1
|
Manissorn J, Promsuk J, Wangkanont K, Thongnuek P. Biomimetic peptide conjugates as emerging strategies for controlled release from protein-based materials. Drug Deliv 2025; 32:2449703. [PMID: 39782014 PMCID: PMC11721625 DOI: 10.1080/10717544.2025.2449703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles. Recombinant spider silk proteins, fibrin-binding peptides, collagen-mimetic peptides, and keratin-derived structures similarly illustrate the ability to engineer precise interactions and to design controlled release systems. Additionally, the use of resilin-like peptides showcases the potential for creating highly elastic and resilient biomaterials. This review highlights current achievements and future perspectives in the field, emphasizing the potential of biomimetic peptides to transform biopolymer-based biomedical applications.
Collapse
Affiliation(s)
- Juthatip Manissorn
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jaturong Promsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Thongnuek
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Khan T. An insight into in silico strategies used for exploration of medicinal utility and toxicology of nanomaterials. Comput Biol Chem 2025; 117:108435. [PMID: 40158237 DOI: 10.1016/j.compbiolchem.2025.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Nanomaterials (NMs) and the exploration of their comprehensive uses is an emerging research area of interest. They have improved physicochemical and biological properties and diverse functionality owing to their unique shape and size and therefore they are being explored for their enormous uses, particularly as medicinal and therapeutic agents. Nanoparticles (NPs) including metal and metal oxide-based NPs have received substantial consideration because of their biological applications. Computer-aided drug design (CADD) involving different strategies like homology modelling, molecular docking, virtual screening (VS), quantitative structure-activity relationship (QSAR) etc. and virtual screening hold significant importance in CADD used for lead identification and target identification. Despite holding importance, there are very few computational studies undertaken so far to explore their binding to the target proteins and macromolecules. Although the structural properties of nanomaterials are well documented, it is worthwhile to know how they interact with the target proteins making it a pragmatic issue for comprehension. This review discusses some important computational strategies like molecular docking and simulation, Nano-QSAR, quantum chemical calculations based on Density functional Theory (DFT) and computational nanotoxicology. Nano-QSAR modelling, based on semiempirical calculations and computational simulation can be useful for biomedical applications, whereas the DFT calculations make it possible to know about the behaviour of the material by calculations based on quantum mechanics, without the requirement of higher-order material properties. Other than the beneficial interactions, it is also important to know the hazardous consequences of engineered nanostructures and NPs can penetrate more deeply into the human body, and computational nanotoxicology has emerged as a potential strategy to predict the delirious effects of NMs. Although computational tools are helpful, yet more studies like in vitro assays are still required to get the complete picture, which is essential in the development of potent and safe drug entities.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, U.P 226026, India.
| |
Collapse
|
3
|
Liao H, Li J, Wang F, Chen Y, Deng W, Li B, Liu J, Qian D, Waterhouse GIN. Ion-imprinting strategy towards a novel two-in-one copper-based nanozyme for sensitive electrochemical-colorimetric dual-mode detection of paracetamol. Biosens Bioelectron 2025; 280:117454. [PMID: 40199099 DOI: 10.1016/j.bios.2025.117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Dual-mode sensors integrating multifunctional nanozymes are highly sought by the analytical chemistry community. However, rational design of nanozymes containing both metal single atoms (SAs) and atomic clusters (ACs) for dual-mode sensing remains a challenge. Herein, we designed and synthesized a novel Cu-based nanozyme system based on Cu SAs/ACs anchored on a N-doped chitosan-derived carbon support (CuSAs/ACs@NC) using a tandem ion imprinting-pyrolysis-etching strategy. Compared with Cu SAs or Cu nanoparticles on the chitosan-derived carbon support, the proposed CuSAs/ACs@NC nanozyme exhibits superior electrocatalytic activity and peroxidase-mimicking activity. Benefitting from the synergistic effect of Cu SAs and ACs which enhances electron transport, the CuSAs/ACs@NC nanozyme allows electrochemical-colorimetric dual-mode detection of paracetamol (PA) based on the amplification of the electrochemical signal of PA and the inhibition effect of PA on peroxidase activity, respectively. The linear range of the electrochemical mode is 2.00-473.00 μM with a detection limit of 0.48 μM, while that of the colorimetric mode is 0.25-100.00 μM with a detection limit of 0.10 μM. Moreover, this dual-mode sensor exhibits favorable reproducibility (relative standard deviation ≤ 4.00 %), stability (maintaining stable after 4 months of storage), and accuracy (recoveries of 91.5-114.9 %). Satisfyingly, the developed dual-mode method allows accurate PA detection in commercial drugs with relative deviation below 1.5 %. This work presents a new strategy for the preparation of SAs/ACs as multifunctional nanozymes for sensing, drug monitoring, and clinical diagnosis.
Collapse
Affiliation(s)
- Huiyang Liao
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, China
| | - Junhua Li
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, China.
| | - Fan Wang
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, China
| | - Yang Chen
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, China
| | - Wei Deng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, China
| | - Bin Li
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, China
| | - Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | | |
Collapse
|
4
|
Morshedi B, Esfandyari-Manesh M, Atyabi F, Ghahremani MH, Dinarvand R. Local delivery of ibrutinib by folate receptor-mediated targeting PLGA-PEG nanoparticles to glioblastoma multiform: in vitro and in vivo studies. J Drug Target 2025; 33:1026-1041. [PMID: 39960788 DOI: 10.1080/1061186x.2025.2468749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/19/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Glioblastoma multiforme (GBM) is a widespread and life-threatening kind of brain cancer, which has a high mortality rate. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, irreversibly adheres to a conserved cysteine residue of two enzymes BTK and BMX, inhibiting their kinase activities, which leads to suppression of the growth of glioma cells. This study synthesised PLGA-PEG-folate (PPF) polymer and subsequently encapsulated ibrutinib within PPF nanoparticles (IBT-PPF-NPs). H NMR spectra confirmed the synthesis of PPF polymer. The efficiency of IBT-PPF-NPs was 97 ± 2.26% with 8.8 ± 0.2% drug loading. The particle size was 208 ± 4.8 nm. The IC50 value of free ibrutinib, IB-PPF-NPs and ibrutinib encapsulated in PLGA NPs (IB-P-NPs) was 10.2, 7.6 and 10.13 µM in C6 cell lines, whereas in U-87 MG cells was 24.4, 16 and 25.2 µM, respectively. The cellular uptake of FITC-PPF-NPs increased from 47.6% to 90.3% in C6 cells and from 55% to 97.3% in U-87 MG cells compared to FITC-P-NPs. The in vivo results indicate a significant reduction in tumour size in treatment groups in comparison to control groups, while the group that received the intratumoural injection of IB-PPF-NPs exhibited a greater reduction. The folate-targeting agent enhances the nanoparticles' effectiveness by promoting their uptake through the endocytosis pathway.
Collapse
Affiliation(s)
- Bahar Morshedi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Esfandyari-Manesh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Alsaidan OA. Recent advancements in aptamers as promising nanotool for therapeutic and diagnostic applications. Anal Biochem 2025; 702:115844. [PMID: 40090606 DOI: 10.1016/j.ab.2025.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Aptamers are single-strand oligonucleotide molecules having certain structural interactions which allow them to bind to specific targets. Modified nucleotides are added during or after a selection procedure like Systematic Evolution of Ligands by Exponential Enrichment i.e., SELEX to enhance the characteristics and functionality of aptamers. Aptamers are extensible molecular tools with several uses such as in drug administration, biosensing, bioimaging, drug therapies and diagnostics. The ability to detect is improved by using aptamer-based sensors in conjunction with biological molecules among other sensing techniques. Chemical modification, and strong resistance to denaturation, aptamers are appropriate biological recognizing agents for developing sensitive and repeatable aptasensors. This review discusses the most current developments in the aptamers, SELEX method, applications of aptamers as innovative diagnostic, therapeutic & theragnostic tool along with major limitations & prospective directions in the future.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, 72341, Saudi Arabia.
| |
Collapse
|
6
|
Jana BK, Singha I, Puro N, Baishya R, Dutta RS, Singh M, Mazumder B. Pseudo-ternary phase diagram based PEGylated nano-dispersion of linezolid to promote wound regeneration: an in vitro and in vivo evaluation. J Drug Target 2025; 33:989-1003. [PMID: 39891403 DOI: 10.1080/1061186x.2025.2461093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Open wounds are prone to bacterial infiltration mostly resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), which affects healing of open wounds. Topical linezolid nano-dispersion using essential oils as nanoemulgel can increase solubility of drug and bypass side-effects like GI-irritation of oral administration. Pseudo-ternary phase diagram was built to optimise nanoemulsion. Surfactant/co-surfactant mixture (3:1), deionised water and Oilmix (4:1) with drug were vortexed and then ultrasonicated. 1% carbopol gel of optimised nanoemulsion was prepared and characterised, exposed to antimicrobial study, cytocompatibility study using HEK293 cell-line, and in vivo wound healing study using rat excision model. Histological study was performed to confirm growth of stratum corneum. Optimised formulation has particle size (244.6 ± 178.66 nm), polydispersity index (25%), entrapment efficiency (92.3 ± 3.38%) and in vitro drug release (87.58 ± 4.16%) best fitted in Korsmeyer-Peppas kinetics model. Nanoemulgel F6 (0.2%w/w) was found with viscosity of 5345 ± 6 cP constituting a very excellent antimicrobial effect against MRSA. HEK293 cells had shown good cytocompatibility with formulation. The wound contraction rate was 99.66 ± 0.57% at day 15 on daily application of nanoemulgel and stratum corneum was almost fully regenerated. The developed nanoemulgel has potential antimicrobial efficacy and can promote wound healing.
Collapse
Affiliation(s)
- Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Ishita Singha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Nusalu Puro
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
- Natural Products Chemistry Group-Pharmacology Unit, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, India
| | - Rinku Baishya
- Natural Products Chemistry Group-Pharmacology Unit, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, India
| | - Rajat Subhra Dutta
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Tezpur, India
| | - Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
7
|
Chagas MDSDS, Moragas Tellis CJ, Silva AR, Brito MADSM, Teodoro AJ, de Barros Elias M, Ferrarini SR, Behrens MD, Gonçalves-de-Albuquerque CF. Luteolin: A novel approach to fight bacterial infection. Microb Pathog 2025; 204:107519. [PMID: 40164399 DOI: 10.1016/j.micpath.2025.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Diseases caused by bacteria significantly impact public health, causing both acute and chronic issues, sequelae, and death. The problems get even more significant, considering the antimicrobial resistance. Bacterial resistance occurs when antibacterial drugs fail to kill the microbes, leading to the persistence of infection and pathogen spread in the host. Thus, the search for new molecules with antibacterial activity dramatically impacts human health. Natural products have proven to be a prosperous source of these agents. Among them, the flavonoids deserve to be highlighted. They are secondary metabolites, primarily involved in plant signaling and protection. Thus, they play an essential role in plant adaptation to the environment. Herein, we will focus on luteolin because it is commonly found in edible plants and has diverse pharmacological properties such as anti-inflammatory, anticancer, antioxidant, and antimicrobial. We will further explore the luteolin antibacterial activity, mechanisms of action, structure-activity relationship, and toxicity of luteolin. Thus, we have included reports of luteolin with antibacterial activity recently published, as well as focused on nanotechnology as a pivotal and helpful approach for the clinical use of luteolin. This review aims to foster future research on luteolin as a therapeutic agent for treating bacterial infection.
