1
|
Rani P, Koulmane Laxminarayana SL, Swaminathan SM, Nagaraju SP, Bhojaraja MV, Shetty S, Kanakalakshmi ST. TGF-β: elusive target in diabetic kidney disease. Ren Fail 2025; 47:2483990. [PMID: 40180324 PMCID: PMC11980245 DOI: 10.1080/0886022x.2025.2483990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/17/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Transforming growth factor-beta (TGF-β), a cytokine with near omnipresence, is an integral part of many vital cellular processes across the human body. The family includes three isoforms: Transforming growth factor-beta 1, 2, and 3. These cytokines play a significant role in the fibrosis cascade. Diabetic kidney disease (DKD), a major complication of diabetes, is increasing in prevalence daily, and the classical diagnosis of diabetes is based on the presence of albuminuria. The occurrence of nonalbuminuric DKD has provided new insight into the pathogenesis of this disease. The emphasis on multifactorial pathways involved in developing DKD has highlighted some markers associated with tissue fibrosis. In diabetic nephropathy, TGF-β is significantly involved in its pathology. Its presence in serum and urine means that it could be a diagnostic tool while its regulation provides potential therapeutic targets. Completely blocking TGF-β signaling could reach untargeted regions and cause unanticipated effects. This paper reviews the basic details of TGF-β as a cytokine, its role in DKD, and updates on research carried out to validate its candidacy.
Collapse
Affiliation(s)
- Priya Rani
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
2
|
Qing J, Li C, Jiao N. Deciphering the causal link between gut microbiota and membranous nephropathy: insights into potential inflammatory mechanisms. Ren Fail 2025; 47:2476053. [PMID: 40083050 PMCID: PMC11912295 DOI: 10.1080/0886022x.2025.2476053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Membranous nephropathy (MN), a leading cause of adult nephrotic syndrome and renal failure, has been linked to gut microbiota (GM) and their metabolites. However, direct causal relationships and therapeutic implications remain unclear. METHODS We utilized a comprehensive GWAS dataset that encompasses GM, metabolites, and MN through two-sample Mendelian randomization (MR) analyses, bidirectional MR evaluations, and detailed sensitivity tests. RESULTS We identified strong causal associations between nine specific types of GM, including class Clostridia (OR = 1.816, 95%CI: 1.021-3.236, p = .042), class Melainabacteria (OR = 0.661, 95%CI: 0.439-0.996, p = .048), order Gastranaerophilales (OR = 0.689, 95%CI: 0.480-0.996, p = .044), genus Alistipes (OR = 0.480, 95%CI: 0.223-0.998, p = .049), genus Butyricicoccus (OR = 0.464, 95%CI: 0.216-0.995, p = .048), genus Butyrivibrio (OR = 0.799, 95%CI: 0.639-0.998, p = .048), genus Ruminococcaceae UCG003 (OR = 0.563, 95%CI: 0.362-0.877, p = .011), genus Streptococcus (OR = 0.619, 95%CI: 0.393-0.973, p = .038), and genus Oscillibacter (OR = 1.90, 95%CI: 1.06-3.40, p = .031). Additionally, the metabolite tryptophan also exhibited a significant causal influence on MN (OR = 0.852, 95%CI: 0.754-0.963, p = .010). Sensitivity and reverse MR analyses confirmed the robustness of these findings. Further exploration using gutMGene database suggests that GM may influence MN by affecting the release of inflammatory factors and modulating inflammatory pathways. CONCLUSION This study offers a comprehensive understanding of the causal links between GM, their metabolites, and MN, which highlight potential pathways for developing new preventive and therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Jianbo Qing
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
- Department of Nephrology, The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Changqun Li
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Jiao
- Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
- Department of Nephrology, The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Big Data Center of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| |
Collapse
|
3
|
Yang X, Luo Q, Wu Z, Wang C, Yang Y, Zheng L, Li K, Zhao L, Jurong Y. Tanshinone IIA reduces tubulointerstitial fibrosis by suppressing GSDMD-mediated pyroptosis. PHARMACEUTICAL BIOLOGY 2025; 63:364-373. [PMID: 40331369 PMCID: PMC12064128 DOI: 10.1080/13880209.2025.2498166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/02/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
CONTEXT Tanshinone IIA (Tan IIA), a bioactive compound derived from the traditional Chinese herb Salvia miltiorrhiza (Family Lamiaceae, Authority Bunge), is well-known for its protective effects in various kidney diseases. However, its role in obstructive nephropathy has not been thoroughly investigated. OBJECTIVE This study aimed to explore the protective effects of Tan IIA in a mouse model of unilateral ureteral obstruction (UUO) and to elucidate the cellular and molecular mechanisms underlying these effects. MATERIALS AND METHODS Gasdermin D (GSDMD) knockout mice and their wild-type (WT) littermates underwent UUO surgery, with Tan IIA treatment administered 24 h prior. Human proximal tubular cells (HK-2 cells) were treated with TGF-β1 to induce fibrosis (50 ng/mL for 24 h), followed by Tan IIA treatment (5 μM) for an additional 3 h. RESULTS Tan IIA significantly reduced the expression of extracellular matrix (ECM) components, including collagen I, α-smooth muscle actin (α-SMA), vimentin and fibronectin, in UUO mice. Tan IIA attenuated GSDMD-mediated pyroptosis. However, in GSDMD knockout mice subjected to UUO, the protective effects of Tan IIA on ECM gene expression and collagen deposition in the tubular interstitium were reduced. In vitro studies showed that Tan IIA reduced GSDMD activation and fibronectin protein expression in HK-2 cells. DISCUSSION AND CONCLUSIONS Tan IIA may mitigate GSDMD-mediated pyroptosis in renal tubular epithelial cells (RTECs) and reduce kidney fibrosis, highlighting its potential as a therapeutic strategy to prevent the progression of kidney disease after ureteral obstruction.
Collapse
Affiliation(s)
- Xueling Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglin Luo
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifen Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunxuan Wang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanjing Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Luquan Zheng
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lei Zhao
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Jurong
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Shi J, Qin X, Sha H, Wang R, Shen H, Chen Y, Chen X. Identification of biomarkers for chronic renal fibrosis and their relationship with immune infiltration and cell death. Ren Fail 2025; 47:2449195. [PMID: 39780495 PMCID: PMC11721624 DOI: 10.1080/0886022x.2024.2449195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) represents a significant global public health challenge. This study aims to identify biomarkers of renal fibrosis and elucidate the relationship between unilateral ureteral obstruction (UUO), immune infiltration, and cell death. METHODS Gene expression matrices for UUO were retrieved from the gene expression omnibus (GSE36496, GSE79443, GSE217650, and GSE217654). Seven genes identified through Protein-Protein Interaction (PPI) network and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) analysis were validated using qRT-PCR in both in vivo and in vitro UUO experiments. WB assays were employed to investigate the role of Clec4n within NF-κB signaling pathway in renal fibrosis. The composition of immune cells in UUO was assessed using CIBERSORT, and gene set variant analysis (GSVA) was utilized to evaluate prevalent signaling pathways and cell death indices. RESULTS GO and KEGG enrichment analyses revealed numerous inflammation-related pathways significantly enriched in UUO conditions. Bcl2a1b, Clec4n, and Col1a1 were identified as potential diagnostic biomarkers for UUO. Analysis of immune cell infiltration indicated a correlation between UUO and enhanced mast cell activation. Silencing Clec4n expression appeared to mitigate the inflammatory response in renal fibrosis. GSVA results indicated elevated inflammatory pathway scores in UUO, with significant differences in disulfiram and cuproptosis scores compared to those in the normal murine kidney group. CONCLUSION Bcl2a1b, Clec4n, and Col1a1 may serve as biomarkers for diagnosing UUO. UUO development is closely linked to immune cell infiltration, activation of inflammatory pathways, disulfiram, and cuproptosis processes.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyue Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Haonan Sha
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Rong Wang
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Hao Shen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinhao Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Xiaolan Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Zhang Z, Niu J, Sun W, Sun Y, Tan Y, Yu J. Dietary habits and risk of diabetic kidney disease: a two-sample and multivariate Mendelian randomization study. Ren Fail 2025; 47:2438848. [PMID: 40074716 PMCID: PMC11912233 DOI: 10.1080/0886022x.2024.2438848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE We explored the causal relationship between certain dietary habits and the risk of developing diabetic kidney disease (DKD) using two-sample Mendelian randomization and multivariate Mendelian randomization. RESEARCH DESIGN AND METHODS This study is based on pooled data from a genome-wide association study (GWAS) of 83 dietary habits in a European population. We performed a two-sample Mendelian randomization analysis using GAWS data on diabetic nephropathy in a European population. Validation was then performed against positive results (p < 0.05) in different GAWS data on diabetic nephropathy of European origin. Finally, multivariate Mendelian randomization analyses were performed on dietary habits with positive results (p < 0.05) in both datasets and GWAS data on postprandial glucose in the European population. RESULTS This study showed causal relationships between 18 dietary habits and the risk of developing DKD. After validation, causal relationships were found between the risk of DKD and two dietary habits: abstaining from sugar consumption (OR 2.86; 95%CI 1.35, 6.08; p = 0.006) and consuming whole grain/multigrain bread (OR 0.53; 95%CI 0.32, 0.89; p = 0.016). Correcting for the effect of postprandial glucose, the multivariate MR results showed that never eating sugar increased the risk of developing DKD (OR 0.08; 95%CI 0.018, 0.36; p = 0.001), whereas eating whole grain/multigrain bread did not reduce the risk of developing DKD (OR 1.37; 95%CI 0.55, 3.41; p = 0.50). CONCLUSIONS Our MR results suggest a causal relationship between never eating sugar and an increased risk of developing DKD. Therefore, people with diabetes need a reasonable range of sugar intake.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Endocrinology, Nanjing Hospital of Chinese Medicine, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jieyu Niu
- Department of Traditional Chinese Medicine, Chang'an Town Health Center, Haining City, Zhejiang Province, China
| | - Wenhao Sun
- First School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yuqing Sun
- First School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ying Tan
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Chang M, Shi X, Yang B, Li P, Zhang Y, Zhang Q, Zhang Y. Modified Huangqi Chifeng decoction alleviates podocyte injury on rat with experimental membranous nephropathy. Ren Fail 2025; 47:2459896. [PMID: 39972601 PMCID: PMC11843643 DOI: 10.1080/0886022x.2025.2459896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
OBJECTIVE This study aims to investigate the therapeutic effects of modified Huangqi Chifeng decoction (MHCD) on proteinuria in membranous nephropathy (MN) and its potential protective effects on podocytes. Furthermore, we explored whether these effects are associated with the inhibition of the nuclear factor kappa-B (NF-κB) pathway. METHODS Passive Heymann nephritis (PHN) rat model was applied with a single tail vein injection of sheep anti-rat Fx1A serum (0.4 ml/100g). All rats were divided into four groups: normal group, PHN group, benazepril group (10 mg/kg), and MHCD group (12.5 g/kg), and were treated for 6 weeks. 24-hour urine protein levels and serum biochemical parameters were measured. Optical microscopy and transmission electron microscopy were performed to assess pathological changes in renal tissues. Additionally, the expression levels of IgG, C5b-9, nephrin, podocin, Wilms' tumor gene 1 (WT-1), and NF-κB p65 were evaluated. RESULTS PHN rats exhibited progressive proteinuria over time. However, MHCD treatment significantly reduced levels of proteinuria and triglyceride, while increased levels of albumin. Moreover, MHCD alleviated pathological damage in renal tissues, and reduced the expression of IgG and membrane attack complex (C5b-9). Immunohistochemistry analysis revealed that MHCD increased the expression of nephrin, podocin, and WT-1. Western blot analysis showed that MHCD increased the expression of nephrin and podocin while inhibiting the activation of NF-κB p65. CONCLUSIONS Our findings indicate that MHCD exert reno-protective effects in the experimental rat model of MN by alleviating podocyte damage and inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Deparment of Nephrology, The First Hospital of Tsinghua University, Beijing, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Deparment of Nephrology, The First Hospital of Tsinghua University, Beijing, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Li
- Experimental Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifan Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Qi Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang R, Tang Y, Feng X, Lu X, Zhao M, Jin J, Ji X, He H, Zhao L. Targeted modulation of intestinal barrier and mucosal immune-related microbiota attenuates IgA nephropathy progression. Gut Microbes 2025; 17:2458184. [PMID: 39875350 PMCID: PMC11776482 DOI: 10.1080/19490976.2025.2458184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/01/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
IgA nephropathy (IgAN) is related to the balance of gut microbiota. However, it is unclear whether changes in the gut microbiota can cause IgAN or attenuate its progression. This study employed IgAN and human microbiota-associated (HMA)-IgAN models to investigate the impact of IgAN on gut microbiota alteration and the mechanisms by which gut microbiota might trigger IgAN. Furthermore, this study examined the effects of chitooligosaccharides (COS) and COS formulation (COSF) with microbiota-targeting function on enhancing intestinal barrier and renal functions. These results revealed that IgAN led to a reduction in α-diversity and structural alterations in the gut microbiota, characterized by an increase in Shigella sonnei, Streptococcus danieliae, Desulfovibrio fairfieldensis, and a decrease in Bifidobacterium pseudolongum and Clostridium leptum. There was also an imbalance in intestinal B-cell immunity and a decrease in the level of tight junction proteins (ZO-1 and Occludin). Intestinal barrier and mucosal immune-related microbiota (Clostridium leptum, unclassified Lachnospiraceae NK4Al36 group, unclassified Clostridia vadinBB60 group, unclassified Oscillospiraceae, and unclassified Roseburia) were enriched through targeted modulation with COS/COSF, enhancing intestinal ZO-1 expression and reducing APRIL/BAFF overexpression, thereby reducing renal damage in IgAN. In conclusion, this study clarified the kidney-gut crosstalk between gut microbiota and IgAN, providing scientific evidence for developing microbiota-targeted food interventions to improve IgAN outcomes.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuyan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiangru Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoxuan Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiayang Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| |
Collapse
|
8
|
Liu X, Shen Y, Zhu K, Jin M, Sun Q. The association between dietary live microbe intake and risk of chronic kidney disease among US adults: a cross-sectional survey from NHANES (2001-2018). Ren Fail 2025; 47:2488236. [PMID: 40234195 PMCID: PMC12001848 DOI: 10.1080/0886022x.2025.2488236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Previous studies have suggested that gut dysbacteriosis may promote the onset of chronic kidney disease (CKD). However, the relationship between consumption of live microorganisms and CKD remains unclear. This study aimed to evaluate the association between dietary consumption of live microorganisms and risk of CKD. METHODS We conducted a cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES) spanning 2001 to 2018. Dietary intake was assessed through self-reported questionnaires, while CKD diagnosis was based on glomerular filtration rate and albumin-creatinine ratio measurements. RESULTS After adjusting for potential confounders, participants with high live microbial intake had a significantly lower risk of CKD compared to those with low intake [odds ratio (OR): 0.79, 95% confidence interval (CI): 0.68-0.91, p = 0.001]. Similarly, those with moderate/high live microbial intake exhibited a reduced CKD risk compared to the low intake group (OR: 0.87, 95% CI: 0.78-0.97, p = 0.009). Subgroup analyses revealed a significant interaction between live microbial intake and CKD risk among participants with less than a high school education, as well as among Mexican Americans and other racial groups (including multiracial) (all P values for interaction < 0.05). A U-shaped dose-response relationship was identified between microbial intake and CKD risk, with significant non-linear associations observed for high consumption levels (P for non-linearity = 0.013). CONCLUSIONS High dietary intake of live microorganisms is associated with a lower risk of CKD, highlighting the potential role of gut microbiota modulation in CKD prevention.
