451
|
Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffer PJ, Saris DB, Lorenowicz MJ. Mesenchymal Stromal/stem Cell-derived Extracellular Vesicles Promote Human Cartilage Regeneration In Vitro. Am J Cancer Res 2018; 8:906-920. [PMID: 29463990 PMCID: PMC5817101 DOI: 10.7150/thno.20746] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/08/2017] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a rheumatic disease leading to chronic pain and disability with no effective treatment available. Recently, allogeneic human mesenchymal stromal/stem cells (MSC) entered clinical trials as a novel therapy for OA. Increasing evidence suggests that therapeutic efficacy of MSC depends on paracrine signalling. Here we investigated the role of extracellular vesicles (EVs) secreted by human bone marrow derived MSC (BMMSC) in human OA cartilage repair. Methods: To test the effect of BMMSC-EVs on OA cartilage inflammation, TNF-alpha-stimulated OA chondrocyte monolayer cultures were treated with BMMSC-EVs and pro-inflammatory gene expression was measured by qRT-PCR after 48 h. To assess the impact of BMMSC-EVs on cartilage regeneration, BMMSC-EVs were added to the regeneration cultures of human OA chondrocytes, which were analyzed after 4 weeks for glycosaminoglycan content by 1,9-dimethylmethylene blue (DMMB) assay. Furthermore, paraffin sections of the regenerated tissue were stained for proteoglycans (safranin-O) and type II collagen (immunostaining). Results: We show that BMMSC-EVs inhibit the adverse effects of inflammatory mediators on cartilage homeostasis. When co-cultured with OA chondrocytes, BMMSC-EVs abrogated the TNF-alpha-mediated upregulation of COX2 and pro-inflammatory interleukins and inhibited TNF-alpha-induced collagenase activity. BMMSC-EVs also promoted cartilage regeneration in vitro. Addition of BMMSC-EVs to cultures of chondrocytes isolated from OA patients stimulated production of proteoglycans and type II collagen by these cells. Conclusion: Our data demonstrate that BMMSC-EVs can be important mediators of cartilage repair and hold great promise as a novel therapeutic for cartilage regeneration and osteoarthritis.
Collapse
|
452
|
Paschos NK, Sennett ML. Update on mesenchymal stem cell therapies for cartilage disorders. World J Orthop 2017; 8:853-860. [PMID: 29312843 PMCID: PMC5745427 DOI: 10.5312/wjo.v8.i12.853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/23/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
Cartilage disorders, including focal cartilage lesions, are among the most common clinical problems in orthopedic practice. Left untreated, large focal lesions may result in progression to osteoarthritis, with tremendous impact on the quality of life of affected individuals. Current management strategies have shown only a modest degree of success, while several upcoming interventions signify better outcomes in the future. Among these, stem cell therapies have been suggested as a promising new era for cartilage disorders. Certain characteristics of the stem cells, such as their potential to differentiate but also to support healing made them a fruitful candidate for lesions in cartilage, a tissue with poor healing capacity. The aim of this editorial is to provide an update on the recent advancements in the field of stem cell therapy for the management of focal cartilage defects. Our goal is to present recent basic science advances and to present the potential of the use of stem cells in novel clinical interventions towards enhancement of the treatment armamentarium for cartilage lesions. Furthermore, we highlight some thoughts for the future of cartilage regeneration and repair and to explore future perspectives for the next steps in the field.
Collapse
Affiliation(s)
- Nikolaos K Paschos
- Department of Orthopaedic Surgery, Division of Sports Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19107, United States
| | - Mackenzie L Sennett
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19107, United States
| |
Collapse
|
453
|
Tribe HC, McEwan J, Taylor H, Oreffo ROC, Tare RS. Mesenchymal Stem Cells: Potential Role in the Treatment of Osteochondral Lesions of the Ankle. Biotechnol J 2017; 12:1700070. [PMID: 29068173 PMCID: PMC5765412 DOI: 10.1002/biot.201700070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Given articular cartilage has a limited repair potential, untreated osteochondral lesions of the ankle can lead to debilitating symptoms and joint deterioration necessitating joint replacement. While a wide range of reparative and restorative surgical techniques have been developed to treat osteochondral lesions of the ankle, there is no consensus in the literature regarding which is the ideal treatment. Tissue engineering strategies, encompassing stem cells, somatic cells, biomaterials, and stimulatory signals (biological and mechanical), have a potentially valuable role in the treatment of osteochondral lesions. Mesenchymal stem cells (MSCs) are an attractive resource for regenerative medicine approaches, given their ability to self-renew and differentiate into multiple stromal cell types, including chondrocytes. Although MSCs have demonstrated significant promise in in vitro and in vivo preclinical studies, their success in treating osteochondral lesions of the ankle is inconsistent, necessitating further clinical trials to validate their application. This review highlights the role of MSCs in cartilage regeneration and how the application of biomaterials and stimulatory signals can enhance chondrogenesis. The current treatments for osteochondral lesions of the ankle using regenerative medicine strategies are reviewed to provide a clinical context. The challenges for cartilage regeneration, along with potential solutions and safety concerns are also discussed.