Collapse
Affiliation(s)
- Maria do Socorro Dos Santos Chagas
- Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Instituto de Biologia, UFF, Brazil; Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, UNIRIO, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Naturais para Saúde Pública, Farmanguinhos, FIOCRUZ, RJ, Brazil
| | | | - Adriana R Silva
- Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Biologia, UFF, Niterói, Brazil
| | - Maria Alice Dos Santos Mascarenhas Brito
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, UNIRIO, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Biologia, UFF, Niterói, Brazil
| | - Anderson Junger Teodoro
- Laboratório de Biologia Celular e Nutrição (LABCEN) Universidade Federal Fluminense, UFF, Niteroi, Brazil
| | - Monique de Barros Elias
- Laboratório de Biologia Celular e Nutrição (LABCEN) Universidade Federal Fluminense, UFF, Niteroi, Brazil
| | - Stela Regina Ferrarini
- Laboratório de Nanotecnologia Farmacêutica, Universidade Federal do mato Grosso Campus Sinop - UFMT, Cuiabá, Brazil
| | - Maria Dutra Behrens
- Laboratório de Produtos Naturais para Saúde Pública, Farmanguinhos, FIOCRUZ, RJ, Brazil.
| | - Cassiano F Gonçalves-de-Albuquerque
- Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Instituto de Biologia, UFF, Brazil; Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, UNIRIO, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Biologia Molecular e Celular (PPGBMC), UNIRIO, RJ, Brazil; Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Biologia, UFF, Niterói, Brazil.
| |
Collapse
|
8
|
AlAli A, Alkanad M, Alkanad K, Venkatappa A, Sirawase N, Warad I, Khanum SA. A comprehensive review on anti-inflammatory, antibacterial, anticancer and antifungal properties of several bivalent transition metal complexes. Bioorg Chem 2025; 160:108422. [PMID: 40187028 DOI: 10.1016/j.bioorg.2025.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Transition metal complexes have been recognized as possible therapeutic agents, attributed to their special biological actions, including anti-inflammatory, antibacterial, antifungal, and anticancer. The pharmacological perspective connected with Copper (Cu), Cobalt (Co), Nickel (Ni), Manganese (Mn), Palladium (Pd), Zinc (Zn), and Platinum (Pt) metal(II) complexes is comprehensively explored in-depth in this research. The complexes show unique coordination chemistry and modes of action that help interactions with biological targets, including DNA binding, enzyme inhibition, and the formation of reactive oxygen species. All the metal(II) complexes showed notable potential impact in their perspective activity. Conspicuously, Co(II) and Ni(II) complexes show better antibacterial and antifungal action, while Cu(II) and Zn(II) combinations show higher anti-inflammatory activity. While research is constantly investigating alternative metal-based anticancer drugs like Pd(II), which seem to have lowered side effects, Pt(II) complexes especially cisplatin continue to be the benchmark in cancer treatment. Although the possible pharmacological actions are motivating, problems with toxicity and biocompatibility still provide major difficulties, especially in relation to Cd(II) and Hg(II) complexes. Strategies like ligand modification, nanoparticle-based delivery, and prodrug methods are used to increase selectivity and reduce side effects related to metal complexes. This review compiles the most recent developments and continuous research, thereby shedding light on the potential revolutionary power of metal(II) complexes in medical therapy. Understanding their mechanisms and enhancing their safety profiles will help us open the path to creative ideas for addressing some of the most urgent medical issues of today.
Collapse
Affiliation(s)
- Anas AlAli
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Maged Alkanad
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Khaled Alkanad
- Department of Studies in Physics, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Annegowda Venkatappa
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Nischith Sirawase
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Ismail Warad
- Department of Chemistry, AN-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
9
|
Tao J, Chen L, Chen J, Luo L. Food-derived DPP4 inhibitors: Drug discovery based on high-throughput virtual screening and deep learning. Food Chem 2025; 477:143505. [PMID: 40015027 DOI: 10.1016/j.foodchem.2025.143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a critical target for the treatment of type 2 diabetes. This study outlines the development of six compounds derived from food sources and modified to create promising candidates for the treatment of diabetes. These compounds were identified through a combination of virtual screening, deep learning algorithms, ADMET characterization assessment, and molecular dynamics simulations. Furthermore, a taste prediction model was used to assess the flavor of these DPP-4 inhibiting compounds. After thorough evaluation, we concluded that the six food-derived DPP-4 inhibitors identified have significant potential for therapeutic success. This study has greatly contributed to the discovery of novel dietary supplements for the management of type 2 diabetes.
Collapse
Affiliation(s)
- Jiahua Tao
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Liang Chen
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jiaqi Chen
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
10
|
Gaudin K. Potential of green solvents as mobile phases in liquid chromatography. J Chromatogr A 2025; 1750:465810. [PMID: 40179669 DOI: 10.1016/j.chroma.2025.465810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
This review summarizes the key points and focuses on the use of green solvents in reversed-phase high-performance liquid chromatography. Ethanol, acetone, ethyl lactate, propylene carbonate, dimethyl carbonate, methyl acetate, Cyrene, and glycerol are examined as green solvents, with an emphasis on their properties related to HPLC applications. A total of 135 articles published between 1990 and the present, which utilize ethanol-water mobile phases in RP-HPLC, highlight the established use of ethanol as a green solvent for RP-HPLC. Although ethanol is often characterized by its high viscosity and UV absorbance, it remains one of the most commonly used green solvents. This study shows that approximately 30 % of the ethanol-based methods developed employed columns with reduced particle diameters, without the need for column heating. In 26 % of cases, UV detection was used, even at wavelengths egal to or below 220 nm. However, ethanol's volatility and flammability pose risks of operator exposure and fire hazards. Consequently, alternative solvents have been explored to mitigate these issues. Acetone, with over 20 years of use, presents similar safety concerns, compounded by its high UV absorbance. Recent advances in greener solvents, such as Cyrene, glycerol, and natural deep eutectic solvents, have been investigated to address VOC concerns in HPLC. However, these solvents still face challenges, including UV absorption, immiscibility with water, high viscosity, and limited availability in HPLC-grade quality. Therefore, additional research is needed to facilitate their broader application.
Collapse
Affiliation(s)
- Karen Gaudin
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
11
|
Liu L, Xu Y, Ma Y, Duan F, Wang C, Feng J, Yin H, Sun L, Li P, Li ZH. Fate of polystyrene micro- and nanoplastics in zebrafish liver cells: Influence of protein corona on transport, oxidative stress, and glycolipid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137596. [PMID: 39952126 DOI: 10.1016/j.jhazmat.2025.137596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Micro- and nanoplastics (MNPs) form protein corona (PC) upon contact with biological fluids, but their impact on the intracellular transport, distribution, and toxicity of MNPs remains unclear. Fetal bovine serum (FBS) and bovine serum albumin (BSA) were used to simulate in vivo environment, this study explored their influence on the transport and toxicity of polystyrene (PS) MNPs in zebrafish liver (ZFL) cells. Results showed PS MNPs were wrapped by proteins into stable complexes. Nanoparticles (NP, 50 nm) and their protein complexes (NP@PC) were internalized by cells within 6 h, with PC formation enhancing NP uptake. NP primarily entered cells through clathrin- and caveolae-mediated endocytosis, while NP@PC via clathrin-mediated pathways. Internalized particles were predominantly in lysosomes where PC degraded and some were also in mitochondria. Eventually, particles were expelled from cells through energy-dependent lysosomal pathways and energy-independent membrane penetration mechanisms. Notably, PC formation limited the clearance of NP. In toxicity, NP had a more severe impact than microplastics (MP, 5 μm). FBS more effectively mitigated PS MNPs-induced reactive oxygen species accumulation, subcellular structural damage, and dysregulation of glycolipid metabolism than BSA did. This study elucidates the modulatory role of PC on biological effects of MNPs, providing safety and risk management strategies.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Le Sun
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Ping Li
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Shandong, Weihai 264209, China.
| |
Collapse
|
12
|
Hegab DY, El-Sharkawy NI, Moustafa GG, Abd-Elhakim YM, Said EN, Metwally MMM, Saber TM. Pumpkin seeds oil rescues colchicine-induced neurotoxicity in rats via modifying oxidative stress, DNA damage, and immunoexpression of BDNF and GFAP. Tissue Cell 2025; 94:102792. [PMID: 39965508 DOI: 10.1016/j.tice.2025.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Colchicine (CHC), a poisonous plant alkaloid, has been widely utilized for decades in the treatment of gout, but has a rather low therapeutic index, which causes oxidative stress leading to cognitive impairment, brain damage, apoptosis, and hitopathological alterations in humans and experimental animals. The present investigation evaluated the potential palliative effect of the pumpkin seeds oil (PSO) at a dose of 4 ml/kg b.wt against CHC (0.6 mg/kg b.wt) -induced neurotoxic and neurobehavioral effects in rats. Forty male rats weighing 245-260 g were assigned to four groups. The results displayed that CHC exposure induced neurobehavioral disorders and a remarkable decline in the serotonin and dopamine levels and the immunoexpression of BDNF and GFAP in the brain. Besides, CHC treatment evoked brain oxidative stress, as manifested by depleted antioxidant enzyme activities and elevated malondialdehyde (MDA) and protein carbonyl (PC) levels. Also, CHC triggered brain DNA damage, as indicated by a marked increment in the brain 8-Hydroxyguanosine (8-OHdG) level. However, concurrent treatment with the PSO effectively attenuated the CHC-induced toxic effects as evidenced by a noticeable increase in the serotonin (33 ± 3.05) and dopamine (2.48 ± 0.40) concentrations, and the BDNF and GFAP immunoexpression in the brain. Moreover, PSO mitigated CHC-induced brain oxidative stress and DNA damage as shown by elevated antioxidant enzyme activities (164 ± 3.46 SOD and 7.55 ± 0.43 CAT) and reduced MDA (1.62 ± 0.23), PC (1.35 ± 0.23), and 8-OHdG (3.02 ± 0.33) levels. These results concluded that PSO could serve as a therapeutic strategy to ameliorate the neurotoxic and neurobehavioral impacts of CHC.
Collapse
Affiliation(s)
- Dina Y Hegab
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nabela I El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Enas N Said
- Department of Behavior and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Department of Development of Animal Wealth, Faculty of Veterinary Medicine. The Egyptian Chinese University ECU, Cairo, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras surd, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
13
|
Zhou J, Yang F, Zhang X, Wang C, Wu Z, Gao J. Jiangniaosuan formula inhibits hyperuricemia-induced apoptosis of renal tubular epithelial cells via ROS/HIF-1α/EZH2 pathway: A network pharmacology analysis and experimental validation. Bioorg Chem 2025; 159:108363. [PMID: 40088688 DOI: 10.1016/j.bioorg.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVE This study aimed to explore the main chemical components of Jiangniaosuan Formula (JNSF), the therapeutic effect of JNSF on hyperuricemia (HUA) mice, and the underlying mechanism by which JNSF inhibits renal tubular epithelial cell apoptosis. METHODS Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS) was used to analyze the chemical composition of JNSF and its serum metabolites. Network pharmacology was performed to predict the potential target genes and pathways. In vitro and in vivo models were established to verify the lower serum uric acid (SUA) and renal protective effects. RESULTS UPLC-Q-TOF-MS identified 61 chemical compounds in JNSF and 56 metabolites in serum after oral administration. Network pharmacology suggested that Hypoxia-Inducible Factor 1-Alpha (HIF-1α), Cysteine-dependent Aspartate-specific Protease-3 (Caspase-3) and B-cell Lymphoma 2 (Bcl-2) might be the therapeutic targets of JNSF for the HUA treatment and JNSF may exert the therapeutic effect on uric acid nephropathy (UAN) through regulating HIF-1α signaling pathway and apoptosis pathway. In vivo experiments showed that JNSF could reduce SUA, protect renal function and tubular function, alleviate renal interstitial edema and fibrosis, reduce the expression of Reactive Oxygen Species (ROS), HIF-1α and Enhancer of Zeste Homolog 2 (EZH2), and inhibit cell apoptosis in HUA mice. In vitro experiments demonstrated that JNSF reversed apoptosis induced by EZH2 overexpression plasmid. Furthermore, we found that UA could promote the binding of HIF-1α to EZH2 protein and its promoter, enhancing EZH2 transcription, suggesting that JNSF could alleviate the progression of HUA-induced kidney injury by inhibiting the activation of ROS/HIF-1α/EZH2 pathway. CONCLUSION JNSF may attenuate HUA-induced renal injury by inhibiting apoptosis through the downregulation of ROS/HIF-1α/EZH2 pathway.
