451
|
Casanova JL, Abel L. The human model: a genetic dissection of immunity to infection in natural conditions. Nat Rev Immunol 2004; 4:55-66. [PMID: 14704768 DOI: 10.1038/nri1264] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tremendous progress has been achieved in developmental, cellular and molecular immunology in the past 20 years, largely due to studies using the mouse as a model system and the arrival of molecular genetics. Immunology is now faced with a difficult challenge. What are the functions of the individual cells and molecules in achieving immunity to infection? Renewed interest in animal models of disease has provided considerable insight in this area, but such models of infection suffer from the inherent limitation of being experimental. In humans, the complex host-environment interaction occurs in natural, as opposed to experimental, conditions. The human model is therefore an indispensable complement to animal models, as it allows an observational genetic dissection of immunity to infection.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, University of Paris René Descartes-INSERM U550, Necker Medical School, 156 Rue de Vaugirard, 75015 Paris, France, EU.
| | | |
Collapse
|
452
|
Kalesnikoff J, Sly LM, Hughes MR, Büchse T, Rauh MJ, Cao LP, Lam V, Mui A, Huber M, Krystal G. The role of SHIP in cytokine-induced signaling. Rev Physiol Biochem Pharmacol 2004; 149:87-103. [PMID: 12692707 DOI: 10.1007/s10254-003-0016-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol (PI)-3 kinase (PI3K) pathway plays a central role in regulating many biological processes via the generation of the key second messenger PI-3,4,5-trisphosphate (PI-3,4,5-P3). This membrane-associated phospholipid, which is rapidly, albeit transiently, synthesized from PI-4,5-P2 by PI3K in response to a diverse array of extracellular stimuli, attracts pleckstrin homology (PH) domain-containing proteins to membranes to mediate its many effects. To ensure that the activation of this pathway is appropriately suppressed/terminated, the ubiquitously expressed tumor suppressor PTEN hydrolyzes PI-3,4,5-P3 back to PI-4,5-P2 while the 145-kDa hemopoietic-restricted SH2-containing inositol 5'- phosphatase, SHIP (also known as SHIP1), the 104-kDa stem cell-restricted SHIP (sSHIP) and the more widely expressed 150-kDa SHIP2 hydrolyze PI-3,4,5-P3 to PI-3,4-P2. In this review we will concentrate on the properties of the three SHIPs, with special emphasis being placed on the role that SHIP plays in cytokine-induced signaling.
Collapse
Affiliation(s)
- J Kalesnikoff
- The Terry Fox Laboratory, BC Cancer Agency, Vancouver, V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
453
|
Malbran A, Belmonte L, Ruibal-Ares B, Baré P, Massud I, Parodi C, Felippo M, Hodinka R, Haines K, Nichols KE, de Bracco MM. Loss of circulating CD27+ memory B cells and CCR4+ T cells occurring in association with elevated EBV loads in XLP patients surviving primary EBV infection. Blood 2004; 103:1625-31. [PMID: 14604960 DOI: 10.1182/blood-2003-07-2525] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Detailed longitudinal studies of patients with X-linked lymphoproliferative disease (XLP) may increase our understanding of the immunologic defects that contribute to the development of lymphoma and hypogammaglobulinemia in XLP. We describe progressive changes observed in immunoglobulin concentrations, lymphocyte subsets, and Epstein-Barr virus (EBV) loads occurring in a 2-year period in a newly infected, but otherwise healthy, carrier (patient 9). We compare these findings with those observed in the patient's brother, who had hypogammaglobulinemia and XLP (patient 4). Immunoglobulin G (IgG), IgM, and IgA concentrations increased in patient 9 during acute EBV infection, but thereafter they decreased steadily to concentrations consistent with hypogammaglobulinemia, reaching a plateau 5 months after infection. In both patients, CD19+ B-lymphocyte rates remained lower than 3%, with a contraction of the B-cell memory compartment (CD27+ CD19+/CD19+) to 20% (normal range, 32%-56%). T-lymphocyte subpopulations showed a reduction in CD4+ T-cell counts and a permanent CD8+ T-cell expansion. Interestingly, CXCR3 memory TH1 cells were expanded and CCR4+ TH2 lymphocytes were reduced, suggesting that abnormal skewing of memory T-cell subsets might contribute to reduced antibody synthesis. Despite an expanded number of CD3+CD8+ lymphocytes, increased EBV loads occurred in both patients without overt clinical symptoms of mononucleosis, lymphoproliferative disease, or lymphoma.