Collapse
Affiliation(s)
- Xingzi Liu
- Department of Nephrology, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yang Shen
- Department of Nephrology, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaiyi Zhu
- Department of Nephrology, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Meiling Jin
- Department of Nephrology, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qianmei Sun
- Department of Nephrology, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Yang P, Fan M, Chen Y, Yang D, Zhai L, Fu B, Zhang L, Wang Y, Ma R, Sun L. A novel strategy for the protective effect of ginsenoside Rg1 against ovarian reserve decline by the PINK1 pathway. PHARMACEUTICAL BIOLOGY 2025; 63:68-81. [PMID: 39862058 PMCID: PMC11770866 DOI: 10.1080/13880209.2025.2453699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025]
Abstract
CONTEXT The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear. OBJECTIVE To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve. MATERIALS AND METHODS Ovarian reserve function, reproductive capacity, oxidative stress levels, and mitochondrial function were compared between ginsenoside Rg1-treated and untreated naturally aged female Drosophila using behavioral, histological, and molecular biological techniques. The protective effects of ginsenoside Rg1 were analyzed in a Drosophila model of oxidative damage induced by tert-butyl hydroperoxide. Protein expression levels in the PINK1/Parkin pathway were assessed, and molecular docking and PINK1 mutant analyses were conducted to identify potential targets. RESULTS Ginsenoside Rg1 significantly mitigated ovarian reserve decline, enhancing offspring quantity and quality, increasing the levels of ecdysteroids, preventing ovarian atrophy, and elevating germline stem cell numbers in aged Drosophila. Ginsenoside Rg1 improved superoxide dismutase, catalase activity, and gene expression while reducing reactive oxygen species levels. Ginsenoside Rg1 activated the mitophagy pathway by upregulating PINK1, Parkin, and Atg8a and downregulating Ref(2)P. Knockdown of PINK1 in the ovary by RNAi attenuated the protective effects of ginsenoside Rg1. Molecular docking analysis revealed that the ginsenoside Rg1 could bind to the active site of the PINK1 kinase domain. DISCUSSION AND CONCLUSIONS Ginsenoside Rg1 targets PINK1 to regulate mitophagy, preserving ovarian reserve. These findings suggest the potential of ginsenoside Rg1 as a therapeutic strategy to prevent ovarian reserve decline.
Collapse
Affiliation(s)
- Pengdi Yang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Fan
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Chen
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Dan Yang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Zhai
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Baoyu Fu
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Zhang
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Yanping Wang
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Ma
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Lyu G, Liao H, Li R. Ferroptosis and renal fibrosis: mechanistic insights and emerging therapeutic targets. Ren Fail 2025; 47:2498629. [PMID: 40329437 PMCID: PMC12057793 DOI: 10.1080/0886022x.2025.2498629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Ferroptosis is a regulated, iron-dependent form of cell death driven by lipid peroxidation and distinct from apoptosis, necroptosis, and pyroptosis. Recent studies implicate ferroptosis as a central contributor to the pathogenesis of renal fibrosis, a hallmark of chronic kidney disease associated with high morbidity and progression to end-stage renal failure. This review synthesizes current evidence linking ferroptotic signaling to fibrotic remodeling in the kidney, focusing on iron metabolism dysregulation, glutathione peroxidase 4 (GPX4) inactivation, lipid peroxide accumulation, and ferroptosis-regulatory pathways such as FSP1-CoQ10-NAD(P)H and GCH1-BH4. We detail how ferroptosis in tubular epithelial cells modulates pro-fibrotic cytokine release, macrophage recruitment, and TGF-β1-driven extracellular matrix deposition. Moreover, we explore ferroptosis as a therapeutic vulnerability in renal fibrosis, highlighting promising agents including iron chelators, GPX4 activators, anti-lipid peroxidants, and exosome-based gene delivery systems. By consolidating emerging preclinical data, this review provides a comprehensive mechanistic framework and identifies translational opportunities for targeting ferroptosis in fibrotic kidney disease.
Collapse
Affiliation(s)
- Guangna Lyu
- The Nephrology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
- The Second People’s Hospital of Shanxi Province, Taiyuan, China
| | - Hui Liao
- The Drug Clinical Trial Institution of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- The Nephrology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
An P, Li X, Zhao Y, Li L, Wang Y, Wang W, Zhang T, Wang S, Wu X. Curcumin alleviates renal fibrosis in chronic kidney disease by targeting the circ_0008925-related pathway. Ren Fail 2025; 47:2444393. [PMID: 40038566 PMCID: PMC11884099 DOI: 10.1080/0886022x.2024.2444393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Curcumin has been shown to inhibit renal fibrosis, but whether curcumin mediates renal fibrosis progression by regulating the circular RNA (circRNA)-related pathway remain unclear. METHODS TGF-β1 was used to construct renal injury and fibrosis cell model. Cell growth was evaluated by cell counting kit 8 assay, EdU assay and flow cytometry. Fibrosis marker and interleukin 6 signal transducer (IL6ST) protein levels were measured using western bolt analysis. Inflammation factor concentrations were determined by ELISA. Circ_0008925, miR-204-5p and IL6ST expression was assessed by qRT-PCR. Unilateral ureteral obstruction (UUO) mice models were constructed to assess the role of curcumin in vivo. RESULTS Curcumin treatment alleviated TGF-β1-induced HK-2 cell apoptosis, inflammation and fibrosis in vitro, as well as relieved renal injury in UUO mice models in vivo. Circ_0008925 was highly expressed in TGF-β1-induced HK-2 cells and its expression was inhibited by curcumin. Circ_0008925 could sponge miR-204-5p to positively regulate IL6ST. The inhibition effect of curcumin on TGF-β1-induced HK-2 cell injury and fibrosis was reversed by circ_0008925 overexpression, miR-204-5p inhibitor or IL6ST upregulation. Besides, circ_0008925 knockdown inhibited TGF-β1-induced HK-2 cell injury and fibrosis by suppressing IL6ST expression. CONCLUSION Curcumin relieved renal fibrosis through regulating circ_0008925/miR-204-5p/IL6ST axis.
Collapse
Affiliation(s)
- Peng An
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xingyao Li
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yanhong Zhao
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Liuyun Li
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yafeng Wang
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wenfang Wang
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tao Zhang
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Sicen Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xili Wu
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Liang L, Dong Z, Shen Z, Zang Y, Yang W, Wu L, Bao L. Inhibitory effects of umbelliferone on carbon tetrachloride-induced hepatic fibrosis in rats through the TGF‑β1‑Smad signaling pathway. Mol Med Rep 2025; 32:171. [PMID: 40242963 PMCID: PMC12020354 DOI: 10.3892/mmr.2025.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatic fibrosis (HF) is a critical marker of advanced‑stage chronic liver disease and involves pivotal contributions from hepatic stellate cells (HSCs). Currently, there are no effective treatments for HF. Umbelliferone (7‑hydroxycoumarin; UMB) is a natural compound with significant anti‑inflammatory, antioxidant and anti‑tumor activities. However, its potential efficacy in treating HF has not been studied. The present study explored the protective effects of UMB against HF, targeting the TGF‑β1‑Smad signaling pathway to explore the underlying mechanisms of UMB. Carbon tetrachloride (CCl4) was injected intraperitoneally to induce HF in rats and primary HSCs were treated in vitro with UMB to investigate the improvement effect of UMB on HF. The levels of fibrosis markers, inflammation, oxidative stress and TGF‑β1‑Smad signaling pathway in the rat liver tissue and HSCs were detected using hematoxylin and eosin staining, enzyme‑linked immunosorbent assay, reverse transcription‑quantitative PCR, Cell Counting Kit‑8 and western blotting. The improvement in liver histopathology, liver function indexes and fibrosis markers demonstrated that UMB markedly inhibited the CCl4‑induced HF and inflammation in the rats. Additionally, UMB prominently reduced the pro‑inflammatory factors and oxidative stress levels. In vitro, UMB markedly inhibited primary HSC activation and decreased alpha‑smooth muscle actin and collagen I expression. The mechanism experiment proved that UMB inhibited the TGF‑β1‑Smad signaling pathway and ameliorated HF. The present study was the first to demonstrate, to the best of the authors' knowledge, that UMB might be a promising natural active compound for treating HF. Its therapeutic effect is associated with its modulation of the TGF‑β1‑Smad signaling pathway.
Collapse
Affiliation(s)
- Lijuan Liang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Ziqing Shen
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Yifan Zang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Wenlong Yang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Lan Wu
- Mongolia Medical School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Lidao Bao
- Department of Pharmacy, Hohhot First Hospital, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| |
Collapse
|
13
|
Yang S, Pan H, Wang T, Zhou X, Fan L, Xiao H, Zhou Z, Xiao Y, Shi D. Bacillus paralicheniformis-mediated gut microbiota promotes M2 macrophage polarization by inhibiting P38 MAPK signaling to alleviate necrotizing enterocolitis and apoptosis in mice. Microbiol Res 2025; 296:128136. [PMID: 40081233 DOI: 10.1016/j.micres.2025.128136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Clostridial necrotizing enterocolitis is a severe gastrointestinal disease induced by Clostridium, strongly associated with intestinal dysbiosis. Fecal microbiota transplantation (FMT) has proven effective in treating gastrointestinal diseases by remodeling intestinal microbial homeostasis. However, it remains unclear whether FMT from donors with beneficial microbiota can improve the recipient's intestinal function more efficiently. This study found that probiotic Bacillus paralicheniformis SN-6-mediated gut microbiota effectively prevent Clostridial necrotizing enteritis and explored the underlying molecular mechanisms. Data demonstrated that SN-6 altered gut microbiota composition, ameliorated Clostridium perfringens-induced intestinal microbiota dysbiosis and metabolic reprogramming, particularly enhancing tryptophan metabolism. This led to a marked reduction in intestinal barrier damage and inflammation. FMT from SN-6-treated mice reduced jejunal inflammation in Clostridium perfringens-infected mice, strengthened jejunal barrier and enriched beneficial bacteria, such as Lactobacillus, Blautia, Akkermansia. Furthermore, 3-indoleacetic acid (IAA), a metabolite enriched by SN-6, activated aryl hydrocarbon receptor (AhR), suppressed the P38 mitogen-activated protein kinase (P38 MAPK) signaling, and drove macrophage polarization from M0 to M2-type, thereby reducing apoptosis and excessive inflammation. This study highlights Bacillus paralicheniformis SN-6 as a key modulator of intestinal immunomodulation via the gut microbiota-IAA-AhR-P38 MAPK axis, offering a potential therapeutic target for preventing and controlling clostridial necrotizing enteritis.