Collapse
Affiliation(s)
- Jiabao Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Feng Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Xuming Zhang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Chuanxu Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Zhiyuan Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Jiandong Gao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China.
| |
Collapse
|
14
|
Ahmed S, Farag MM, Attia H, Balkhi B, Adel IM, Nemr AA. Exploring the potential of antifungal-loaded proniosomes to consolidate corneal permeation in fungal keratitis: A comprehensive investigation from laboratory characterization to microbiological evaluation. Int J Pharm X 2025; 9:100322. [PMID: 40094144 PMCID: PMC11909449 DOI: 10.1016/j.ijpx.2025.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
This work aimed to prepare Terconazole loaded proniosomes (TCZ-PNS) utilizing modified coacervation technique for the management of fungal keratitis. Terconazole (TCZ) is a potent antifungal with poor aqueous solubility posing intricacies in its incorporation in ocular formulations. A 23 factorial design was adopted to probe independent formulation variables including A: Lecithin: cholesterol ratio, B: Surfactant: cholesterol ratio and C: Span® 80 contribution (% of total SAA). The formulae, generated by the design, were prepared and scrutinized regarding entrapment efficiency (%EE), particle size (PS), polydispersity index (PDI) and zeta potential (ZP). Numerical desirability algorithms selected an optimum TCZ-PNS which boasted plausible %EE (89.51 % ± 0.94 %), nanoscale vesicles consistent with TEM measurements (247.9 ± 0.42 nm), a sufficiently high ZP (-43.42 ± 0.85 mV), and an in-vitro biphasic release profile that remained stable even after Gamma irradiation and short-term storage. The transcorneal ex-vivo permeation of TCZ-PNS was higher than that of TCZ suspension (≈ 2-fold). The formulation was further evaluated for pH, corneal hydration threshold, and histopathological safety, confirming its suitability for ocular application. Confocal laser microscopy revealed substantial corneal uptake (approximately twice as deep as of TCZ suspension). Additionally, microbiological assessments of the optimal TCZ-PNS compared to TCZ suspension demonstrated an inhibition zone nearly 50 % larger, a significantly lower MIC and MFC (64-fold reduction), and enhanced biofilm inhibition activity across most tested concentrations. These findings suggest that TCZ-PNS could be a propitious treatment choice to deeply deliver antifungal therapy for the eradication of deeply rooted and inaccessible fungal keratitis.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael M Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bander Balkhi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Islam M Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
15
|
Ahmed S, Farag MM, Attia H, Balkhi B, Adel IM, Nemr AA. Terconazole loaded edge-activated hybrid elastosome for revamped corneal permeation in ocular mycosis: In-vitro characterization, statistical optimization, microbiological assessment, and in-vivo evaluation. Int J Pharm X 2025; 9:100333. [PMID: 40292341 PMCID: PMC12023791 DOI: 10.1016/j.ijpx.2025.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Herein, we investigated the preparation and characterization of Terconazole loaded edge-activated hybrid elastosome (TCN-EHE) adopting thin film hydration technique for the treatment of ocular mycosis. Terconazole (TCN) is a broad spectrum antimycotic agent suffering from sparse aqueous solubility impeding its use in ophthalmic preparations. The scrutinized formulation variables namely X1: Surfactant: Edge activator ratio (SAA: EA), X2: Pluronic® L121 contribution (% of total SAA) and X3: EA concentration (%w/v) were optimized adopting D-optimal design. Ten runs were prepared and characterized regarding their entrapment efficiency, particle size, polydispersity index and zeta potential. An optimized formula was generated, with high desirability, exhibited satisfactory entrapment efficiency, nanoscaled particle size aligning with TEM, plausible zeta potential and bi-phasic release pattern which were not altered after short-term storage. The optimized TCN-EHE displayed 1.94-fold enhanced ex-vivo corneal permeation flux. Safety was ratified through measured corneal hydration level, pH and histopathological evaluation. In-vivo corneal uptake visualized by confocal laser microscopy demonstrated 2.7-fold deeper penetration. Moreover, Superior antifungal activity has been demonstrated displaying 37 % bigger zone of inhibition, 8-fold lower minimum inhibitory and minimum fungal concentration alongside significantly higher biofilm inhibition activity at all tested concentrations for the optimized TCN-EHE compared to TCN suspension. Conclusively, we could prospect that TCN-EHE might be a revamped therapeutic alternative for the delivery of poorly soluble antimycotic agents for the combat of ocular mycosis.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael M. Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bander Balkhi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
16
|
Gong J, Liu M, Zuo R, Song X, Wang J, Zuo Q, Jiang Y, Long Y, Silang Y, Luo Z, Gao X, Guo D. Enrofloxacin‑silver composite nano-emulsion as a scalable synergetic antibacterial platform for accelerating infected wound healing. Int J Pharm X 2025; 9:100330. [PMID: 40230870 PMCID: PMC11995122 DOI: 10.1016/j.ijpx.2025.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
The colonization of bacterial pathogens is a major concern in wound infection and becoming a notable medical issue. Enrofloxacin (ENR) can be applied to treat skin infections, while poor water solubility and bioavailability limit its clinical application. Nanostructured lipid carriers (NLCs) enhance the solubility and bioavailability of drugs by encapsulating them, making them effective for the topical treatment of skin wound infections. Additionally, to enhance treatment efficacy and further improve wound healing, silver nanoparticles (AgNPs) were attached to the aforementioned matrix, which also improved its colloidal stability and reduced toxicity. Herein, a scalable poly (vinyl alcohol) modified NLCs-based antibacterial platform was fabricated by high-pressure homogenization method, to co-load ENR and AgNPs for treating the bacterial-infected wounds. The growth of common wound bacterial pathogens (Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa) was synergistically inhibited by released ENR and Ag+ from the poly (vinyl alcohol) modified enrofloxacin‑silver composite nano-emulsion (ENR@PVA-NLCs/AgNPs). In the in vivo wound model, the Staphylococcus aureus-infected wound in rat almost completely disappeared after treatment with ENR@PVA-NLCs/AgNPs, and no suppuration symptom was observed. Importantly, this nanoplatform had negligible side effects in vivo. Taken together, the above results strongly demonstrate the promising potential of ENR@PVA-NLCs/AgNPs as a synergistic therapeutic agent for clinical wound infections.
Collapse
Affiliation(s)
- Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Moxin Liu
- Shanghai Customs District, 13 Zhongshan East Road, Shanghai 200002, China
| | - Runan Zuo
- Animal-Derived Food Safety Innovation Team, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinhao Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211100, China
| | - Junqi Wang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Qindan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yunfeng Long
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yuzhen Silang
- Institute of Grassland Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa 850000, China
| | - Zeng Luo
- Institute of Grassland Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa 850000, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
17
|
Nene S, Devabattula G, Vambhurkar G, Tryphena KP, Khatri DK, Godugu C, Singh PK, Srivastava S. Topical delivery of baricitinib-impregnated nanoemulgel: a promising platform for inhibition of JAK -STAT pathway for the effective management of atopic dermatitis. Drug Deliv Transl Res 2025; 15:2200-2219. [PMID: 39467941 DOI: 10.1007/s13346-024-01732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Baricitinib, an inhibitor of Janus kinase 1/2 receptors majorly involved in the dysregulation of immune responses in atopic dermatitis, is currently approved for managing atopic dermatitis in Europe. The delivery of baricitinib through oral route is associated to several adverse effects due to off-target effects. Therefore, the current study is aimed at formulation of baricitinib loaded nanoemulgel for evaluation of topical delivery potential in the treatment of atopic dermatitis. The baricitinib-loaded nanoemulsions (0.05 and 0.1% w/w) revealed an average globule size of 162.86 ± 0.37 and 173.66 ± 4.88 nm respectively with narrow PDI. The optimized batch of baricitinib nanoemulsion was converted to nanoemulgel by the addition of the mixture of gel bases SEPINEO™ DERM and SEPINEO™ P 600 along with propylene glycol, resulting in pseudoplastic shear thinning behaviour. The optimized nanoemulgels have shown prominent retention of baricitinib in the skin along with permeation. The skin distribution study of coumarin-6 loaded nanoemulgel demonstrated high fluorescence in the epidermal layer. The western blot analysis revealed significant inhibition of phosphorylated signal transducers and activators of transcriptions 1 (##p < 0.01) and 3 (#p < 0.05) by application of 0.05 and 0.1% baricitinib nanoemulgel. The baricitinib nanoemulgels have shown anti-inflammatory activity by significantly reducing expressions of various inflammatory markers. Histopathological analysis of skin tissues treated with baricitinib nanoemulgel has demonstrated a marked reduction in acanthosis, hyperkeratosis, and intact outer epidermis. These results supported the potential role of baricitinib-loaded nanoemulgel in reducing the inflammation and disease severity associated with atopic dermatitis.
Collapse
Affiliation(s)
- Shweta Nene
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Geetanjali Devabattula
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kamatham Pushpa Tryphena
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj Kumar Singh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
18
|
Voitechovič E, Gaidukevič J, Pauliukaite R. A critical review of electrochemical (bio)sensors for liposoluble antioxidants. Talanta 2025; 288:127728. [PMID: 39961245 DOI: 10.1016/j.talanta.2025.127728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Lipophilic antioxidants (LAOs) are essential for physical and mental health of all mammals. Their importance in the treatment and prevention of diseases is undeniable. Alongside water-soluble antioxidants, LAOs play a crucial role in maintaining the quality and stability of various food, cosmetic, and pharmaceutical products. Electrochemical detection methods have emerged as powerful analytical tools for identifying and quantifying a broad range of analytes. However, LAOs are often overlooked targets for electrochemical analysis. This critical review aims to explore the current advancements, limitations, and future perspectives of electrochemical detection methods for LAOs. The observed electrochemical methods in LAOs investigations are: cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, electrochemical impedance spectroscopy, and square wave anodic stripping voltammetry. Additionally, electrochemical evaluation of total antioxidant capacity and activity are included for the discussions. The review provides an overview of the electrochemical (bio)sensors from 2018 to 2024 for LAOs determination of following groups: synthetic (phenolic, amine and organophosphate antioxidants), and natural (tocopherols, carotenoids, polyunsaturated fatty acids) antioxidants, including vitamins D and K, coenzyme Q, which are not directly associated to the antioxidant group, but also possess antioxidant activity. The general preferences of medium selection and practical aspects of the sample preparation strategy are included.
Collapse
Affiliation(s)
- Edita Voitechovič
- Department od Nanoengineering, Center for Physical Sciences and Technology (FTMC), Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania.
| | - Justina Gaidukevič
- Department od Nanoengineering, Center for Physical Sciences and Technology (FTMC), Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Naugarduko str. 24, LT - 03225, Vilnius, Lithuania
| | - Rasa Pauliukaite
- Department od Nanoengineering, Center for Physical Sciences and Technology (FTMC), Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania
| |
Collapse
|
19
|
Vukov A, Borović TT, Vraneš M. Influence of artificial sweeteners sodium saccharin and acesulfame potassium on the hydration properties, taste behavior and solubility of caffeine. Food Chem 2025; 474:143196. [PMID: 39929042 DOI: 10.1016/j.foodchem.2025.143196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/18/2025] [Accepted: 02/02/2025] [Indexed: 02/12/2025]
Abstract
Caffeine is the most widely used psychoactive compound, due to its bitterness it is often paired with sweeteners, a role that is increasingly being filled by artificial sweeteners to to their higher sweetness and low caloric value. This study investigates how sodium saccharin and acesulfame potassium influence the hydration, taste, and solubility of caffeine through solubility, volumetric, acoustic, and viscosimetric analyses. Based on the gathered data we calculated: solubility of caffeine and accompanying thermodynamic parameters, molar volumes, Masson's slope (Sv), expansibility (Eфo), Hepler's coefficient, hydration numbers, compressibilities and Jones-Dole coefficient B, among others. The results indicate that both sweeteners slightly reduce caffeine's bitterness, significantly enhance its water solubility, and increase water orderliness, though their effects on hydration differ. The increase of solubility is most pronounced with sodium saccharin, over twofold, while with acesulfame potassium caffeine is over 1.5 times more soluble.
Collapse
Affiliation(s)
- Andrija Vukov
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Teona Teodora Borović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Milan Vraneš
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; Faculty of Sports and Physical Education, University of Novi Sad, Lovćenska 16, 21000 Novi Sad, Serbia.
| |
Collapse
|
20
|
G P, Verma RK, Shukla R. Leveraging Nanoscience and Strategic Delivery for the Expedition of Osteoporosis. AAPS PharmSciTech 2025; 26:129. [PMID: 40341672 DOI: 10.1208/s12249-025-03120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025] Open
Abstract
Osteoporosis is a globally affecting bone disease characterized by reduced bone mineral density, in which women are more insidious to the disease. It accounts for 8.9 million fractures annually, and about 50% of repeated hip fractures cause permanent disabilities. With the knowledge of determinants and pathology, various FDA-approved drugs and therapies are available for the management of the disease, but the challenges associated with those therapies lead to the adoption of nanotechnology in osteoporosis management. The nanosystems developed for the management of osteoporosis are nanogenerators, nanobubbles, microneedles, nanogels, implantable delivery systems, nanoparticles, nanofibrous scaffolds, and nanocements that probably address the current challenges related to the diagnosis and cure. In view of targeted accumulation of the cargo, various moieties assisted the nanocarrier system for selective distribution to bone, and the development of different types of nanotechnology-based delivery systems has been briefed in this review.