Collapse
Affiliation(s)
- Howard C. Tribe
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and RegenerationFaculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
- Foot and Ankle Orthopaedic DepartmentRoyal Bournemouth HospitalBournemouthBH7 7DWUK
| | - Josephine McEwan
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and RegenerationFaculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
| | - Heath Taylor
- Foot and Ankle Orthopaedic DepartmentRoyal Bournemouth HospitalBournemouthBH7 7DWUK
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and RegenerationFaculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
| | - Rahul S. Tare
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and RegenerationFaculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
- Bioengineering Science, Mechanical Engineering DepartmentFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonSO17 1BJUK
| |
Collapse
|
454
|
Bunpetch V, Zhang ZY, Zhang X, Han S, Zongyou P, Wu H, Hong-Wei O. Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials 2017; 196:67-79. [PMID: 29602560 DOI: 10.1016/j.biomaterials.2017.11.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing attention as a potential approach for the treatment of bone injuries due to their multi-lineage differentiation potential and also their ability to recognize and home to damaged tissue sites, secreting bioactive factors that can modulate the immune system and enhance tissue repair. However, a wide gap between the number of MSCs obtainable from the donor site and the number required for implantation, as well as the lack of understanding of MSC functions under different in vitro and in vivo microenvironment, hinders the progression of MSCs toward clinical settings. The clinical translation of MSCs pre-requisites a scalable expansion process for the biomanufacturing of therapeutically qualified cells. This review briefly introduces the features of implanted MSCs to determine the best strategies to optimize their regenerative capacity, as well as the current MSC implantation for bone diseases. Current achievements for expansion of MSCs using various culturing methods, bioreactor technologies, biomaterial platforms, as well as microtissue-based expansion strategies are also discussed, providing new insights into future large-scale MSC expansion and clinical applications.
Collapse
Affiliation(s)
- Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Zongyou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ouyang Hong-Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| |
Collapse
|
455
|
Cobelli NJ, Leong DJ, Sun HB. Exosomes: biology, therapeutic potential, and emerging role in musculoskeletal repair and regeneration. Ann N Y Acad Sci 2017; 1410:57-67. [DOI: 10.1111/nyas.13469] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Neil J. Cobelli
- Department of Orthopaedic Surgery; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York
| | - Daniel J. Leong
- Department of Orthopaedic Surgery; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York
- Department of Radiation Oncology; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York
| | - Hui B. Sun
- Department of Orthopaedic Surgery; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York
- Department of Radiation Oncology; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York
| |
Collapse
|
456
|
Taraballi F, Bauza G, McCulloch P, Harris J, Tasciotti E. Concise Review: Biomimetic Functionalization of Biomaterials to Stimulate the Endogenous Healing Process of Cartilage and Bone Tissue. Stem Cells Transl Med 2017; 6:2186-2196. [PMID: 29080279 PMCID: PMC5702525 DOI: 10.1002/sctm.17-0181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
Musculoskeletal reconstruction is an ongoing challenge for surgeons as it is required for one out of five patients undergoing surgery. In the past three decades, through the close collaboration between clinicians and basic scientists, several regenerative strategies have been proposed. These have emerged from interdisciplinary approaches that bridge tissue engineering with material science, physiology, and cell biology. The paradigm behind tissue engineering is to achieve regeneration and functional recovery using stem cells, bioactive molecules, or supporting materials. Although plenty of preclinical solutions for bone and cartilage have been presented, only a few platforms have been able to move from the bench to the bedside. In this review, we highlight the limitations of musculoskeletal regeneration and summarize the most relevant acellular tissue engineering approaches. We focus on the strategies that could be most effectively translate in clinical practice and reflect on contemporary and cutting‐edge regenerative strategies in surgery. Stem Cells Translational Medicine2017;6:2186–2196
Collapse
Affiliation(s)
- Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| | - Patrick McCulloch
- Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Josh Harris
- Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA.,Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| |
Collapse
|
457
|
Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J, Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol 2017; 75-76:201-219. [PMID: 29066152 DOI: 10.1016/j.matbio.2017.10.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EV) are small plasma membrane-derived particles released into the extracellular space by virtually all cell types. Recently, EV have received increased interest because of their capability to carry nucleic acids, proteins, lipids and signaling molecules and to transfer their cargo into the target cells. Less attention has been paid to their role in modifying the composition of the extracellular matrix (ECM), either directly or indirectly via regulating the ability of target cells to synthesize or degrade matrix molecules. Based on recent results, EV can be considered one of the structural and functional components of the ECM that participate in matrix organization, regulation of cells within it, and in determining the physical properties of soft connective tissues, bone, cartilage and dentin. This review addresses the relevance of EV as specific modulators of the ECM, such as during the assembly and disassembly of the molecular network, signaling through the ECM and formation of niches suitable for tissue regeneration, inflammation and tumor progression. Finally, we assess the potential of these aspects of EV biology to translational medicine.
Collapse
Affiliation(s)
- Kirsi Rilla
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland.
| | - Anne-Mari Mustonen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Uma Thanigai Arasu
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Kai Härkönen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Johanna Matilainen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| |
Collapse
|
458
|
Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis. Stem Cells Int 2017; 2017:5979741. [PMID: 29123550 PMCID: PMC5662817 DOI: 10.1155/2017/5979741] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs), derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.
