1
|
Río P, Zubicaray J, Navarro S, Gálvez E, Sánchez-Domínguez R, Nicoletti E, Sebastián E, Rothe M, Pujol R, Bogliolo M, John-Neek P, Bastone AL, Schambach A, Wang W, Schmidt M, Larcher L, Segovia JC, Yáñez RM, Alberquilla O, Díez B, Fernández-García M, García-García L, Ramírez M, Galy A, Lefrere F, Cavazzana M, Leblanc T, García de Andoin N, López-Almaraz R, Catalá A, Barquinero J, Rodríguez-Perales S, Rao G, Surrallés J, Soulier J, Díaz-de-Heredia C, Schwartz JD, Sevilla J, Bueren JA. Haematopoietic gene therapy of non-conditioned patients with Fanconi anaemia-A: results from open-label phase 1/2 (FANCOLEN-1) and long-term clinical trials. Lancet 2025; 404:2584-2592. [PMID: 39642902 DOI: 10.1016/s0140-6736(24)01880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Allogeneic haematopoietic stem-cell transplantation is the standard treatment for bone marrow failure (BMF) in patients with Fanconi anaemia, but transplantation-associated complications such as an increased incidence of subsequent cancer are frequent. The aim of this study was to evaluate the safety and efficacy of the infusion of autologous gene-corrected haematopoietic stem cells as an alternative therapy for these patients. METHODS This was an open-label, investigator-initiated phase 1/2 clinical trial (FANCOLEN-1) and long-term follow-up trial (up to 7 years post-treatment) in Spain. Mobilised peripheral blood (PB) CD34+ cells from nine patients with Fanconi anaemia-A in the early stages of BMF were transduced with a therapeutic FANCA-encoding lentiviral vector and re-infused without any cytotoxic conditioning treatment. The primary efficacy endpoint of FANCOLEN-1 was the engraftment of transduced cells, as defined by the detection of at least 0·1 therapeutic vector copies per nucleated cell of patient bone marrow (BM) or PB at the second year post-infusion, without this percentage having declined substantially over the previous year. The safety coprimary endpoint was adverse events during the 3 years after infusion. The completed open-label phase 1/2 and the ongoing long-term clinical trials are registered with ClinicalTrials.gov, NCT03157804; EudraCT, 2011-006100-12; and NCT04437771, respectively. FINDINGS There were eight evaluable treated patients with Fanconi anaemia-A. Patients were recruited between Jan 7, 2016 and April 3, 2019. The primary endpoint was met in five of the eight evaluable patients (62·50%). The median number of therapeutic vector copies per nucleated cell of patient BM and PB at the second year post-infusion was 0·18 (IQR 0·01-0·20) and 0·06 (0·01-0·19), respectively. No genotoxic events related to the gene therapy were observed. Most treatment-emergent adverse events (TEAEs) were non-serious and assessed as not related to therapeutic FANCA-encoding lentiviral vector. Nine serious adverse events (grade 3-4) were reported in six patients, one was considered related to medicinal product infusion, and all resolved without sequelae. Cytopenias and viral infections (common childhood illnesses) were the most frequently reported TEAEs. INTERPRETATION These results show for the first time that haematopoietic gene therapy without genotoxic conditioning enables sustained engraftment and reversal of BMF progression in patients with Fanconi anaemia. FUNDING European Commission, Instituto de Salud Carlos III, and Rocket Pharmaceuticals.
Collapse
Affiliation(s)
- Paula Río
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Josune Zubicaray
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Foundation for the Biomedical Research, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Susana Navarro
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Eva Gálvez
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Foundation for the Biomedical Research, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | | | - Elena Sebastián
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Foundation for the Biomedical Research, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Roser Pujol
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Institut de Recerca Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain; Unit of Genomic Medicine, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Massimo Bogliolo
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Institut de Recerca Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain; Serra Hunter Fellow, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain; Unit of Genomic Medicine, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Lise Larcher
- Université Paris Cité, Inserm, CNRS, Hôpital Saint-Louis, APHP, Paris, France
| | - José C Segovia
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Rosa M Yáñez
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Omaira Alberquilla
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Begoña Díez
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - María Fernández-García
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Laura García-García
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain
| | - Manuel Ramírez
- Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Sanitary Research Institute Fundación La Princesa, Madrid, Spain
| | - Anne Galy
- Genethon, UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Evry-Courcouronnes, France
| | - Francois Lefrere
- Hôpital Universitaire Necker Enfants-Malades, Assistance Publique Hôpitaux de Paris GHU Paris Centre, Université Paris Cité, Paris, France; Centre D'Investigation Clinique en Biotherapie INSERM, Institut Imagine, Paris, France
| | - Marina Cavazzana
- Hôpital Universitaire Necker Enfants-Malades, Assistance Publique Hôpitaux de Paris GHU Paris Centre, Université Paris Cité, Paris, France; Centre D'Investigation Clinique en Biotherapie INSERM, Institut Imagine, Paris, France
| | - Thierry Leblanc
- Robert-Debré University Hospital (APHP and Université Paris Cité), Paris, France
| | - Nagore García de Andoin
- Donostia Universitary Hospital, San Sebastián, Spain; Biogipuzkoa Health Research Institute, San Sebastián, Spain
| | - Ricardo López-Almaraz
- Cruces Universitary Hospital, Barakaldo, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Albert Catalá
- Hospital Sant Joan de Déu, Barcelona, Spain; Research Institute Sant Joan de Déu, Barcelona, Spain
| | | | | | | | - Jordi Surrallés
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Institut de Recerca Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain; Unit of Genomic Medicine, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jean Soulier
- Université Paris Cité, Inserm, CNRS, Hôpital Saint-Louis, APHP, Paris, France
| | - Cristina Díaz-de-Heredia
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Pediatric Haematology and Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Julián Sevilla
- Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Foundation for the Biomedical Research, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Juan A Bueren
- Biomedical Innovation Unit, Center for Research on Energy, Environment and Technology (CIEMAT), Madrid, Spain; Biomedical Network Research Center for Rare Diseases (CIBERER), Madrid, Spain; Sanitary Research Institute Fundación Jiménez Díaz (U.A.M), Madrid, Spain.
| |
Collapse
|
2
|
Wang X, Li J, Zhou Y, Zhang J, Wang L, Liu Y, Yang X, Han H, Wang Q, Wang Y. Functional analysis of type II chalcone isomerase ( CHI) genes in regulating soybean ( Glycine max L.) nodule formation. GM CROPS & FOOD 2025; 16:305-317. [PMID: 40165359 PMCID: PMC11970754 DOI: 10.1080/21645698.2025.2486280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Biological nitrogen fixation (BNF) is the most cost-effective and environmentally benign method for nitrogen fertilization. Isoflavones are important signaling factors for BNF in leguminous plants. Whether chalcone isomerase (CHI), the key enzyme gene in the flavonoid synthesis pathway, contributes to soybean (Glycine max) nodulation has not yet been fully clarified. In the present study, we identified the functions of three types of GmCHI for BNF using a hairy root system. The results showed that GmCHI1A and GmCHI1B1 positively increased nodulation while GmCHI1B2 did not, with the GmCHI1A gene having a greater effect than GmCHI1B1. Meanwhile, the daidzein and genistein contents were significantly increased in composite plants overexpressing GmCHI1A and reduced in composite plants, thus interfering with GmCHI1A. However, overexpression of GmCHI1B1 significantly increased the content of glycitein but not daidzein, genistein content implied that homologous genes exhibit functional differentiation. These results provide a reference for subsequent studies on improving nitrogen fixation in soybeans and providing functional genes for the improvement of new varieties.
Collapse
Affiliation(s)
| | | | - Yuxue Zhou
- College of Plant Science, Jilin University, Changchun, China
| | - Jinhao Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Le Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Xuguang Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Hongshuang Han
- College of Plant Science, Jilin University, Changchun, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Ying Wang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
3
|
Deshpande G, Das S, Roy AE, Ratnaparkhi GS. A face-off between Smaug and Caspar modulates primordial germ cell count and identity in Drosophila embryos. Fly (Austin) 2025; 19:2438473. [PMID: 39718186 DOI: 10.1080/19336934.2024.2438473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In Drosophila melanogaster, PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells. Prior work has shown that Oskar protein is necessary and sufficient to assemble the functional germ plasm, whereas centrosomes associated with the nuclei that invade the germ plasm are responsible for its equitable distribution. Our recent data suggests that Caspar, the Drosophila orthologue of human Fas-associated factor-1 (FAF1) is a novel regulator that modulates both mechanisms that underlie the determination of PGC fate. Consistently, early blastoderm embryos derived from females compromised for caspar display reduced levels of Oskar and defective centrosomes.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Subhradip Das
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Adheena Elsa Roy
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| |
Collapse
|
4
|
Zhang M, Lu Z. tRNA modifications: greasing the wheels of translation and beyond. RNA Biol 2025; 22:1-25. [PMID: 39723662 DOI: 10.1080/15476286.2024.2442856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Transfer RNA (tRNA) is one of the most abundant RNA types in cells, acting as an adaptor to bridge the genetic information in mRNAs with the amino acid sequence in proteins. Both tRNAs and small fragments processed from them play many nonconventional roles in addition to translation. tRNA molecules undergo various types of chemical modifications to ensure the accuracy and efficiency of translation and regulate their diverse functions beyond translation. In this review, we discuss the biogenesis and molecular mechanisms of tRNA modifications, including major tRNA modifications, writer enzymes, and their dynamic regulation. We also summarize the state-of-the-art technologies for measuring tRNA modification, with a particular focus on 2'-O-methylation (Nm), and discuss their limitations and remaining challenges. Finally, we highlight recent discoveries linking dysregulation of tRNA modifications with genetic diseases.