Collapse
Affiliation(s)
- Pramoda G
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Rahul K Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab, 160062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
21
|
Weinreb RN, Lee AY, Baxter SL, Lee RWJ, Leng T, McConnell MV, El-Nimri NW, Rhew DC. Application of Artificial Intelligence to Deliver Healthcare From the Eye. JAMA Ophthalmol 2025:2833592. [PMID: 40338607 DOI: 10.1001/jamaophthalmol.2025.0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Importance Oculomics is the science of analyzing ocular data to identify, diagnose, and manage systemic disease. This article focuses on prescreening, its use with retinal images analyzed by artificial intelligence (AI), to identify ocular or systemic disease or potential disease in asymptomatic individuals. The implementation of prescreening in a coordinated care system, defined as Healthcare From the Eye prescreening, has the potential to improve access, affordability, equity, quality, and safety of health care on a global level. Stakeholders include physicians, payers, policymakers, regulators and representatives from industry, government, and data privacy sectors. Observations The combination of AI analysis of ocular data with automated technologies that capture images during routine eye examinations enables prescreening of large populations for chronic disease. Retinal images can be acquired during either a routine eye examination or in settings outside of eye care with readily accessible, safe, quick, and noninvasive retinal imaging devices. The outcome of such an examination can then be digitally communicated across relevant stakeholders in a coordinated fashion to direct a patient to screening and monitoring services. Such an approach offers the opportunity to transform health care delivery and improve early disease detection, improve access to care, enhance equity especially in rural and underserved communities, and reduce costs. Conclusions and Relevance With effective implementation and collaboration among key stakeholders, this approach has the potential to contribute to an equitable and effective health care system.
Collapse
Affiliation(s)
- Robert N Weinreb
- Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
- Shiley Eye Institute, University of California, San Diego, La Jolla
| | - Aaron Y Lee
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle
| | - Sally L Baxter
- Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
- Shiley Eye Institute, University of California, San Diego, La Jolla
- Division of Biomedical Informatics, Department of Medicine, University of California, San Diego, La Jolla
| | - Richard W J Lee
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Theodore Leng
- Department of Ophthalmology, Byers Eye Institute at Stanford, Stanford University School of Medicine, Palo Alto, California
| | - Michael V McConnell
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | | | - David C Rhew
- Health & Life Sciences, Microsoft, Seattle, Washington
- Division of Primary Care & Population Health, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
22
|
Das M, Swain R, Nandi S, Habibullah S, Mallick S. Polymorphic transformation of febuxostat after crystallization in presence of bentonite dispersion: characterization by the heat of fusion and heat of transition rule, and dissolution. Drug Dev Ind Pharm 2025:1-15. [PMID: 40305426 DOI: 10.1080/03639045.2025.2499880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 03/04/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVE Febuxostat (FBX) has been crystallized using bentonite dispersion as an antisolvent, and characterized by heat of fusion and heat of transition rule for possible polymorphic transformation and improved dissolution. SIGNIFICANCE Polymorphic transformation may exhibit significant alteration of melting temperature, solubility, dissolution rate, and stability. FBX is known for polymorphic/hydrate/solvate transformation in many forms wherein stable form has hardly been reported. METHODS Aqueous bentonite dispersion was used as antisolvent for crystallization of FBX and characterized by heat of fusion and heat of transition rule, and the effect of bentonite concentration on in vitro drug dissolution has also been confirmed. RESULTS Monotropic and enantiotropic relationships between the pair of polymorphs have been established with the help of transition enthalpy and transition entropy rule. Energy-entropy interplay showed that the transition occurred above the melting temperature indicating the monotropic relation between the FBX crystal pairs (from A to Q). Fourier Transform Infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies also confirmed the transformation of A (pure FBX) to Q form and its stability (40 °C, 75%RH, 3 months). The crystallite size was estimated from the graphical plot of major important XRD peaks using the least square method of altered Scherrer equation which is supposed to minimize the error associated with the original Scherrer equation. Williamson-Hall equation was used properly for determining strain from the positive slope avoiding misperception of negative slope. CONCLUSIONS Prepared form Q was found stable and displayed in-vitro drug dissolution in an improved and controlled manner.
Collapse
Affiliation(s)
- Mouli Das
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rakesh Swain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Souvik Nandi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
23
|
Uti DE, Alum EU, Atangwho IJ, Ugwu OPC, Egbung GE, Aja PM. Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: advances in targeted delivery and precision therapeutics. J Nanobiotechnology 2025; 23:336. [PMID: 40336110 PMCID: PMC12057057 DOI: 10.1186/s12951-025-03412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Obesity is a major global health challenge, contributing to metabolic disorders such as type 2 diabetes, cardiovascular diseases, and hypertension. The increasing prevalence of obesity, driven by sedentary lifestyles, poor dietary habits, and genetic predisposition, underscores the urgent need for effective therapeutic strategies. Conventional pharmacological treatments, including appetite suppressants and metabolic modulators, often fail to provide sustainable weight loss due to side effects, poor adherence, and limited long-term efficacy. As a result, natural bioactive compounds have gained attention for their anti-obesity potential. However, their clinical application is hindered by poor bioavailability, rapid metabolism, and inefficient delivery. Lipid-based nano-carriers, including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, offer a promising solution by enhancing the solubility, stability, and targeted delivery of these compounds. These advanced delivery systems improve bioactive retention, enable controlled release, and enhance therapeutic action on adipose tissue and metabolic pathways. Additionally, functionalized and stimulus-responsive nanocarriers present innovative approaches for precision obesity treatment. Despite these advancements, challenges remain in large-scale production, regulatory approval, and long-term safety. Overcoming these barriers is critical to ensuring the successful clinical translation of nano-formulated therapies. This review explores the potential of lipid-based nano-carriers in optimizing the therapeutic efficacy of natural anti-obesity compounds and highlights their role in advancing next-generation obesity management strategies.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue, Nigeria.
| | - Esther Ugo Alum
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Okechukwu Paul-Chima Ugwu
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Patrick M Aja
- Department of Medical Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
24
|
Romanholo PVV, Andrade LM, Giglioti M, Luccas GZA, Machado SAS, Sgobbi LF. Parallel assembly of dual-electrochemical cell: a novel approach for simultaneous multiplexed sensing analysis. Mikrochim Acta 2025; 192:340. [PMID: 40328952 DOI: 10.1007/s00604-025-07194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
In the field of biosensing and chemical sensing, there is a growing demand for multiplexed detection and quantification of multiple targets within complex matrices. In electrochemical sensing, simultaneous multiplexed analysis is typically performed with multiple electrodes connected to a multichannel potentiostat. An alternative strategy involves using a single electrode capable of discriminating and detecting several analytes in a single measurement, which is, however, unfortunately limited to a selective group of molecules. Herein, we report a novel electrochemical method based on the parallel assembly of a dual-electrochemical cell (PADEC), which enables the simultaneous detection and quantification of solvent-incompatible analytes, prepared separately in two distinct electrochemical cells, using a single-channel potentiostat-thus achieving multichannel-like performance. This approach relies on connecting two electrochemical cells in parallel, allowing the concurrent measurement of distinct electrochemical responses from analytes that otherwise could not be simultaneously determined due to solvent incompatibility. As a proof of concept, the water-soluble vitamin C, and the lipid-soluble vitamin D3 were simultaneously determined, each in its respective optimized medium. The PADEC approach demonstrated performance comparable to individual detection methods, achieving limits of detection of 27 μM for vitamin C and 32 μM for vitamin D3 over a linear range of 20-400 μM. This strategy establishes a new approach for simultaneous, multiplexed electrochemical determination of analytes in different media. Moreover, this innovation may extend applications in electrochemistry beyond (bio)sensing to include areas such as electrocatalysis, energy and corrosion, potentially reducing dependence on multichannel potentiostats.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Larissa M Andrade
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Marcelo Giglioti
- Metrohm Brasil Instrumentação Analítica Ltda, São Paulo, 05007-030, SP, Brazil
| | | | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, 13566-590, SP, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil.
| |
Collapse
|
25
|
Liaqat R, Rasool F, Noreen S, Rai N, Naseem A, Shoaib MH, Mahmood H, Ashraf MA. Fabrication, characterization, and docking studies of furosemide-loaded nanosponges using the emulsion solvent diffusion method. Nanomedicine (Lond) 2025:1-13. [PMID: 40329918 DOI: 10.1080/17435889.2025.2501518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
AIMS This study aimed to fabricate, characterize, and perform molecular docking of furosemide-loaded nanosponges (NSs) using the emulsion solvent diffusion method. MATERIAL AND METHODS Sustained-release NS formulations of furosemide were developed using ethylcellulose, polyvinyl alcohol (PVA), and dichloromethane (DCM) via the emulsion solvent diffusion technique. The formulations were evaluated for production yield, actual drug content, entrapment efficiency, drug-polymer compatibility, surface morphology, docking study, and in vitro drug release. RESULTS SEM images displayed the nanosized, spherical, porous, and spongy texture of furosemide NS. Fourier-transform infrared spectroscopy (FTIR) spectra showed no drug-polymer incompatibility. Powder X-ray diffraction (PXRD) analysis indicated an amorphous state of furosemide, while differential scanning calorimetry (DSC) suggested drug-polymer complexation. In vitro studies demonstrated sustained drug release for up to 10 h. Molecular docking supported stable interactions between furosemide and polymers. Molecular dynamics (MD) simulations further revealed adequate hydrogen bonding and diffusion behavior, confirming polymer composition-dependent release and structural stability. CONCLUSION These findings indicate that furosemide-loaded NSs are a promising sustained-release delivery system capable of reducing dosing frequency and enhancing patient compliance.
Collapse
Affiliation(s)
- Rabia Liaqat
- Department of Pharmaceutics, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Fatima Rasool
- Department of Pharmaceutics, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
- Centre for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Nadia Rai
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Ayesha Naseem
- Department of Pharmaceutics, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | | - Hassan Mahmood
- Humanities Department, COMSATS University Islamabad, Lahore Campus, Punjab, Pakistan
| | - Muhammad Azeem Ashraf
- Department of Supply Chain, University of Management and Technology Lahore, Lahore, Pakistan
| |
Collapse
|
26
|
Abbasi U, Khan MZ, Fatima M, Gupta G, Molugulu N, Sahebkar A, Abourehab MAS, Kesharwani P. Exploring the potential of nanoemulgels for dermatological disorders. J Drug Target 2025:1-23. [PMID: 40275860 DOI: 10.1080/1061186x.2025.2497368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/30/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND AND PURPOSE Nanoemulgels are an advanced innovation in dermatological formulations designed to treat various skin diseases. By combining the advantages of hydrogels and nanoemulsions, these hybrid systems optimise drug delivery and improve therapeutic results. Because of their nanoscale droplets, nanoemulsions improve solubility by increasing surface area and stability and bioavailability of medications. METHODS AND RESULTS When embedded in a hydrogel matrix, their transformation into nanoemulgels, provide regulated and prolonged drug release, ensuring sustained therapeutic action. The ability of nanoemulgels to penetrate deeply into the layers of skin and get past obstacles like the stratum corneum to improve drug penetration and efficacy makes them highly effective in dermatology. Since the gel component helps to reduce the surface and interfacial tension and a rise in spreading coefficient along with the viscosity. The benefits of using NEGs for external use include their thixotropic, greaseless, readily dispersed properties, longer shelf life, emollient, effortlessly removed, non-staining clear, cosmetically attractive and environment friendly characteristics. CONCLUSIONS By providing an overview of research on nanoemulgels' permeability mechanisms, pharmacokinetics, uses, properties and the difficulties involved in topical drug delivery for skin disorders, this review emphasises the potential of these materials as topical drug delivery systems in dermatology.