Collapse
Affiliation(s)
- Shumin Yang
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huachun Pan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tingyang Wang
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xinxin Zhou
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lele Fan
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongde Xiao
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zutao Zhou
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuncai Xiao
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Deshi Shi
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Wang D, Zhou Y, Yang N, Liu J, Lu L, Gao Z. SIRT6 mitigates acute kidney injury by enhancing lipid metabolism and reducing tubular epithelial cell apoptosis via suppression of the ACMSD signaling pathway. Cell Signal 2025; 131:111757. [PMID: 40120964 DOI: 10.1016/j.cellsig.2025.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Acute kidney injury (AKI) remains a critical condition with substantial morbidity and mortality in hospitalized patients. Emerging research has underscored the protective role of SIRT6 in kidney diseases through diverse signaling pathways. Our current report aimed to elucidate the mechanisms by which SIRT6 mitigated the progression of AKI. Immunohistochemical and Oil Red O staining techniques were employed to assess the expression of SIRT6 and lipid metabolism in both AKI patients and AKI mice treated with UBCS039, a specific SIRT6 activator (30 mg/kg, i.p.). Kidney tissues from AKI mice were analyzed using LC-MS/MS to uncover SIRT6-related signaling pathways involved in AKI. Additionally, human proximal renal tubule cells (HK-2) were exposed to UBCS039 or transfected pcDNA3.1-SIRT6 overexpression plasmid to investigate the underlying signaling mechanisms of SIRT6 on lipid metabolism using Western blotting analysis and Oil Red O staining. Gene expression levels of ACMSD was detected by qRT-PCR and Western blotting in HK-2 cells. Dual-luciferase reporter assay was used to verify the effect of SIRT6 on regulating ACMSD transcription. Our findings revealed a significant reduction in SIRT6 expression in both AKI patients and AKI mice. Treatment with UBCS039, however, significantly decreased lipid accumulation and apoptosis in AKI mice. Proteomic analysis and Dual-luciferase reporter assay identified ACMSD as a downstream target of SIRT6. In vitro studies further demonstrated that SIRT6 enhanced lipid metabolism and mitigated apoptosis through the inhibition of ACMSD expression. This study demonstrated that SIRT6 promoted lipid metabolism by inhibiting the ACMSD pathway, thereby reducing apoptosis in AKI. These findings suggested that targeting ACMSD could offer a novel therapeutic strategy for SIRT6-mediated intervention in AKI.
Collapse
Affiliation(s)
- Dan Wang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Emergency and Intensive Care, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yugang Zhou
- Department of Emergency and Intensive Care, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Na Yang
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jingjing Liu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Li Lu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zhao Gao
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
15
|
Zhang Y, Deng J, Lang M, Shu G, Pan J, Zhang C, Cheng R, Sun SK. Large-scale synthesis of non-ionic bismuth chelate for computed tomography imaging in vivo. Biomaterials 2025; 318:123122. [PMID: 40032441 DOI: 10.1016/j.biomaterials.2025.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
High atomic number elements-based X-ray computed tomography (CT) contrast agents offer a promising solution to address the inherent deficiencies of FDA-approved iodine contrast agents. However, they face substantial challenges in balancing imaging performance, safety, and large-scale production for clinical translation. Herein, inspired by the history of clinical gadolinium- and iodine-based contrast agents, we report a large-scale approach for synthesizing non-ionic bismuth (Bi) chelate for high-performance CT imaging in vivo. Bi-HPDO3A can be easily obtained from low-cost precursor within 4 steps at 6 g-scale. The non-ionic macrocyclic structure endows it with low osmolality, low viscosity, high stability, good renal clearable capability and biocompatibility. Additionally, Bi-HPDO3A realizes superior imaging performance across various in vivo applications, including gastrointestinal imaging, renal imaging, and computed tomography angiography (CTA). Especially, Bi-HPDO3A exhibits superior spectral imaging capability owing to the high K-edge of element Bi, achieving metal artifact-free CTA in vivo. The proposed Bi-HPDO3A that balances overall performance can serve as a high-performance CT contrast agent with potential for clinical translation.
Collapse
Affiliation(s)
- Yuping Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jianqi Deng
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Mingbin Lang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Gang Shu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cai Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ran Cheng
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
16
|
Wu S, Chen Q, Yang X, Zhang L, Huang X, Huang J, Wu J, Sun C, Zhang W, Wang J. The KSR1/MEK/ERK signaling pathway promotes the progression of intrauterine adhesions. Cell Signal 2025; 131:111730. [PMID: 40089092 DOI: 10.1016/j.cellsig.2025.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Kinase suppressor of Ras 1 (KSR1) serves as a scaffold protein within the RAS-RAF pathway and plays a role in tumorigenesis, immune regulation, cell proliferation, and apoptosis. However, the specific role of KSR1 in the formation and progression of fibrotic diseases, such as intrauterine adhesions (IUA), remains unclear. This study aims to investigate KSR1 expression in IUA and the mechanisms underlying its role in promoting IUA progression. KSR1 was found to be significantly overexpressed in the endometrium of both IUA model rats and patients with IUA. KSR1 is positively involved in the regulation of proliferation, migration, and fibrosis (FN1, Collagen I, α-SMA) in immortalized human endometrial stromal cells (THESCs). Furthermore, KSR1 knockdown was observed to inhibit the fibrosis, proliferation, and migration of transforming growth factor-β1 (TGF-β1)-induced THESCs. Further studies demonstrated that the key proteins of the MEK/ERK signaling pathway, p-MEK1 and p-ERK1/2, were significantly overexpressed in the uterus of IUA rats. In vitro rescue experiments confirmed that the MEK/ERK pathway inhibitor U0126 (An ERK inhibitor) effectively suppressed the enhanced fibrosis, proliferation, and migration induced by KSR1 overexpression. In conclusion, this study demonstrates that KSR1 promotes IUA by enhancing proliferation, migration, and fibrosis of endometrial stromal cells via the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Qiuhong Chen
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Lulu Zhang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Xiyue Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jinglin Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jiangling Wu
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| | - Wenwen Zhang
- Department of Pathology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| | - Jia Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| |
Collapse
|
17
|
Zhu W, Yang Y, Yu B, Wu C, He Y, Peng F, Tao Y, Meng Q, Meng J, Zheng Y, Wang C, Ding C, Yu L. Supramolecular dye self-assembly mediated by host-guest interactions for the sensitive and portable detection of pyrene derivatives in environmental samples and urine. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137799. [PMID: 40048780 DOI: 10.1016/j.jhazmat.2025.137799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), especially pyrene, are hazardous pollutants with serious health risks. Effective detection methods for PAHs are essential for environmental monitoring. In this study, we construct a simple, efficient method to detect pyrene derivatives in water. A squaraine dye (J3-Ad) with dual host-guest sites was synthesized and paired with a β-cyclodextrin dimer (H2-CD) to regulate host-guest interactions. In the presence of pyrenes, J3-Ad monomers in the J3-Ad/H2-CD mixture (JH-AC) are displaced by pyrenes and self-assemble into H-aggregates, resulting in a ∼135 nm absorption spectral shift. The transformation was confirmed through Scanning Electron Microscope (SEM), Dynamic Light Scattering (DLS), and Density Functional Theory (DFT) analysis. The system showed high sensitivity, with detection limits of 1.76 nmol/L for pyrene and 60.02 nmol/L for 1-hydroxypyrene (1-OHP), along with strong anti-interference and reliable colorimetric recognition. A smartphone-based, real-time detection platform was developed for visual monitoring of pyrene in soil and vegetables. Pyrene in tap water and river water, as well as 1-OHP in urine, were successfully detected, with acceptable recovery rates and a relative standard deviation (RSD) of less than 10.14 %. This work provides a sensitive, rapid, and visual method for tracking PAH pollution, offering significant potential for practical, on-site environmental applications.
Collapse
Affiliation(s)
- Wenxuan Zhu
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Yina Yang
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Bei Yu
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Chengqiu Wu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yazhen He
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Fangda Peng
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Yucun Tao
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Qingyu Meng
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Jing Meng
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Yuqiao Zheng
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province (Henan Hospital for Occupational Disease), Zhengzhou 45000, China
| | - Chunguang Ding
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Lijia Yu
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Health, NHC, Beijing 102308, China.
| |
Collapse
|
18
|
Xiong X, Du Y, Liu P, Li X, Lai X, Miao H, Ning B. Unveiling EIF5A2: A multifaceted player in cellular regulation, tumorigenesis and drug resistance. Eur J Pharmacol 2025; 997:177596. [PMID: 40194645 DOI: 10.1016/j.ejphar.2025.177596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
The eukaryotic initiation factor 5A2 gene (EIF5A2) is a highly conserved and multifunctional gene that significantly influences various cellular processes, including translation elongation, RNA binding, ribosome binding, protein binding and post-translational modifications. Overexpression of EIF5A2 is frequently observed in multiple cancers, where it functions as an oncoprotein. Additionally, EIF5A2 is implicated in drug resistance through the regulation of various molecular pathways. In the review, we describe the structure and functions of EIF5A2 in normal cells and its role in tumorigenesis. We also elucidate the molecular mechanisms associated with EIF5A2 in the context of tumorigenesis and drug resistance. We propose that the biological roles of EIF5A2 in regulating diverse cellular processes and tumorigenesis are clinically significant and warrant further investigation.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China; Guangzhou Institute of Burn Clinical Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Yanli Du
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China; Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Peng Liu
- Departments of Burn and Plastic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Xinye Li
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China; Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Xudong Lai
- Department of infectious disease, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Haixiong Miao
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China.
| | - Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China.
| |
Collapse
|
19
|
Gao Z. New insights into Smad3 in cardiac fibrosis. Gene 2025; 952:149418. [PMID: 40089084 DOI: 10.1016/j.gene.2025.149418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Damage to myocardial tissues, leading to myocardial fibrosis, is a significant pathological hallmark across various heart diseases. SMAD3, a central transcriptional regulator within the transforming growth factor-beta (TGF-β) signaling pathway, plays a pivotal role in the pathological progression of myocardial fibrosis and cardiac remodeling. It intricately regulates physiological and pathological processes encompassing cell proliferation, differentiation, tissue repair, and fibrosis. Notably, SMAD3 exerts crucial influences in myocardial fibrosis subsequent to myocardial infarction, pressure overload-induced myocardial fibrosis, diabetic cardiomyopathy (DCM), aging-associated cardiac fibrosis and myocarditis-related myocardial fibrosis. The targeted modulation of genes or the utilization of compounds, including traditional Chinese medicine (paeoniflorin, baicalin, and genistein et al.) and other pharmaceutical agents that modulate SMAD3, may offer avenues for restraining the pathological cascade of myocardial fibrosis. Consequently, targeted regulation of SMAD3 associated with myocardial fibrosis may herald novel therapeutic paradigms for ameliorating myocardial diseases.
Collapse
Affiliation(s)
- Zhen Gao
- Liaocheng Vocational and Technical College, Shandong, China.
| |
Collapse
|
20
|
Zhang J, Guo H, Gong C, Shen J, Jiang G, Liu J, Liang T, Guo L. Therapeutic targets in the Wnt signaling pathway: Treating cancer with specificity. Biochem Pharmacol 2025; 236:116848. [PMID: 40049295 DOI: 10.1016/j.bcp.2025.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 04/20/2025]
Abstract
The Wnt signaling pathway is a critical regulatory mechanism that governs cell cycle progression, apoptosis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, and the tumor immune microenvironment, while also maintaining tissue homeostasis. Dysregulated activation of this pathway is implicated in various cancers, closely linked to tumor initiation, progression, and metastasis. The Wnt/β-catenin axis plays a central role in the pathogenesis of common cancers, including colorectal cancer (CRC), breast cancer (BC), liver cancer, and lung cancer. Unlike traditional chemotherapy, targeted therapy offers a more precise approach to cancer treatment. As a key regulator of oncogenesis, the Wnt pathway represents a promising target for clinical interventions. This review provides a comprehensive analysis of the Wnt signaling pathway, exploring its roles in tumor biology and its implications in human malignancies. It further examines the molecular mechanisms and modes of action across different cancers, detailing how the Wnt pathway contributes to tumor progression through mechanisms such as metastasis promotion, immune modulation, drug resistance, and enhanced cellular proliferation. Finally, therapeutic strategies targeting Wnt pathway components are discussed, including inhibitors targeting extracellular members, as well as those within the cell membrane, cytoplasm, and nucleus. The potential of these targets in the development of novel therapeutic agents underscores the critical importance of intervening in the Wnt signaling pathway for effective cancer treatment.