Collapse
|
459
|
Doeppner TR, Bähr M, Hermann DM, Giebel B. Concise Review: Extracellular Vesicles Overcoming Limitations of Cell Therapies in Ischemic Stroke. Stem Cells Transl Med 2017; 6:2044-2052. [PMID: 28941317 PMCID: PMC6430061 DOI: 10.1002/sctm.17-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in stroke therapy, current therapeutic concepts are still limited. Thus, additional therapeutic strategies are in order. In this sense, the transplantation of stem cells has appeared to be an attractive adjuvant tool to help boost the endogenous regenerative capacities of the brain. Although transplantation of stem cells is known to induce beneficial outcome in (preclinical) stroke research, grafted cells do not replace lost tissue directly. Rather, these transplanted cells like neural progenitor cells or mesenchymal stem cells act in an indirect manner, among which the secretion of extracellular vesicles (EVs) appears to be one key factor. Indeed, the application of EVs in preclinical stroke studies suggests a therapeutic role, which appears to be noninferior in comparison to the transplantation of stem cells themselves. In this short review, we highlight some of the recent advances in the field of EVs as a therapeutic means to counter stroke. Stem Cells Translational Medicine2017;6:2044–2052
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
460
|
Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther 2017; 8:189. [PMID: 28807034 PMCID: PMC5556343 DOI: 10.1186/s13287-017-0632-0] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/14/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stem cell therapy for osteoarthritis (OA) has been widely investigated, but the mechanisms are still unclear. Exosomes that serve as carriers of genetic information have been implicated in many diseases and are known to participate in many physiological processes. Here, we investigate the therapeutic potential of exosomes from human embryonic stem cell-induced mesenchymal stem cells (ESC-MSCs) in alleviating osteoarthritis (OA). Methods Exosomes were harvested from conditioned culture media of ESC-MSCs by a sequential centrifugation process. Primary mouse chondrocytes treated with interleukin 1 beta (IL-1β) were used as an in vitro model to evaluate the effects of the conditioned medium with or without exosomes and titrated doses of isolated exosomes for 48 hours, prior to immunocytochemistry or western blot analysis. Destabilization of the medial meniscus (DMM) surgery was performed on the knee joints of C57BL/6 J mice as an OA model. This was followed by intra-articular injection of either ESC-MSCs or their exosomes. Cartilage destruction and matrix degradation were evaluated with histological staining and OARSI scores at the post-surgery 8 weeks. Results We found that intra-articular injection of ESC-MSCs alleviated cartilage destruction and matrix degradation in the DMM model. Further in vitro studies illustrated that this effect was exerted through ESC-MSC-derived exosomes. These exosomes maintained the chondrocyte phenotype by increasing collagen type II synthesis and decreasing ADAMTS5 expression in the presence of IL-1β. Immunocytochemistry revealed colocalization of the exosomes and collagen type II-positive chondrocytes. Subsequent intra-articular injection of exosomes derived from ESC-MSCs successfully impeded cartilage destruction in the DMM model. Conclusions The exosomes from ESC-MSCs exert a beneficial therapeutic effect on OA by balancing the synthesis and degradation of chondrocyte extracellular matrix (ECM), which in turn provides a new target for OA drug and drug-delivery system development. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0632-0) contains supplementary material, which is available to authorized users.
Collapse
|
461
|
Reiner AT, Witwer KW, van Balkom BW, de Beer J, Brodie C, Corteling RL, Gabrielsson S, Gimona M, Ibrahim AG, de Kleijn D, Lai CP, Lötvall J, del Portillo HA, Reischl IG, Riazifar M, Salomon C, Tahara H, Toh WS, Wauben MH, Yang VK, Yang Y, Yeo RWY, Yin H, Giebel B, Rohde E, Lim SK. Concise Review: Developing Best-Practice Models for the Therapeutic Use of Extracellular Vesicles. Stem Cells Transl Med 2017; 6:1730-1739. [PMID: 28714557 PMCID: PMC5689784 DOI: 10.1002/sctm.17-0055] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022] Open
Abstract
Growing interest in extracellular vesicles (EVs, including exosomes and microvesicles) as therapeutic entities, particularly in stem cell-related approaches, has underlined the need for standardization and coordination of development efforts. Members of the International Society for Extracellular Vesicles and the Society for Clinical Research and Translation of Extracellular Vesicles Singapore convened a Workshop on this topic to discuss the opportunities and challenges associated with development of EV-based therapeutics at the preclinical and clinical levels. This review outlines topic-specific action items that, if addressed, will enhance the development of best-practice models for EV therapies. Stem Cells Translational Medicine 2017;6:1730-1739.
Collapse
Affiliation(s)
- Agnes T. Reiner
- BioSensor Technologies, AIT Austrian Institute of TechnologyViennaAustria
| | - Kenneth W. Witwer
- Departments of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Neurology, The Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bas W.M. van Balkom
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Chaya Brodie
- Department of NeurosurgeryHenry Ford HospitalDetroitMichiganUSA
- Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | | | - Susanne Gabrielsson
- Department of MedicineUnit for Immunology and Allergy, Karolinska InstituteStockholmSweden
| | - Mario Gimona
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI‐TReCS), Paracelsus Medical University (PMU)SalzburgAustria
- Department of Blood Group Serology and Transfusion MedicineUniversity Hospital, Salzburger Landeskliniken GesmbH (SALK)SalzburgAustria
| | | | - Dominique de Kleijn
- Dept. of Vascular Surgery & CardiologyUtrecht UniversityUtrechtThe Netherlands
- NUS Surgery & A‐STARSingapore
| | - Charles P. Lai
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwanRepublic of China
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, The Sahlgrenska Academy, Gothenburg UniversityGothenburgSweden
- Codiak BioSciencesWoburnMassachusettsUSA
| | - Hernando A. del Portillo
- ICREA at ISGlobal Barcelona Institute for Global Health, Ctr. Int. Health Res. (CRESIB), Hospital Clínic, University of BarcelonaBarcelonaSpain
- Institut d'Investigació Germans Trias i Pujol (IGTP)BadalonaSpain
| | - Ilona G. Reischl
- Federal Office for Safety in Health Care, Institute SurveillanceViennaAustria
- Austrian Agency for Health and Food SafetyInstitute SurveillanceViennaAustria
| | - Milad Riazifar
- Department of Pharmaceutical SciencesUniversity of CaliforniaIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research Center, University of CaliforniaIrvineCaliforniaUSA
| | - Carlos Salomon
- Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of QueenslandBrisbaneAustralia
- Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansLouisianaUSA
| | - Hidetoshi Tahara
- Department of Cellular and Molecular BiologyInstitute of Biomedical & Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Wei Seong Toh
- Faculty of DentistryNational University of SingaporeSingapore
| | - Marca H.M. Wauben
- Department of Biochemistry and Cell BiologyFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| | - Vicky K. Yang
- Department of Clinical SciencesTufts University Cummings School of Veterinary MedicineNorth GraftonMassachusettsUSA
| | - Yijun Yang
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | | | - Hang Yin
- Department of Chemistry and Biochemistry and the BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua UniversityBeijingChina
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg‐EssenGermany
| | - Eva Rohde
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI‐TReCS), Paracelsus Medical University (PMU)SalzburgAustria
- Department of Blood Group Serology and Transfusion MedicineUniversity Hospital, Salzburger Landeskliniken GesmbH (SALK)SalzburgAustria
| | | |
Collapse
|
462
|
Hao ZC, Lu J, Wang SZ, Wu H, Zhang YT, Xu SG. Stem cell-derived exosomes: A promising strategy for fracture healing. Cell Prolif 2017; 50. [PMID: 28741758 DOI: 10.1111/cpr.12359] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES To describe the biological characteristics of exosomes and to summarize the current status of stem cell-derived exosomes on fracture healing. Meanwhile, future challenges, limitations and perspectives are also discussed. METHODS Search and analyze the related articles in pubmed database through the multi-combination of keywords like "stem cells","exosomes","bone regeneration" and "fracture healing". CONCLUSION Stem cell-derived exosome therapy for fracture healing has been enjoying popularity and is drawing increasing attention. This strategy helps to promote proliferation and migration of cells, as well as osteogenesis and angiogenesis, in the process of bone formation. Although the exact mechanisms remain elusive, exosomal miRNAs seem to play vital roles. Future studies are required to solve multiple problems before clinical application, including comprehensive and thorough understanding of exosomes, the exact roles of exosomes in regulating bone formation, and the optimal source, dose and frequency of treatment, as well as technical and safety issues. Moreover, studies based on fracture models of large animals are could offer guidance and are in demand.