Collapse
Affiliation(s)
- Umar Abbasi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Mohd Zaid Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun, India
- School of Allied Medical Sciences, Lovely Professional University, Phagwara, India
| | | | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| |
Collapse
|
27
|
Sobhy M, Elsamahy T, Abdelkarim EA, Khojah E, Cui H, Lin L. Cardamom essential oil-loaded zinc oxide nanoparticles: A sustainable antimicrobial strategy against multidrug-resistant foodborne pathogens. Microb Pathog 2025; 205:107661. [PMID: 40319797 DOI: 10.1016/j.micpath.2025.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/25/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
The globalization of the food trade has escalated challenges in ensuring food safety due to foodborne pathogens, including multidrug-resistant (MDR) strains, which pose significant public health risks and economic burdens. Innovative antimicrobial strategies are urgently required. In this study, cardamom essential oil-loaded zinc oxide nanoparticles (CEO-ZnO-NPs) were synthesized and evaluated for their antimicrobial potential and mechanisms of action against MDR Escherichia coli and Staphylococcus aureus. Dynamic light scattering and the transmission electron microscopy (TEM) micrograph confirmed a spherical nanocomposite with an average size of 141.4 nm with good dispersion and stability over 180 days. Antimicrobial activity assessed via the agar well diffusion method showed dose-dependent inhibition, with zones of 25.75 ± 0.90 mm for E. coli and 31.05 ± 0.46 mm for S. aureus at 400 μg/mL. Minimum inhibitory concentrations (MIC) were 25 μg/mL (E. coli) and 12.5 μg/mL (S. aureus), while minimum bactericidal concentrations (MBC) were 50 μg/mL and 25 μg/mL, respectively. Kill-time analysis revealed a marked reduction in bacterial viability after 120 min of exposure. Mechanistic studies using scanning electron microscopy showed structural damage, including disrupted membranes and cell shrinkage. Also, protein levels significantly decreased, with DNA and ATP levels reduced by 74.51 % and 91.15 % in E. coli and 79.40 % and 90.81 % in S. aureus. Enzymatic activities, including ATPase and alkaline phosphatase, were inhibited by up to 84.63 %. In addition, the low cytotoxicity of CEO-ZnO-NPs against Vero cells supporting their potential biosafety for food safety applications. These findings demonstrate that CEO-ZnO-NPs disrupt bacterial processes such as protein synthesis, membrane integrity, and enzymatic activity, offering a promising approach that aligns with the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2, 3, and 12, while promoting circular economy principles by reducing reliance on synthetic preservatives to address antimicrobial resistance in foodborne pathogens.
Collapse
Affiliation(s)
- Mabrouk Sobhy
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | | | - Esraa A Abdelkarim
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
28
|
Bairagi RD, Reon RR, Hasan MM, Sarker S, Debnath D, Rahman MT, Rahman S, Islam MA, Siddique MAT, Bokshi B, Rahman MM, Acharzo AK. Ocular drug delivery systems based on nanotechnology: a comprehensive review for the treatment of eye diseases. DISCOVER NANO 2025; 20:75. [PMID: 40317427 PMCID: PMC12049359 DOI: 10.1186/s11671-025-04234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/07/2025] [Indexed: 05/07/2025]
Abstract
Ocular drug delivery is a significant challenge due to the intricate anatomy of the eye and the various physiological barriers. Conventional therapeutic approaches, while effective to some extent, often fall short in effectively targeting ocular diseases, resulting in suboptimal therapeutic outcomes due to factors such as poor ocular bioavailability, frequent dosing requirements, systemic side effects, and limited penetration through ocular barriers. This review elucidates the eye's intricate anatomy and physiology, prevalent ocular diseases, traditional therapeutic modalities, and the inherent pharmacokinetic and pharmacodynamic limitations associated with these modalities. Subsequently, it delves into nanotechnology-based solutions, presenting breakthroughs in nanoformulations such as nanocrystals, liposomes, dendrimers, and nanoemulsions that have demonstrated enhanced drug stability, controlled release, and deeper ocular penetration. Additionally, it explores a range of nanosized carriers, including nano-structured lipid carriers, hydrogels, nanogels, nanoenzymes, microparticles, conjugates, exosomes, nanosuspensions, viral vectors, and polymeric nanoparticles, and their applications. Unique insights include emerging innovations such as nanowafers and transcorneal iontophoresis, which indicate paradigm shifts in non-invasive ocular drug delivery. Furthermore, it sheds light on the advantages and limitations of these nanotechnology-based platforms in addressing the challenges of ocular drug delivery. Though nano-based drug delivery systems are drawing increasing attention due to their potential to enhance bioavailability and therapeutic efficacy, the review ends up emphasizing the imperative need for further research to drive innovation and improve patient outcomes in ophthalmology.
Collapse
Affiliation(s)
- Rahul Dev Bairagi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Raiyan Rahman Reon
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mahbub Hasan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| | - Sumit Sarker
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, 140001, India
| | - Dipa Debnath
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, 221005, India
| | - Md Tawhidur Rahman
- Department of Pharmacy, Northern University of Bangladesh, Dhaka, 1230, Bangladesh
| | - Sinthia Rahman
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| | - Md Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, East West University, Dhaka, 1212, Bangladesh
| | - Md Abu Talha Siddique
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Bishwajit Bokshi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mustafizur Rahman
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | | |
Collapse
|
29
|
Li M, Gu X, Yang J, Zhang C, Zhou Y, Huang P, Wang X, Zhang L, Jiang L, Zhai L, Yu M, Cheng G, Yang L. Luteolin: A potential therapeutic agent for respiratory diseases. Eur J Pharmacol 2025:177699. [PMID: 40324574 DOI: 10.1016/j.ejphar.2025.177699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/10/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Acute lung injury, COVID-19, lung cancer, and asthma are a few of the respiratory conditions that are the main causes of morbidity and mortality worldwide. The increasing incidence and mortality rates have attracted significant attention to the prevention and treatment of these conditions. In recent years, there has been a renewed interest in utilizing naturally derived compounds as therapeutic agents for respiratory diseases. Luteolin (Lut), a flavonoid compound, possesses an extensive range of pharmacological characteristics, encompassing anti-inflammatory, antioxidative, antineoplastic, and antimicrobial activities. However, a comprehensive summary of Lut's therapeutic effects and mechanisms in respiratory diseases remains lacking. This review examines the physicochemical properties, toxicity, and avenues of Lut's action in respiratory ailments. Lut exerts therapeutic effects through pathways such as nuclear factor kappa-B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), and pyroptosis, modulating key processes such as the suppression of inflammatory mediators, attenuation of oxidative assault, and induction of apoptosis in lung cancer cells. This review strives to provide critical realizations into respiratory disease therapeutics and contribute to the foundation for drug development.
Collapse
Affiliation(s)
- Meng Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinru Gu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Yang
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ce Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Zhou
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Peifeng Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lulu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Lidong Zhai
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mingyu Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China; Southwest United Graduate School, Kunming 650504, China.
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
30
|
Nagaraj K. Surfactant-based drug delivery systems for cancer therapy: Advances, challenges, and future perspectives. Int J Pharm 2025:125655. [PMID: 40320019 DOI: 10.1016/j.ijpharm.2025.125655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/15/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Cancer is one of the most formidable global health challenges, needing ongoing progress in therapeutic approaches. Conventional cancer treatments, such as chemotherapy, frequently suffer from low solubility, systemic toxicity, and a lack of tailored drug delivery, resulting in unwanted side effects and limited efficacy. Surfactant-based drug delivery systems have emerged as a viable method for increasing drug solubility, stability, and tailored transport to tumor locations. Surfactants, due to their amphiphilic character, play an important role in the development of various drug delivery systems, such as micelles, liposomes, nanoemulsions, and lipid-based nanoparticles, which improve drug bioavailability and therapeutic index. This article looks at the fundamental role of surfactants in drug administration, including their classification (ionic, nonionic, amphoteric, and zwitterionic) and self-assembly behavior in the formation of micellar, vesicular, and emulsified nanocarriers. Various surfactant-based drug delivery platforms in oncology are explored, including polymeric and surfactant-stabilized micelles, liposomes (e.g., Doxil), nanoemulsions, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs). Furthermore, the use of surfactant-metal complexes in cancer therapy is emphasized because of their potential to improve therapeutic activity and selectivity. The review also looks at surfactant-enhanced drug targeting strategies, such as passive targeting using the enhanced permeability and retention (EPR) effect, active targeting with ligand-functionalized surfactant-based carriers, and stimuli-responsive systems designed for controlled drug release in the tumor microenvironment. Surfactant-based drug delivery advancements are explored, with an emphasis on current advances such as biodegradable and bio-inspired surfactants, combination therapies using surfactant-stabilized carriers, and AI-driven drug formulation techniques. Despite its potential, surfactant-based drug delivery systems confront several hurdles, including biocompatibility concerns, synthetic surfactant toxicity, stability issues, and scaling restrictions in pharmaceutical manufacture. Furthermore, regulatory barriers in clinical translation remain severe. Addressing these problems with innovative surfactant formulations, green chemical techniques, and sophisticated nanotechnological alterations will be critical to optimizing these systems for clinical use. This review provides a comprehensive analysis of the progress, challenges, and future perspectives of surfactant-based drug delivery systems in cancer therapy, highlighting their potential to revolutionize oncology treatments by improving drug efficacy, reducing systemic toxicity, and enabling precision medicine.
Collapse
Affiliation(s)
- Karuppiah Nagaraj
- Center for Global Health Research (CGHR), Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Kanchipuram - Chennai Rd, Chennai 602105 Tamil Nadu, India.
| |
Collapse
|
31
|
Chen X, Zhang W, Pan Y, Ran J, Liu X, Yu X, He Q. Preparation, identification, and molecular mechanism of novel DPP-IV inhibitory peptides from pumpkin seed: In silico screening and experimental validation. Food Chem 2025; 486:144530. [PMID: 40339413 DOI: 10.1016/j.foodchem.2025.144530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/10/2025]
Abstract
The rising prevalence of Type 2 diabetes mellitus (T2DM) and the limitations of synthetic DPP-IV inhibitors emphasize the need for natural alternatives with fewer side effects. This study explored pumpkin seed protein (PSP) as a source of potential DPP-IV inhibitory peptides. Through in silico screening and experimental validation, seven novel peptides were identified, with LPGFF, LPGF, and MPLPA exhibiting potent inhibitory activities (IC50: 449.68-478.88 μM). Molecular docking and dynamics simulations revealed stable binding to DPP-IV's active site, interacting with key residues (Tyr547, Ser630, Tyr662, Arg125, Glu205). Kinetic analysis indicated competitive inhibition. In vivo studies in C57BL/6 J mice demonstrated significant hypoglycemic effects, reducing blood glucose AUC by 14.98-18.65 % at 100 mg/kg. The peptides also exhibited stability under varying temperatures, pH, and gastrointestinal conditions. These findings position PSP as a promising source of DPP-IV inhibitors and highlight the potential of in silico screening for bioactive peptide discovery in T2DM management.
Collapse
Affiliation(s)
- Xiya Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Wenhao Zhang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Yuexin Pan
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Jia Ran
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xia Liu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xiaodong Yu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Qiyi He
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
32
|
Sharma S, Bishnoi R, Jain R, Singla D. LSDVvac: An immunoinformatics database for vaccine design against lumpy skin disease virus. Comput Biol Med 2025; 190:110077. [PMID: 40164028 DOI: 10.1016/j.compbiomed.2025.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 02/12/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Development of an effective vaccine against Lumpy Skin Disease Virus (LSDV) is crucial for protecting livestock. The current study outlines a web-based platform developed to aid the scientific community in designing effective peptide-based vaccines against LSDV. First, we generated all possible overlapping (K-mer value 9 and 15) peptides from the proteins of 73 LSDV strains. Second, after removing redundancy, the obtained peptides were utilized for predicting B-cell and T-cell epitopes. Third, the predicted B-cell and T-cell epitopes were screened for immunogenicity, allergenicity, and toxicity. Finally, the LSDV candidate vaccine database was developed utilizing 3913 unique B-cell (Linear 3344 and conformational 569) and 6473 unique T-cell (MHC-I 3200 and MHC-II 3273) epitopes. The three-dimensional structure of 156 LSDV proteins from reference (AF325528.1) LSDV genome was predicted using I-TASSER software and implemented in the database. Additionally, tools for genome analysis like DotPlot, Gblocks, BLAST, and gRNA designing were incorporated into the database. In summary, LSDVvac has been developed, which integrates information about predicted potential vaccine candidates along with useful computational tools. LSDVvac database is available at http://45.248.163.59/bic/lsdb/.