Collapse
Affiliation(s)
- Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Chengxuan Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Guijie Jiang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiarui Liu
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China.
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
21
|
Nakagawa T, Honda T, Inagaki S, Yuasa T, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Aouimeur I, Vaitinadapoule H, Travers G, He Z, Gain P, Koizumi N, Thuret G, Okumura N. Involvement of TGF-β signaling pathway-associated genes in the corneal endothelium of patients with Fuchs endothelial corneal dystrophy. Exp Eye Res 2025; 255:110334. [PMID: 40081749 DOI: 10.1016/j.exer.2025.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study investigated the involvement of TGF-β signaling pathway-associated genes in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). The RNA-sequencing analysis of corneal endothelial cells (CECs) from FECD patients revealed significant alterations in multiple TGF-β superfamily genes, with 9 genes upregulated (including BMP6, GDF5, and TGF-β2) and 10 genes downregulated (including BMP2, NOG, and INHBA) compared to controls. Quantitative PCR validation confirmed the elevated expression of GDF5 (3.35-fold in non-expanded and 7.66-fold in expanded TCF4), TGF-β2 (6.17-fold and 11.5-fold), and TGF-β1 (1.78-fold and 1.58-fold) in FECD patients with and without TCF4 trinucleotide repeat expansion. Ex-vivo experiments using donor corneas demonstrated that TGF-β2 stimulation significantly increased the expression of extracellular matrix (ECM) components associated with guttae formation, including fibronectin, types I and VI collagens, and other matrix proteins. Immunofluorescence confirmed increased fibronectin protein expression in the corneal endothelium following TGF-β1 or TGF-β2 treatment. This study provides the first comprehensive analysis of TGF-β superfamily involvement in FECD and suggests that GDF5, found to be upregulated in FECD, may contribute to the disease process. These findings further indicate that dysregulation of TGF-β signaling pathways drives the characteristic ECM accumulation in FECD, potentially offering new therapeutic targets for this progressive corneal disease involving fibrosis-related alterations. Future research is warranted to clarify GDF5's specific role and mechanistic impact on FECD pathogenesis.
Collapse
Affiliation(s)
- Tatsuya Nakagawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tetsuro Honda
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Soichiro Inagaki
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ines Aouimeur
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Hanielle Vaitinadapoule
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Gauthier Travers
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Zhiguo He
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Philippe Gain
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France; Ophthalmology Department, University Hospital, Saint-Etienne, France
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Gilles Thuret
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France; Ophthalmology Department, University Hospital, Saint-Etienne, France.
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| |
Collapse
|
22
|
Ni Y, Yang W, Wang S, Pan Y, Du H, Zheng L, Cai C, Fu Z, He Q, Jin J, Zhang P. Modified huangfeng decoction alleviates diabetic nephropathy by activating autophagy and regulating the gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156677. [PMID: 40133024 DOI: 10.1016/j.phymed.2025.156677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the complications with the highest mortality among diabetes patients and can lead to renal failure. Modified Huangfeng decoction (MHD) has been widely applied in the clinical treatment of kidney diseases. However, the mechanism by which MHD affects DN has not been fully elucidated. PURPOSE To investigate the impact of MHD on DN in mice and the underlying mechanism. METHODS The main ingredients of MHD were identified by liquid chromatography‒mass spectrometry. A high-fat diet- and streptozotocin (STZ)-induced DN mouse model was constructed and treated with MHD for 6 weeks. The serum and urine parameters were measured, and the tissue sections were histologically stained. The mRNA and protein levels of metabolism-, inflammation-, fibrosis-, and autophagy-related markers were examined by qPCR and western blotting. The microbial composition and metabolites of cecal contents were analyzed through full-length 16S rRNA sequencing and nontargeted metabolomics. RESULTS MHD alleviated insulin resistance in DN mice and ameliorated changes in lipid metabolism and inflammation in the liver and fat. In addition, MHD reduced the levels of kidney injury markers in the serum and urine and attenuated inflammation and fibrosis in the kidney. These results were accompanied by enhanced gut barrier function and a markedly altered microbiota composition and metabolites, with an increased abundance of beneficial bacterial species and metabolites. Moreover, MHD itself and the microbial metabolite spermidine reduced podocyte damage by activating autophagy via the PI3K/AKT/mTOR pathway. CONCLUSIONS MHD potentially ameliorated DN by activating podocyte autophagy via the PI3K/AKT/mTOR pathway and modulating the gut microbiota and its metabolites. Our findings provide a more comprehensive understanding of the mechanism of MHD and the involvement of the gut‒kidney interaction in the progression of DN, laying a theoretical foundation for the clinical application of MHD in DN treatment.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| | - Wenlong Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Sisi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yuxiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Haimei Du
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China; Zhejiang Key Laboratory of Research and Translation for Kidney Deficiency-Stasis-Turbidity Disease, Hangzhou, 310000, PR China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China; Zhejiang Key Laboratory of Research and Translation for Kidney Deficiency-Stasis-Turbidity Disease, Hangzhou, 310000, PR China
| | - Peipei Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
| |
Collapse
|
23
|
Uranbileg B, Hoshino Y, Ezaka M, Kurano M, Uchida K, Yatomi Y, Ito N. Metabolism of sphingolipids in a rat spinal cord stenosis model. Biochem Biophys Rep 2025; 42:102025. [PMID: 40342530 PMCID: PMC12059668 DOI: 10.1016/j.bbrep.2025.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025] Open
Abstract
Background Lumbar spinal canal stenosis (LSCS) plays a crucial role in neurogenic claudication and neuropathic pain. Recent studies suggest that changes in sphingolipid metabolism are linked to neuropathic pain. To explore the association between sphingolipids and LSCS, we measured the levels of sphingolipids and sphingolipid-associated molecules in an animal model of cauda equina compression (CEC), a typical type of LSCS. Methods By placing silicon blocks within the lumbar epidural space, CEC model were constructed in which motor disfunction had already been confirmed in our previous study. Quantitative measurements of various sphingolipids were conducted using LC-MS/MS in spinal cord and cerebrospinal fluid (CSF) samples on days 1, 7, and 28 following insertion of silicon blocks. Additionally, gene expression was analyzed in spinal cord tissue. Results In the CEC model, there was a significant increase ceramide levels in the CSF with upregulation of ceramide synthase 1 in the spinal cord tissue samples on day 1. Further, S1P levels in the CSF increased on day 7 and in the spinal cord significantly increased on day 28, and there was an increase in mRNA expression levels of sphingosine kinases (SphK)1 on days 1,7, and 28, while SphK2 on days 7 and 28. Regarding S1P receptors, there was an increase in mRNA expression levels of S1P1 on days 1,7, and 28 and S1P3 on day1. Conclusion The production and activation of the sphingolipid signaling pathway could play a pivotal role in neuropathic pain related to LSCS.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Hoshino
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Mariko Ezaka
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanji Uchida
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
24
|
Zhang ZY, Wang YM, Wang N, Wang YS, Zhang H, Wang D, Wang LX, Cui HT, Wen WB, Lv SQ, Cao YJ. Shenzhuo formulation ameliorates diabetic nephropathy by regulating cytochrome P450-mediated arachidonic acid metabolism. World J Diabetes 2025; 16:103511. [DOI: 10.4239/wjd.v16.i5.103511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major complication of diabetes, marked by progressive renal damage and an inflammatory response. Although research has investigated the pathological mechanisms underlying DN, effective treatment options remain limited.
AIM To evaluate the therapeutic impact of Shenzhuo formulation (SZF) on a DN mouse model and to examine its potential molecular mechanisms using transcriptomic and metabolomic approaches.
METHODS We established a DN mouse model through a high-fat diet combined with streptozotocin (STZ) injection, followed by SZF treatment. We analyzed SZF’s effects on gene expression and metabolite profiles in renal tissues of DN mice using transcriptomics and metabolomics techniques. Additionally, based on transcriptomic and non-targeted metabolomic findings, we further assessed SZF’s influence on the expression of factors related to the cytochrome P450 (CYP450)-mediated arachidonic acid (AA) metabolism pathway, as well as its effects on inflammation and oxidative stress.
RESULTS SZF intervention significantly decreased hyperglycemia and mitigated renal function impairment in DN mice. Pathological analysis revealed that SZF treatment improved renal tissue damage, reduced fibrosis, and diminished glycogen deposition. Transcriptomic analysis indicated that SZF influenced mRNA expression of CYP450-related genes, including Cyp2j13, Cyp2b9, Pla2 g2e/Cyp4a12a, Cyp4a32, Cyp2e1, and Cyp4a14. Non-targeted metabolomic results demonstrated that SZF altered the levels of metabolites associated with the AA metabolic pathway, including 5,6-EET, 14,15-EET, phosphatidylcholine, and 20-HETE. Further experiments showed that SZF upregulated the expression of CYP4A and CYP2E proteins in renal tissue, as well as CYP2J and CYP2B proteins. Additionally, SZF significantly reduced the expression of inflammatory factors in renal tissue, enhanced antioxidant enzyme activity, and alleviated oxidative stress.
CONCLUSION SZF exerts anti-inflammatory and antioxidant effects by regulating CYP450-mediated AA metabolism, leading to improved renal function and improved pathological state in DN mice.
Collapse
Affiliation(s)
- Zhong-Yong Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061012, Hebei Province, China
| | - Yu-Ming Wang
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ning Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Yuan-Song Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061012, Hebei Province, China
| | - Hui Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061012, Hebei Province, China
| | - Duo Wang
- North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Li-Xin Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061012, Hebei Province, China
| | - Huan-Tian Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Wei-Bo Wen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Shu-Quan Lv
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061012, Hebei Province, China
| | - Yong-Jun Cao
- Department of Endocrinology, Nantong Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nantong 226000, Jiangsu Province, China
| |
Collapse
|
25
|
Jiao Q, Xu X, Xu L, Wang Y, Pang S, Hao J, Liu X, Zhao Y, Qi W, Qin L, Huang T, Li J, Wang T. Knockdown of eIF3a alleviates pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition via TGFβ1/SMAD pathway. J Transl Med 2025; 23:524. [PMID: 40346622 DOI: 10.1186/s12967-025-06505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/13/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by vascular remodeling and involves Endothelial-to-Mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs). EndMT is a complex cell differentiation process, mainly showing the detachment of endothelial cell migration and reducing endothelial cell characteristics to varying degrees, acquiring mesenchymal cell characteristics. In addition, numerous studies have reported that eIF3a over expression plays an important role in the occurrence and development of fibrotic diseases, cancer, and degenerative lesions, however, the mechanisms of eIF3a affecting the dysfunction of pulmonary arterial endothelial cells remains largely unknown. Therefore, we aimed to demonstrate the underlying mechanisms of eIF3a-knockdown inhibiting EndMT by regulating TGFβ1/SMAD signal pathway in PAH. METHODS In this study, we screened the potential target genes associated with idiopathic pulmonary arterial hypertension (IPAH) by WGCNA to provide a reference for the diagnosis and treatment of PAH. By constructing WGCNA, which indicated that the blue module (module-trait associations between modules and clinical feature information were calculated to selected the optimum module) is most closely associated with IPAH, we further screened out 10 up-regulated candidate biomarker genes. Male SD rats were randomly assigned to four groups: Control, Monocrotaline (MCT), AAV1-shRNA-NC group and AAV1-shRNA-eIF3a group. The eIF3a-knockdown rat model was constructed by adeno-associated virus type-1 (AAV1) infection, PAH was evaluated according to hemodynamic alteration, right heart hypertrophy and histopathological changes in the lung tissue. Hematoxylin eosin (H&E) staining was used to assess the morphological changes of pulmonary arteries in rats of each treatment group. Co-localization of eIF3a with alpha-small muscle action (α-SMA) and co-localization of eIF3a with endothelial marker (CD31) were detected by double-label immunofluorescence. Immunohistochemistry (IHC) and Western blot (WB) experiments were performed to assess the expression of eIF3a, EndMT and TGFβ1/SMAD signal related proteins. In vitro, primary rat pulmonary artery endothelial cells (PAECs) were transfected with si-eIF3a to investigate the effects of eIF3a-knockdown on hypoxia-induced EndMT in PAECs and further elucidate its underlying molecular mechanisms. RESULTS By WGCNA analysis, we screened the up-regulated hub genes of TMF1, GOLGB1, ARMC8, PRPF40 A, EIF3 A, ROCK2, EIF5B, CCP110, and KRR1 associated with PAH, and in order to verify the potential role of eIF3a in the development of pulmonary arterial hypertension, MCT-induced PAH rat model was constructed successfully. The expression of eIF3a was increased in MCT-treated lungs. Knockdown of eIF3a significantly inhibited the pulmonary arterial hypertension and vascular remodeling in MCT-induced PAH rat model, ameliorated MCT-induced increases of right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) in rats. Double-labeled immunofluorescence showed eIF3a was mostly co-localized with CD31, this result indicated that the development of MCT-induced PAH was related to the regulation of PAECs function (most likely associated with the change of EndMT in endothelial cells). WB showed that the expressions of EndMT related proteins were significantly increased by regulating TGFβ1/SMAD signaling pathway in MCT-induced PAH rat lung tissues, however, knockdown of eIF3a markedly attenuated these changes. In addition, we observed the same results in rat PAECs with chronic hypoxia exposure. These results indicate that eIF3a-knockdown inhibited EndMT by regulating TGFβ1/SMAD signaling pathway in PAECs, thereby improving the development of MCT-induced PAH. CONCLUSIONS Knockdown of eIF3a inhibited EndMT in PAECs regulating TGFβ1/SMAD signaling pathway, significantly alleviated the changes of RVSP, RVH and vascular remodeling in MCT-induced PAH rats, eIF3a may be a promising and novel therapeutic target for the treatment of PAH.