Collapse
Affiliation(s)
- Minjie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Victor Atoki A, Aja PM, Shinkafi TS, Ondari EN, Adeniyi AI, Fasogbon IV, Dangana RS, Shehu UU, Akin-Adewumi A. Exploring the versatility of Drosophila melanogaster as a model organism in biomedical research: a comprehensive review. Fly (Austin) 2025; 19:2420453. [PMID: 39722550 DOI: 10.1080/19336934.2024.2420453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
Drosophila melanogaster is a highly versatile model organism that has profoundly advanced our understanding of human diseases. With more than 60% of its genes having human homologs, Drosophila provides an invaluable system for modelling a wide range of pathologies, including neurodegenerative disorders, cancer, metabolic diseases, as well as cardiac and muscular conditions. This review highlights key developments in utilizing Drosophila for disease modelling, emphasizing the genetic tools that have transformed research in this field. Technologies such as the GAL4/UAS system, RNA interference (RNAi) and CRISPR-Cas9 have enabled precise genetic manipulation, with CRISPR-Cas9 allowing for the introduction of human disease mutations into orthologous Drosophila genes. These approaches have yielded critical insights into disease mechanisms, identified novel therapeutic targets and facilitated both drug screening and toxicological studies. Articles were selected based on their relevance, impact and contribution to the field, with a particular focus on studies offering innovative perspectives on disease mechanisms or therapeutic strategies. Our findings emphasize the central role of Drosophila in studying complex human diseases, underscoring its genetic similarities to humans and its effectiveness in modelling conditions such as Alzheimer's disease, Parkinson's disease and cancer. This review reaffirms Drosophila's critical role as a model organism, highlighting its potential to drive future research and therapeutic advancements.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | | | | | - Umar Uthman Shehu
- Department of Physiology, Kampala International University, Ishaka, Uganda
| | | |
Collapse
|
6
|
Funikov S, Rezvykh A, Akulenko N, Liang J, Sharakhov IV, Kalmykova A. Analysis of somatic piRNAs in the malaria mosquito Anopheles coluzzii reveals atypical classes of genic small RNAs. RNA Biol 2025; 22:1-16. [PMID: 39916410 PMCID: PMC11834523 DOI: 10.1080/15476286.2025.2463812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Piwi-interacting small RNAs (piRNA) play a key role in controlling the activity of transposable elements (TEs) in the animal germline. In diverse arthropod species, including the pathogen vectors mosquitoes, the piRNA pathway is also active in nongonadal somatic tissues, where its targets and functions are less clear. Here, we studied the features of small RNA production in head and thorax tissues of an uninfected laboratory strain of Anopheles coluzzii focusing on the 24-32-nt-long RNAs. Small RNAs derived from repetitive elements constitute a minor fraction while most small RNAs process from long noncoding RNAs (lncRNAs) and protein-coding gene mRNAs. The majority of small RNAs derived from repetitive elements and lncRNAs exhibited typical piRNAs features. By contrast, majority of protein-coding gene-derived 24-32 nt small RNAs lack the hallmarks of piRNAs and have signatures of nontemplated 3' end tailing. Most of the atypical small RNAs exhibit female-biased expression and originate from mitochondrial and nuclear genes involved in energy metabolism. We also identified atypical genic small RNAs in Anopheles gambiae somatic tissues, which further validates the noncanonical mechanism of their production. We discuss a novel mechanism of small RNA production in mosquito somatic tissues and the possible functional significance of genic small RNAs.
Collapse
Affiliation(s)
- Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- The Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia
| | - Alla Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Zhao Z, Geisbrecht ER. Stage-specific modulation of Drosophila gene expression with muscle GAL4 promoters. Fly (Austin) 2025; 19:2447617. [PMID: 39772988 PMCID: PMC11730430 DOI: 10.1080/19336934.2024.2447617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The bipartite GAL4/UAS system is the most widely used method for targeted gene expression in Drosophila melanogaster and facilitates rapid in vivo genetic experimentation. Defining precise gene expression patterns for tissues and/or cell types under GAL4 control will continue to evolve to suit experimental needs. However, the precise spatial and temporal expression patterns for some commonly used muscle tissue promoters are still unclear. This missing information limits the precise timing of experiments during development. Here, we focus on three muscle-enriched GAL4 drivers (Mef2-GAL4, C57-GAL4 and G7-GAL4) to better inform selection of the most appropriate muscle promoter for experimental needs. Specifically, C57-GAL4 and G7-GAL4 turn on in the first or second instar larval stages, respectively, and can be used to bypass myogenesis for studies of muscle function after development.
Collapse
Affiliation(s)
- Ziwei Zhao
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
8
|
Kothe CI, Renault P. Metagenomic driven isolation of poorly culturable species in food. Food Microbiol 2025; 129:104722. [PMID: 40086981 DOI: 10.1016/j.fm.2025.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 03/16/2025]
Abstract
Although isolating microorganisms from food microbiota may appear less challenging than from the gut or environmental sources, recovering all representative species from food remains a difficult task. Here, we showed by metagenomic analysis that several abundant species had escaped isolation in a previous study of ten cheeses, including several previously uncharacterized species. This highlights the ongoing challenge of achieving a comprehensive recovery of microbes from food. To address this gap, we designed a novel strategy integrating metagenomics-based probes targeting the species of interest, coupled with an incremental culturing approach using pooled samples. As proof of concept, we applied this strategy to two cheeses containing species that were not isolated in our previous study, with the objective of isolating all species present at levels above 2% and, in particular, potential novel food species. Through this approach, we successfully performed the targeted isolation of two Psychrobacter and two Vibrio species from the first cheese, and four Halomonas and two Pseudoalteromonas species from the second one. Notably, P. undina and V. litoralis represented, as far as we know, the first cheese isolates characterized for these species. However, we were unable to isolate a novel species of Pseudoalteromonas, with no characterized representative to date, and Marinomonas foliarum, previously isolated from marine environment. Using metagenome-assembled genomes (MAGs) and metagenomic analysis, we discussed the possible reasons for their non-recovery. Finally, this strategy offers a promising approach for isolating a set of strains representative of the microbial diversity present in food ecosystems. These isolates can serve as a basis for investigating their roles in the communities, their impact on product development, safety implications and their potential in the development of starter cultures.
Collapse
Affiliation(s)
- Caroline Isabel Kothe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Pierre Renault
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
9
|
Chen Y, Xu R, Meng F. Biodegradable polylactic acid plastic can aid to achieve partial nitrification/denitrification for low carbon to nitrogen ratio wastewater treatment: Performance and microbial mechanism. BIORESOURCE TECHNOLOGY 2025; 427:132411. [PMID: 40118223 DOI: 10.1016/j.biortech.2025.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
The partial nitrification/denitrification (PND) process is a green biotechnology for nitrogen removal in low carbon to nitrogen ratio wastewater, however, inhibiting nitrite-oxidizing bacteria (NOB) remains a challenge. This study uncovered that polylactic acid (PLA) can eliminate NOB and regulate the structure and function of nitrogen-transforming bacteria (NTB). An anoxic/aerobic membrane bioreactor with PLA achieved a total nitrogen removal efficiency of 64.8%, much higher than the 32.4% without PLA. Nitrite accumulation during nitrification stage reached 66.7% with PLA addition. Ammonia-oxidizing bacteria were transiently inhibited by PLA but recovered quickly. NOB were maintained at low levels due to the absence of genes for protein and DNA repair, while denitrifiers lacking NarGHI/NapAB genes were enriched. OLB8, with a relative abundance of 13.7%, played a central role in regulating NTB interaction and facilitating PND. In summary, this study provided a new strategy for improving nitrogen removal from wastewater through the reuse of PLA plastics.
Collapse
Affiliation(s)
- Yanxi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| |
Collapse
|
10
|
Shrestha A, Pillis DM, Felker S, Chi M, Wagner K, Gbotosho OT, Sieling J, Shadid M, Malik P. Preclinical efficacy of a modified gamma-globin lentivirus gene therapy in Berkeley sickle cell anemia mice and human xenograft models. Mol Ther Methods Clin Dev 2025; 33:101439. [PMID: 40176947 PMCID: PMC11964741 DOI: 10.1016/j.omtm.2025.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025]
Abstract
We previously showed correction of sickle cell anemia (SCA) in mice utilizing a lentiviral vector (LV) expressing human γ-globin. Herein, we made a G16D mutation in the γ-globin gene to generate the G16D mutation (GbGM) LV to increase fetal hemoglobin formation. We also generated an insulated version of this LV, GbGMI, inserting a 36-bp insulator from the Foamy virus in the long terminal repeats of the LV. Preclinical batches of GbGM and GbGMI LV showed both were highly efficacious in correcting SCA in mice, with sustained gene transfer in primary transplanted SCA mice and high hematopoietic stem cell (HSC) transduction in colony-forming unit-spleen in secondary transplanted mice. CRISPR-mediated targeting of the proviruses into the LMO2 proto-oncogene showed remarkably reduced LMO2 activation by both insulated and uninsulated LV, compared to the SFFV γ-RV vector targeted to the same locus. We therefore used the GbGM LV to perform preclinical human CD34+ gene transfer. We assessed gene transfer and engraftment of human HSCs in two immunocompromised mouse models: persistent stable GbGM-transduced cell engraftment was comparable to that of untransduced cells with no detrimental effects on hematopoiesis up to 20 weeks post transplant. These robust preclinical studies in mouse and human HSCs allowed its translation into a clinical trial.
Collapse
Affiliation(s)
- Archana Shrestha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Aruvant Sciences, New York, NY 10036, USA
| | - Devin M. Pillis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Sydney Felker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Mengna Chi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Kimberly Wagner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Oluwabukola T. Gbotosho
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | | | | | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Tahir D, Geolier V, Bruant H, Le Flèche-Matéos A, Mallet A, Varloud M, Civat C, Girerd-Chambaz Y, Montano S, Pion C, Ferquel E, Pavot V, Choumet V. A Lyme disease mRNA vaccine targeting Borrelia burgdorferi OspA induces strong immune responses and prevents transmission in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102514. [PMID: 40226328 PMCID: PMC11986965 DOI: 10.1016/j.omtn.2025.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato, is one of the most common tick-borne diseases in the northern hemisphere. Given its increasing global incidence, LB remains a major public health concern and the development of an effective vaccine is recognized as a key component of the overall disease prevention strategy. Here, we present results obtained with newly developed lipid nanoparticle-encapsulated mRNA vaccine candidates encoding the outer surface protein A (OspA) of B. burgdorferi sensu stricto (Bbss) serotype 1 (mRNA-OspA) with or without a secretion signal (SS) or a transmembrane domain. We evaluated the immunogenicity and protective efficacy of the mRNA-OspA vaccine candidates in a tick-fed mouse challenge model compared with an adjuvanted OspA protein subunit vaccine and the licensed canine vaccine Recombitek Lyme. At the doses tested, the mRNA-OspA vaccines induced significantly higher OspA-specific immunoglobulin G titers than the protein-based vaccines, as well as functional antibodies measured by serum bactericidal assay against Bbss strain B31. Complete protection against transmission was observed in the group immunized with the mRNA-OspA without SS. Overall, these data demonstrate that an mRNA-OspA vaccine can be effective against LB infection and could be used in the future for the prevention of Lyme disease.
Collapse
Affiliation(s)
- Djamel Tahir
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, Ultrastructural Bio-Imaging Core Facility, 75015 Paris, France
| | - Virginie Geolier
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Hugo Bruant
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Anne Le Flèche-Matéos
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Adeline Mallet
- Institut Pasteur, Ultrastructural Bio-Imaging Core Facility, 75015 Paris, France
| | - Marie Varloud
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - Céline Civat
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | | | - Sandrine Montano
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | - Corinne Pion
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | - Elisabeth Ferquel
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Vincent Pavot
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | - Valérie Choumet
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
12
|
Peng K, Zhao G, Zhao H, Noda NN, Zhang H. The autophagy protein ATG-9 regulates lysosome function and integrity. J Cell Biol 2025; 224:e202411092. [PMID: 40202485 PMCID: PMC11980680 DOI: 10.1083/jcb.202411092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
The transmembrane autophagy protein ATG9 has multiple functions essential for autophagosome formation. Here, we uncovered a novel function of ATG-9 in regulating lysosome biogenesis and integrity in Caenorhabditis elegans. Through a genetic screen, we identified that mutations attenuating the lipid scrambling activity of ATG-9 suppress the autophagy defect in epg-5 mutants, in which non-degradative autolysosomes accumulate. The scramblase-attenuated ATG-9 mutants promote lysosome biogenesis and delivery of lysosome-localized hydrolases and also facilitate the maintenance of lysosome integrity. Through manipulation of phospholipid levels, we found that a reduction in phosphatidylethanolamine (PE) also suppresses the autophagy defects and lysosome damage associated with impaired lysosomal degradation. Our results reveal that modulation of phospholipid composition and distribution, e.g., by attenuating the scramblase activity of ATG-9 or reducing the PE level, regulates lysosome function and integrity.
