information Sciences , Tohoku University , 6-3-09 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8579 , Japan.,Laboratory for Computational Molecular Design , RIKEN Center for Biosystems Dynamics Research , 6-2-3, Furuedai , Suita 565-0874 , Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science , Kyushu University , 744, Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Matsuyuki Shirota
- Department of Applied Information Sciences, Graduate School of Information Sciences , Tohoku University , 6-3-09 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8579 , Japan.,Graduate School of Medicine , Tohoku University , 2-1 Seiryo-machi , Aoba-ku, Sendai 980-8575 , Japan.,Tohoku Medical Megabank Organization , Tohoku University , 2-1 Seiryo-machi , Aoba-ku, Sendai 980-8573 , Japan
| | - Kengo Kinoshita
- Department of Applied Information Sciences, Graduate School of Information Sciences , Tohoku University , 6-3-09 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8579 , Japan.,Tohoku Medical Megabank Organization , Tohoku University , 2-1 Seiryo-machi , Aoba-ku, Sendai 980-8573 , Japan.,Institute of Development, Aging and Cancer , Tohoku University , 4-1 Seiryocho, Aoba-ku , Sendai 980-8575 , Japan
| |
Collapse
|
41
|
Functional analyses of heteromeric human PIEZO1 Channels. PLoS One 2018; 13:e0207309. [PMID: 30462693 PMCID: PMC6248943 DOI: 10.1371/journal.pone.0207309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
PIEZO1 and PIEZO2 are mechanosensitive channels (MSCs) important for cellular function and mutations in them lead to human disorders. We examined how functional heteromers form between subunits of PIEZO1 using the mutants E2117K, E2117D, and E2117A. Homomers of E2117K do not conduct. E2117A homomers have low conductance with rapid inactivation, and those of E2117D have high conductance with slow inactivation. Pairing E2117K with E2117D or E2117A with E2117D gave rise to new channel species representing heteromers with distinct conductances. Whole-cell currents from co-expression of E2117A and E2117D fit well with a linear-combination model of homomeric channel currents suggesting that functional channels do not form from freely-diffusing, randomly-mixed monomers in-vitro. Whole-cell current from coexpressed PIEZO1/PIEZO2 also fit as a linear combination of homomer currents. High-resolution optical images of fluorescently-tagged channels support this interpretation because coexpressed subunits segregate into discrete domains.
Collapse
|
42
|
Matthies D, Bae C, Toombes GE, Fox T, Bartesaghi A, Subramaniam S, Swartz KJ. Single-particle cryo-EM structure of a voltage-activated potassium channel in lipid nanodiscs. eLife 2018; 7:37558. [PMID: 30109985 PMCID: PMC6093707 DOI: 10.7554/elife.37558] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022] Open
Abstract
Voltage-activated potassium (Kv) channels open to conduct K+ ions in response to membrane depolarization, and subsequently enter non-conducting states through distinct mechanisms of inactivation. X-ray structures of detergent-solubilized Kv channels appear to have captured an open state even though a non-conducting C-type inactivated state would predominate in membranes in the absence of a transmembrane voltage. However, structures for a voltage-activated ion channel in a lipid bilayer environment have not yet been reported. Here we report the structure of the Kv1.2-2.1 paddle chimera channel reconstituted into lipid nanodiscs using single-particle cryo-electron microscopy. At a resolution of ~3 Å for the cytosolic domain and ~4 Å for the transmembrane domain, the structure determined in nanodiscs is similar to the previously determined X-ray structure. Our findings show that large differences in structure between detergent and lipid bilayer environments are unlikely, and enable us to propose possible structural mechanisms for C-type inactivation.
Collapse
Affiliation(s)
- Doreen Matthies
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Gilman Es Toombes
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Tara Fox
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Kenton Jon Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
43
|
S4-S5 linker movement during activation and inactivation in voltage-gated K + channels. Proc Natl Acad Sci U S A 2018; 115:E6751-E6759. [PMID: 29959207 DOI: 10.1073/pnas.1719105115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The S4-S5 linker physically links voltage sensor and pore domain in voltage-gated ion channels and is essential for electromechanical coupling between both domains. Little dynamic information is available on the movement of the cytosolic S4-S5 linker due to lack of a direct electrical or optical readout. To understand the movements of the gating machinery during activation and inactivation, we incorporated fluorescent unnatural amino acids at four positions along the linker of the Shaker KV channel. Using two-color voltage-clamp fluorometry, we compared S4-S5 linker movements with charge displacement, S4 movement, and pore opening. We found that the proximal S4-S5 linker moves with the S4 helix throughout the gating process, whereas the distal portion undergoes a separate motion related to late gating transitions. Both pore and S4-S5 linker undergo rearrangements during C-type inactivation. In presence of accelerated C-type inactivation, the energetic coupling between movement of the distal S4-S5 linker and pore opening disappears.