Collapse
Affiliation(s)
- Qiuhong Jiao
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Xiufeng Xu
- Department of Geriatrics, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Longwu Xu
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yuying Wang
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Shulan Pang
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Jie Hao
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaohong Liu
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yudan Zhao
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Wanpeng Qi
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Limin Qin
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Tao Huang
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Jingtian Li
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Tao Wang
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China.
| |
Collapse
|
26
|
Cai N, Zhu SY, Huang JJ, Chen YX, Huang C, Qin XH. Rituximab, tacrolimus, cyclophosphamide and cyclosporin in primary membranous nephropathy with nephrotic syndrome: comparison of safety profiles, effect on remission rate, 24-h urinary total protein, serum albumin, and serum creatinine levels using network meta-analysis. Int Urol Nephrol 2025:10.1007/s11255-025-04549-4. [PMID: 40338506 DOI: 10.1007/s11255-025-04549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE To compare the efficacy and safety of four immunosuppressive therapies, either alone or in combination, for primary membranous nephropathy through a network meta-analysis. METHODS A literature search was conducted for randomized controlled trials (RCTs) of Cyclophosphamide (CTX), Cyclosporin (CsA), Tacrolimus (TAC), and Rituximab (RIT) in the treatment of primary membranous nephropathy. Two researchers independently screened articles, extracted data, and evaluated the quality. Outcome indicators included dichotomous variables and continuous variables, which were represented by risk ratios (RR) and mean differences (MD), respectively. Then, various interventions were ranked according to the surface under the cumulative ranking curve (SUCRA). RESULTS A total of 21 randomized controlled trials (RCTs) were included, encompassing 1396 patients. In terms of the overall response rate (ORR), RIT+TAC was superior to CsA (RR = 0.15, 95% CI: 0.04, 0.54), CTX (RR = 0.09, 95% CI: 0.03, 0.31), and RIT (RR = 7.06, 95% CI: 2.29, 21.80). The SUCRA value of RIT+TAC was the highest, reaching 93.5%. Regarding the total 24-h urinary protein (24UTP), RIT+TAC was better than RIT (MD = 17.05, 95% CI: 6.49, 44.79), RIT+CTX (MD = 6.99, 95% CI: 2.55, 19.17), TAC (MD = 0.12, 95% CI: 0.07, 0.18), CsA (MD = 0.06, 95% CI: 0.00, 0.86), and CTX (MD = 0.05, 95% CI: 0.03, 0.10). The SUCRA value of RIT+TAC was the highest, at 99.4%. For serum albumin, RIT+CTX was superior to CTX (MD = 0.00, 95% CI: 0.00, 0.29), and the SUCRA value of RIT+CTX was the highest, at 76.7%. For serum creatinine (Scr), RIT+TAC was better than TAC (MD = 0.00, 95% CI: 0.00, 0.13), and CsA was better than TAC (MD = 7.86e+07, 95% CI: 3.65e+06, 1.69e+09). The SUCRA value of RIT+TAC was the highest, at 79.9%. In terms of the incidence of adverse reactions, CTX had a higher rate than RIT+CTX (RR = 11.12, 95% CI: 1.34, 92.15). The SUCRA value of RIT+CTX was the lowest, at 5.3%. CONCLUSION In terms of improving ORR, reducing 24UTP and lowering Scr, the RIT+TAC regimen may be the most optimal. Conversely, RIT+CTX demonstrated the best efficacy in improving ALB and also exhibited relatively better safety profile.
Collapse
Affiliation(s)
- Ni Cai
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 of Minde Road, Nanchang, 330006, Jiangxi, China
| | - Shu-Ying Zhu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 of Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jin-Jing Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 of Minde Road, Nanchang, 330006, Jiangxi, China
| | - Yan-Xia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 of Minde Road, Nanchang, 330006, Jiangxi, China
| | - Chong Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 of Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiao-Hua Qin
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 of Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
27
|
Jiang M, Bu W, Wang X, Ruan J, Shi W, Yu S, Huang L, Xue P, Tang J, Zhao X, Su L, Cheng D. Pulmonary fibrosis: from mechanisms to therapies. J Transl Med 2025; 23:515. [PMID: 40340941 PMCID: PMC12063347 DOI: 10.1186/s12967-025-06514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/18/2025] [Indexed: 05/10/2025] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive interstitial lung disease characterized by excessive deposition of extracellular matrix (ECM) and abnormal fibroblast proliferation, which is mainly caused by air pollution, smoking, aging, occupational exposure, environmental pollutants exposure, and microbial infections. Although antifibrotic agents such as pirfenidone and nintedanib, approved by the United States (US) Food and Drug Administration (FDA), can slow the decline in lung function and disease progression, their side effects and delivery inefficiency limit the overall prognosis of PF. Therefore, there is an urgent need to develop effective therapeutic targets and delivery approaches for PF in clinical settings. This review provides an overview of the pathogenic mechanisms, therapeutic drug targeting signaling pathways, and promising drug delivery strategies for treating PF.
Collapse
Affiliation(s)
- Mengna Jiang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Jialing Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Weijian Shi
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Siqi Yu
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, 334000, China
| | - Lizhen Huang
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, 334000, China
| | - Peng Xue
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, 334000, China.
| | - Demin Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
28
|
Wang L, Qiu T, Xu F, Zhang L, Zhang C, Ye W. Fabricate heparin-mimic thin gel layers for vascular cell selective regulation using 5-hydroxydopamine cross-linked chitosan and sulfonated polymers. Int J Biol Macromol 2025; 311:144027. [PMID: 40345300 DOI: 10.1016/j.ijbiomac.2025.144027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
In this work, 5-hydroxydopamine was employed as a crosslinking agent to bind chitosan and sulfonated polymers to fabricate thin gel layers (TGLs) featuring heparin-mimic structures. By controlling the distribution of exposed chemical moieties (phenolic hydroxyl, amino, and sulfonic groups), the growth of the endothelial cell (EC) and smooth muscle cell (SMC) on the TGLs surfaces could be modulated. Such modulation effectively maintained the quantity and proportion of the two cell types within a reasonable range, thereby offering a potential avenue for promoting re-endothelialization. The prepared TGLs showed improved hydrophilicity as well as hemocompatibility. For cytocompatibility test, TGLs led to a notable promotion of the growth of human umbilical vein endothelial cells (HUVECs) and exerted substantial inhibitory effects on the proliferation of human umbilical artery smooth muscle cells (HUASMCs). The ratio of HUVECs to HUASMCs rose from 0.184 to 1.97. The enhanced hemocompatibility was attributed to the incorporation of exposed functional groups. Regarding the highly selective effects, these were ascribed to the synergistic influence of high sulfonation degree and the presence of amino groups and phenolic hydroxyl groups. The current work illustrated a simple method for synthesizing a multifunctional biomimetic polymer material that offers the promise of broader biomedical research applications.
Collapse
Affiliation(s)
- Lingren Wang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China.
| | - Tingting Qiu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Fan Xu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Linna Zhang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Chao Zhang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Wei Ye
- Department of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China.
| |
Collapse
|
29
|
Xia LY, Yu NR, Huang SL, Qu H, Qin L, Zhao QS, Leng Y. Dehydrotrametenolic acid methyl ester, a triterpenoid of Poria cocos, alleviates non-alcoholic steatohepatitis by suppressing NLRP3 inflammasome activation via targeting Caspase-1 in mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01569-9. [PMID: 40329004 DOI: 10.1038/s41401-025-01569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
Non-alcoholic steatohepatitis (NASH) has emerged as a prevalent chronic liver disease with a huge unmet clinical need. A few studies have reported the beneficial effects of Poria cocos Wolf (P. cocos) extract on NASH mice, but the active components were still unknown. In this study we investigated the therapeutic effects of dehydrotrametenolic acid methyl ester (ZQS5029-1), a lanosterol-7,9(11)-diene triterpenes in P. cocos, in a high-fat diet plus CCl4 induced murine NASH model and a GAN diet induced ob/ob murine NASH model. The NASH mice were treated with ZQS5029-1 (75 mg·kg-1·d-1, i.g.) for 6 and 8 weeks, respectively. We showed that ZQS5029-1 treatment markedly relieved liver injury, inflammation and fibrosis in both the murine NASH models. We found that ZQS5029-1 treatment significantly suppressed hepatic NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in both the NASH murine models, and blocked lipopolysaccharides (LPS)+adenosine 5'-triphosphate (ATP)/Nigericin-induced NLRP3 inflammasome activation in bone marrow-derived macrophages (BMDMs) and Kupffer cells in vitro. We demonstrated that ZQS5029-1 directly bound to the H236 residue of mouse Caspase-1, thereby inhibiting NLRP3 inflammasome activation. The effects of ZQS5029-1 on macrophage-hepatocyte/HSC crosstalk were analyzed using the supernatants from macrophages preconditioned with LPS + ATP introduced into hepatocytes and hepatic stellate cells (HSCs). We found that the conditioned medium from the BMDMs induced injury and death, as well as lipid accumulation in hepatocytes, and activation of HSCs; these effects were blocked by conditioned medium from BMDMs treated with ZQS5029-1. Moreover, the protective effects of ZQS5029-1 on hepatocytes and HSCs were eliminated by H236A-mutation of Caspase-1. We conclude that ZQS5029-1 is a promising lead compound for the treatment of NASH by inhibiting NLRP3 inflammasome activation through targeting Caspase-1 and regulating the macrophage-hepatocyte/HSC crosstalk.
Collapse
Affiliation(s)
- Ling-Yan Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nai-Rong Yu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qin-Shi Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Liang C, Ma Y, Ding M, Gao F, Yu K, Wang S, Qu Y, Hua H, Li D. Asiatic acid and its derivatives: Pharmacological insights and applications. Eur J Med Chem 2025; 289:117429. [PMID: 40015163 DOI: 10.1016/j.ejmech.2025.117429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Centella asiatica (L.) Urban has been utilized in wound healing remedies for nearly 3000 years. Asiatic acid (AA), a pentacyclic triterpenoid characterized by ursane-type skeleton, serves as principal bioactive constituent of Centella asiatica, exhibits remarkable therapeutic potential across a spectrum of health conditions. Pharmacological investigations have revealed that AA exerts direct regulatory effects on a multitude of enzymes, receptors, inflammatory mediators, and transcription factors. This article systematically examines the therapeutic applications of AA and its derivatives in the management of neurodegenerative diseases, cancer, cardiovascular disorders, and infections. Additionally, recent advancements in the structural modification of AA are summarized, offering new insights for the development of low-toxicity, effective AA-based therapeutics and diagnostic agents. However, several challenges remain, including the paucity of clinical trials, uncertainties in dosage and treatment regimens, limited data on long-term safety and side effects, and poor bioavailability. Addressing these limitations is crucial for advancing AA-based therapies and ensuring their clinical applicability.