Collapse
Affiliation(s)
- Zi-Chen Hao
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shan-Zheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Hao Wu
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yun-Tong Zhang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuo-Gui Xu
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
463
|
Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr Opin Rheumatol 2017; 29:201-207. [PMID: 27941390 DOI: 10.1097/bor.0000000000000370] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Mesenchymal stromal/stem cells (MSCs) have potent anti-inflammatory and immunomodulatory properties, in addition to their ability to form cartilage and bone. The purpose of this review is to highlight recent developments and current knowledge gaps in our understanding of the protective effects of MSCs against inflammatory arthritis, and to discuss their clinical exploitation for the treatment of rheumatoid arthritis (RA). RECENT FINDINGS The weight of evidence for protective mechanisms of exogenously administered MSCs is on immunomodulatory effects, including inhibition of dendritic cell maturation, polarization of macrophages to an anti-inflammatory phenotype, and activation of regulatory T cells, thereby dampening inflammation and preventing joint damage. Evidence for direct effects on tissue repair is scant. Recent studies have identified MSC subsets in vivo and an important question is whether MSCs in their native tissues have similar immunoregulatory functions. Recent proof-of-concept clinical studies have shown a satisfactory safety profile of allogeneic MSC therapy in RA patients with promising trends for clinical efficacy. SUMMARY Allogeneic MSCs could be effective in RA. Larger, multicentre clinical studies are needed to provide robust evidence, and MSC treatment at early stages of RA should be explored to 'reset' the immune system.
Collapse
|
464
|
Kiyotake EA, Beck EC, Detamore MS. Cartilage extracellular matrix as a biomaterial for cartilage regeneration. Ann N Y Acad Sci 2017; 1383:139-159. [PMID: 27870078 DOI: 10.1111/nyas.13278] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way.
Collapse
Affiliation(s)
- Emi A Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Emily C Beck
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
465
|
Patel DB, Gray KM, Santharam Y, Lamichhane TN, Stroka KM, Jay SM. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med 2017; 2:170-179. [PMID: 28932818 PMCID: PMC5579732 DOI: 10.1002/btm2.10065] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/04/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as potential therapeutic agents for numerous applications. EVs offer potential advantages over cell-based therapies with regard to safety, stability and clearance profiles, however production and potency limitations must be addressed to enable eventual translation of EV-based approaches. Thus, we sought to examine the role of specific cell culture parameters on MSC EV production and bioactivity toward informing rational design parameters for scalable EV biomanufacturing. We report significantly reduced MSC EV vascularization bioactivity, as measured by an endothelial cell gap closure assay, with increasing passage in culture by trypsinization, especially beyond passage 4. We further show that increased frequency of EV collection yielded higher numbers of EVs from the same initial number of MSCs over a 24 hr period. Finally, we demonstrate that decreased cell seeding density in culture flasks resulted in increased production of EVs per cell in MSCs and other cell types. Overall, these studies highlight the need for careful consideration of the parameters of cell passage number and cell seeding density in the production of therapeutic EVs at laboratory scale and for rational design of large-scale EV biomanufacturing schemes.
Collapse
Affiliation(s)
- Divya B Patel
- Fischell Dept. of Bioengineering University of Maryland College Park MD 20742
| | - Kelsey M Gray
- Fischell Dept. of Bioengineering University of Maryland College Park MD 20742
| | | | - Tek N Lamichhane
- Fischell Dept. of Bioengineering University of Maryland College Park MD 20742
| | - Kimberly M Stroka
- Fischell Dept. of Bioengineering University of Maryland College Park MD 20742.,Greenebaum Comprehensive Cancer Center University of Maryland - Baltimore Baltimore MD 21201.,Biophysics Program University of Maryland College Park MD 20742.,Center for Stem Cell Biology and Regenerative Medicine University of Maryland - Baltimore Baltimore MD 21201
| | - Steven M Jay
- Fischell Dept. of Bioengineering University of Maryland College Park MD 20742.,Greenebaum Comprehensive Cancer Center University of Maryland - Baltimore Baltimore MD 21201.,Program in Molecular and Cell Biology University of Maryland College Park MD 20742
| |
Collapse
|
466
|
Foers AD, Cheng L, Hill AF, Wicks IP, Pang KC. Review: Extracellular Vesicles in Joint Inflammation. Arthritis Rheumatol 2017; 69:1350-1362. [PMID: 28217910 DOI: 10.1002/art.40076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Andrew D Foers
- The Walter & Eliza Hall Institute of Medical Research and The University of Melbourne, Parkville, Victoria, Australia
| | - Lesley Cheng
- Latrobe University, Bundoora, Victoria, Australia
| | | | - Ian P Wicks
- The Walter & Eliza Hall Institute of Medical Research and The University of Melbourne, Parkville, Victoria, Australia
| | - Ken C Pang
- Murdoch Childrens Research Institute and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
467
|
Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use. Int J Mol Sci 2017; 18:ijms18061190. [PMID: 28587212 PMCID: PMC5486013 DOI: 10.3390/ijms18061190] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path.