Collapse
|
44
|
Abstract
A voltage change across a membrane protein moves charges or dipoles producing a gating current that is an electrical expression of a conformational change. Many membrane proteins sense the voltage across the membrane where they are inserted, and their function is affected by voltage changes. The voltage sensor consists of charges or dipoles that move in response to changes in the electric field, and their movement produces an electric current that has been called gating current. In the case of voltage-gated ion channels, the kinetic and steady-state properties of the gating charges provide information of conformational changes between closed states that are not visible when observing ionic currents only. In this Journal of General Physiology Milestone, the basic principles of voltage sensing and gating currents are presented, followed by a historical description of the recording of gating currents. The results of gating current recordings are then discussed in the context of structural changes in voltage-dependent membrane proteins and how these studies have provided new insights on gating mechanisms.
Collapse
Affiliation(s)
- Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
| |
Collapse
|
45
|
Riederer EA, Focke PJ, Georgieva ER, Akyuz N, Matulef K, Borbat PP, Freed JH, Blanchard SC, Boudker O, Valiyaveetil FI. A facile approach for the in vitro assembly of multimeric membrane transport proteins. eLife 2018; 7:36478. [PMID: 29889023 PMCID: PMC6025958 DOI: 10.7554/elife.36478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified for functional or spectroscopic studies. Here, we describe a general approach for in vitro assembly that can be used for the generation of heteromeric variants of homomeric membrane proteins. We establish the approach using GltPh, a glutamate transporter homolog that is trimeric in the native state. We use heteromeric GltPh transporters to directly demonstrate the lack of coupling in substrate binding and demonstrate how heteromeric transporters considerably simplify the application of DEER spectroscopy. Further, we demonstrate the general applicability of this approach by carrying out the in vitro assembly of VcINDY, a Na+-coupled succinate transporter and CLC-ec1, a Cl-/H+ antiporter.
Collapse
Affiliation(s)
- Erika A Riederer
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Paul J Focke
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | | | - Kimberly Matulef
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | | | - Olga Boudker
- Weill Cornell Medicine, New York, United States.,Howard Hughes Medical Institute, Maryland, United States
| | - Francis I Valiyaveetil
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
46
|
Bellono NW, Leitch DB, Julius D. Molecular tuning of electroreception in sharks and skates. Nature 2018; 558:122-126. [PMID: 29849147 PMCID: PMC6101975 DOI: 10.1038/s41586-018-0160-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022]
Abstract
Ancient cartilaginous vertebrates, such as sharks, skates, and rays, possess specialized electrosensory organs that detect weak electric fields and relay this information to the central nervous system1–4. Sharks exploit this sensory modality for predation, whereas skates may also use it to detect signals from conspecifics5. Here we analyze shark and skate electrosensory cells to ask if discrete physiological properties could contribute to behaviorally-relevant sensory tuning. We show that sharks and skates use a similar low threshold voltage-gated calcium channel to initiate cellular activity but employ distinct potassium channels to modulate this activity. Electrosensory cells from sharks express specially adapted voltage-gated potassium channels that support large, repetitive membrane voltage spikes capable of driving near-maximal vesicular release from elaborate ribbon synapses. In contrast, skates use a calcium-activated potassium channel to produce small, tunable membrane voltage oscillations that elicit stimulus-dependent vesicular release. We propose that these sensory adaptations support amplified indiscriminate signal detection in sharks versus selective frequency detection in skates, potentially reflecting the electroreceptive requirements of these elasmobranch species. Our findings demonstrate how sensory systems adapt to suit an animal’s lifestyle or environmental niche through discrete molecular and biophysical modifications.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA. .,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Duncan B Leitch
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Voros O, Szilagyi O, Balajthy A, Somodi S, Panyi G, Hajdu P. The C-terminal HRET sequence of Kv1.3 regulates gating rather than targeting of Kv1.3 to the plasma membrane. Sci Rep 2018; 8:5937. [PMID: 29650988 PMCID: PMC5897520 DOI: 10.1038/s41598-018-24159-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/08/2018] [Indexed: 12/13/2022] Open
Abstract
Kv1.3 channels are expressed in several cell types including immune cells, such as T lymphocytes. The targeting of Kv1.3 to the plasma membrane is essential for T cell clonal expansion and assumed to be guided by the C-terminus of the channel. Using two point mutants of Kv1.3 with remarkably different features compared to the wild-type Kv1.3 (A413V and H399K having fast inactivation kinetics and tetraethylammonium-insensitivity, respectively) we showed that both Kv1.3 channel variants target to the membrane when the C-terminus was truncated right after the conserved HRET sequence and produce currents identical to those with a full-length C-terminus. The truncation before the HRET sequence (NOHRET channels) resulted in reduced membrane-targeting but non-functional phenotypes. NOHRET channels did not display gating currents, and coexpression with wild-type Kv1.3 did not rescue the NOHRET-A413V phenotype, no heteromeric current was observed. Interestingly, mutants of wild-type Kv1.3 lacking HRET(E) (deletion) or substituted with five alanines for the HRET(E) motif expressed current indistinguishable from the wild-type. These results demonstrate that the C-terminal region of Kv1.3 immediately proximal to the S6 helix is required for the activation gating and conduction, whereas the presence of the distal region of the C-terminus is not exclusively required for trafficking of Kv1.3 to the plasma membrane.