Collapse
Affiliation(s)
- Chaowei Liang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yongzhi Ma
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Minni Ding
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Kewang Yu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Siyu Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Ying Qu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
31
|
Gao S, Zhang W, Gao X, Ye B, Hu W, Yang H, Chai H, Yang J, Tang Q, Zhao G, Zhu J. Cinnamaldehyde attenuates CCL 4-induced liver fibrosis by inhibiting the CYP2A6/Notch3 pathway. Arab J Gastroenterol 2025:S1687-1979(25)00059-0. [PMID: 40328565 DOI: 10.1016/j.ajg.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/08/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Hepatic stellate cells (HSCs) activation and hepatocyte injury contribute to liver fibrosis progression and subsequent cirrhosis. Literature showed that cinnamaldehyde (CA) could alleviate fibrosis procession and steatosis. However, its specific role in liver fibrosis remains largely unexplored. MATERIALS AND METHODS Liver fibrosis was induced in vivo, and CA was administered for 4 weeks. Liver inflammation, fibrosis, apoptosis, and proliferation were evaluated using histological, western blotting, and immunohistochemistry. CYP2A6 and Notch3 expression levels were also measured. In vitro, TGF-β stimulated LX2 cell activation was used, and siCYP2A6 was employed to evaluate the anti-fibrosis mechanism of CA. RESULTS CA effectively improved liver function and reduced fibrosis in CCL4-treated rats, significantly decreasing serum ALT, AST, GGT, TBIL, and HAase levels (all p < 0.05), with a notable increase in ALB in the high-dose group. Histologically, CA reduced hepatic disorganization and collagen proliferation, significantly diminishing fibrotic areas in the CA-H group (p < 0.05). CA also downregulated α-SMA and collagen I expression, and suppressed TGF-β activity. In TGF-β1-stimulated LX2 cells, CA treatment led to significant reductions in CYP2A6 and Notch3 expression (p < 0.05), highlighting its regulatory effects on key fibrotic pathways. CONCLUSIONS CA alleviated CCL4-induced liver fibrosis with inhibition of HSCs activation and liver inflammation and reduced hepatocyte apoptosis, potentially linked to the HSCs-mediated CYP2A6/Notch3 modulation.
Collapse
Affiliation(s)
- Sicheng Gao
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Wanyi Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Shanghai Zhongshan Community Health Center of Songjiang District of Shanghai China
| | - Xiaodi Gao
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Baiyang Ye
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Weiye Hu
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China
| | - Hailin Yang
- Department of Traditional Chinese Medicine, Changzheng Hospital Affiliated to Naval Medical University, Shanghai 200003, China.
| | - Haisheng Chai
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Jiangling Yang
- Department of Hepatology, Ningbo Beilun Hospital of Traditional Chinese Medicine, Ningbo 315800, China.
| | - Qinlin Tang
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Gang Zhao
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Junfeng Zhu
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| |
Collapse
|
32
|
Tak KY, Kim J, Park M, Kim W, Lee S, Park N, Kim MJ, Kang JB, Koh Y, Yang HY, Yum MK, Kim I, Yang YR, Jeong WI, Yang J, Lee C, Kim C, Park JE. Quasi-spatial single-cell transcriptome based on physical tissue properties defines early aging associated niche in liver. NATURE AGING 2025:10.1038/s43587-025-00857-7. [PMID: 40325195 DOI: 10.1038/s43587-025-00857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/27/2025] [Indexed: 05/07/2025]
Abstract
Aging is associated with the accumulation of senescent cells, which are triggered by tissue injury response and often escape clearance by the immune system. The specific traits and diversity of these cells in aged tissues, along with their effects on the tissue microenvironment, remain largely unexplored. Despite the advances in single-cell and spatial omics technologies to understand complex tissue architecture, senescent cell populations are often neglected in general analysis pipelines due to their scarcity and the technical bias in current omics toolkits. Here we used the physical properties of tissue to enrich the age-associated fibrotic niche and subjected them to single-cell RNA sequencing and single-nuclei ATAC sequencing (ATAC-seq) analysis and named this method fibrotic niche enrichment sequencing (FiNi-seq). Fibrotic niche of the tissue was selectively enriched based on its resistance to enzymatic digestion, enabling quasi-spatial analysis. We profiled young and old livers of male mice using FiNi-seq, discovered Wif1- and Smoc1-producing mesenchymal cell populations showing senescent phenotypes, and investigated the early immune responses within this fibrotic niche. Finally, FiNi-ATAC-seq revealed age-associated epigenetic changes enriched in fibrotic niche cells. Thus, our quasi-spatial, single-cell profiling method allows the detailed analysis of initial aging microenvironments, providing potential therapeutic targets for aging prevention.
Collapse
Affiliation(s)
- Kwon Yong Tak
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Juyeon Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Myungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wooseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seoyeong Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Narae Park
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Min Jeong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ju-Bin Kang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yongjun Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hae Young Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Min Kyu Yum
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheolju Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
33
|
Zhang Q, Bai B, Ran L, Zhang W. Identification of potential anti aging drugs and targets in chronic kidney disease. Sci Rep 2025; 15:15545. [PMID: 40319112 PMCID: PMC12049530 DOI: 10.1038/s41598-025-96985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/01/2025] [Indexed: 05/07/2025] Open
Abstract
Chronic kidney disease (CKD) is highly prevalent, incurable, and lacks effective treatments. Aging is closely linked to various kidney diseases. In this study, we combined CKD and aging using bioinformatics approaches to identify potential anti aging drugs and therapeutic targets for CKD. We analyzed datasets GSE37171 and GSE66494 from the GEO database, identifying 317 differentially expressed genes (DEGs). By intersecting these DEGs with aging related genes, we identified 23 aging associated differential genes (ARDEGs). A protein-protein interaction (PPI) network was constructed using the STRING database, and the top 10 hub ARDEGs were identified using Cytoscape software. Potential anti aging drugs, including Cinnamaldehyde, were identified through the ceRNA and transcription factor regulatory networks, as well as the DGldb database. Among the key regulatory genes identified in CKD patient samples were SOD2, FGF21, FOS, RELA, DDIT4, BMI1, DUSP6, LGALS3, CXCR2, and CEBPB. Cinnamaldehyde and other drugs were found to target aging associated pathways, suggesting their potential to delay CKD progression through modulating these pathways. Finally, we verified the low-expression of DDIT4 and DUSP6, the two targets of Cinnamaldehyde, in unilateral ureteral obstruction (UUO) animal model. Additionally, Cinnamaldehyde was shown to reduce the expression of fibrosis markers such as fibronectin (FN) and α-smooth muscle actin (α-SMA) in HK2 cells under TGF-β1 stimulation. This study provides a foundational understanding of aging related molecular targets in CKD and offers new directions for developing anti aging therapies to treat CKD.
Collapse
Affiliation(s)
- Qian Zhang
- Integrative Medicine & Healthy Center, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, 98 Fenghuang Road, Zunyi, 563002, Guizhou, China.
| | - Bing Bai
- Department of Nephrology, Affiliated Hospital of ZunYi Medical University, 201 Daliang Road, Zunyi, 563003, Guizhou, China
| | - Lidan Ran
- Department of Nephrology, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, 98 Fenghuang Road, Zunyi, 563002, Guizhou, China
| | - Wei Zhang
- Department of Geriatric Department, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, 98 Fenghuang Road, Zunyi, 563002, Guizhou, China
| |
Collapse
|
34
|
Cheng TY, Luo CS, Feng PH, Chen KY, Chang CC, Van Hiep N, Chen YH, Yeh YK, Wu SM. Polycyclic aromatic hydrocarbon-aryl hydrocarbon receptor signaling regulates chronic inflammation in lung-gut axis. Toxicol Appl Pharmacol 2025; 500:117359. [PMID: 40320014 DOI: 10.1016/j.taap.2025.117359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are broadly identified in environmental pollutants and also formed during the heat processing of meat, including grilling, roasting, smoking, and frying, particularly at high temperatures. Besides, the PAHs influence inflammatory response through activation of aryl hydrocarbon receptor (AhR) signaling. Recently, the role of the PAHs/AhR axis in inflammatory diseases has attracted major attention in the regulation of lung function, gut barrier function, and systemic inflammation. Many experiments have been conducted to determine the role of the PAHs/AhR/cytochrome P450 1A1 signaling activation on elevation of inflammation in the lung-gut axis. In contrast, several dietary AhR ligands can improve inflammatory function by modulating the AhR signaling, thereby strengthening the intestinal barrier. This review includes the pivotal roles of xenobiotic and diet-derived AhR ligands in the regulation of chronic lung diseases and systemic inflammation and their relevance in the lung-gut axis.
Collapse
Affiliation(s)
- Tzu-Yu Cheng
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Nguyen Van Hiep
- Oncology Center, Bai Chay Hospital, Quang Ninh, Ha Long, Vietnam; Department of Thoracic and Neurological Surgery, Bai Chay Hospital, Quang Ninh, Ha Long, Vietnam
| | - Yueh-His Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Kai Yeh
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
35
|
Cao Y, Yang D, Cai S, Yang L, Yu S, Geng Q, Mo M, Li W, Wei Y, Li Y, Yin T, Diao L. Adenomyosis-associated infertility: an update of the immunological perspective. Reprod Biomed Online 2025; 50:104703. [PMID: 40175227 DOI: 10.1016/j.rbmo.2024.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 04/04/2025]
Abstract
Adenomyosis is characterized by the invasion of endometrial glands and stroma into the myometrium. Its clinical manifestations often include dysmenorrhoea, excessive menstrual bleeding and infertility. Reduced pregnancy and live birth rates and an increased miscarriage rate are observed in women with adenomyosis. This review summarizes relevant advances and presents the underlying mechanisms of adenomyosis-associated infertility from an immunological perspective. Individuals with adenomyosis exhibit imbalances in immune cell subpopulations and the endocrine hormone-immunomodulatory axis. These immunological alterations may be key contributors to, or at least accomplices in, impaired endometrial receptivity. In addition, adenomyosis often occurs in association with endometriosis, uterine leiomyoma or endometrial polyps, which are pathogenetically relevant; their similarities and differences are discussed from an immunological perspective. The clinical diagnostic criteria of adenomyosis are not perfect, and the pathogenesis remains to be fully explored. Therefore screening for effective targets for early diagnosis and treatment at the cellular and molecular levels from the immunological point of view holds great potential, which will be of great importance in preventing this disease and improving women's reproductive health.
Collapse
Affiliation(s)
- Ying Cao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongyong Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Lingtao Yang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Shuyi Yu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Qiang Geng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Meilan Mo
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Wenzhu Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiu Wei
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China.
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China.
| |
Collapse
|
36
|
Wang Y, Li P, Yin F, Zheng Y, Liu H, Sun H, Wang M, Liu C, Chen X, Yan G, Yan X, Hu Y, Guan S, Wang X. Urine Metabolomics Reveals the Intervention Effects and Mechanism of Shenhua Tablets in IgA Nephropathy. Biomed Chromatogr 2025; 39:e70078. [PMID: 40195069 DOI: 10.1002/bmc.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Shenhua tablets (SHT), a traditional Chinese medicine (TCM), have shown significant clinical efficacy in treating IgA nephropathy (IgAN), but the underlying mechanisms are not fully understood. This study aims to elucidate the renoprotective effects of SHT on IgAN and explore the potential mechanisms of its action using metabolomics approaches. The renoprotective effects of SHT on IgAN were evaluated in a Thy-1 antibody-induced IgAN rat model. Metabolomics techniques were employed to detect and analyze urine biomarkers of IgAN, and to identify SHT targets and metabolic pathways. SHT significantly reduced the levels of 24-h urine protein (Upro), albumin-to-creatinine ratio (ACR), Interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), alleviated kidney tissue damage, and inhibited mesangial cell proliferation. Seventeen urine metabolites were identified as biomarkers for IgAN, 14 of which were restored by SHT. SHT primarily modulated metabolic pathways, including the tricarboxylic acid (TCA) cycle, glycolysis/gluconeogenesis, pyruvate metabolism, and β-alanine metabolism, upregulating citric acid and succinic acid while downregulating pyruvic acid, L-lactic acid, uracil, and malonic semialdehyde. SHT exerts renoprotective effects in IgAN by modulating key metabolic pathways and normalizing abnormal metabolites levels.