Collapse
|
468
|
Sharma J, Hampton JM, Valiente GR, Wada T, Steigelman H, Young MC, Spurbeck RR, Blazek AD, Bösh S, Jarjour WN, Young NA. Therapeutic Development of Mesenchymal Stem Cells or Their Extracellular Vesicles to Inhibit Autoimmune-Mediated Inflammatory Processes in Systemic Lupus Erythematosus. Front Immunol 2017; 8:526. [PMID: 28539924 PMCID: PMC5423896 DOI: 10.3389/fimmu.2017.00526] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Since being discovered over half a century ago, mesenchymal stem cells (MSCs) have been investigated extensively to characterize their cellular and physiological influences. MSCs have been shown to possess immunosuppressive capacity through inhibiting lymphocyte activation/proliferation and proinflammatory cytokine secretion while simultaneously demonstrating limited allogenic reactivity, which subsequently led to the evaluation of therapeutic feasibility to treat inflammatory diseases. Although regulatory constraints have restricted MSC development pharmacologically, limited clinical studies have shown encouraging results using MSC infusions to treat systemic lupus erythematosus (SLE); but, more trials will have to be performed to conclusively determine the clinical efficacy of MSCs to treat SLE. Moreover, there are some data to suggest that MSCs possess tumorigenic potential and that the immunosuppressive influence can be dramatically affected by both donor variability and ex vivo expansion. Given that recent studies have found that the immunosuppressive effects of MSCs are a result, at least in part, to extracellular vesicle (EV) secretion, the use of MSC-derived EVs has been suggested as a cell-free therapeutic alternative. Despite the positive data observed using EVs isolated from human MSCs to suppress inflammatory responses in vitro and in inhibiting autoimmune disease pathogenesis in preclinical work, there are no studies to date examining EVs from MSCs to treat SLE in humans or animal models. Considering that EVs are not subject to the strict regulatory constraints of stem cell-based pharmacological development and are more readily standardized with regard to industrial-scale production and storage, this review outlines the anti-inflammatory biology of MSCs and the scientific evidence supporting the potential use of EVs derived from human MSCs to treat patients with SLE.
Collapse
Affiliation(s)
- Juhi Sharma
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Jeffrey M Hampton
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Giancarlo R Valiente
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Takuma Wada
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Holly Steigelman
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | | | | | | | - Steffi Bösh
- Université de Nantes, Immuno-endocrinologie Cellulaire et Moléculaire, Nantes, France
| | - Wael N Jarjour
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Nicholas A Young
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| |
Collapse
|
469
|
Cosenza S, Ruiz M, Maumus M, Jorgensen C, Noël D. Pathogenic or Therapeutic Extracellular Vesicles in Rheumatic Diseases: Role of Mesenchymal Stem Cell-Derived Vesicles. Int J Mol Sci 2017; 18:E889. [PMID: 28441721 PMCID: PMC5412468 DOI: 10.3390/ijms18040889] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of cell-to-cell communication pathways via the transport of proteins, mRNA, miRNA and lipids. There are three main types of EVs, exosomes, microparticles and apoptotic bodies, which are classified according to their size and biogenesis. EVs are secreted by all cell types and their function reproduces that of the parental cell. They are involved in many biological processes that regulate tissue homeostasis and physiopathology of diseases. In rheumatic diseases, namely osteoarthritis (OA) and rheumatoid arthritis (RA), EVs have been isolated from synovial fluid and shown to play pathogenic roles contributing to progression of both diseases. By contrast, EVs may have therapeutic effect via the delivery of molecules that may stop disease evolution. In particular, EVs derived from mesenchymal stem cells (MSCs) reproduce the main functions of the parental cells and therefore represent the ideal type of EVs for modulating the course of either disease. The aim of this review is to discuss the role of EVs in OA and RA focusing on their potential pathogenic effect and possible therapeutic options. Special attention is given to MSCs and MSC-derived EVs for modulating OA and RA progression with the perspective of developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Stella Cosenza
- Institute of Regenerative Medicine and Biotherapies, INSERM, University of Montpellier, 34090 Montpellier, France.
| | - Maxime Ruiz
- Institute of Regenerative Medicine and Biotherapies, INSERM, University of Montpellier, 34090 Montpellier, France.
| | - Marie Maumus
- Institute of Regenerative Medicine and Biotherapies, INSERM, University of Montpellier, 34090 Montpellier, France.
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, INSERM, University of Montpellier, 34090 Montpellier, France.
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Hôpital Lapeyronie, 34090 Montpellier, France.
| | - Danièle Noël
- Institute of Regenerative Medicine and Biotherapies, INSERM, University of Montpellier, 34090 Montpellier, France.