Collapse
Affiliation(s)
- Kangfu Peng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Guoxiu Zhao
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
13
|
Tang K, Ye T, He Y, Ba X, Xia D, Peng E, Chen Z, Ye Z, Yang X. Ferroptosis, necroptosis, and pyroptosis in calcium oxalate crystal-induced kidney injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167791. [PMID: 40086520 DOI: 10.1016/j.bbadis.2025.167791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Kidney stones represent a highly prevalent urological disorder worldwide, with high incidence and recurrence rates. Calcium oxalate (CaOx) crystal-induced kidney injury serves as the foundational mechanism for the formation and progression of CaOx stones. Regulated cell death (RCD) such as ferroptosis, necroptosis, and pyroptosis are essential in the pathophysiological process of kidney injury. Ferroptosis, a newly discovered RCD, is characterized by its reliance on iron-mediated lipid peroxidation. Necroptosis, a widely studied programmed necrosis, initiates with a necrotic phenotype that resembles apoptosis in appearance. Pyroptosis, a type of RCD that involves the gasdermin protein, is accompanied by inflammation and immune response. In recent years, increasing amounts of evidence has demonstrated that ferroptosis, necroptosis, and pyroptosis are significant pathophysiological processes involved in CaOx crystal-induced kidney injury. Herein, we summed up the roles of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury. Furthermore, we delved into the curative potential of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury.
Collapse
Affiliation(s)
- Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Kutyrieva-Nowak N, Pantelić A, Isaković S, Kanellis AK, Vidović M, Leszczuk A. Effect of the overexpression of the GGP1 gene on cell wall remodelling and redox state in the tomato fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112470. [PMID: 40074203 DOI: 10.1016/j.plantsci.2025.112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/22/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Tomato fruit ripening is a complex physiological process that involves morphological, anatomical, biochemical, and molecular alterations. One of these changes occurring during ripening is the softening of the fruit, which is attributed to modifications in the biosynthesis and degradation of individual cell wall components, i.e. polysaccharides and proteoglycans. In addition, ripening is affected by redox processes, and interplay of the reactive oxygen species (ROS) and specific antioxidants, enzymes, ascorbate, and phenolic compounds. The present study aims to determine the impact of the overexpression of the GDP-l-galactose phosphorylase (GGP1) gene under the control of two fruit-specific promoters, namely PPC - phosphoenolpyruvate carboxylase and PG - polygalacturonase on cell wall properties, activities of H2O2-regulating enzymes and the abundance of phenolic compounds. PPC-GGP1 and PG-GGP1 transgenic lines revealed significant structural changes in fruit parenchyma, compared to wild type fruit, followed by a disturbance in the spatial distribution and molecular & chemical composition of homogalacturonans. In addition, cell wall-bound monolignol, p-coumaryl alcohol was higher in transgenic fruit compared with wild type ones. Lastly, the catalase and ascorbate peroxidase activities were lower in PPC-GGP1 fruits, indicating changes in the regulation of antioxidative defense during the ripening process of this line. These results suggest that overexpression of the GGP1 gene affects the cell wall remodelling and redox state in the red ripe tomato fruits.
Collapse
Affiliation(s)
| | - Ana Pantelić
- Group for Plant Molecular Biology, Department of Microbiology and Plant Biology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, Belgrade 11-042, Serbia.
| | - Stefan Isaković
- Group for Plant Molecular Biology, Department of Microbiology and Plant Biology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, Belgrade 11-042, Serbia.
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Lab of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki 54-124, Greece.
| | - Marija Vidović
- Group for Plant Molecular Biology, Department of Microbiology and Plant Biology, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, Belgrade 11-042, Serbia.
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin 20-290, Poland.
| |
Collapse
|
15
|
Kordi R, Andrews TJ, Hicar MD. Infections, genetics, and Alzheimer's disease: Exploring the pathogenic factors for innovative therapies. Virology 2025; 607:110523. [PMID: 40174330 DOI: 10.1016/j.virol.2025.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that creates a significant global health challenge and profoundly affects patients and their families. Recent research has highlighted the critical role of microorganisms, particularly viral infections, in the pathogenesis of AD. The involvement of viral infections in AD pathogenesis is predominantly attributed to their ability to induce neuroinflammation and amyloid beta (Aβ) deposition in the brain. The extant research exploring the relationship between viruses and AD has focused largely on Herpesviridae family. Traces of Herpesviruses, such as Herpes Simplex Virus-1 and Epstein Barr Virus, have been found in the brains of patients with AD. These viruses are thought to contribute to the disease progression by triggering chronic inflammatory responses in the brain. They can remain dormant in the brain, and become reactivated due to stress, a secondary viral infection, or immune-senescence in older adults. This review focuses on the association between Herpesviridae and bacterial infections with AD. We explore the genetic factors that might regulate viral illness and discuss clinical trials investigating antiviral and anti-inflammatory agents as possible therapeutic strategies to mitigate cognitive decline in patients with AD. In summary, understanding the interplay between infections, genetic factors, and AD pathogenesis may pave the way for novel therapeutic approaches, facilitating better management and possibly even prevent this debilitating disease.
Collapse
Affiliation(s)
- Ramesh Kordi
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Ted J Andrews
- Department of Pediatrics, Division of Developmental Pediatrics and Rehabilitation, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mark D Hicar
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
16
|
Amini SR, Adams M, Hammer MP, Briggs G, Donaldson JA, Ebner BC, Unmack PJ. Cryptic species, biogeography, and patterns of introgression in the fish genus Mogurnda (Eleotridae) from the Australian wet tropics: A purple patch for purple-spots. Mol Phylogenet Evol 2025; 207:108344. [PMID: 40188977 DOI: 10.1016/j.ympev.2025.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/04/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Accurately delimiting species is an essential first step towards understanding the true biodiversity of an ecosystem and any subsequent efforts to identify and protect taxa at risk of extinction. Current molecular evidence suggests that purple-spotted gudgeons (genus Mogurnda) harbour high levels of cryptic biodiversity across their broad distributional range. The present study uses a large single nucleotide polymorphism (SNP) dataset plus a companion allozyme dataset to clarify taxonomic uncertainty, patterns of introgression, and biogeographic relationships among Mogurnda populations within the Queensland Wet Tropics (QWT), a known biodiversity hotspot. Both datasets were strongly concordant in identifying a total of seven taxa split among distinct southern, northern, and lowlands groups. No two taxa were found in strict sympatry, but many appear to be parapatric and occur within the same drainage basin. Although clear evidence of introgression was only evident at six sites (∼4%), the genomic signature of modest historic admixture between proximally-distributed taxa was detected at multiple other sites. Nevertheless, all primary genetic and phylogenetic analyses strongly supported the integrity and diagnosability of these seven taxa. We therefore nominate these as novel candidate species for what appears to be yet another hyper-cryptic complex within the Australian freshwater ichthyological fauna. These results offer up intriguing ecological scenarios and conservation implications for multiple candidate species with narrow ranges in specialised habitat. We conclude by exploring the major biogeographic patterns displayed by QWT Mogurnda.
Collapse
Affiliation(s)
- Samuel R Amini
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra ACT 2617, Australia
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, SA 5005 Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT 0801, Australia
| | - Glenn Briggs
- 19-21 Raleigh St, Seville Victoria 3139, Australia
| | | | - Brendan C Ebner
- TropWATER, James Cook University, Townsville, Qld, Australia; CSIRO Land and Water, Tropical Forest Research Centre, Atherton, Qld, Australia; Grafton Fisheries Centre, Grafton, NSW, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra ACT 2617, Australia; School of Biological Sciences, Monash University Vic 3800, Australia.
| |
Collapse
|
17
|
Safaei S, Derakhshan-sefidi M, Karimi A. Wolbachia: A bacterial weapon against dengue fever- a narrative review of risk factors for dengue fever outbreaks. New Microbes New Infect 2025; 65:101578. [PMID: 40176883 PMCID: PMC11964561 DOI: 10.1016/j.nmni.2025.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Arboviruses constitute the largest known group of viruses and are responsible for various infections that impose significant socioeconomic burdens worldwide, particularly due to their link with insect-borne diseases. The increasing incidence of dengue fever in non-endemic regions underscores the urgent need for innovative strategies to combat this public health threat. Wolbachia, a bacterium, presents a promising biological control method against mosquito vectors, offering a novel approach to managing dengue fever. We systematically investigated biomedical databases (PubMed, Web of Science, Google Scholar, Science Direct, and Embase) using "AND" as a Boolean operator with keywords such as "dengue fever," "dengue virus," "risk factors," "Wolbachia," and "outbreak." We prioritized articles that offered significant insights into the risk factors contributing to the outbreak of dengue fever and provided an overview of Wolbachia's characteristics and functions in disease management, considering studies published until December 25, 2024. Field experiments have shown that introducing Wolbachia-infected mosquitoes can effectively reduce mosquito populations and lower dengue transmission rates, signifying its potential as a practical approach for controlling this disease.
Collapse
Affiliation(s)
- Sahel Safaei
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
18
|
Khalife M, Jia T, Caron P, Shreim A, Genoux A, Cristini A, Pucciarelli A, Leverve M, Lepeltier N, García-Rodríguez N, Dalonneau F, Ramachandran S, Fernandez Martinez L, Marcion G, Lemaitre N, Brambilla E, Garrido C, Hammond E, Huertas P, Gazzeri S, Sordet O, Eymin B. SRSF2 overexpression induces transcription-/replication-dependent DNA double-strand breaks and interferes with DNA repair pathways to promote lung tumor progression. NAR Cancer 2025; 7:zcaf011. [PMID: 40181846 PMCID: PMC11963763 DOI: 10.1093/narcan/zcaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 02/04/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025] Open
Abstract
SRSF2 (serine/arginine-rich splicing factor 2) is a critical regulator of pre-messenger RNA splicing, which also plays noncanonical functions in transcription initiation and elongation. Although elevated levels of SRSF2 are associated with advanced stages of lung adenocarcinoma (LUAD), the mechanisms connecting SRSF2 to lung tumor progression remain unknown. We show that SRSF2 overexpression increases global transcription and replicative stress in LUAD cells, which correlates with the production of DNA damage, notably double-strand breaks (DSBs), likely resulting from conflicts between transcription and replication. Moreover, SRSF2 regulates DNA repair pathways by promoting homologous recombination and inhibiting nonhomologous end joining. Mechanistically, SRSF2 interacts with and enhances MRE11 (meiotic recombination 11) recruitment to chromatin, while downregulating 53BP1 messenger RNA and protein levels. Both events are likely contributing to SRSF2-mediated DNA repair process rerouting. Lastly, we show that SRSF2 and MRE11 expression is commonly elevated in LUAD and predicts poor outcome of patients. Altogether, our results identify a mechanism by which SRSF2 overexpression promotes lung cancer progression through a fine control of both DSB production and repair. Finally, we show that SRSF2 knockdown impairs late repair of ionizing radiation-induced DSBs, suggesting a more global function of SRSF2 in DSB repair by homologous recombination.