Collapse
Affiliation(s)
- Yuhang Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ping Li
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Zheng
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Huiqiang Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chang Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiangmei Chen
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaotong Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Hu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shihan Guan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
37
|
Shen Y, Fan N, Ma S, Cheng X, Yang X, Wang G. Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm (Beijing) 2025; 6:e70168. [PMID: 40255918 PMCID: PMC12006732 DOI: 10.1002/mco2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Dysbiosis refers to the disruption of the gut microbiota balance and is the pathological basis of various diseases. The main pathogenic mechanisms include impaired intestinal mucosal barrier function, inflammation activation, immune dysregulation, and metabolic abnormalities. These mechanisms involve dysfunctions in the gut-brain axis, gut-liver axis, and others to cause broader effects. Although the association between diseases caused by dysbiosis has been extensively studied, many questions remain regarding the specific pathogenic mechanisms and treatment strategies. This review begins by examining the causes of gut microbiota dysbiosis and summarizes the potential mechanisms of representative diseases caused by microbiota imbalance. It integrates clinical evidence to explore preventive and therapeutic strategies targeting gut microbiota dysregulation, emphasizing the importance of understanding gut microbiota dysbiosis. Finally, we summarized the development of artificial intelligence (AI) in the gut microbiota research and suggested that it will play a critical role in future studies on gut dysbiosis. The research combining multiomics technologies and AI will further uncover the complex mechanisms of gut microbiota dysbiosis. It will drive the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Nairui Fan
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Shu‐xia Ma
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- International SchoolGuangzhou Huali College, ZengchengGuangzhouChina
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryGuangdong Second Provincial General HospitalSchool of MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
38
|
Tok K, Barlas FB, Bayır E, Şenışık AM, Zihnioglu F, Timur S. One step synthesis of tryptophan-isatin carbon nano dots and bio-applications as multifunctional nanoplatforms. Colloids Surf B Biointerfaces 2025; 249:114533. [PMID: 39855082 DOI: 10.1016/j.colsurfb.2025.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The development of natural molecule-derived carbon nano dots (CNDs) marks a significant advancement in biocompatible and sustainable nanomaterials. Tryptophan, capable of crossing the blood-brain barrier (BBB), serves as a precursor to numerous pharmacologically active compounds, while isatin and its derivatives have demonstrated anti-tumor effects, including against brain cancers. This study aimed to synthesize fluorescent CNDs from tryptophan-isatin hybrid precursor and explore their applications in glioblastoma treatment. These CNDs were characterized using techniques such as TEM, SEM-EDS, FTIR, XPS, Raman spectroscopy and UV-Vis spectrophotometry. In vitro tests using the U-87 glioblastoma cell line evaluated cell viability, affinity, and BBB permeability. The CNDs, between 4 and 7 nm in size, exhibited blue and green fluorescence, with no cytotoxic effects observed at concentrations up to 25 µg/mL. The highest BBB permeability rate was determined as 4.3 × 10⁻⁵ cm/s. Additionally, the CNDs demonstrated radiotherapeutic properties, leading to a 51 % reduction in cell viability. This research contributes to nanomedicine by introducing a novel biocompatible material with potential for targeted brain cancer imaging and therapy, while also suggesting broader applications beyond glioblastoma.
Collapse
Affiliation(s)
- Kerem Tok
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey.
| | - F Baris Barlas
- Istanbul University-Cerrahpasa Institute of Nanotechnology and Biotechnology, Buyukcekmece, Istanbul 34500, Turkey
| | - Ece Bayır
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Ahmet Murat Şenışık
- Altinbas University, Vocational School of Health Services, Radiotherapy Program, Istanbul, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
39
|
Abbad L, Esteve E, Chatziantoniou C. Advances and challenges in kidney fibrosis therapeutics. Nat Rev Nephrol 2025; 21:314-329. [PMID: 39934355 DOI: 10.1038/s41581-025-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Chronic kidney disease (CKD) is a major global health burden that affects more than 10% of the adult population. Current treatments, including dialysis and transplantation, are costly and not curative. Kidney fibrosis, defined as an abnormal accumulation of extracellular matrix in the kidney parenchyma, is a common outcome in CKD, regardless of disease aetiology, and is a major cause of loss of kidney function and kidney failure. For this reason, research efforts have focused on identifying mediators of kidney fibrosis to inform the development of effective anti-fibrotic treatments. Given the prominent role of the transforming growth factor-β (TGFβ) family in fibrosis, efforts have focused on inhibiting TGFβ signalling. Despite hopes raised by the efficacy of this approach in preclinical models, translation into clinical practice has not met expectations. Antihypertensive and antidiabetic drugs slow the decline in kidney function and could slow fibrosis but, owing to the lack of technologies for in vivo renal imaging, their anti-fibrotic effect cannot be truly assessed at present. The emergence of new drugs targeting pro-fibrotic signalling, or enabling cell repair and cell metabolic reprogramming, combined with better stratification of people with CKD and the arrival of nanotechnologies for kidney-specific drug delivery, open up new perspectives for the treatment of this major public health challenge.
Collapse
Affiliation(s)
- Lilia Abbad
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Emmanuel Esteve
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Christos Chatziantoniou
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France.
| |
Collapse
|
40
|
Zhang D, Zhang YH, Liu B, Yang HX, Li GT, Zhou HL, Wang YS. Role of peroxisomes in the pathogenesis and therapy of renal fibrosis. Metabolism 2025; 166:156173. [PMID: 39993498 DOI: 10.1016/j.metabol.2025.156173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Renal fibrosis is a pathological consequence of end-stage chronic kidney disease, driven by factors such as oxidative stress, dysregulated fatty acid metabolism, extracellular matrix (ECM) imbalance, and epithelial-to-mesenchymal transition. Peroxisomes play a critical role in fatty acid β-oxidation and the scavenging of reactive oxygen species, interacting closely with mitochondrial functions. Nonetheless, current research often prioritizes the mitochondrial influence on renal fibrosis, often overlooking the contribution of peroxisomes. This comprehensive review systematically elucidates the fundamental biological functions of peroxisomes and delineates the molecular mechanisms underlying peroxisomal dysfunction in renal fibrosis pathogenesis. Here, we discuss the impact of peroxisome dysfunction and pexophagy on oxidative stress, ECM deposition, and renal fibrosis in various cell types including mesangial cells, endothelial cells, podocytes, epithelial cells, and macrophages. Furthermore, this review highlights the recent advancements in peroxisome-targeted therapeutic strategies to alleviate renal fibrosis.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Yang-He Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hong-Xia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Guang-Tao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China.
| |
Collapse
|
41
|
Li Y, Cai J, Xu Y, Zou Y, Xu S, Zheng X, Fu L, Zhang J, Ma X, He Y, Wang X, Deng K, Guo J. Macrophage-myofibroblast transition contributes to the macrophage elimination and functional regeneration in the late stage of nerve injury. Exp Neurol 2025; 387:115194. [PMID: 39993460 DOI: 10.1016/j.expneurol.2025.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Massive of macrophages are recruited to the injured nerve to remove the axonal and myelin debris for creating a conducive micro-environment for nerve regeneration. However, the fate of macrophages after the debris clearing remains unclear. In this study, we demonstrated that the number of macrophages in the crush injured sciatic nerve of mice peaked at 7 days post injury (dpi) and then decreased significantly in the late stage of nerve injury. Mechanismly, the macrophage elimination was primarily attributed to TGF-β/Smad3 signaling dependent macrophage-myofibroblast transition (MMT), rather than apoptosis or out-migration. Furthermore, MMT caused collagen deposition is conducive to nerve regeneration. Both macrophage depletion via clodronate liposomes and MMT blockade using TGF-β/Smad3 inhibitor significantly reduced collagen deposition and impaired functional nerve regeneration. In summary, the present study indicates that TGF-β/Smad3 regulated MMT contributes to macrophage elimination and functional recovery in the injury nerve.
Collapse
Affiliation(s)
- Yunlun Li
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| | - Jiale Cai
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| | - Yizhou Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ying Zou
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuyi Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| | - Xinya Zheng
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lanya Fu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinrui Ma
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ye He
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianghai Wang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| | - Kaixian Deng
- Department of Gynecology, Shunde Hospital of Southern Medical University, Foshan, China
| | - Jiasong Guo
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China.
| |
Collapse
|
42
|
Ebrahimi M, Hooper SR, Mitsnefes MM, Vasan RS, Kimmel PL, Warady BA, Furth SL, Hartung EA, Denburg MR, Lee AM. Investigation of a targeted panel of gut microbiome-derived toxins in children with chronic kidney disease. Pediatr Nephrol 2025; 40:1759-1770. [PMID: 39820505 DOI: 10.1007/s00467-024-06580-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The gut-kidney axis is implicated in chronic kidney disease (CKD) morbidity. We describe how a panel of gut microbiome-derived toxins relates to kidney function and neurocognitive outcomes in children with CKD, consisting of indoleacetate, 3-indoxylsulfate, p-cresol glucuronide, p-cresol sulfate, and phenylacetylglutamine. METHODS The Chronic Kidney Disease in Children (CKiD) cohort is a North American multicenter prospective cohort that enrolled children aged 6 months to 16 years with estimated glomerular filtration rate (eGFR) 30-89 ml/min/1.73 m2. Data from the 2-year study visit were used for this analysis. Toxin quantification (Metabolon Inc., Durham, NC) was performed with ultra-high performance liquid chromatography/tandem mass spectrometry. Executive function and echocardiograms were assessed. Regression analysis examined the association of toxin levels with eGFR, CKD etiology, and neurocognitive and cardiac assessments (adjusted for age, sex, and urine protein:creatinine [UPCR]). RESULTS There were 150 CKiD participants included in this study. All toxins levels were significantly inversely correlated with eGFR (Spearman's rho - 0.45 to - 0.69). Children with non-glomerular CKD had significantly higher levels of 3-indoxylsulfate, phenylacetylglutamine, and p-cresol glucuronide. The toxin levels did not associate with neurocognitive outcomes. P-cresol glucuronide and phenylacetylglutamine negatively associated with left ventricular mass index z score, but did not associate with left ventricular hypertrophy. CONCLUSIONS Children with CKD have high levels of circulating gut microbiome-derived toxins. The levels of these toxins are strongly correlated with eGFR. There appear to be differences in toxin level based on glomerular versus non-glomerular etiology, even when accounting for the differences in eGFR between these two subgroups. In this sample, we did not detect any associations between these toxin levels and neurocognitive or cardiac outcomes.
Collapse
Affiliation(s)
| | - Stephen R Hooper
- Department of Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Mark M Mitsnefes
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bradley A Warady
- Division of Nephrology, Children's Mercy Kansas City, Kansas City, MO, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Susan L Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle R Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur M Lee
- for the CKiD Study Investigators and the NIDDK CKD Biomarkers Consortium, 3500 Civic Center Boulevard, Philadelphia, PA, 19041, USA.
| |
Collapse
|
43
|
Ding L, Bao D, Dai B, Meng Q, Lv C, Luo H, Zhu H. The role and mechanism of CRISPLD2 in skin fibrosis of systemic sclerosis. Rheumatology (Oxford) 2025; 64:3134-3141. [PMID: 39374552 DOI: 10.1093/rheumatology/keae541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024] Open
Abstract
OBJECTIVES SSc is an autoimmune connective tissue disease involving multiple organs. The most common clinical symptom of SSc is progressive fibrosis of the skin, and the pathologically manifestations of skin were activation and proliferation of fibroblasts and continuous proliferation of extracellular matrix. TGF-β can promote the proliferation and activation of fibroblasts, causing excessive deposition of collagen and structural proteins. Therefore, exploring the specific mechanism of TGF-β-related pathway on fibrosis is of great significance for improving skin fibrosis in SSc. METHODS Genes related to TGF-β pathway were screened through bioinformatics analysis, and SSc phenotypes were verified in vivo and in vitro. The relevant molecular mechanisms were preliminarily discussed in combination with transcriptome sequencing. RESULTS Human cysteine-rich secreted protein LCCL domain protein 2 (CRISPLD2) was found increased reactivity in TGF-β-induced fibroblasts, and the expression of ACTA2 (ɑ-SMA) decreased significantly in TGF-β-mediated fibroblasts with up-regulation of CRISPLD2. CONCLUSION CRISPLD2 was found to have increased reactivity in TGF-β-induced fibroblasts, and we further confirmed that CRISPLD2 can participate in TGF-β-induced fibroblast fibrosis from multiple perspectives and levels in negative feedback regulation, and investigated the mechanism of CRISPLD2 in fibrosis.
Collapse
Affiliation(s)
- Liqing Ding
- Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, P.R China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R China
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, P.R China
| | - Ding Bao
- Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, P.R China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R China
| | - Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, P.R China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R China
| | - Qiming Meng
- Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, P.R China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R China
| | - Chunliu Lv
- Department of Breast Tumor Plastic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R China
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R China
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, P.R China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R China
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, P.R China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R China
| |
Collapse
|
44
|
Cheng W, Feng W, Tian G, Liu J, Bai Z, Yu M, Yan R, Liu L, He Y, Li X, Zhang J. Study of Serum Metabolic Biomarkers and Prediction Models of Cantharidin-Induced Nephrotoxicity in Rats Based on Dynamic Metabolomics. J Appl Toxicol 2025; 45:736-754. [PMID: 39676217 DOI: 10.1002/jat.4743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/10/2024] [Accepted: 11/24/2024] [Indexed: 12/17/2024]
Abstract
The clinical application of cantharidin (CTD) is seriously limited due to its nephrotoxicity. Therefore, this study aims to investigate sensitive biomarkers for the evaluation and prediction of nephrotoxicity induced by CTD in rat. A total of 80 rats were randomly divided into four groups: control group and three doses of CTD groups. After 0, 1, 5, 15, and 28 days of intragastric administration, rat serum and urine were collected for biochemical indexes, then serum was used for metabolomic analyses, and rat kidney was collected for pathological and ultrastructural observation. The levels of serum crea (Scr), blood urea nitrogen (BUN), urea, urine crea (Ucrea), and urinary microalbumin (UmALB) were significantly increased after administration of different doses of CTD (p < 0.05). Additionally, histopathology and cell ultrastructure observation of kidney showed significant cell inflammatory infiltration and glomerular edema. Seven metabolic biomarkers including 6-hydroxymelatonin were significantly disturbed by CTD. The CatBoost Classifier prediction model was used to establish the CTD nephrotoxicity prediction model, and the prediction accuracy and precision were 0.645 and 0.640, respectively. Moreover, 6-hydroxymelatonin was found to be most useful biomarkers for evaluating the CTD nephrotoxicity. Finally, the seven metabolic biomarkers were found mainly involved in pyruvate metabolism, pantothenate and CoA biosynthesis.