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Hôpital Lapeyronie, 34090 Montpellier, France.
| |
Collapse
|
470
|
Lee WYW, Wang B. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Translat 2017; 9:76-88. [PMID: 29662802 PMCID: PMC5822962 DOI: 10.1016/j.jot.2017.03.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis is a degenerative disease of joints with destruction of articular cartilage associated with subchondral bone hypertrophy and inflammation. OA is the leading cause of joint pain resulting in significant worsening of the quality-of-life in the elderly. Numerous efforts have been spent to overcome the inherently poor healing ability of articular cartilage. Mesenchymal stem cells (MSCs) have been in the limelight of cell-based therapies to promote cartilage repair. Despite progressive advancements in MSC manipulation and the introduction of various bioactive scaffolds and growth factors in preclinical studies, current clinical trials are still at early stages with preliminary aims to evaluate safety, feasibility and efficacy. This review summarises recently reported MSC-based clinical trials and discusses new research directions with particular focus on the potential application of MSC-derived extracellular vehicles, miRNAs and advanced gene editing techniques which may shed light on the development of novel treatment strategies. The translational potential of this article: This review summarises recent MSC-related clinical research that focuses on cartilage repair. We also propose a novel possible translational direction for hyaline cartilage formation and a new paradigm making use of extra-cellular signalling and epigenetic regulation in the application of MSCs for cartilage repair.
Collapse
Affiliation(s)
- Wayne Yuk-wai Lee
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PR China
- SMART Program, Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PR China
- SMART Program, Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
471
|
Derkus B, Emregul KC, Emregul E. A new approach in stem cell research-Exosomes: Their mechanism of action via cellular pathways. Cell Biol Int 2017; 41:466-475. [DOI: 10.1002/cbin.10742] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/04/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Burak Derkus
- Department of Chemistry; Faculty of Sciences; Ankara University; 06100 Ankara Turkey
| | - Kaan C. Emregul
- Department of Chemistry; Faculty of Sciences; Ankara University; 06100 Ankara Turkey
| | - Emel Emregul
- Department of Chemistry; Faculty of Sciences; Ankara University; 06100 Ankara Turkey
| |
Collapse
|
472
|
Liu X, Yang Y, Li Y, Niu X, Zhao B, Wang Y, Bao C, Xie Z, Lin Q, Zhu L. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. NANOSCALE 2017; 9:4430-4438. [PMID: 28300264 DOI: 10.1039/c7nr00352h] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The regeneration of articular cartilage, which scarcely shows innate self-healing ability, is a great challenge in clinical treatment. Stem cell-derived exosomes (SC-Exos), an important type of extracellular nanovesicle, exhibit great potential for cartilage regeneration to replace stem cell-based therapy. Cartilage regeneration often takes a relatively long time and there is currently no effective administration method to durably retain exosomes at cartilage defect sites to effectively exert their reparative effect. Therefore, in this study, we exploited a photoinduced imine crosslinking hydrogel glue, which presents excellent operation ability, biocompatibility and most importantly, cartilage-integration, as an exosome scaffold to prepare an acellular tissue patch (EHG) for cartilage regeneration. It was found that EHG can retain SC-Exos and positively regulate both chondrocytes and hBMSCs in vitro. Furthermore, EHG can integrate with native cartilage matrix and promote cell deposition at cartilage defect sites, finally resulting in the promotion of cartilage defect repair. The EHG tissue patch therefore provides a novel, cell-free scaffold material for wound repair.
Collapse
Affiliation(s)
- Xiaolin Liu
- Institute of Microsurgery on Extremities, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People' Hospital, 600# Yishan Road, Shanghai, China200233.
| | - Yunlong Yang
- Institute of Microsurgery on Extremities, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People' Hospital, 600# Yishan Road, Shanghai, China200233. and Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China.
| | - Yan Li
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China.
| | - Xin Niu
- Institute of Microsurgery on Extremities, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People' Hospital, 600# Yishan Road, Shanghai, China200233.
| | - Bizeng Zhao
- Institute of Microsurgery on Extremities, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People' Hospital, 600# Yishan Road, Shanghai, China200233.
| | - Yang Wang
- Institute of Microsurgery on Extremities, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People' Hospital, 600# Yishan Road, Shanghai, China200233.
| | - Chunyan Bao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China.
| | - Zongping Xie
- Institute of Microsurgery on Extremities, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People' Hospital, 600# Yishan Road, Shanghai, China200233.
| | - Qiuning Lin
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China.
| | - Linyong Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
473
|
Kusuma GD, Carthew J, Lim R, Frith JE. Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect. Stem Cells Dev 2017; 26:617-631. [PMID: 28186467 DOI: 10.1089/scd.2016.0349] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cues from the extracellular environment, including physical stimuli, are well known to affect mesenchymal stem cell (MSC) properties in terms of proliferation and differentiation. Many therapeutic strategies are now targeting this knowledge to increase the efficacy of cell therapies, typically employed to repair tissue functions in the event of injury, either by direct engraftment into the target tissue or differentiation into mature tissues. However, it is now envisioned that harnessing the repertoire of factors secreted by MSCs (termed the secretome) may provide an alternate to these cell therapies. Of current interest are both direct protein secretions and two major subpopulations of bioactive extracellular vesicles (EVs), namely exosomes and microvesicles. EVs released by MSCs are reflective of their cells of origin, able to impact upon the activities of other cells in the local microenvironment, making the rational design of MSC paracrine activities an encouraging strategy to reproducibly modulate cell therapies. The precise mechanisms by which the secretome is modulated by the microenvironment, however, remain elusive. Controlling MSC growth conditions with oxygen tension, growth factor composition, and mechanical properties may serve to directly influence paracrine activity. Our growing understanding implicates components of the mechanotransduction machinery in translating both mechanical and chemical cues from the environment into alterations in gene regulation and varied paracrine activity. As technologies are developed to manufacture MSCs, advances in bioengineering and novel insight of how the extracellular environment affects MSC paracrine activity will play a pivotal role in the generation of widespread, successful, clinical MSC therapies.