Collapse
Affiliation(s)
- Manal Khalife
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Tao Jia
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Pierre Caron
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Amani Shreim
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Aurelie Genoux
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, Toulouse 31037, France
| | - Amelie Pucciarelli
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Marie Leverve
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Nina Lepeltier
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Néstor García-Rodríguez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC, Sevilla 41092, Spain
| | - Fabien Dalonneau
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Shaliny Ramachandran
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, Toulouse 31037, France
| | - Guillaume Marcion
- INSERM, UMR1231, Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon F21000, France
| | - Nicolas Lemaitre
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Team Tumor Molecular Pathology and Biomarkers, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Elisabeth Brambilla
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Team Tumor Molecular Pathology and Biomarkers, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Carmen Garrido
- INSERM, UMR1231, Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon F21000, France
| | - Ester M Hammond
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC, Sevilla 41092, Spain
| | - Sylvie Gazzeri
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, Toulouse 31037, France
| | - Beatrice Eymin
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| |
Collapse
|
19
|
Han Z, Jiang S, Xie J, Lucreche Poupina IS, Mo X, Sui L, Qian P, Tang X. Characterization and functional analysis of the small heat shock protein HSP19.5 in Bombyx mori in response to Nosema bombycis infection. J Invertebr Pathol 2025; 210:108289. [PMID: 39988027 DOI: 10.1016/j.jip.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Small heat shock proteins (sHSPs) are molecular chaperones known for their role in maintaining cellular homeostasis and protecting cells from various environmental stresses. This study focuses on the silkworm small heat shock protein HSP19.5 and its potential functions in the context of Nosema bombycis infection, a microsporidian pathogen causing severe disease in the sericulture industry. We cloned and characterized HSP19.5 and revealed its expression patterns in different silkworm tissues and developmental stages. Our results indicate that HSP19.5 expression is significantly up-regulated in response to N. bombycis infection, suggesting a role in the host stress response. Through a series of experiments, including RNA interference and overexpression analyses, we demonstrated that HSP19.5 promotes N. bombycis proliferation, possibly by inhibiting host cell apoptosis and regulating intracellular ROS levels. The cytoplasmic localization of HSP19.5 in silkworm cells is consistent with its function as a molecular chaperone. The results enhance our understanding of the complex host-pathogen interactions between silkworms and N. bombycis, and provides insights that may inform the development of novel strategies to control the pebrine disease.
Collapse
Affiliation(s)
- Zhenghao Han
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Shidong Jiang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, NanNing 530007, China; Guangxi Zhuang Autonomous Region Sericulture Technology Promotion Terminal, NanNing 530007, China
| | - Jingxian Xie
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ibouanga Sama Lucreche Poupina
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaoli Mo
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Li Sui
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ping Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xudong Tang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China; Zhenjiang ZhongNong Biotechnology Co., LTD, Zhenjiang 212101, China.
| |
Collapse
|
20
|
Li Y, Wu Y, Shao J, Shi J, Sun L, Hong Y, Wang X. Stresses in the food chain and their impact on antibiotic resistance of foodborne pathogens: A review. Food Microbiol 2025; 128:104741. [PMID: 39952755 DOI: 10.1016/j.fm.2025.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Antibiotic resistance in foodborne pathogens represents a major public health concern. The farm-to-fork continuum is recognized as a critical pathway for the development and spread of this resistance. Throughout the food chain, foodborne pathogens are exposed to diverse environmental stresses, including temperature extremes, osmotic pressure, food additives, and disinfectants, and others. These stress factors can influence antibiotic resistance, with effects varying based on the type and intensity of stress, the pathogen species and strain, and the specific antibiotic involved. Stress conditions can trigger bacterial adaptive responses, such as general stress response systems, the SOS response, and genetic mutations, which can confer cross-protection and enhance antibiotic resistance. Conversely, stress-induced injury or metabolic suppression may increase bacterial susceptibility to certain antibiotics. Understanding these complex interactions is crucial, as suboptimal food processing can inadvertently select for resistant strains. Investigating the molecular mechanisms underlying stress adaptation is essential for developing effective strategies to mitigate antibiotic resistance. Optimizing food processing protocols and implementing robust monitoring systems throughout the food chain are essential steps to reduce these risks. A comprehensive understanding of stress-induced antibiotic resistance will provide a scientific basis for improving food safety and safeguarding global public health.
Collapse
Affiliation(s)
- Yun Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Jingdong Shao
- Technology Center of Zhangjiagang Customs, Suzhou, China
| | - Juping Shi
- Zhangjiagang Centre for Disease Control and Prevention, Suzhou, China
| | - Lu Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yi Hong
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
21
|
MacDonald MR, Gulick AM. An efficient lysate-based approach for biosynthesis of the pyrrolobenzodiazepine natural product tilimycin. J Biotechnol 2025; 402:87-95. [PMID: 40120764 PMCID: PMC12001866 DOI: 10.1016/j.jbiotec.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Many bacteria use nonribosomal peptide synthetases (NRPSs), a family of multidomain enzymes that produce peptide natural products using an assembly line strategy. One class of such compounds are pyrrolobenzodiazepines, which have DNA alkylating activity. One example is tilimycin, a compound produced by the human gut microbiota that plays a role in epithelial damage during antibiotic-associated dysbiosis. The production of analogs of these natural products may facilitate the discovery of novel bioactive molecules. However, the synthesis of these natural products typically requires significant resources and time to produce in sufficient amounts for microbial and biochemical testing. Biocatalysis offers an environmentally friendly approach, but enzyme yield and stability, particularly with large multidomain enzymes that are often used in natural product pathways, can limit biochemical reactions with purified protein. Here, we demonstrate a cell lysate-based method to synthesize the nonribosomal peptide natural product tilimycin directly from the substrates 3-hydroxyanthranilic acid and L-proline with lysates from E. coli cell lines that express the tilimycin biosynthetic proteins. We present our protocol optimization and scale-up to produce tilimycin in a fast, efficient manner.
Collapse
Affiliation(s)
- Monica R MacDonald
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, 955 Main Street, Buffalo, NY 14203, United States.
| | - Andrew M Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, 955 Main Street, Buffalo, NY 14203, United States.
| |
Collapse
|
22
|
Beyea J. False and Misleading Claims of Scientific Misconduct in Early Research into Radiation Dose-response: Part 1. Overlooking Key Historical Text. HEALTH PHYSICS 2025; 128:507-523. [PMID: 39656129 DOI: 10.1097/hp.0000000000001932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
ABSTRACT In reviewing a video series that they created for the website of the Health Physics Society (HPS), past leaders of the Health Physics Society have treated as authoritative and trustworthy the scientific misconduct theories of University of Massachusetts Professor Edward Calabrese. No mention is made of detailed critiques of Calabrese's work. I show that Calabrese's historical work as presented by HPS's authors is unreliable because it overlooks key historical text and key statistical concepts about the limits of an early atomic bomb genetics study. When these errors are corrected, claims of scientific misconduct on the part of historical figures evaporate. Claims of threshold behavior in early radiation genetic experiments are wrong for atomic bomb data. Calabrese's unique claims about thresholds in early animal genetic data are not credible for human cancer, given the doses at which they were carried out (>30 R). Recent epidemiological studies of both acute and protracted exposure in humans fail to show dose-rate effects or a dose threshold above 30 R. Such results from human data should be more relevant for most regulators and review committees than Calabrese's claims about old data on animals. Disclaimers, errata, and links to critiques should be added to the HPS webpage hosting the 22-part video series. Failure to do so can cause damage to reputations and historical accuracy because it erroneously validates Calabrese's inflammatory claims of scientific misconduct against past scientists, including three Nobel Prize winners, members of the NAS, and presidents of the AAAS.
Collapse
Affiliation(s)
- Jan Beyea
- Senior Scientist Emeritus, Consulting in the Public Interest
| |
Collapse
|
23
|
Sanchez-Aranguren L, Al Tahan MA, Uppal M, Juvale P, Marwah MK. Mitochondrial-targeted liposome-based drug delivery - therapeutic potential and challenges. J Drug Target 2025; 33:575-586. [PMID: 39620468 DOI: 10.1080/1061186x.2024.2437440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Liposomes, as nanocarriers for therapeutics, are a prominent focus in translational medicine. Given their biocompatibility, liposomes are suitable drug delivery systems rendering highly efficient therapeutic outcomes with minimal off-site toxicity. In different scenarios of human disease, it is essential not only to maintain therapeutic drug levels but also to target them to the appropriate intracellular compartment. Mitochondria regulate cellular signalling, calcium balance, and energy production, playing a crucial role in various human diseases. The notion of focusing on mitochondria for targeted drug delivery was proposed several decades ago, yet the practical application of this idea and its translation to clinical use is still in development. Mitochondrial-targeted liposomes offer an alternative to standard drug delivery systems, potentially reducing off-target interactions, side effects, and drug dosage or frequency. To advance this field, it is imperative to integrate various disciplines such as efficient chemical design, pharmacology, pharmaceutics, and cell biology. This review summarises scientific advances in the design, development and characterisation of novel liposome-based drug delivery systems targeting the mitochondria while revisiting their translational potential.
Collapse
Affiliation(s)
- Lissette Sanchez-Aranguren
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
- Translational Medicine Research Group, Aston Medical School, Aston University, Birmingham, UK
| | - Mohamad Anas Al Tahan
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
- Translational Medicine Research Group, Aston Medical School, Aston University, Birmingham, UK
| | - Muhammad Uppal
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
| | - Parag Juvale
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
| | - Mandeep Kaur Marwah
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
- Translational Medicine Research Group, Aston Medical School, Aston University, Birmingham, UK
| |
Collapse
|
24
|
Iqbal A, Bao H, Wang J, Liu H, Liu J, Huang L, Li D. Role of jasmonates in plant response to temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112477. [PMID: 40097048 DOI: 10.1016/j.plantsci.2025.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
The ambient temperature exerts a significant influence on the growth and development of plants, which are sessile organisms. Exposure to extreme temperatures, both low and high, has a detrimental impact on plant growth and development, crop yields, and even geographical distribution. Jasmonates constitute a class of lipid hormones that regulate plant tolerance to biotic and abiotic stresses. Recent studies have revealed that jasmonate biosynthesis and signaling pathways are integral to plant responses to both high and low temperatures. Exogenous application of jasmonate improves cold and heat tolerance in plants and reduces cold injury in fruits and vegetables during cold storage. Jasmonate interacts with low and high temperature key response factors and engages in crosstalk with primary and secondary metabolic pathways, including hormones, under conditions of temperature stress. This review presents a comprehensive summary of the jasmonate synthesis and signal transduction pathway, as well as an overview of the functions and mechanisms of jasmonate in response to temperature stress.
Collapse
Affiliation(s)
- Aafia Iqbal
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Henan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Huijie Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jiangtao Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Liqun Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
25
|
Chen Q, Chen Y, Zheng Q. The RNA-binding protein LSM family regulating reproductive development via different RNA metabolism. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167808. [PMID: 40139411 DOI: 10.1016/j.bbadis.2025.167808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
The LSM (Like-Sm) protein family, characterized by highly conserved LSM domains, is integral to ribonucleic acid (RNA) metabolism. Ubiquitously present in both eukaryotes and select prokaryotes, these proteins bind to RNA molecules with high specificity through their LSM domains. They can also form ring-shaped complexes with other proteins, thereby facilitating various fundamental cellular processes such as mRNA degradation, splicing, and ribosome biogenesis. LSM proteins play crucial roles in gametogenesis, early embryonic development, sex determination, gonadal maturation, and reproductive system formation. In pathological conditions, the absence of LSM14B leads to arrest of oocytes at mid-meiosis, downregulation of LSM4 expression is associated with abnormal spermatogenesis, and aberrant expression of LSM1 protein is linked to the occurrence and progression of breast cancer. This review focuses on the recent advances in the functional research of LSM proteins in reproduction.