Collapse
Affiliation(s)
- Sumit Sharma
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ritika Bishnoi
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Riya Jain
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Deepak Singla
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.
| |
Collapse
|
33
|
Pardhi E, Tomar DS, Khemchandani R, Bazaz MR, Dandekar MP, Samanthula G, Singh SB, Mehra NK. Monophasic coamorphous sulpiride: a leap in physicochemical attributes and dual inhibition of GlyT1 and P-glycoprotein, supported by experimental and computational insights. J Biomol Struct Dyn 2025; 43:4297-4326. [PMID: 38299571 DOI: 10.1080/07391102.2024.2308048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Study aimed to design and development of a supramolecular formulation of sulpiride (SUL) to enhance its solubility, dissolution and permeability by targeting a novel GlyT1 inhibition mechanism. SUL is commonly used to treat gastric and duodenal ulcers, migraine, anti-emetic, anti-depressive and anti-dyspeptic conditions. Additionally, Naringin (NARI) was incorporated as a co-former to enhance the drug's intestinal permeability by targeting P-glycoprotein (P-gp) efflux inhibition. NARI, a flavonoid has diverse biological activities, including anti-apoptotic, anti-oxidant, and anti-inflammatory properties. This study aims to design and develop a supramolecular formulation of SUL with NARI to enhance its solubility, dissolution, and permeability by targeting a novel GlyT1 inhibition mechanism, extensive experimental characterization was performed using solid-state experimental techniques in conjunction with a computational approach. This approach included quantum mechanics-based molecular dynamics (MD) simulation and density functional theory (DFT) studies to investigate intermolecular interactions, phase transformation and various electronic structure-based properties. The findings of the miscibility study, radial distribution function (RDF) analysis, quantitative simulations of hydrogen/π-π bond interactions and geometry optimization aided in comprehending the coamorphization aspects of SUL-NARI Supramolecular systems. Molecular docking and MD simulation were performed for detailed binding affinity assessment and target validation. The solubility, dissolution and ex-vivo permeability studies demonstrated significant improvements with 31.88-fold, 9.13-fold and 1.83-fold increments, respectively. Furthermore, biological assessments revealed superior neuroprotective effects in the SUL-NARI coamorphous system compared to pure SUL. In conclusion, this study highlights the advantages of a drug-nutraceutical supramolecular formulation for improving the solubility and permeability of SUL, targeting novel schizophrenia treatment approaches through combined computational and experimental analyses.
Collapse
Affiliation(s)
- Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Devendra Singh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Rahul Khemchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
34
|
Huang X, Feng L, Lu X, Yang F, Liu S, Wei X, Huang J, Wang Y, Huang D, Huang T. Development and optimization of a self micro-emulsifying drug delivery system (SMEDDS) for co-administration of sorafenib and curcumin. Drug Deliv Transl Res 2025; 15:1609-1625. [PMID: 39207633 DOI: 10.1007/s13346-024-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
In this study, we developed a novel co-administration of curcumin and sorafenib using a Self micro-emulsifying Drug Delivery System (SMEDDS) called Sorafenib-Curcumin Self micro-emulsifying Drug Delivery System (SOR-CUR-SMEDDS). The formulation was optimized using star point design-response surface methodology, and in vitro cellular experiments were conducted to evaluate the delivery ratio and anti-tumor efficacy of the curcumin and sorafenib combination. The SOR-CUR-SMEDDS exhibited a small size distribution of 13.48 ± 0.61 nm, low polydispersity index (PDI) of 0.228 ± 0.05, and negative zeta potential (ZP) of - 12.4 mV. The half maximal inhibitory concentration (IC50) of the SOR-CUR-SMEDDS was 3-fold lower for curcumin and 5-fold lower for sorafenib against HepG2 cells (human hepatocellular carcinoma cells). Transmission electron microscopy (TEM) and particle size detection confirmed that the SOR-CUR-SMEDDS droplets were uniformly round and within the nano-emulsion particle size range of 10-20 nm. The SMEDDS were characterized then studied for drug release in vitro via dialysis membranes. Curcumin was released more completely in the combined delivery system, showing the largest in vitro drug release (79.20%) within 7 days in the medium, while the cumulative release rate of sorafenib in the release medium was low, reaching 58.96% on the 7 day. In vitro pharmacokinetic study, it demonstrated a significant increase in oral bioavailability of sorafenib (1239.88-fold) and curcumin (3.64-fold) when administered in the SMEDDS. These findings suggest that the SMEDDS formulation can greatly enhance drug solubility, improve drug absorption and prolong circulation in vivo, leading to increased oral bioavailability of sorafenib and curcumin.
Collapse
Affiliation(s)
- Xingzhen Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China.
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, Guangxi, 530000, PR China.
| | - Lizhen Feng
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Xuefang Lu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Fan Yang
- Hechi Food and Drug Inspection Institute, Hechi, Guangxi, 547000, PR China
| | - Shengjun Liu
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Xueqian Wei
- Hechi Food and Drug Inspection Institute, Hechi, Guangxi, 547000, PR China
| | - Jinping Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Yao Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Dongyi Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Tingting Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| |
Collapse
|
35
|
Wen C, Lin X, Wang J, Liu H, Liu G, Xu X, Zhang J, Liu J. Protein-Pectin Delivery Carriers for Food Bioactive Ingredients: Preparation, Release Mechanism, and Application. Compr Rev Food Sci Food Saf 2025; 24:e70183. [PMID: 40285448 DOI: 10.1111/1541-4337.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/02/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Food bioactive ingredients have received widespread attention due to their excellent nutritional and functional properties, regulating the organism. However, some food bioactive ingredients have the disadvantages of poor stability and low bioavailability, which limits their wider application in food. The current study has recently shown a growing interest in designing delivery systems due to their advantages in encapsulating, protecting, and controlling the release of food bioactive ingredients. This review summarizes the classification of protein-pectin delivery carriers, including emulsions, nanoparticles, microcapsules, gels, and films. Besides, the typical preparation methods and the factors affecting the stability of the carriers were presented. Moreover, the release mechanism of the protein-pectin delivery carriers was introduced. Furthermore, the applications of protein-pectin delivery carriers were also described. The protein-pectin delivery carriers have broad research prospects in the functional food and nutritional field. Protein-pectin delivery carriers can enhance the protection of food bioactive ingredient delivery due to their strong interaction force and excellent emulsification properties. Therefore, they can effectively protect food bioactive ingredients from harsh processing conditions and adverse environments in vivo, and improve their physicochemical properties, stability, and bioavailability, which have good application prospects.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jieyu Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
36
|
Din FU, Kim DS, Kim JS, Cheon S, Park S, Woo S, Woo MR, Ali Z, Kim JO, Jin SG, Choi HG. Comparative analysis of novel modified drug delivery systems for improving the oral bioavailability of water-insoluble tadalafil using copovidone, TPGS and hydroxypropyl-β-cyclodextrin. Biomed Pharmacother 2025; 186:118039. [PMID: 40194333 DOI: 10.1016/j.biopha.2025.118039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
This study aims to develop novel modified drug delivery systems (MDDS) including solid dispersions, solid self-nanoemulsifying drug delivery system (S-SNEDDS) and inclusion compound (IC) of poorly water-soluble tadalafil using various biological macromolecules and compare their ability to improve solubility, dissolution and bioavailability. Ingredients of MDDS were extensively screened using SEM, DSC, and XRD. The MDDS were testified for improved solubilization, dissolution, and bioavailability and were compared with tadalafil powder and commercial product (Cialis tablets 20 mg). All MDDS demonstrated excellent physicochemical properties, improved solubility and dissolution of tadalafil. The sequence of highest solubilization and dissolution was found to be SE-solid dispersion, S-SNEDDS, SA-solid dispersion, and IC. SE-solid dispersion and IC showed spherical morphology and comparatively small particle size. In SA-solid dispersion, the hydrophilic carriers were found attached with the drug surface. Similarly, S-SNEDDS demonstrated the absorbance of L-SNEDDS inside the pores and surface of calcium silicate. All MDDS showed improved oral bioavailability (P < 0.05) in the order of SE-solid dispersion ≥ S-SNEDDS > SA-solid dispersion > commercial product > IC, when compared with tadalafil powder in rats. Thus, the SE-solid dispersion with highest solubility (660-folds) and oral bioavailability (10-folds) of tadalafil may be recommended as the most suitable candidate for the development of oral pharmaceutical products.
Collapse
Affiliation(s)
- Fakhar Ud Din
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea; Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Dong Shik Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seonghyeon Park
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sanghyun Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Zakir Ali
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
37
|
Kostevšek N. Erythrocyte membrane vesicles as drug delivery systems: A systematic review of preclinical studies on biodistribution and pharmacokinetics. BIOMATERIALS ADVANCES 2025; 170:214234. [PMID: 39961269 DOI: 10.1016/j.bioadv.2025.214234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
This systematic review aims to summarize the development of erythrocyte membrane vesicles (EMVs) as drug delivery carriers, with a focus on elucidating their fate in terms of biodistribution and pharmacokinetics in preclinical studies. The PubMed database was systematically reviewed to search for original peer-reviewed published studies on the use of EMVs for drug delivery to summarize the preclinical findings, following the PRISMA guidelines. A total of 142 articles matched the selection criteria and were included in the review. For each study, the following parameters were extracted: type of active pharmaceutical ingredient (API) encapsulated into EMVs, EMVs-API formulation method and final particle size, EMVs surface modifications for active targeting, cell lines and animal models used in the study, crucial treatment data, biodistribution data and finally, where applicable, data about the EMVs circulation time and blood half-life. EMVs size did not vary significantly among the different formulation methods. A complete list of cell lines and animal models used is provided. Circulation times and data for blood half-life were grouped per animal type. For the most commonly used animal type, BALB/c mice, the average half-life of EMV-API was calculated to be 10.4 h, and in all cases, up to a 10-fold increase was observed compared with that of free API. Surface modifications did not drastically change the circulation time but did improve target tissue accumulation. The most critical weaknesses in the analysed studies were identified. Key points for future studies are provided to fill the current knowledge gaps and improve the quality of publications.
Collapse
Affiliation(s)
- Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia.
| |
Collapse
|
38
|
Medina-Moreno A, El-Hammadi MM, Martínez-Soler GI, Ramos JG, García-García G, Arias JL. Magnetic and pH-responsive magnetite/chitosan (core/shell) nanoparticles for dual-targeted methotrexate delivery in cancer therapy. Drug Deliv Transl Res 2025; 15:1646-1659. [PMID: 39237670 DOI: 10.1007/s13346-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Methotrexate successful therapy encounters various challenges in chemotherapy, such as poor oral bioavailability, low specificity, side effects and the development of drug resistances. In this study, it is proposed a dual-targeted nanocarrier comprising magnetite/chitosan nanoparticles for an efficient Methotrexate delivery. The formation of the particles was confirmed through morphological analysis using electron microscopy and elemental mappings via energy dispersive X-ray spectroscopy. These nanoparticles exhibited a size of ≈ 270 nm, a zeta potential of ≈ 24 mV, and magnetic responsiveness, as demonstrated by hysteresis cycle analysis and visual observations under a magnetic field. In addition, these particles displayed high stability, as evidenced by size and surface electric charge measurements, during storage at both 4 ºC and 25 ºC for at least 30 days. Electrophoretic properties were examined in relation to pH and ionic strength, confirming these core/shell nanostructure. The nanoparticles demonstrated a pH-responsive drug release as observed by a sustained Methotrexate release over the next 90 h under pH ≈ 7.4, while complete release occurred within 3 h under acidic conditions (pH ≈ 5.5). In the biocompatibility assessment, the magnetite/chitosan particles showed excellent hemocompatibility ex vivo and no cytotoxic effects on normal MCF-10 A and cancer MCF-7 cells. Furthermore, the Methotrexate-loaded nanoparticles significantly enhanced the antitumor activity reducing the half-maximal inhibitory concentration by ≈ 2.7-fold less compared to the free chemotherapeutic.
Collapse
Affiliation(s)
- Ana Medina-Moreno
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Mazen M El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Sevilla, 41012, Spain
| | - Gema I Martínez-Soler
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Javier G Ramos
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Gracia García-García
- Department of Nursing Sciences, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería, 04120, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - José L Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain.
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18016, Spain.
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, 18012, Spain.
| |
Collapse
|
39
|
Lin Y, Zhao L, Jin H, Gu Q, Lei L, Fang C, Pan X. Multifunctional applications of silk fibroin in biomedical engineering: A comprehensive review on innovations and impact. Int J Biol Macromol 2025; 309:143067. [PMID: 40222531 DOI: 10.1016/j.ijbiomac.2025.143067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Silk fibroin (SF) is a biomaterial naturally produced by certain insects (notably silkworms), animals such as spiders, or through recombinant methods in genetically modified organisms. Its exceptional mechanical properties, biocompatibility, degradability, and bioactivity have inspired extensive research. In biomedicine, SF has been utilized in various forms, including gels, membranes, microspheres, and more. It also demonstrates versatility for applications across medical devices, regenerative medicine, tissue engineering, and related fields. This review explores the current research status, advantages, limitations, and potential application pathways of SF in biomedical engineering. The objective is to stimulate innovative ideas and perspectives for research and applications involving silk.