Collapse
Affiliation(s)
- Gina D Kusuma
- 1 Department of Materials Science and Engineering, Monash University , Clayton, Victoria, Australia
| | - James Carthew
- 1 Department of Materials Science and Engineering, Monash University , Clayton, Victoria, Australia
| | - Rebecca Lim
- 2 Department of Obstetrics and Gynecology, Monash University , Clayton, Victoria, Australia .,3 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Victoria, Australia
| | - Jessica E Frith
- 1 Department of Materials Science and Engineering, Monash University , Clayton, Victoria, Australia
| |
Collapse
|
474
|
Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells 2017; 35:851-858. [PMID: 28294454 DOI: 10.1002/stem.2575] [Citation(s) in RCA: 1202] [Impact Index Per Article: 150.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell transplantation is undergoing extensive evaluation as a cellular therapy in human clinical trials. Because MSCs are easily isolated and amenable to culture expansion in vitro there is a natural desire to test MSCs in many diverse clinical indications. This is exemplified by the rapidly expanding literature base that includes many in vivo animal models. More recently, MSC-derived extracellular vesicles (EVs), which include exosomes and microvesicles (MV), are being examined for their role in MSC-based cellular therapy. These vesicles are involved in cell-to-cell communication, cell signaling, and altering cell or tissue metabolism at short or long distances in the body. The exosomes and MVs can influence tissue responses to injury, infection, and disease. MSC-derived exosomes have a content that includes cytokines and growth factors, signaling lipids, mRNAs, and regulatory miRNAs. To the extent that MSC exosomes can be used for cell-free regenerative medicine, much will depend on the quality, reproducibility, and potency of their production, in the same manner that these parameters dictate the development of cell-based MSC therapies. However, the MSC exosome's contents are not static, but rather a product of the MSC tissue origin, its activities and the immediate intercellular neighbors of the MSCs. As such, the exosome content produced by MSCs appears to be altered when MSCs are cultured with tumor cells or in the in vivo tumor microenvironment. Therefore, careful attention to detail in producing MSC exosomes may provide a new therapeutic paradigm for cell-free MSC-based therapies with decreased risk. Stem Cells 2017;35:851-858.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, USA
| | | |
Collapse
|
475
|
Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-Derived Exosomes and Neuroinflammation, Neurogenesis and Therapy of Traumatic Brain Injury. Front Cell Neurosci 2017; 11:55. [PMID: 28293177 PMCID: PMC5329010 DOI: 10.3389/fncel.2017.00055] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Exosomes are endosomal origin membrane-enclosed small vesicles (30-100 nm) that contain various molecular constituents including proteins, lipids, mRNAs and microRNAs. Accumulating studies demonstrated that exosomes initiated and regulated neuroinflammation, modified neurogenic niches and neurogenesis, and were even of potential significance in treating some neurological diseases. These tiny extracellular vesicles (EVs) can derive from some kinds of multipotent cells such as mesenchymal stem cells (MSCs) that have been confirmed to be a potentially promising therapy for traumatic brain injury (TBI) in experimental models and in preclinical studies. Nevertheless, subsequent studies demonstrated that the predominant mechanisms of MSCs's contributions to brain tissue repairment and functional recovery after TBI were not the cell replacement effects but likely the secretion-based paracrine effects produced by EVs such as MSCs-derived exosomes. These nanosized exosomes derived from MSCs cannot proliferate, are easier to preserve and transfer and have lower immunogenicity, compared with transplanted exogenous MSCs. These reports revealed that MSCs-derived exosomes might promise to be a new and valuable therapeutic strategy for TBI than MSCs themselves. However, the concrete mechanisms involved in the positive effects induced by MSCs-derived exosomes in TBI are still ambiguous. In this review, we intend to explore the potential effects of MSCs-derived exosomes on neuroinflammation and neurogenesis in TBI and, especially, on therapy.
Collapse
Affiliation(s)
- Yongxiang Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical UniversityXi'an, China; Department of Neurosurgery, PLA 422nd HospitalZhanjiang, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical UniversityXi'an, China; Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University)Changsha, China
| | - Xinhong Su
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Jun He
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Wei Bai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| |
Collapse
|
476
|
Taverna S, Pucci M, Alessandro R. Extracellular vesicles: small bricks for tissue repair/regeneration. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:83. [PMID: 28275628 DOI: 10.21037/atm.2017.01.53] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized membrane vesicles involved in intercellular communication. EVs have pleiotropic actions in physiological and pathological conditions. The ability of EVs to transports proteins, drugs and nucleic acid, to target specific cells and to increase the stability of therapeutic cargo, make EVs interesting as new devices for the treatment of human disease. In a recently published issue of European journal of pharmaceutical sciences, Silva and colleagues reviewed the ability of EVs to modulate tissue repair and regeneration, focusing on their roles and therapeutic potential as immunomodulatory messengers. In this perspective, we discussed the open questions regarding the dual role of EVs in immune system, as well as the technical limitation of the procedure for EVs isolation and administration in clinical practices. EV-based therapies require further studies to consider EVs as promising candidate for a novel cell-free therapy in the context of regeneration medicine.