Collapse
Affiliation(s)
- Qin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Ying Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China.
| |
Collapse
|
26
|
Nair SR, Nihad M, Shenoy P S, Gupta S, Bose B. Unveiling the effects of micro and nano plastics in embryonic development. Toxicol Rep 2025; 14:101954. [PMID: 40104046 PMCID: PMC11914762 DOI: 10.1016/j.toxrep.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
The improper disposal and degradation of plastics causes the formation and spread of micro and nano-sized plastic particles in the ecosystem. The widespread presence of these micro and nanoplastics leads to their accumulation in the biotic and abiotic components of the environment, thereby affecting the cellular and metabolic functions of organisms. Despite being classified as xenobiotic agents, information about their sources and exposure related to reproductive health is limited. Micro and nano plastic exposure during early developmental stages can cause abnormal embryonic development. It can trigger neurotoxicity and inflammatory responses as well in the developing embryo. In embryonic development, a comprehensive study of their role in pluripotency, gastrulation, and multi-differentiation potential is scarce. Due to ethical concerns associated with the direct use of human embryos, pluripotent cells and its 3D in vitro models (with cell lines) are an alternative source for effective research. Thus, the 3D Embryoid body (EB) model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Pluripotent stem cells such as embryonic and induced pluripotent stem cells derived embryoid bodies (EBs) serve as a robust 3D in vitro model that mimics characteristics similar to that of human embryos. Thus, the 3D EB model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Accordingly, this review discusses the significance of 3D in vitro models in conducting effective embryotoxicity research. Further, we also evaluated the possible sources/routes of microplastic generation and analyzed their surface chemistry and cytotoxic effects reported till date.
Collapse
Affiliation(s)
- Sanjay R Nair
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
27
|
Pinheiro M, Lopes C, Alves N, Almeida E, Morais H, Ribeiro M, Barros S, Raimundo J, Caetano M, Neuparth T, Santos MM. Microplastics in the deep: Suspended particles affect the model species Mytilus galloprovincialis under hyperbaric conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126195. [PMID: 40185189 DOI: 10.1016/j.envpol.2025.126195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Microplastics (MPs) are small plastic particles that result from the degradation of bigger fragments or introduced into the environment as primary particles. Their reduced size makes them available for ingestion by marine organisms, particularly in subtidal and deep-sea environments, which represent the largest sinks for MPs in the ocean. However, there is a lack of data regarding the effects of MPs in subtidal and deep-sea ecosystems. Thus, the present study aimed to assess the effects of MPs under hyperbaric conditions. Juvenile mussels, Mytilus galloprovincialis, were exposed to three concentrations of polyethylene MPs: 0.1, 1 and 10 mg/L, in a mixture of sizes (38-45, 75-90 and 180-212 μm), at different pressures: 1, 4 and 50 Bar, for 96 h. After exposure, the filtration rate, biochemical markers of oxidative stress and transcriptomic profile were analyzed to assess the effects of MPs. Results indicate that MPs affected functional endpoints, with a significant decrease in the filtration rate of mussels exposed to MPs at 1 mg/L and higher. Similarly, all tested oxidative stress biomarkers were affected in a treatment, concentration and pressure-dependent manner. RNA-seq analysis performed in organisms exposed to 1 mg/L of MPs at 4 Bar identified several affected signaling pathways (430 differentially expressed genes) including cellular senescence, the MAPK, RAS PI3K-Akt signaling pathways, apoptosis, among others. Overall, the results here presented corroborate the hypothesis that MPs affect exposed organisms under short-term hyperbaric conditions. These findings highlight the need to study MPs effects in subtidal and deep-sea taxa and address, in future studies, combined effects with other stressors such as contaminants that might be sorbed to the surface of the particles. These findings also indicate that improving hazard assessment of MPs under hyperbaric conditions is paramount to support risk assessment and the implementation of mitigation strategies.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| | - Clara Lopes
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Nélson Alves
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Eunice Almeida
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Hugo Morais
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Marta Ribeiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Susana Barros
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Miguel Caetano
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
28
|
Scacchi A, Rigoni C, Haataja M, Timonen JVI, Sammalkorpi M. A coarse-grained model for aqueous two-phase systems: Application to ferrofluids. J Colloid Interface Sci 2025; 686:1135-1146. [PMID: 39933351 DOI: 10.1016/j.jcis.2025.01.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Aqueous two-phase systems (ATPSs), phase-separating solutions of water soluble but mutually immiscible molecular species, offer fascinating prospects for selective partitioning, purification, and extraction. Here, we formulate a general Brownian dynamics based coarse-grained simulation model for an ATPS of two water soluble but mutually immiscible polymer species. Including additional solute species into the model is straightforward, which enables capturing the assembly and partitioning response of, e.g., nanoparticles (NPs), additional macromolecular species, or impurities in the ATPS. We demonstrate that the simulation model captures satisfactorily the phase separation, partitioning, and interfacial properties of an actual ATPS using a model ATPS in which a polymer mixture of dextran and polyethylene glycol (PEG) phase separates, and magnetic NPs selectively partition into one of the two polymeric phases. Phase separation and NP partitioning are characterized both via the computational model and experimentally, under different conditions. The simulation model captures the trends observed in the experimental system and quantitatively links the partitioning behavior to the component species interactions. Finally, the simulation model reveals that the ATPS interface fluctuations in systems with magnetic NPs as a partitioned species can be controlled by the magnetic field at length scales much smaller than those probed experimentally to date.
Collapse
Affiliation(s)
- Alberto Scacchi
- Department of Mechanical and Materials Engineering, University of Turku, Vesilinnantie 5, 20500 Turku, Finland; Department of Applied Physics, Aalto University, Konemiehentie 1, 02150 Espoo, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Carlo Rigoni
- Department of Applied Physics, Aalto University, Konemiehentie 1, 02150 Espoo, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Mikko Haataja
- Department of Mechanical and Aerospace Engineering, and Princeton Materials Institute (PMI), Princeton University, Princeton, NJ 08544, United States
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University, Konemiehentie 1, 02150 Espoo, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
29
|
Chen T, Chen J, Guo M, Liu Y, Wang J, Fang Y, Chen Y, Zhang A. IL-33 exerts neuroprotective effects through activation of ST2/AKT signaling axis in microglia after subarachnoid hemorrhage in rats. Neuropharmacology 2025; 269:110336. [PMID: 39947392 DOI: 10.1016/j.neuropharm.2025.110336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND AND PURPOSE ST2, a member of the interleukin-1 (IL-1) receptor family, along with its ligand IL-33, plays critical roles in immune regulation and inflammatory responses. This study investigates the roles of endogenous IL-33/ST2 signaling in subarachnoid hemorrhage (SAH) and elucidates the underlying mechanisms. METHODS Dynamic changes in endogenous IL-33 levels were examined following SAH induction in vivo. Rats underwent the endovascular perforation model of SAH and were randomly assigned to receive either recombinant IL-33 (rIL-33) or a vehicle, administered intranasally 1 h post-SAH. ST2 siRNA or an AKT selective inhibitor was administered intraperitoneally (i.p.) 48 h prior to SAH induction to explore the potential mechanisms of IL-33-mediated neuroprotection. RESULTS Endogenous IL-33 and ST2 levels were elevated in in vitro models of SAH. Exogenous IL-33 significantly alleviated neuronal apoptosis, reduced brain edema, and enhanced short-term neurofunction in a dose-dependent manner following SAH in rats. CONCLUSION Exogenous rIL-33 alleviates SAH-induced neurological deficits by promoting M2-like polarization of microglia post-SAH. These findings suggest a potential role of the microglial ST2/AKT axis in IL-33-related neuroprotection, which warrants further investigation.
Collapse
Affiliation(s)
- Ting Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China
| | - Jiarui Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China
| | - Mengchen Guo
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China.
| | - Yan Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China.
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China.
| |
Collapse
|
30
|
Adamczyk PM, Shaw A, Morella IM, More L. Neurobiology, molecular pathways, and environmental influences in antisocial traits and personality disorders. Neuropharmacology 2025; 269:110322. [PMID: 39864585 DOI: 10.1016/j.neuropharm.2025.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30%-60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors. Environmental factors, including childhood trauma and chronic stress, interact with genetic predispositions to induce epigenetic modifications like DNA methylation and histone modifications, contributing to PD development. Neurobiological research has identified structural and functional abnormalities in brain regions related to emotional regulation and social cognition, such as the amygdala, prefrontal cortex, and limbic system. These abnormalities are linked to impaired emotion processing and interpersonal functioning in PDs. This review focuses on how environmental factors shape maladaptive behaviours and endophenotypes central to many PDs. It explores the interaction between the Ras-ERK, p38, and mTOR molecular pathways in response to environmental stimuli, and examines the role of oxidative stress and mitochondrial metabolism in these processes. Also reviewed are various types of PDs and existing animal models that replicate key endophenotypes, highlighting changes in neurotransmitters and neurohormones. Identifying molecular biomarkers can lead to the development of "enviromimetic" drugs, which mimic environmental influences to activate molecular pathways, facilitating targeted, personalized treatments based on the molecular profiles of individuals with PDs. Ultimately, understanding the molecular mechanisms of PDs promises to enhance diagnostic accuracy, prognosis, and therapeutic outcomes for affected individuals.
Collapse
Affiliation(s)
- Patryk M Adamczyk
- School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston, UK
| | - Andrew Shaw
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| | - Ilaria M Morella
- University of Pavia, Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia, Italy; Cardiff University, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK.
| | - Lorenzo More
- School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston, UK.
| |
Collapse
|
31
|
Losarwar S, Pancholi B, Babu R, Garabadu D. Mitochondria-dependent innate immunity: A potential therapeutic target in Flavivirus infection. Int Immunopharmacol 2025; 154:114551. [PMID: 40158432 DOI: 10.1016/j.intimp.2025.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Mitochondria, known as the powerhouse of cells, play a crucial role in host innate immunity during flavivirus infections such as Dengue, Zika, West Nile, and Japanese Encephalitis Virus. Mitochondrial antiviral signaling protein (MAVS) resides on the outer mitochondrial membrane which is triggered by viral RNA recognition by RIG-I-like receptors (RLRs). This activation induces IRF3 and NF-κB signaling, resulting in type I interferon (IFN) production and antiviral responses. Upon flavivirus infection, mitochondrial stress and dysfunction may lead to the release of mitochondrial DNA (mtDNA) into the cytoplasm, which serves as a damage-associated molecular pattern (DAMP). Cytosolic mtDNA is sensed by cGAS (cyclic GMP-AMP synthase), leading to the activation of the STING (Stimulator of Interferon Genes) pathway to increase IFN production and expand inflammation. Flaviviral proteins control mitochondrial morphology by controlling mitochondrial fission (MF) and fusion (MFu), disrupting mitochondrial dynamics (MD) to inhibit MAVS signaling and immune evasion. Flaviviral proteins also cause oxidative stress, resulting in the overproduction of reactive oxygen species (ROS), which triggers NLRP3 inflammasome activation and amplifies inflammation. Additionally, flaviviruses drive metabolic reprogramming by shifting host cell metabolism from oxidative phosphorylation (OxPhos) to glycolysis and fatty acid synthesis, creating a pro-replicative environment that supports viral replication and persistence. Thus, the present review explores the complex interaction between MAVS, mtDNA, and the cGAS-STING pathway, which is key to the innate immune response against flavivirus infections. Understanding these mechanisms opens new avenues in therapeutic interventions in targeting mitochondrial pathways to enhance antiviral immunity and mitigate viral infection.