Collapse
Affiliation(s)
- Yinglan Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Lifen Zhao
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Qiancheng Gu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China..
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China..
| |
Collapse
|
40
|
Mantry S, Silakabattini K, Das PK, Sankaraiah J, Barik CS, Panda S, Wahab S, Khalid M. Silk fibroin: An innovative protein macromolecule-based hydrogel/ scaffold revolutionizing breast cancer treatment and diagnosis - Mechanisms, advancements, and targeting capabilities. Int J Biol Macromol 2025; 309:142870. [PMID: 40194579 DOI: 10.1016/j.ijbiomac.2025.142870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Breast cancer (BC) is recognized as the most typical cancer diagnosed in women globally, posing significant public health challenges. Several protein-based biological macromolecules have been investigated for drug delivery in BC treatment due to biological and tunable mechanical properties. Silk fibroin (SF)-based hydrogel/scaffold is gaining attraction in BC therapy. The functionalization of SF with folic acid or antibodies enables targeted delivery to BC cells that overexpress folate receptors. In this context, this perspective article explored the potential biological activity, targeting capacity, functionalization, and drug carrier abilities of SF-based hydrogel for BC therapy. In addition, the article exclusively delves into the potential molecular pathways of SF-based hydrogel/ scaffolds for targeted therapy in BC. The article also summarizes the perspectives on the diagnosis abilities of SF-based hydrogel/ scaffolds in BC treatment, making it the first instance of such perspective literature. This insightful literature presents practical guidance for researchers, clinicians, and scientists eager to investigate the innovative biological applications and targeting potential of SF-based hydrogels and scaffolds in advancing breast cancer treatments.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmacy, Sarala Birla University, Birla Knowledge City, P.O.- Mahilong, Purulia Road, Ranchi 835103, Jharkhand, India.
| | - Kotaiah Silakabattini
- Department of Pharmacognosy, Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Chandramoulipuram, Chowdavaram, Guntur 522019, Andhra Pradesh, India
| | - Prabhat Kumar Das
- Department of Pharmacology, GRY Institute of Pharmacy, Borawan, Khargone, Madhya Pradesh 451228, India
| | - Jonna Sankaraiah
- Department of Process Development, Medytox Inc., 102, Osongsaengmyeong 4-ro, Osong-eup, Heugdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Chandra Shekhar Barik
- Department of Pharmacology, School of Pharmacy, DRIEMS University, Kotasahi, Kairapari, Tangi, Cuttack, Odisha Pin-754022, India
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India..
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| |
Collapse
|
41
|
Manoochehrabadi T, Solouki A, Majidi J, Khosravimelal S, Lotfi E, Lin K, Daryabari SH, Gholipourmalekabadi M. Silk biomaterials for corneal tissue engineering: From research approaches to therapeutic potentials; A review. Int J Biol Macromol 2025; 305:141039. [PMID: 39956223 DOI: 10.1016/j.ijbiomac.2025.141039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The corneal complications can result in opacity and eventual blindness. Furthermore, a shortage of available donors constrains the existing therapeutic options. Therefore, one of the most promising strategies involves the application of biomaterials, particularly silk. Silk has garnered significant attention among these biomaterials due to its natural origin and diverse features derived from different sources. One of the most critical factors of silk is its transparency, which is crucial for the cornea, and there are no concerns about infection. This material also possesses several advantages, including cost-effectiveness in production, biocompatibility in vivo and in vitro, biodegradation, and desirable mechanical characteristics. Modifications in the topographical structure, porosity, and crystallinity of silk enhance its properties and optimize its suitability for wound dressing, efficient drug delivery systems, and various cornea-related treatments. In each layer, silk was examined as a single biomaterial or blended with the others, so, this review aims to explore silk as a potential material for corneal regenerative medicine from a novel viewpoint. By considering a range of studies, a classification system has been developed that categorizes the utilization of silk in the various layers of the cornea and sub-categorizes the different modifications and applications of silk.
Collapse
Affiliation(s)
- Tahereh Manoochehrabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Solouki
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jila Majidi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ehsan Lotfi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran.
| |
Collapse
|
42
|
Hosseini M, Castillo R, Soleymani M. A novel magnetic-assisted ionic liquid-based microextraction method (MA-ILBME): Specific design system for sensitive spectrophotometric analysis of paracetamol as a pharmaceutical pollutant in environmental samples. Talanta 2025; 286:127486. [PMID: 39742850 DOI: 10.1016/j.talanta.2024.127486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Monitoring paracetamol levels in environmental samples is essential, as this widely used pharmaceutical can degrade water quality and adversely affect both ecosystems and human health. To address this issue, a novel, simple, sensitive, and accurate method has been developed. This method employs a functionalized ionic liquid, 2-(4-hydroxybenzyl)hydrazinium chloride ([HBH][Cl]), specifically designed to structurally mimic paracetamol and function as a complexing agent. Following strong interactions between the ionic liquid and paracetamol in aquatic samples, the ionic liquid is magnetized and then separated using a magnetic field. The synthesis of the magnetic ionic liquid was confirmed using a variety of analytical techniques, including Fourier-transform infrared spectroscopy, carbon and proton nuclear magnetic resonance (13CNMR and 1HNMR), vibrating sample magnetometry, and elemental analysis. The interaction between the ionic liquid and paracetamol was characterized through density functional theory calculations, UV-Vis spectroscopy, and CHNO analysis, which confirmed the formation of strong hydrogen bonds and the resultant complexation. Critical parameters influencing the measurement of paracetamol in aquatic samples were systematically optimized. The method's performance, assessed through key figures of merit, demonstrated excellent analytical capabilities: a limit of detection of 0.087 μg L-1 at a 99.7 % confidence level, a limit of quantification of 0.15 μg L-1, a linear dynamic range of 1.0-200.0 μg L-1, intra-day relative standard deviation of 1.12 %, inter-day RSD of 3.04 %, preconcentration factor of 119, and concentration factor of 95. Furthermore, the method achieved a recovery efficiency of 99-102 % in real samples and successfully quantified paracetamol in a commercial paracetamol tablet.
Collapse
Affiliation(s)
- Mehdi Hosseini
- Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.
| | - Rodrigo Castillo
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mousa Soleymani
- Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran
| |
Collapse
|
43
|
Prabakaran A, Rakshit D, Patel I, Susanna KJ, Mishra A, Radhakrishnanand P, Sarma P, Alexander A. Chitosan-coated nanostructured lipid carriers for intranasal delivery of sinapic acid in Aβ 1-42 induced C57BL/6 mice for Alzheimer's disease treatment. Int J Biol Macromol 2025; 305:141136. [PMID: 39965691 DOI: 10.1016/j.ijbiomac.2025.141136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Sinapic acid (SA) is a plant-derived antioxidant that exhibits neuroprotective activity. However, its poor bioavailability in the brain limits its therapeutic application in treating Alzheimer's disease (AD). Therefore, the present study hypothesizes that coating nanostructured lipid carriers (NLCs) with a biological macromolecule like chitosan (CH-SA-NLCs) could enhance the delivery of SA for AD treatment. The CH-SA-NLCs were spherical with sizes below 200 nm, confirmed by AFM, SEM, and TEM and achieved a sustained drug release of 76.5 % in pH 6.5 simulated nasal fluid over 24 h. Moreover, the histopathology study confirmed the safety of CH-SA-NLCs, validating its suitability for intranasal administration. Not only the in vitro sustained drug release closely correlated with in vivo pharmacokinetics of CH-SA-NLCs (i.n.), demonstrating a 1.7-fold increase in SA's half-life compared to plain SA (i.v.) in plasma but also CH-SA-NLCs (i.n.) achieved a superior AUC0-∞ of 7676.32 ± 2738.55 ng/g*h with a 2.6-fold improved drug targeting efficiency of SA in the brain of BALB/c mice. These improvements resulted in significant neuroprotective effects and decreased oxidative stress and inflammatory levels in Aβ1-42-induced mice. Overall, the study highlights safe and effective intranasal delivery of SA via chitosan-coated nanocarrier as a promising AD treatment strategy.
Collapse
Affiliation(s)
- A Prabakaran
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Inklisan Patel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - K Jony Susanna
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| | - Phulen Sarma
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Guwahati, Assam 781101, India
| | - Amit Alexander
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
44
|
Sabale V, Girhepunje M, Ingole A, Warokar A, Sawarkar K, Sabale P. Acyl chitosan based self-nanoemulsifying drug delivery system of lipophilic drug with enhanced oral bioavailability and mucoadhesion: Formulation development, optimization and in vitro/in vivo characterization. Int J Biol Macromol 2025; 306:141257. [PMID: 39986527 DOI: 10.1016/j.ijbiomac.2025.141257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
This study developed a mucoadhesive self-nano emulsifying drug delivery system (SNEDDS) with synthesized acyl chitosan coating for enhancing oral bioavailability and drug retention of Amphotericin B (AB) which is conventionally administered parenterally owing to its poor bioavailability. Acyl chitosan was synthesized and characterized. The AB and acyl chitosan Amphotericin B (ACAB) SNEDDS were prepared using capryol 90, kolliphor RH 40 and propylene glycol and optimized using Box- Behnken Design (BBD). After preliminary evaluation of both the SNEDDS, the optimized formulation underwent compatibility, thermodynamic stability, robustness to dilution, dissolution, permeation, mucoadhesion, SEM, and in vivo pharmacokinetic studies. Both AB and ACAB SNEDDS were transparent with sizes of 70.68 nm and 83 nm, respectively and had spherical morphology. ACAB SNEDDS exhibited controlled release of the drug (85.6 %) over AB SNEDDS (90.5 %) and increased drug permeation (97 % Vs 75 %) over 24 h. For ACAB SNEDDS higher drug plasma concentration (0.254 ± 0.03 μg/mL) over AB SNEDDS (0.194 μg/mL) and AB suspension (0.152 ± 0.03 μg/mL) was observed from in vivo pharmacokinetic studies on rats. The developed ACAB SNEDDS improved the solubility, permeability, oral bioavailability and drug retention through mucoadhesion.
Collapse
Affiliation(s)
- Vidya Sabale
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India.