Collapse
Affiliation(s)
- Simona Taverna
- Biopathology and Biomedical Methodology, Biology and Genetic Section, University of Palermo, Palermo, Italy
| | - Marzia Pucci
- Biopathology and Biomedical Methodology, Biology and Genetic Section, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Biopathology and Biomedical Methodology, Biology and Genetic Section, University of Palermo, Palermo, Italy
| |
Collapse
|
477
|
Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration. Eur J Pharm Sci 2017; 98:86-95. [DOI: 10.1016/j.ejps.2016.09.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
|
478
|
Armstrong JPK, Holme MN, Stevens MM. Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics. ACS NANO 2017; 11:69-83. [PMID: 28068069 PMCID: PMC5604727 DOI: 10.1021/acsnano.6b07607] [Citation(s) in RCA: 454] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as a key cell-free strategy for the treatment of a range of pathologies, including cancer, myocardial infarction, and inflammatory diseases. Indeed, the field is rapidly transitioning from promising in vitro reports toward in vivo animal models and early clinical studies. These investigations exploit the high physicochemical stability and biocompatibility of EVs as well as their innate capacity to communicate with cells via signal transduction and membrane fusion. This review focuses on methods in which EVs can be chemically or biologically modified to broaden, alter, or enhance their therapeutic capability. We examine two broad strategies, which have been used to introduce a wide range of nanoparticles, reporter systems, targeting peptides, pharmaceutics, and functional RNA molecules. First, we explore how EVs can be modified by manipulating their parent cells, either through genetic or metabolic engineering or by introducing exogenous material that is subsequently incorporated into secreted EVs. Second, we consider how EVs can be directly functionalized using strategies such as hydrophobic insertion, covalent surface chemistry, and membrane permeabilization. We discuss the historical context of each specific technology, present prominent examples, and evaluate the complexities, potential pitfalls, and opportunities presented by different re-engineering strategies.
Collapse
Affiliation(s)
- James PK Armstrong
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College, London, U.K. SW7 2AZ
| | - Margaret N Holme
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College, London, U.K. SW7 2AZ
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College, London, U.K. SW7 2AZ
| |
Collapse
|
479
|
Zhou S, Abdouh M, Arena V, Arena M, Arena GO. Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment. PLoS One 2017; 12:e0169899. [PMID: 28068409 PMCID: PMC5222525 DOI: 10.1371/journal.pone.0169899] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner, mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However, the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover, we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects, and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells, inducing a dose-dependent increase in SOX2, OCT4 and Nanog proteins, leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells.
Collapse
Affiliation(s)
- Shufeng Zhou
- Cancer Research Program, McGill University Health Centre-Research Institute, Montreal, Canada
- Department of Experimental Surgery, Montreal General Hospital, McGill University, Montreal, Canada
| | - Mohamed Abdouh
- Cancer Research Program, McGill University Health Centre-Research Institute, Montreal, Canada
| | - Vincenzo Arena
- Deparment of Obstetrics and Gynecology, Santo Bambino Hospital, Catania, Italy
| | - Manuel Arena
- Department of Surgical Sciences, Organ Transplantation and Advances Technologies, University of Catania, Catania, Italy
| | - Goffredo Orazio Arena
- Cancer Research Program, McGill University Health Centre-Research Institute, Montreal, Canada
- Department of Surgery, St. Mary Hospital, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
480
|
Exosomes Derived from Embryonic Stem Cells as Potential Treatment for Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:187-206. [DOI: 10.1007/978-981-10-4397-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
481
|
Toh WS, Brittberg M, Farr J, Foldager CB, Gomoll AH, Hui JHP, Richardson JB, Roberts S, Spector M. Cellular senescence in aging and osteoarthritis. Acta Orthop 2016; 87:6-14. [PMID: 27658487 PMCID: PMC5389431 DOI: 10.1080/17453674.2016.1235087] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
- It is well accepted that age is an important contributing factor to poor cartilage repair following injury, and to the development of osteoarthritis. Cellular senescence, the loss of the ability of cells to divide, has been noted as the major factor contributing to age-related changes in cartilage homeostasis, function, and response to injury. The underlying mechanisms of cellular senescence, while not fully understood, have been associated with telomere erosion, DNA damage, oxidative stress, and inflammation. In this review, we discuss the causes and consequences of cellular senescence, and the associated biological challenges in cartilage repair. In addition, we present novel strategies for modulation of cellular senescence that may help to improve cartilage regeneration in an aging population.
Collapse
Affiliation(s)
- Wei Seong Toh
- Faculty of Dentistry, National University of Singapore,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore,Correspondence:
| | - Mats Brittberg
- Cartilage Research Unit, University of Gothenburg, Gothenburg,Department of Orthopaedics, Kungsbacka Hospital, Kungsbacka, Sweden
| | - Jack Farr
- Indiana University School of Medicine, OrthoIndy Cartilage Restoration Center, Indianapolis, IN, USA
| | | | - Andreas H Gomoll
- Cartilage Repair Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - James Hoi Po Hui
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore,Cartilage Repair Program, Therapeutic Tissue Engineering Laboratory, Department of Orthopaedic Surgery, National University Health System, National University of Singapore, Singapore
| | - James B Richardson
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire,Institute for Science andTechnology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Sally Roberts
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire,Institute for Science andTechnology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Myron Spector
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
482
|
Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin Cell Dev Biol 2016; 67:56-64. [PMID: 27871993 DOI: 10.1016/j.semcdb.2016.11.008] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC) therapies have demonstrated efficacy in cartilage repair in animal and clinical studies. The efficacy of MSC-based therapies which was previously predicated on the chondrogenic potential of MSC is increasingly attributed to the paracrine secretion, particularly exosomes. Exosomes are thought to function primarily as intercellular communication vehicles to transfer bioactive lipids, nucleic acids (mRNAs and microRNAs) and proteins between cells to elicit biological responses in recipient cells. For MSC exosomes, many of these biological responses translated to a therapeutic outcome in injured or diseased cells. Here, we review the current understanding of MSC exosomes, discuss the possible mechanisms of action in cartilage repair within the context of the widely reported immunomodulatory and regenerative potency of MSC exosomes, and provide new perspectives for development of an off-the-shelf and cell-free MSC therapy for treatment of cartilage injuries and osteoarthritis.
Collapse
Affiliation(s)
- Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore; Tissue Engineering Program, Life Sciences Institute National University of Singapore, Singapore.
| | - Ruenn Chai Lai
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - James Hoi Po Hui
- Tissue Engineering Program, Life Sciences Institute National University of Singapore, Singapore; Cartilage Repair Program, Therapeutic Tissue Engineering Laboratory, Department of Orthopaedic Surgery, National University Health System, National University of Singapore, Singapore
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|