Collapse
Affiliation(s)
- Saurabh Losarwar
- Department of Pharmacology, Central University of Punjab, Bhatinda 151401, India
| | | | - Raja Babu
- Department of Pharmacology, Central University of Punjab, Bhatinda 151401, India
| | - Debapriya Garabadu
- Department of Pharmacology, Central University of Punjab, Bhatinda 151401, India.
| |
Collapse
|
32
|
Shibuya H. Telomeres, the nuclear lamina, and membrane remodeling: Orchestrating meiotic chromosome movements. J Cell Biol 2025; 224:e202412135. [PMID: 40261310 DOI: 10.1083/jcb.202412135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Telomeres, the DNA-protein complex located at the ends of linear eukaryotic chromosomes, not only safeguard genetic information from DNA erosion and aberrant activation of the DNA damage response pathways but also play a pivotal role in sexual reproduction. During meiotic prophase I, telomeres attach to the nuclear envelope and migrate along its surface, facilitating two-dimensional DNA homology searches that ensure precise pairing and recombination of the paternal and maternal chromosomes. Recent studies across diverse model systems have revealed intricate molecular mechanisms, including modifications to telomere- and nuclear envelope-binding proteins, the nuclear lamina, and even membrane composition. Emerging evidence reveals mutations in the genes encoding these meiotic telomere and nuclear envelope-associated proteins among infertile patients. This review highlights recent advances in the field of meiotic telomere research, particularly emphasizing mammalian model systems, contextualizes these findings through comparisons with other eukaryotes, and concludes by exploring potential future research directions in the field.
Collapse
Affiliation(s)
- Hiroki Shibuya
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Science, Osaka University , Osaka, Japan
| |
Collapse
|
33
|
Krishnamoorthy GP, Glover AR, Untch BR, Sigcha-Coello N, Xu B, Vukel D, Liu Y, Tiedje V, Pineda JMB, Berman K, Tamarapu PP, Acuña-Ruiz A, Saqcena M, de Stanchina E, Boucai L, Ghossein RA, Knauf JA, Abdel-Wahab O, Bradley RK, Fagin JA. RBM10 loss promotes metastases by aberrant splicing of cytoskeletal and extracellular matrix mRNAs. J Exp Med 2025; 222:e20241029. [PMID: 39992626 PMCID: PMC11849553 DOI: 10.1084/jem.20241029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon inclusion events included vinculin (VCL), tenascin C (TNC), and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse HrasG12V/Rbm1OKO thyrocytes develop metastases that are reversed by RBM10 expression or by combined knockdown of VCL, CD44, and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusion in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFκB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.
Collapse
Affiliation(s)
- Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony R. Glover
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R. Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nickole Sigcha-Coello
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dina Vukel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Tiedje
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose Mario Bello Pineda
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katherine Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasanna P. Tamarapu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian Acuña-Ruiz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Boucai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald A. Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James A. Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
34
|
Huang P, Cao L, Du J, Guo Y, Li Q, Sun Y, Zhu H, Xu G, Gao J. Polystyrene nanoplastics amplify the toxic effects of PFOA on the Chinese mitten crab (Eriocheir sinensis). JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137488. [PMID: 39919640 DOI: 10.1016/j.jhazmat.2025.137488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Nanoplastics (NPs), the final form of degraded microplastics in the environment, can adsorb PFOA (an emerging organic pollutant in recent years) in several ways. Current research on these has focused on bony fishes and mollusks, however, the combined toxicity of PFOA and NPs remains unknown in Eriocheir sinensis. Therefore, the effects of single or combined exposure to PFOA and NPs were investigated. The results showed that NPs aggravated PFOA exposure-induced oxidative stress, serum lipid disorders, immune responses, and morphological damage. DEGs altered by NPs-PFOA exposure were predominantly enriched in GO terms for cell lumen, and organelle structure, and KEGG terms for spliceosome and endocrine disorders-related diseases. Notably, the apoptotic pathway plays a central role enriched under different exposure modes. PFOA or NPs-PFOA exposure disrupted the levels of lipids molecules-related metabolites by mediating the glycerophospholipid pathway, and the NPs mediated the ferroptosis pathway to exacerbate PFOA-induced metabolic toxicity. In addition, NPs exacerbated the inflammatory response and metabolic imbalance by mediating Fusobacterium ulcerans in the intestinal. In conclusion, this study provides a valuable reference for the characterization of NPs-PFOA combined pollution and a scientific basis for the development of environmental protection policies and pollution management strategies.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liping Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiqing Guo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Quanjie Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jiancao Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
35
|
Peng X, Tang W, Jiang Y, Peng A, Xiao Y, Zhang Y. Recent advances in CDC7 kinase inhibitors: Novel strategies for the treatment of cancers and neurodegenerative diseases. Eur J Med Chem 2025; 289:117491. [PMID: 40090297 DOI: 10.1016/j.ejmech.2025.117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Cell division cycle 7 (CDC7) plays an indispensable regulatory role in various cellular processes, encompassing the initiation of DNA replication and the maintenance of replication checkpoints. However, dysregulation of CDC7 protein levels is closely associated with the development and progression of several human diseases, particularly cancers and neurodegenerative diseases. Therefore, targeting the CDC7 kinase is deemed a potential avenue for disease management. Currently, a few CDC7 inhibitors have progressed to clinical trials. Nevertheless, limited clinical efficacy coupled with severe adverse reactions necessitates the implementation of innovative technologies to enhance therapeutic effectiveness and minimize adverse events. Herein, we highlight the structure, biological functions and significance in disease progression of CDC7, and discuss the preclinical and clinical states of CDC7 inhibitors. Our focus centers on the structure-activity relationship (SAR) and binding modes of CDC7 inhibitors, offering perspectives on novel CDC7-targeting drugs for clinical application.
Collapse
Affiliation(s)
- Xi Peng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wentao Tang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Jiang
- West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Anjiao Peng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yao Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
36
|
Zhao P, Tian R, Song D, Zhu Q, Ding X, Zhang J, Cao B, Zhang M, Xu Y, Fang J, Tan J, Yi C, Xia H, Liu W, Zou W, Sun Q. Rab GTPases are evolutionarily conserved signals mediating selective autophagy. J Cell Biol 2025; 224:e202410150. [PMID: 40197538 PMCID: PMC11977514 DOI: 10.1083/jcb.202410150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
Selective autophagy plays a crucial role in maintaining cellular homeostasis by specifically targeting unwanted cargo labeled with "autophagy cues" signals for autophagic degradation. In this study, we identify Rab GTPases as a class of such autophagy cues signals involved in selective autophagy. Through biochemical and imaging screens, we reveal that human Rab GTPases are common autophagy substrates. Importantly, we confirm the conservation of Rab GTPase autophagic degradation in different model organisms. Rab GTPases translocate to damaged mitochondria, lipid droplets, and invading Salmonella-containing vacuoles (SCVs) to serve as degradation signals. Furthermore, they facilitate mitophagy, lipophagy, and xenophagy, respectively, by recruiting receptors. This interplay between Rab GTPases and receptors may ensure the de novo synthesis of isolation membranes around Rab-GTPase-labeled cargo, thereby mediating selective autophagy. These processes are further influenced by upstream regulators such as LRRK2, GDIs, and RabGGTase. In conclusion, this study unveils a conserved mechanism involving Rab GTPases as autophagy cues signals and proposes a model for the spatiotemporal control of selective autophagy.
Collapse
Affiliation(s)
- Pengwei Zhao
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Rui Tian
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Dandan Song
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qi Zhu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xianming Ding
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianqin Zhang
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Beibei Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengyuan Zhang
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yilu Xu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jie Fang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongguang Xia
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, China
| |
Collapse
|
37
|
Xu H, Han Y, Chi X, Yu J, Xia M, Han S, Niu Y, Zhang F, Chen S. Integration of De Novo Chromosome-Level Genome and Population Resequencing of Peganum (Nitrariaceae): A Case Study of Speciation and Evolutionary Trajectories in Arid Central Asia. Mol Ecol Resour 2025; 25:e14078. [PMID: 39925320 DOI: 10.1111/1755-0998.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Natural hybridization is a significant driving force in plant evolution and speciation. Understanding the genetic mechanism and dynamic evolutionary trajectories of divergence between species and hybrids remains a central goal in evolutionary biology. Here, we examined the genetic divergence of Peganum and their intermittent and hybrid entities (IHEs) from large-scale sympatric and allopatric regions. We sequenced the genomes of Peganum from the Arid Central Asia (ACA) region and its surrounding areas, discovering that the origin of Peganum could be traced to the Hexi Corridor in eastern Central Asia, where migration led to geographic and environmental isolation, giving rise to new species based on natural selection. Different Peganum species, exhibiting excellent dispersal abilities, migrated to the same regions and underwent hybridization. The descendant species of Peganum inherited and developed adaptive traits from parent species through gene flow and introgression, particularly in DNA repair and wax layer formation, leading to the speciation of the IHEs. This study clarified the transition stages in hybrid speciation and identified the Mixing-Isolation-Mixing cycles (MIM) model as a speciation framework suitable for Peganum, marking the initial identification of this unique evolutionary model in the ACA region.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
| | - Jingya Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingze Xia
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Shuang Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Niu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
- Xining Botanical Garden, Xining, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
| |
Collapse
|
38
|
Xie P, Xia M, Long T, Guo D, Cao W, Sun P, Yu W. GIV/Girdin Modulation of Microglial Activation in Ischemic Stroke: Impact of FTO-Mediated m6A Modification. Mol Neurobiol 2025; 62:5501-5517. [PMID: 39560901 PMCID: PMC11953190 DOI: 10.1007/s12035-024-04604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Ischemic stroke (IS) is one of the most common causes of death in the world. The lack of effective pharmacological treatments for IS was primarily due to a lack of understanding of its pathogenesis. Gα-Interacting vesicle-associated protein (GIV/Girdin) is a multi-modular signal transducer and guanine nucleotide exchange factor that controls important signaling downstream of multiple receptors. The purpose of this study was to investigate the role of GIV in IS. In the present study, we found that GIV is highly expressed in the central nervous system (CNS). GIV protein level was decreased, while GIV transcript level was increased in the middle cerebral artery occlusion reperfusion (MCAO/R) mice model. Additionally, GIV was insensitive lipopolysaccharide (LPS) exposure. Interestingly, we found that GIV overexpression dramatically restrained microglial activation, inflammatory response, and M1 polarization in BV-2 microglia induced by oxygen-glucose deprivation and reoxygenation (OGD/R). On the contrary, GIV knockdown had the opposite impact. Mechanistically, we found that GIV activated the Wnt/β-catenin signaling pathway by interacting with DVL2 (disheveled segment polarity protein 2). Notably, m6A demethylase fat mass and obesity-associated protein (FTO) decreased the N6-methyladenosine (m6A) modification-mediated increase of GIV expression and attenuated the inflammatory response in BV-2 stimulated by OGD/R. Taken together, our results demonstrate that GIV inhibited the inflammatory response via activating the Wnt/β-catenin signaling pathway which expression regulated in an FTO-mediated m6A modification in IS. These results broaden our understanding of the role of the FTO-GIV axis in IS development.