Collapse
Affiliation(s)
- Weina Cheng
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wenzhong Feng
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Guanghuan Tian
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jingxian Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Zhixun Bai
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Rong Yan
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Liu Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Yanmei He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaofei Li
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
45
|
Niu M, Wang YZ, Deng XM, Wu X, Hua ZY, Lv TT. Tryptanthrin alleviate lung fibrosis via suppression of MAPK/NF-κB and TGF-β1/SMAD signaling pathways in vitro and in vivo. Toxicol Appl Pharmacol 2025; 498:117285. [PMID: 40089192 DOI: 10.1016/j.taap.2025.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF), a progressive interstitial lung disease of unknown etiology, remains a therapeutic challenge with limited treatment options. This study investigates the therapeutic potential and molecular mechanisms of Tryptanthrin, a bioactive indole quinazoline alkaloid derived from Isatis tinctoria L., in pulmonary fibrosis. In a bleomycin-induced murine IPF model, Tryptanthrin administration (5 and 10 mg/kg/day for 28 days) significantly improved pulmonary function parameters and attenuated histological evidence of fibrosis. Mechanistic analysis revealed dual pathway modulation: Tryptanthrin suppressed MAPK/NF-κB signaling through inhibition of phosphorylation events, subsequently reducing pulmonary levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). Concurrently, it attenuated TGF-β1/Smad pathway activation by decreasing TGF-β1 expression and Smad2/3 phosphorylation, thereby downregulating fibrotic markers including COL1A1, α-smooth muscle actin (α-SMA), and fibronectin in lung tissues. Complementary in vitro studies using Lipopolysaccharide (LPS) or TGF-β1-stimulated NIH3T3 fibroblasts confirmed these anti-inflammatory and anti-fibrotic effects through analogous pathway inhibition. Our findings demonstrate that Tryptanthrin exerts therapeutic effects against pulmonary fibrosis via coordinated modulation of both inflammatory (MAPK/NF-κB) and fibrotic (TGF-β1/Smad) signaling cascades, suggesting its potential as a novel multi-target therapeutic agent for IPF management.
Collapse
Affiliation(s)
- Min Niu
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China.
| | | | - Xiang-Min Deng
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Xin Wu
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Zheng-Ying Hua
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Ting-Ting Lv
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| |
Collapse
|
46
|
Zhu DH, Zhang JK, Guo PL, Tao SQ, Zeng MN, Zheng XK, Feng WS. Alkaloids and lignans isolated from Alisma orientale exhibit anti-pulmonary fibrosis activities by modulating an apoptotic signaling pathway. PHYTOCHEMISTRY 2025; 233:114382. [PMID: 39761940 DOI: 10.1016/j.phytochem.2025.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
From the tuber of Alisma orientale (Sam.) Juzep. (Alismataceae), twenty-four compounds were isolated, including six (1, 2, 3, 10, 14, and 17) that were not yet characterized. Spectroscopic investigations (IR, UV, HRESIMS, and NMR) were used to clarify their structures, and the ECD spectra of two compounds (8 and 9) were interpreted to identify their absolute configurations. Through an apoptotic signaling pathway, compounds 7, 15, 17, and 19 decreased the level of apoptosis in lung epithelial cells, indicating that they may have potential anti-pulmonary fibrosis (anti-PF) activity.
Collapse
Affiliation(s)
- Deng-Hui Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Jing-Ke Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Peng-Li Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Si-Qi Tao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Meng-Nan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan Province and Ministry of Education of China, Zhengzhou, 450046, PR China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan Province and Ministry of Education of China, Zhengzhou, 450046, PR China.
| |
Collapse
|
47
|
Fan J, Li Y, Yang S, Yang J, Jin H, Wang Y, Wei F, Ma S. Two polysaccharides from Polygonum multiflorum Thunb. exert anti-aging by regulating P53/P21 pathway and amino acid metabolism. Int J Biol Macromol 2025; 306:141573. [PMID: 40023426 DOI: 10.1016/j.ijbiomac.2025.141573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Polygonum multiflorum Thunb (PM) is known for its potential to extend lifespan. Although the polysaccharides, the primary constituents of PM, remain largely unexplored in terms of their anti-aging effects and underlying mechanisms, this study investigates them in detail. The anti-aging effects of two purified polysaccharides from PM were evaluated: neutral polysaccharide (RPMP-N, weight average molecular weight 245.30 kDa) and acidic polysaccharide (RPMP-A, weight average molecular weight 28.45 kDa), using a D-Galactose-induced (D-Gal) aging mouse model. In the experimental group, RPMP-N and RPMP-A were administered at doses of 50 (low) and 150 mg/kg/day (high). The activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), which are essential for scavenging free radicals and form a key part of the body's antioxidant defense system, was measured in aging mice. The results showed significant improvements following treatment with RPMP-N and RPMP-A. Additionally, both polysaccharides demonstrated the ability to repair and protect against liver and brain injuries. The expression of P16, P21, and P53 proteins, which regulate cellular senescence through distinct mechanisms, was significantly reduced in liver and brain tissues after treatment. Notably, untargeted metabolomics revealed that RPMP-N and RPMP-A exerted significant anti-aging effects in the D-Gal aging mouse model, primarily influencing metabolism pathways related to lysine, sphingolipids, cysteine, and methionine. In conclusion, these findings provide important insights into the anti-aging mechanisms of PM polysaccharides, supporting their potential for clinical applications, drug development, and regulatory science.
Collapse
Affiliation(s)
- Jing Fan
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Yaolei Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China.
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China.
| | - Shuangcheng Ma
- State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
48
|
Washimkar KR, Bisen AC, Verma S, Bhatt D, Yadav M, Kumar A, Bhatta RS, Bawankule DU, Yadav PP, Mugale MN. Modulation in NF-κB-p65/NLRP3, TXNIP-mediated signaling using an ethanolic fruit extract of Withania coagulans mitigates silica-induced pulmonary fibrosis in rats. Fitoterapia 2025; 183:106578. [PMID: 40318702 DOI: 10.1016/j.fitote.2025.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Withania coagulans encompasses many active phytoconstituents, which have been used to treat many ailments. Prior research has shown that fruit extract of Withania coagulans has anti-inflammatory properties and effectively reduces oxidative stress in various diseases. Nevertheless, its effects are not obscured in the silica (SiO2) induced pulmonary fibrosis (PF). In the current study, an ethanolic fruit extract of Withania coagulans (WCE) was prepared, and its effects and underlying mechanisms on SiO2-induced PF in rats were elucidated. LC-MS/MS analysis identified various bioactive phytoconstituents, secondary plant metabolites, and flavonoids in the WCE. In vitro, results showed that the WCE exhibited no toxicity towards A549 cells, reduced the production of reactive oxygen species, and inhibited cell migration. Further, WCE abrogated alveolar wall thickening, reduced inflammatory cell infiltration, and maintained lung architecture. It also suppresses collagen accumulation and mucus production, abrogating inflammation by downregulating nuclear factor kappa B (NF-κB-p65)/ NOD-like receptor protein 3 (NLRP3) and cytokine levels. It suppresses oxidative and endoplasmic reticulum stress induced by SiO2 by downregulating thioredoxin-interacting protein (TXNIP), activating transcription factor 6 (ATF6), and C/EBP Homologous Protein (CHOP) proteins. Additionally, WCE, by suppressing EMT and transforming growth factor beta 1 (TGF-β1)/Suppressor of Mothers against Decapentaplegic (Smad) pathway, mitigated PF in rats. Taken together, WCE via anti-inflammatory and anti-oxidative properties inhibited SiO2-induced PF, and therefore, it can be envisaged as an effective antifibrotic agent to treat PF.
Collapse
Affiliation(s)
- Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Divya Bhatt
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; In vivo Testing Facility, Bioprospection, and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Manisha Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Rabi Shankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Dnyaneshwar U Bawankule
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; In vivo Testing Facility, Bioprospection, and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Prem Prakash Yadav
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
49
|
Hu J, Pang X, Liang X, Shao X, Xia Q, Sun J, Wang Y, Wang G, Li S, Zha L, Guo J, Peng C, Huang P, Ding Y, Jin C, He N, Huang Y, Gui S. Raspberry ameliorates renal fibrosis in rats with chronic kidney disease via the PI3K/Akt pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156589. [PMID: 40056634 DOI: 10.1016/j.phymed.2025.156589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/22/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Renal fibrosis is a hallmark of chronic kidney disease (CKD). In traditional Chinese medicine, Rubus chingii Hu (raspberry) is believed to have kidney-tonifying properties. However, whether raspberry can effectively treat CKD, along with the specific active compounds and underlying mechanisms, remains unclear. PURPOSE This study aims to investigate the potential of raspberries in treating CKD and elucidate the mechanisms involved. METHODS CKD model was established in rats using adenine. The effects of raspberry treatment on CKD were assessed through macroscopic observations and pathological changes in the kidney. The expression of fibrotic proteins in renal tissues was analyzed to evaluate the impact of raspberry on renal fibrosis. Data mining combined with compositional analysis were employed to identify the active ingredients, targets, and pathways of raspberry that may improve CKD. Subsequently, Western blotting and immunofluorescence analysis were conducted to confirm the involvement of the PI3K/AKT signaling pathway in the renoprotective mechanism of raspberry. RESULTS Raspberry treatment significantly alleviated renal pathological damage, fibrosis and inflammation in model rats, showing effects comparable to irbesartan (Avapro). Chemical composition analysis and network pharmacology predicted AKT1 as the core target, and the PI3K/AKT pathway plays a pivotal role in mediating the therapeutic effects of raspberry extract in CKD. Molecular docking studies further confirmed that active compounds in raspberry have a strong binding affinity with AKT1. Western blotting and immunofluorescence results demonstrated that raspberry inhibited phosphorylation, thereby suppressing the PI3K/AKT pathway, leading to its antifibrotic effect on the kidney. CONCLUSION Raspberry was firstly discovered to potentially treat CKD by alleviating renal fibrosis through inhibition of the PI3K/AKT pathway. Raspberry, as a medicinal and edible traditional herb, could serve as a promising therapeutic agent or health supplement for improving renal fibrosis and slowing CKD progression.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Xingyuan Pang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Xiao Liang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Xinyuan Shao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Qijun Xia
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Jianwen Sun
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Guichun Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Shuhan Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Liangping Zha
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, PR China
| | - Chengjun Peng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, PR China
| | - Peng Huang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, PR China
| | - Yang Ding
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Cheng Jin
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, PR China
| | - Ning He
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, PR China
| | - Yuzhe Huang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, PR China.
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui 230012, PR China; Anhui Engineering Research Center for Quality Improvement and Utilization of Genuine Chinese Medicinal Materials, Hefei, Anhui 230012, PR China.
| |
Collapse
|
50
|
Huang Y, Yang F, Liu C, Wang J, Wang Y, Song G, Wang Z. Mechanical Analysis of Phellinus Linteus-Induced Apoptosis of Hepatoma Cells. Microsc Res Tech 2025; 88:1491-1500. [PMID: 39806945 DOI: 10.1002/jemt.24804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Liver cancer is prevalent with the third highest mortality rate globally. The biomechanical properties of cancer cells play a crucial role in their proliferation and differentiation. Studying the morphological and mechanical properties of individual living cells can be helpful for early diagnosis of cancers. Herein, atomic force microscopy (AFM) was used to investigate the effects of Phellinus linteus on hepatocyte cells (HL-7702) and hepatocellular carcinoma cells (SMCC-7721) in terms of morphological and mechanical changes at the nanoscale. The water extract of Phellinus linteus (PLWE) resulted in increased height and surface roughness of SMCC-7721 cells. Also, the PLWE-treated showed that the average adhesion decreased by 1.69 nN and the average Young's modulus increased by 0.379 kPa. Additionally, the SMCC-7721 cells treated with PLWE showed clearly reduced activity compared with HL-7702 cells. This study suggested that Phellinus Linteus could be a potential candidate for selective anti-cancer therapy, providing a new avenue for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuxi Huang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Chuanzhi Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Jianfei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Guicai Song
- College of Physics, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| |
Collapse
|