Collapse
Affiliation(s)
- Orsolya Voros
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - Orsolya Szilagyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - András Balajthy
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - Sándor Somodi
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 1 Egyetem sq., 4032, Hungary. MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 400, Debrecen, Hungary
| | - Péter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary. .,Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary.
| |
Collapse
|
48
|
Crystal structure of an inactivated mutant mammalian voltage-gated K + channel. Nat Struct Mol Biol 2017; 24:857-865. [PMID: 28846092 DOI: 10.1038/nsmb.3457] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/02/2017] [Indexed: 11/08/2022]
Abstract
C-type inactivation underlies important roles played by voltage-gated K+ (Kv) channels. Functional studies have provided strong evidence that a common underlying cause of this type of inactivation is an alteration near the extracellular end of the channel's ion-selectivity filter. Unlike N-type inactivation, which is known to reflect occlusion of the channel's intracellular end, the structural mechanism of C-type inactivation remains controversial and may have many detailed variations. Here we report that in voltage-gated Shaker K+ channels lacking N-type inactivation, a mutation enhancing inactivation disrupts the outermost K+ site in the selectivity filter. Furthermore, in a crystal structure of the Kv1.2-2.1 chimeric channel bearing the same mutation, the outermost K+ site, which is formed by eight carbonyl-oxygen atoms, appears to be slightly too small to readily accommodate a K+ ion and in fact exhibits little ion density; this structural finding is consistent with the functional hallmark of C-type inactivation.
Collapse
|
49
|
Lueck JD, Mackey AL, Infield DT, Galpin JD, Li J, Roux B, Ahern CA. Atomic mutagenesis in ion channels with engineered stoichiometry. eLife 2016; 5. [PMID: 27710770 PMCID: PMC5092047 DOI: 10.7554/elife.18976] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/05/2016] [Indexed: 12/28/2022] Open
Abstract
C-type inactivation of potassium channels fine-tunes the electrical signaling in excitable cells through an internal timing mechanism that is mediated by a hydrogen bond network in the channels' selectively filter. Previously, we used nonsense suppression to highlight the role of the conserved Trp434-Asp447 indole hydrogen bond in Shaker potassium channels with a non-hydrogen bonding homologue of tryptophan, Ind (Pless et al., 2013). Here, molecular dynamics simulations indicate that the Trp434Ind hydrogen bonding partner, Asp447, unexpectedly 'flips out' towards the extracellular environment, allowing water to penetrate the space behind the selectivity filter while simultaneously reducing the local negative electrostatic charge. Additionally, a protein engineering approach is presented whereby split intein sequences are flanked by endoplasmic reticulum retention/retrieval motifs (ERret) are incorporated into the N- or C- termini of Shaker monomers or within sodium channels two-domain fragments. This system enabled stoichiometric control of Shaker monomers and the encoding of multiple amino acids within a channel tetramer. DOI:http://dx.doi.org/10.7554/eLife.18976.001
Collapse
Affiliation(s)
- John D Lueck
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, United States
| | - Adam L Mackey
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, United States
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, United States
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, United States
| | - Jing Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, United States
| |
Collapse
|
50
|
Abstract
Ion channels regulate ion flow by opening and closing their pore gates. K(+) channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and normally show no C-type inactivation. We hypothesized that the BK channel's activation gate may spatially overlap or coexist with the C-type inactivation gate at or near the selectivity filter. We induced C-type inactivation in BK channels and studied the relationship between activation/deactivation and C-type inactivation/recovery. We observed prominent slow C-type inactivation/recovery in BK channels by an extreme low concentration of extracellular K(+) together with a Y294E/K/Q/S or Y279F mutation whose equivalent in Shaker channels (T449E/K/D/Q/S or W434F) caused a greatly accelerated rate of C-type inactivation or constitutive C-inactivation. C-type inactivation in most K(+) channels occurs upon sustained membrane depolarization or channel opening and then recovers during hyperpolarized membrane potentials or channel closure. However, we found that the BK channel C-type inactivation occurred during hyperpolarized membrane potentials or with decreased intracellular calcium ([Ca(2+)]i) and recovered with depolarized membrane potentials or elevated [Ca(2+)]i Constitutively open mutation prevented BK channels from C-type inactivation. We concluded that BK channel C-type inactivation is closed state-dependent and that its extents and rates inversely correlate with channel-open probability. Because C-type inactivation can involve multiple conformational changes at the selectivity filter, we propose that the BK channel's normal closing may represent an early conformational stage of C-type inactivation.
Collapse
|