Collapse
Affiliation(s)
- Peng Xie
- Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Mingyan Xia
- Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tingting Long
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dongfen Guo
- Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenpeng Cao
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ping Sun
- Department of Neurology, The Second People's Hospital of Guiyang, Guiyang, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Human AnatomySchool of Basic Medical ScienceGuian New District, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
39
|
Carvalho LML, Rzasa J, Kerkhof J, McConkey H, Fishman V, Koksharova G, de Lima Jorge AA, Branco EV, de Oliveira DF, Martinez-Delgado B, Barrero MJ, Kleefstra T, Sadikovic B, Haddad LA, Bertola DR, Rosenberg C, Krepischi ACV. EHMT2 as a Candidate Gene for an Autosomal Recessive Neurodevelopmental Syndrome. Mol Neurobiol 2025; 62:5977-5989. [PMID: 39674972 DOI: 10.1007/s12035-024-04655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1). EHMT2 is a gene acting in epigenetic regulation; however, the involvement of mutations in this gene in the etiology of NDDs has not been established thus far. A homozygous EHMT2 LoF variant [(NM_006709.5):c.328 + 2 T > G] was identified by exome sequencing in an adult female patient with a phenotype resembling KS1, presenting with intellectual disability, aggressive behavior, facial dysmorphisms, fused C2-C3 vertebrae, ventricular septal defect, supernumerary nipple, umbilical hernia, and fingers and toes abnormalities. The absence of homozygous LoF EHMT2 variants in population databases underscores the significant negative selection pressure exerted on these variants. In silico evaluation of the effect of the EHMT2(NM_006709.5):c.328 + 2 T > G variant predicted the abolishment of intron 3 splice donor site. However, manual inspection revealed potential cryptic donor splice sites at this EHMT2 region. To directly access the impact of this splice site variant, RNAseq analysis was employed and disclosed the usage of two cryptic donor sites within exon 3 in the patient's blood, which are predicted to result in either an out-of-frame or in-frame effect on the protein. Methylation analysis was conducted on DNA from blood samples using the clinically validated EpiSign assay, which revealed that the patient with the homozygous EHMT2(NM_006709.5):c.328 + 2 T > G splice site variant is conclusively positive for the KS1 episignature. Taken together, clinical, genetic, and epigenetic data pointed to a LoF mechanism for the EHMT2 splice variant and support this gene as a novel candidate for an autosomal recessive Kleefstra-like syndrome. The identification of additional cases with deleterious EHMT2 variants, alongside further functional validation studies, is required to substantiate EHMT2 as a novel NDD gene.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Veniamin Fishman
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Artificial Intelligence Research Institute, AIRI, Moscow, Russia
| | - Galina Koksharova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Elisa Varella Branco
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Danyllo Felipe de Oliveira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Beatriz Martinez-Delgado
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria J Barrero
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Luciana Amaral Haddad
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.
| |
Collapse
|
40
|
Sen S, Parihar N, Patil PM, Upadhyayula SM, Pemmaraju DB. Revisiting the Emerging Role of Light-Based Therapies in the Management of Spinal Cord Injuries. Mol Neurobiol 2025; 62:5891-5916. [PMID: 39658774 DOI: 10.1007/s12035-024-04658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
The surge in spinal cord injuries (SCI) attracted many neurobiologists to explore the underlying complex pathophysiology and to offer better therapeutic outcomes. The multimodal approaches to therapy in SCI have proven to be effective but to a limited extent. The clinical basics involve invasive procedures and limited therapeutic interventions, and most preclinical studies and formulations are yet to be translated due to numerous factors. In recent years, photobiomodulation therapy (PBMT) has found many applications in various medical fields. In most PBMT, studies on SCI have employed laser sources in experimental animal models as a non-invasive source. PBMT has been applied in numerous facets of SCI pathophysiology, especially attenuation of neuroinflammatory cascades, enhanced neuronal regeneration, reduced apoptosis and gliosis, and increased behavioral recovery within a short span. Although PBMT is specific in modulating mitochondrial bioenergetics, innumerous molecular pathways such as JAK-STAT, PI3K-AKT, NF-κB, MAPK, JNK/TLR/MYD88, ERK/CREB, TGF-β/SMAD, GSK3β-AKT-β-catenin, and AMPK/PGC-1α/TFAM signaling pathways have been or are yet to be exploited. PMBT has been effective not only in cell-specific actions in SCI such as astrocyte activation or microglial polarization or alterations in neuronal pathology but also modulated overall pathobiology in SCI animals such as rapid behavioral recovery. The goal of this review is to summarize research that has used PBMT for various models of SCI in different animals, including clarifying its mechanisms and prospective molecular pathways that may be utilized for better therapeutic outcomes.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Nidhi Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Prathamesh Mahadev Patil
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Suryanarayana Murty Upadhyayula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Deepak B Pemmaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
41
|
Lipovšek S, Vajs T, Dariš B, Novak T, Kozel P. Autophagic activity in the midgut cells of three arachnids responds selectively to different modes of overwintering in caves. PROTOPLASMA 2025; 262:531-544. [PMID: 39630263 DOI: 10.1007/s00709-024-02009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/14/2024] [Indexed: 04/24/2025]
Abstract
Autophagy is a highly conserved metabolic process that regulates cellular homeostasis and energy supply by degrading dysfunctional and excess cell constituents and reserve materials into products that are reused in metabolic and biosynthetic pathways. Macroautophagy is the best studied form of autophagy in invertebrates. Starvation is a common stress factor triggering autophagy in overwintering animals. In arachnids, the midgut diverticula cells perform many vital metabolic functions and are therefore critically involved in the response to starvation. Here we studied macroautophagy in three species which apply different modes for overwintering in caves: the harvestmen Gyas annulatus in diapause, Amilenus aurantiacus with ongoing ontogenesis under fasting conditions, and the spider Meta menardi, which feeds opportunistically even in winter. The main goal was to find eventual qualitative and quantitative differences in autophagic processes by inspecting TEM micrographs. In all three species, the rates of midgut epithelial cells with autophagic structures gradually increased during overwintering, but were significantly lower in G. annulatus in the middle and at the end of overwintering than in the other two species, owing to metabolic activity having been more suppressed. Decomposition of mitochondria and glycogen took place in autophagic structures in all three species. Moreover, spherite disintegration in A. aurantiacus and a special form of lipid disintegration through "lipid bubbly structures" in M. menardi indicate the crucial involvment of selective autophagy, while no specific autophagy was observed in G. annulatus. We conclude that autophagic activities support overwintering in different ways in the species studied.
Collapse
Affiliation(s)
- Saška Lipovšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Division of Cell Biology, Gottfried Schatz Research Center, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Tanja Vajs
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Tone Novak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Peter Kozel
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
- Research Centre of the Slovenian Academy of Science and Arts, Karst Research Institute, Titov trg 2, 6230, Postojna, Slovenia.
| |
Collapse
|
42
|
Liu R, Wang Y, Shu B, Xin J, Yu B, Gan Y, Liang Y, Qiu Z, Yan S, Cao B. SmHSFA8 Enhances the Heat Tolerance of Eggplant by Regulating the SmEGY3-SmCSD1 Module and Promoting SmF3H-mediated Flavonoid Biosynthesis. PLANT, CELL & ENVIRONMENT 2025; 48:3085-3104. [PMID: 39690517 DOI: 10.1111/pce.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
High temperature (HT) is a major environmental factor that restrains eggplant growth and production. Heat shock factors (HSFs) play a vital role in the response of plants to high-temperature stress (HTS). However, the molecular mechanism by which HSFs regulate heat tolerance in eggplants remains unclear. Previously, we reported that SmEGY3 enhanced the heat tolerance of eggplant. Herein, SmHSFA8 activated SmEGY3 expression and interacted with SmEGY3 protein to enhance the activation function of SmEGY3 on SmCSD1. Virus-induced gene silencing (VIGS) and overexpression assays suggested that SmHSFA8 positively regulated heat tolerance in plants. SmHSFA8 enhanced the heat tolerance of tomato plants by promoting SlEGY3 expression, H2O2 production and H2O2-mediated retrograde signalling pathway. DNA affinity purification sequencing (DAP-seq) analysis revealed that SmHSPs (SmHSP70, SmHSP70B and SmHSP21) and SmF3H were candidate downstream target genes of SmHSFA8. SmHSFA8 regulated the expression of HSPs and F3H and flavonoid content in plants. The silencing of SmF3H by VIGS reduced the flavonoid content and heat tolerance of eggplant. In addition, exogenous flavonoid treatment alleviated the HTS damage to eggplants. These results indicated that SmHSFA8 enhanced the heat tolerance of eggplant by activating SmHSPs exprerssion, mediating the SmEGY3-SmCSD1 module, and promoting SmF3H-mediated flavonoid biosynthesis.
Collapse
Affiliation(s)
- Renjian Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Yuyuan Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Bingbing Shu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Jinyang Xin
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Bingwei Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Yuwei Gan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Yonggui Liang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Ghadanian T, Iyer S, Lazzari L, Vera M. Selective Translation Under Heat Shock: Integrating HSP70 mRNA Regulation with Cellular Stress Responses in Yeast and Mammals. Mol Biol Cell 2025; 36:re2. [PMID: 40198146 DOI: 10.1091/mbc.e24-12-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Under stress, cells orchestrate a complex regulatory response to maintain protein homeostasis, leveraging differential translational regulation for constitutively expressed mRNAs and the transcriptionally induced heat shock protein HSP70 transcripts. Constitutive mRNAs typically experience partial translational suppression, consistent with their partitioning into stress-induced phase-separated condensates and the global reduction in protein synthesis. In contrast, inducible HSP70 mRNAs bypass this repression to remain in the cytosol where they recruit the available components of the translational machinery to ensure the rapid synthesis of HSP70. Although the components involved in the preferential translation of HSP70 mRNA during heat stress have not been fully elucidated, differences in the mRNA and translation factors between yeast and mammals suggest organism-specific mechanisms of HSP70 mRNA translation. In this review, we consider these differences to discuss the current knowledge on heat shock regulation of translation. We extend the discussion to go beyond the cytosolic needs of HSP70 to ponder the important interplay between the cytosol and mitochondria in activating HSP70 accumulation, which becomes vital for preserving intercompartmental proteostasis and cell survival.