| | - Mrunali Girhepunje
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Ashwini Ingole
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Amol Warokar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Krutika Sawarkar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
45
|
Roney M, Uddin MN, Sapari S, Razak FIA, Huq AKMM, Zamri NB, Aluwi MFFM. In silico approaches to identify novel anti-diabetic type 2 agents against dipeptidyl peptidase IV from isoxazole derivatives of usnic acid. 3 Biotech 2025; 15:107. [PMID: 40191458 PMCID: PMC11965085 DOI: 10.1007/s13205-025-04287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/22/2025] [Indexed: 04/09/2025] Open
Abstract
Diabetes mellitus (DM) is a serious worldwide health issue in the twenty-first century. Additionally, DM, a metabolic endocrine illness that affects the digestion of proteins, carbohydrates, and lipids, has a death rate of 4.9 million individuals globally. This study aims to find anti-diabetic inhibitor for type 2 diabetes (T2D) that inhibits the dipeptidyl peptidase IV (DPP-IV) enzyme using in silico methods. From a range of published literature sources, thirty (30) isoxazole derivatives of UA (IDUA) were selected for this study. To ascertain the possible inhibitory effects of IDUA, ADMET, molecular docking, density functional theory analyses, molecular dynamic simulation and MM/PBSA were conducted. Eleven compounds (1, 2, 3, 4, 7, 13, 18, 21, 22, 24, and 27) were selected from the ADMET study, which were subjected to perform molecular docking against the DPP-IV enzyme of T2D, and findings indicated two compounds (compound 2 and compound 3) showed comparable binding affinity with the reference compound "Linagliptin". In contrast to the reference molecule, which had a binding affinity of - 8.6 kcal/mol against DPP-IV, compound 2 and compound 3 have binding affinities of - 8.1 and - 8.0 kcal/mol, respectively. Furthermore, based on Lipinski's Rule of Five, ELUMO, EHOMO, band energy gap, drug-likeness and DFT-based studies demonstrated druggability and high reactivity for these compounds. In addition, the molecular dynamic (MD) techniques to confirm that docked complexes remained stable and that the binding orientation obtained during docking tests were accurate. These compounds may be investigated in vitro and in vivo for the development of potential DPP-IV of T2D inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04287-5.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300 Kuantan, Pahang Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300 Kuantan, Pahang Malaysia
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205 Bangladesh
| | - Suhaila Sapari
- Department of Chemistry, Faculty of Science, University Technology of Malaysia, Skudai, 81310 Johor Bahru, Johor Malaysia
| | - Fazira Ilyana Abdul Razak
- Department of Chemistry, Faculty of Science, University Technology of Malaysia, Skudai, 81310 Johor Bahru, Johor Malaysia
| | - A. K. M. Moyeenul Huq
- Centre for Drug and Herbal Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 5300 Kuala Lumpur, Malaysia
| | - Normaiza Binti Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300 Kuantan, Pahang Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300 Kuantan, Pahang Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300 Kuantan, Pahang Malaysia
| |
Collapse
|
46
|
Aiman S, Ahmad A, Malik A, Chen R, Hanif MF, Khan AA, Ansari MA, Farrukh S, Xu G, Shahab M, Huang K. Whole proteome-integrated and vaccinomics-based next generation mRNA vaccine design against Pseudomonas aeruginosa-A hierarchical subtractive proteomics approach. Int J Biol Macromol 2025; 309:142627. [PMID: 40174835 DOI: 10.1016/j.ijbiomac.2025.142627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a multidrug-resistant opportunistic pathogen responsible for chronic obstructive pulmonary disease (COPD), cystic fibrosis, and ventilator-associated pneumonia (VAP), leading to cancer. Developing an efficacious vaccine remains the most promising strategy for combating P. aeruginosa infections. In this study, we employed an advanced in silico strategy to design a highly efficient and stable mRNA vaccine using immunoinformatics tools. Whole proteome data were utilized to identify highly immunogenic vaccine candidates using subtractive proteomics. Three extracellular proteins were prioritized for T- and linear B-cell epitope prediction. Beta-definsin protein sequence was incorporated as an adjuvant at the N-terminus of the construct. A total of 3 CTL, 3 HTL, and 3 linear B cell highly immunogenic epitopes were combined using specific linkers to design this multi-peptide construct. The 5' and 3' UTR sequences, Kozak sequence with a stop codon, and signal peptides followed by a poly-A tail were incorporated into the above vaccine construct to create our final mRNA vaccine. The vaccines exhibited antigenicity scores >0.88, ensuring high antigenicity with no allergenic or toxic. Physiochemical properties analysis revealed high solubility and thermostability. Three-dimensional structural analysis determined high-quality structures. Vaccine-receptor docking and molecular dynamic simulations demonstrated strong molecular interactions, stable binding affinities, dynamic nature, and structural stability of this vaccine, with significant immunogenic responses of the immune system against the vaccine. The immunological simulation indicates successful cellular and humoral immune responses to defend against P. aeruginosa infection. Validation of the study outcomes necessitates both experimental and clinical testing.
Collapse
Affiliation(s)
- Sara Aiman
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Liaobu Hospital of Dongguan City, Dongguan, China
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Muhammad Farhan Hanif
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mushtaq Ahmed Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | | | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Muhammad Shahab
- State key laboratories of chemical Resources Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kaisong Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Liaobu Hospital of Dongguan City, Dongguan, China.
| |
Collapse
|
47
|
Xu Y, Kuipers OP. Design and Biosynthesis of Ornithine 8-Containing Semaglutide Variants with a Click Chemistry-Modifiable Position 26. ACS Synth Biol 2025. [PMID: 40305415 DOI: 10.1021/acssynbio.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, constitutes an effective and widely used treatment for type 2 diabetes and obesity. However, challenges such as insufficient oral bioavailability, gastrointestinal side effects, and high costs persist. Overcoming these limitations is essential for improving patient compliance and semaglutide's safety profile. While advanced technologies such as oral delivery systems offer partial solutions, optimizing the peptide structure is crucial for addressing these issues. Establishing a rapid method to generate a large library of semaglutide mutants will enable high-throughput activity screening. In this study, we introduce a novel "Fits-In-All" approach that combines ribosomally synthesized and post-translationally modified peptide (RiPP) technology with amber stop codon incorporation to generate semaglutide variants. To counter dipeptidyl peptidase-4-mediated cleavage, our method strategically incorporates noncanonical amino acid ornithine at position 8 utilizing microbial modification enzyme OspR in vivo. Furthermore, functional groups are introduced by an orthogonal tRNA/aminoacyl-tRNA synthetase pair recognizing the amber stop codon at position 26, which enabled the click chemistry-based linkage of diverse groups. This approach allows for the generation of a broad array of semaglutide analogues that can be screened for optimal properties. In conclusion, this innovative approach opens new avenues for the design and synthesis of optimized peptide-based GLP-1 receptor agonists.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
48
|
Hadri SH, Riaz A, Abid J, Shaheen R, Nadeem S, Ghumman Z, Naeem H. Emerging nanostructure-based strategies for breast cancer therapy: innovations, challenges, and future directions. Med Oncol 2025; 42:188. [PMID: 40307624 DOI: 10.1007/s12032-025-02743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Breast cancer, one of the leading causes of cancer-associated deaths, is responsible for the majority of cases of cancer in women globally. Traditional therapies used for the treatment of cancer have some challenges such as low cellular absorption, multidrug resistance, and limited bioavailability. Current innovations in nanotechnology, such as nanoliposomes, silver nanoparticles, gold nanoparticles, and carbon nanotubes, provide a promising approach to deal with these limitations. Nanostructures encapsulating anticancer agents such as doxorubicin, curcumin, paclitaxel, erlotinib, and docetaxel enhance the therapeutic efficacy of these agents and promote targeted drug delivery. Curcumin-loaded amorphous calcium carbonate nanoparticles encapsulating lipids and L-arginine exhibit higher cytotoxicity than free curcumin. Gold nanoparticles can also enhance treatment efficacy by specifically destroying tumor cells when used in photothermal therapy. This review focus on the abilities of nanoparticles to induce oxidative stress, prevent proliferation, and trigger apoptosis in cancer cells. Further research should focus on optimizing these nanoparticles to enhance the targeted drug delivery and address multi-drug resistance. Our review underscores recent developments in nanostructures, their therapeutic potential, and the challenges that need to be addressed for more effective breast cancer treatment.
Collapse
Affiliation(s)
- Saqib Hussain Hadri
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Atiya Riaz
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan.
| | - Jaisha Abid
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Rameeza Shaheen
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Samreen Nadeem
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Zainab Ghumman
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Hammad Naeem
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
49
|
Buddhadev S, Garala KC, Rahamathulla M, Alamri AH, Hani U, Begum MY, Baghel SS, Ahmed MM, Pasha I. Design, Characterization, and Evaluation of Solid-Self-Nano-Emulsifying Drug Delivery of Benidipine with Telmisartan: Quality by Design Approach. ACS OMEGA 2025; 10:16440-16456. [PMID: 40321548 PMCID: PMC12044466 DOI: 10.1021/acsomega.4c10838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025]
Abstract
The main purpose of this study was to design and develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) for the oral administration of benidipine (BD) and telmisartan (TEL) using the adsorption method with eucalyptus oil, Transcutol P, and Kolliphor EL via the Box-Behnken design approach. The prepared SNEDDS formulations were characterized using FTIR, DSC, SEM, and PXRD techniques and evaluated for zeta potential, refractive index, drug concentration, resistance to dilution, viscosity, and thermodynamic stability. Additionally, in vitro and stability studies were conducted. The results revealed that all prepared formulations (BT1-BT15) exhibited favorable zeta potential (17.2-28.39 mV) and polydispersity index (PDI) values (0.226-0.354). Among them, formulation BT11 demonstrated a desirable droplet size of 175.12 ± 2.70 nm, a PDI of 0.226, a zeta potential of -24.98 ± 0.18 mV, a self-emulsification time of 53.00 ± 2.10 s, a transmittance percentage of 99.6 ± 0.3%, and a drug release of 92.65 ± 1.70% within 15 min. BT11 exhibited significantly faster drug release compared to the commercially available product benidipine T (4 mg/40 mg) and the pure drugs BD and TEL, releasing more than 96% of both drugs in 0.1 N HCl within 60 min. Furthermore, BT11 demonstrated stability throughout the product's stability testing. These findings suggest that the oral S-SNEDDS formulation of BD and TEL can enhance the drugs' water solubility, potentially improving therapeutic outcomes and increasing patient compliance.
Collapse
Affiliation(s)
- Sheetal
S. Buddhadev
- Department
of Pharmaceutics, Faculty of Pharmacy, Noble
University, Junagadh, Gujarat 362001, India
| | - Kevinkumar C. Garala
- School of
Pharmaceutical Sciences, Atmiya University, Rajkot, Gujarat 362005, India
| | - Mohamed Rahamathulla
- Department
of Pharmaceutics, College of Pharmacy, King
Khalid University, Al Faraa, Abha 62223, Saudi Arabia
| | - Ali H. Alamri
- Department
of Pharmaceutics, College of Pharmacy, King
Khalid University, Al Faraa, Abha 62223, Saudi Arabia
| | - Umme Hani
- Department
of Pharmaceutics, College of Pharmacy, King
Khalid University, Al Faraa, Abha 62223, Saudi Arabia
| | - M. Yasmin Begum
- Department
of Pharmaceutics, College of Pharmacy, King
Khalid University, Al Faraa, Abha 62223, Saudi Arabia
| | - Saurabh Singh Baghel
- School of
Pharmaceutical Sciences, Lovely Professional
University, Phagwara, Punjab 144411, India
| | - Mohammed Muqtader Ahmed
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ismail Pasha
- Department
of Pharmacology, Orotta College of Medicine and Health Sciences, Asmara University, Asmara, Eritrea
| |
Collapse
|
50
|
Zhang Z, Liu B, Chen W, Liu D, Li L, Ren Y, Wang W, Yuan H, Pang H, Zhang Z, Liao B, Lu J. Enhancing sewer low-loss transportation by food waste microencapsulation treatment: Dual suppression of organic leaching and biofilm architecture-function for mitigating hazardous gases and blockage risks. WATER RESEARCH 2025; 282:123749. [PMID: 40318280 DOI: 10.1016/j.watres.2025.123749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Food waste management posed a critical global sustainability challenge, with significant environmental, economic, and social impacts. The installation of food waste disposers emerged as a primary strategy for source-separated food waste transfer to wastewater treatment systems through municipal pipelines. However, this approach accelerated the transformation of sewer systems into bioreactors and induced sewer pipe deterioration. Therefore, a novel microencapsulation method was developed and optimized to rapidly immobilize comminuted food waste particles. The stability of FW-encapsulated microcapsules was evaluated for their capacity to suppress organic leaching, destabilize functional biofilm architectures, and mitigate hazardous gas emissions and pipeline blockages in sewer systems during sewage conveyance. Results showed that FW-loaded microcapsules exhibited physicochemical stability against hydrodynamic shear and microbial degradation during sewer transport. It suppressed 33.62 mg/L organic matter release based on COD, reduced fluorescent substance accumulation/degradation, and limited macromolecular organics leakage. Microencapsulation destabilized sewer biofilm integrity via EPS reduction, disrupted humic acid stabilization, altered microbial dominance, and induced protein conformational loosening, impairing biofilm resilience. The technology mitigated sewer risks by curbing 3078.3 ppm VOC. It eliminating 100 % and 98.80 % increments of CH4 and CO compared to crushed FW discharge increments(2.55 mg/L and 0.09 mg/L), suppressing 0.80 mg/L sulfide conversion increments, and minimizing sedimentation through particle size and suspended solids control. Integration with food waste disposers enhanced source-segregated organic collection, optimized hydro-transport to alleviate pipe deterioration, reduced 0.915 MtCO2-eq transport-related carbon emissions, and improved treatment efficiency of wastewater treatment plants. This microencapsulation strategy provided a sustainable solution for FW management, combining infrastructure preservation, emission control, and resource recovery.
Collapse
Affiliation(s)
- Zigeng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China
| | - Bo Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China
| | - Wentao Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China
| | - Duoduo Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China
| | - Linjun Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China
| | - Yujie Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China
| | - Wenjie Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China
| | - Honglin Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China.
| | - Bangyou Liao
- Municipal Facilities Management, House and Urban Rural Development Department of Ankang, Ankang 725000, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China; State Key Laboratory of Green Building in West China, Xian University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China.
| |
Collapse
|