Collapse
Affiliation(s)
- Talar Ghadanian
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, Montreal, Quebec H3G 0B1, Canada
| | - Shruti Iyer
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, Montreal, Quebec H3G 0B1, Canada
| | - Luca Lazzari
- Centre de Recherche en Biologie Structurale, Montreal, Quebec H3G 0B1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
44
|
Lanna A. Unexpected links between cancer and telomere state. Semin Cancer Biol 2025; 110:46-55. [PMID: 39952372 DOI: 10.1016/j.semcancer.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Eukaryotes possess chromosome ends known as telomeres. As telomeres shorten, organisms age, a process defined as senescence. Although uncontrolled telomere lengthening has been naturally connected with cancer developments and immortalized state, many cancers are instead characterized by extremely short, genomically unstable telomeres that may hide cancer cells from immune attack. By contrast, other malignancies feature extremely long telomeres due to absence of 'shelterin' end cap protecting factors. The reason for rampant telomere extension in these cancers had remained elusive. Hence, while telomerase supports tumor progression and escape in cancers with very short telomeres, it is possible that different - transfer based or alternative - lengthening pathways be involved in the early stage of tumorigenesis, when telomere length is intact. In this Review, I hereby discuss recent discoveries in the field of telomeres and highlight unexpected links connecting cancer and telomere state. We hope these parallelisms may inform new therapies to eradicate cancers.
Collapse
Affiliation(s)
- Alessio Lanna
- Sentcell UK laboratories, Tuscany Life Sciences, GSK Vaccine Campus, Siena, Italy; University College London, Division of Medicine, London, United Kingdom; Monte-Carlo, Principality of Monaco, France.
| |
Collapse
|
45
|
Yin G, Chen X, Zhao M, Xu J, Xu Q. Complex metal interaction networks and the mediating role of biological aging in dyslipidemia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126047. [PMID: 40081455 DOI: 10.1016/j.envpol.2025.126047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Metal mixture exposure is a major risk factor for dyslipidemia. Numerous studies have shown an association between metal mixture exposure, biological aging, and dyslipidemia. However, the interactions between metals, their directions, and the potential mechanisms through which they influence dyslipidemia remain unclear. This study utilized data from a repeated-measures cohort collected between 2016 and 2021, including 403 participants (1612 observations). Levels of metals, including chromium (Cr), cadmium (Cd), lead (Pb), and manganese (Mn), were measured in urine, along with four dyslipidemia biomarkers and their extended indicators. Generalized Estimating Equations (GEE) and Bayesian Kernel Machine Regression (BKMR) were used to analyze the effects of single and combined metal exposures on dyslipidemia. BKMR and the Synergy Index were employed to explore binary metal interactions and their directions. Marginal effects analysis assessed the impact of multiple metal interactions on dyslipidemia, and mediation analysis was conducted to explore the role of KDM.Accel in mediating the relationship between metal exposure and dyslipidemia. The findings indicated that both individual and combined exposures to Cr, Cd, Pb, and Mn significantly affected dyslipidemia. Multiple binary metal interactions exhibited synergistic effects on lipid outcomes. Pb∗Cd∗Cr and Pb∗Cd∗Mn showed an antagonistic effect on non-high-density lipoprotein cholesterol (NHC), while Cd∗Cr∗Mn∗Pb demonstrated synergistic effects on NHC. Additionally, KDM.Accel was identified as a key mediator in the relationship between Pb exposure and dyslipidemia, influencing the associations between Pb and HDL-C, LDL-C, and AC abnormalities. Mixed heavy metal exposure and their interactions are associated with dyslipidemia outcomes, with KDM.Accel playing a mediating role in the relationship between metals and dyslipidemia. This study highlights the potential interactions between metals and the mechanisms by which KDM.Accel may influence dyslipidemia, offering new insights into the connection between metal mixtures and dyslipidemia.
Collapse
Affiliation(s)
- Guohuan Yin
- Center for Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xingyu Chen
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Meiduo Zhao
- Center for Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Xu
- Center for Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qun Xu
- Center for Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
46
|
Hu S, Tang X, Zhu F, Liang C, Wang S, Wang H, Li P, Li Y. Disruption of mitochondrial DNA integrity in cardiomyocyte injury upon ischemia/reperfusion. Genes Dis 2025; 12:101282. [PMID: 40028034 PMCID: PMC11870174 DOI: 10.1016/j.gendis.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2025] Open
Abstract
Mitochondria serve as the energy provider and enable life activities, and they are the only organelles containing extra-chromosomal DNA. Each mitochondrion contains multiple copies of its genome, which is usually referred to as mitochondrial DNA (mtDNA). mtDNA encodes necessary electron transport chain complex subunits, as well as the essential RNAs for their translation within the organelle. Therefore, the precondition for intact mitochondrial function and cardiomyocyte survival is the integrity of mtDNA. Accumulating evidence suggests that the disruption of mtDNA integrity is involved in ischemia/reperfusion-induced mitochondrial dysfunction and cardiomyocyte injury. Here, we review the current opinions about the pathways of mtDNA integrity maintenance and discuss the role of mtDNA integrity in cardiomyocyte injury reacting to ischemia/reperfusion. We also discuss the mechanisms by which mtDNA mediates ischemia/reperfusion-induced cardiomyocyte injury, together with therapeutic strategies by targeting mtDNA.
Collapse
Affiliation(s)
- Shengnan Hu
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Xueying Tang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Fangrui Zhu
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Liang
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing 100853, China
| | - Sa Wang
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266000, China
| | - Yuzhen Li
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
47
|
Wang Y, Liu Z, Lv Y, Long J, Lu Y, Huang P. Mechanisms of radioresistance and radiosensitization strategies for Triple Negative Breast Cancer. Transl Oncol 2025; 55:102351. [PMID: 40112501 PMCID: PMC11964565 DOI: 10.1016/j.tranon.2025.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Breast cancer is one of the most common malignant tumors in women. Triple-negative breast cancer (TNBC) is a molecular subtype of breast cancer that is characterized by a high risk of recurrence and poor prognosis. With the increasingly prominent role of radiotherapy in TNBC treatment, patient resistance to radiotherapy is an attractive area of clinical research. Gene expression changes induced by multiple mechanisms can affect the radiosensitivity of TNBC cells to radiotherapy through a variety of ways, and the enhancement of radioresistance is an important factor in the malignant progression of TNBC. The above pathways mainly include DNA damage repair, programmed cell death, cancer stem cells (CSC), antioxidant function, tumor microenvironment, and epithelial-mesenchymal transition (EMT) pathway. Tumor cells can reduce the damage of radiotherapy to themselves through the above ways, resulting in radioresistance. Therefore, in this review, we aim to summarize the strategies for immunotherapy combined with radiotherapy, targeted therapy combined with radiotherapy, and epigenetic therapy combined with radiotherapy to identify the best treatment for TNBC and improve the cure and survival rates of patients with TNBC. This review will provide important guidance and inspiration for the clinical practice of radiotherapy for TNBC, which will help deepen our understanding of this field and promote its development.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zhiwei Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yulu Lv
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jiayang Long
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yao Lu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Panpan Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
48
|
Ouyang B, Wang G, Hu Z, Liu Q, Zhao W, Zhao X. A novel directed evolution approach for co-evolution of β-glucosidase activity and organic acid tolerance. J Biotechnol 2025; 401:1-10. [PMID: 39983995 DOI: 10.1016/j.jbiotec.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Directed evolution is a potent tool for protein engineering; however, Error-prone PCR and DNA Shuffling often lead to a high frequency of negative and reverse mutations, especially in the case of large genes. This study introduces two innovative techniques to tackle these challenges: Segmental error-prone PCR (SEP) and Directed DNA shuffling (DDS). SEP involves averagely dividing large genes into small fragments, independently and randomly mutagenizing them in vitro, and reassembling them as well as other unmutated fragments in Saccharomyces cerevisiae. DDS selectively amplifies mutated fragments of positive variants from SEP and reassembles them in S. cerevisiae to produce complete genes with cumulative positive mutations. We have used these two techniques to simultaneously improve the activity of β-glucosidase and its tolerance to organic acids, which validates the effectiveness and feasibility of the approach.
Collapse
Affiliation(s)
- Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; Shenzhen Longgang Buji High School, Shenzhen 518123, China
| | - Ziyan Hu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Qiling Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Wenwen Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
49
|
Wang X, Wang Z, Qi Z, Zhu Y. Potential therapeutic substances for hand-foot-and-mouth disease in the interplay of enteroviruses and type I interferon. Int J Antimicrob Agents 2025; 65:107464. [PMID: 39956531 DOI: 10.1016/j.ijantimicag.2025.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 12/15/2024] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
OBJECTIVES Hand-foot-and-mouth disease (HFMD) is widespread in the world. Severe HFMD can lead to complications like pneumonia, encephalitis, myocarditis, transverse myelitis and even death. Since HFMD is caused by at least 20 types of enteroviruses, there is an urgent need for broad-spectrum antiviral drugs to help control the spread of HFMD outbreaks. METHODS Type I interferon (IFN), as an indispensable part of the immune response, plays a key role in the inhibition of the enterovirus replication cycle without species specificity, and regulation of the innate immune system by inducing the activation of the IFN-stimulated genes. CONCLUSIONS Here, the interplay of enteroviruses and type I IFN was systematically summarized, including pathways for the activation and evasion of type I IFN. Besides, we proposed promising anti-enterovirus agents with therapeutic potential.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Infectious Diseases, First Hospital of Naval Medical University, Shanghai, China
| | - Ziyuan Wang
- School of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Zhongtian Qi
- Department of Microbiology, Naval Medical University, Shanghai, China.
| | - Yongzhe Zhu
- Department of Microbiology, Naval Medical University, Shanghai, China.
| |
Collapse
|
50
|
Li C, Yu Q, Si Y, Liang Y, Lin S, Yang G, Liu W, Ji Y, Wang A. Melatonin suppresses ethylene biosynthesis by inhibiting transcription factor MdREM10 during apple fruit ripening. HORTICULTURE RESEARCH 2025; 12:uhaf020. [PMID: 40196037 PMCID: PMC11975395 DOI: 10.1093/hr/uhaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 04/09/2025]
Abstract
Ethylene, a plant hormone, is essential for apple (Malus domestica) ripening. The precise molecular mechanism by which melatonin (MT) influences ethylene biosynthesis during apple fruit ripening remains unclear. This study found that exogenous MT treatment inhibited ethylene production and postponed apple fruit ripening. The endogenous MT content of apple fruits exhibited an inverse correlation with ethylene production during fruit ripening, suggesting that MT functions as a ripening suppressor in apple fruits. MT treatment suppressed the expression of key ethylene biosynthesis genes, MdACS1 and MdACO1, during apple fruit ripening. MT treatment decreased the expression levels of transcription factors MdREM10 and MdZF32. MdREM10 binds to the MdERF3 promoter, enhancing its expression and subsequently promoting MdACS1 transcription. Furthermore, MdREM10 directly bound to the MdZF32 promoter, promoting its transcription. MdZF32 directly bound to the MdACO1 promoter, inducing its expression. The findings suggested that MT suppresses ethylene biosynthesis and fruit ripening by inhibiting MdREM10, which indirectly promotes MdACS1 transcription via MdERF3 upregulation, and MdACO1 transcription via MdZF32 upregulation.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Qian Yu
- Key Laboratory of Fruit Storage and Processing (Liaoning Province), Chinese Academy of Agricultural Sciences Research Institute of Pomology, No. 98, Xinghai South Street, Wenquan Street, Xingcheng 125100, China
| | - Yajing Si
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Yuling Liang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Shijiao Lin
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Guangxin Yang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Weiting Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Yinglin Ji
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| |
Collapse
|