Collapse
Affiliation(s)
- Alejandro Malbran
- Departamento de Alergia e Inmunología, Hospital Británico, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
454
|
Abstract
Natural killer (NK) cells are lymphocytes that were first identified for their ability to kill tumor cells without deliberate immunization or activation. Subsequently, they were also found to be able to kill cells that are infected with certain viruses and to attack preferentially cells that lack expression of major histocompatibility complex (MHC) class I antigens. The recent discovery of novel NK receptors and their ligands has uncovered the molecular mechanisms that regulate NK activation and function. Several activating NK cell receptors and costimulatory molecules have been identified that permit these cells to recognize tumors and virus-infected cells. These are modulated by inhibitory receptors that sense the levels of MHC class I on prospective target cells to prevent unwanted destruction of healthy tissues. In vitro and in vivo, their cytotoxic ability can be enhanced by cytokines, such as interleukin (IL)-2, IL-12, IL-15 and interferon alpha/beta (IFN-alpha/beta). In animal studies, they have been shown to play a critical role in the control of tumor growth and metastasis and to provide innate immunity against infection with certain viruses. Following activation, NK cells release cytokines and chemokines that induce inflammatory responses; modulate monocyte, dendritic cells, and granulocyte growth and differentiation; and influence subsequent adaptive immune responses. The underlining mechanism of discriminating tumor cells and normal cells by NK cells has provided new insights into tumor immunosurveillance and has suggested new strategies for the treatment of human cancer.
Collapse
Affiliation(s)
- Jun Wu
- Shanghai Gnomics, Inc., and Chinese National Genome Center, Shanghai, China
| | | |
Collapse
|
455
|
Zhukovskaya NV, Fukuzawa M, Tsujioka M, Jermyn KA, Kawata T, Abe T, Zvelebil M, Williams JG. Dd-STATb, a Dictyostelium STAT protein with a highly aberrant SH2 domain, functions as a regulator of gene expression during growth and early development. Development 2004; 131:447-58. [PMID: 14701681 DOI: 10.1242/dev.00927] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dictyostelium, the only known non-metazoan organism to employ SH2 domain:phosphotyrosine signaling, possesses STATs (signal transducers and activators of transcription) and protein kinases with orthodox SH2 domains. Here, however, we describe a novel Dictyostelium STAT containing a remarkably divergent SH2 domain. Dd-STATb displays a 15 amino acid insertion in its SH2 domain and the conserved and essential arginine residue, which interacts with phosphotyrosine in all other known SH2 domains, is substituted by leucine. Despite these abnormalities, Dd-STATb is biologically functional. It has a subtle role in growth, so that Dd-STATb-null cells are gradually lost from the population when they are co-cultured with parental cells, and microarray analysis identified several genes that are either underexpressed or overexpressed in the Dd-STATb null strain. The best characterised of these,discoidin 1, is a marker of the growth-development transition and it is overexpressed during growth and early development of Dd-STATb null cells. Dimerisation of STAT proteins occurs by mutual SH2 domain:phosphotyrosine interactions and dimerisation triggers STAT nuclear accumulation. Despite its aberrant SH2 domain, the Dd-STATb protein sediments at the size expected for a homodimer and it is constitutively enriched in the nucleus. Moreover, these properties are retained when the predicted site of tyrosine phosphorylation is substituted by phenylalanine. These observations suggest a non-canonical mode of activation of Dd-STATb that does not rely on orthodox SH2 domain:phosphotyrosine interactions.
Collapse
Affiliation(s)
- Natasha V Zhukovskaya
- School of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
456
|
Abstract
The recent identification of the genes involved in many primary immunodeficiency disorders has led to a significant increase in our understanding of the pathogenesis of these defects. Many of these disorders share a clinical phenotype with common features such as recurrent infections, chronic inflammation, and autoimmunity. Although some of these immune defects have mild presentations and better outcomes, others result in severe infections and significant morbidity and mortality. For these, early diagnosis and treatment are critical. This review provides an overview of the genetic defects and clinical features of primary immune deficiencies due to defects in lymphocytes.
Collapse
Affiliation(s)
- Steven J Simonte
- Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
457
|
Heusel JW, Ballas ZK. Natural killer cells: emerging concepts in immunity to infection and implications for assessment of immunodeficiency. Curr Opin Pediatr 2003; 15:586-93. [PMID: 14631204 DOI: 10.1097/00008480-200312000-00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW As the molecular networks that connect innate and adaptive immunity are untangled, the prominence of natural killer (NK) cells in host defense continues to emerge. Herein we highlight recent findings pertaining to NK cell development, trafficking, and interactions with other innate and adaptive immune cells in the context of predicting how NK cells may be involved in a wider range of clinical immunodeficiency. RECENT FINDINGS NK cells contribute vital roles in innate and adaptive immunity, especially in collaboration with dendritic cells (DC). Fascinating new details have been reported about cell surface integrins and receptors that regulate NK functions, as well as the cytokine/chemokine networks that provide for NK-DC interactions. Moreover, NK cells appear to play an important role in the attenuation or resolution of an immune response through either action against CD8 T cells or indirect control of certain DC. These findings shed important insights as to how NK cells and DC cooperate to control primary infections and shape the subsequent adaptive immune responses. SUMMARY Natural killer cells are heterogeneous lymphocytes that provide an essential function in host defense. NK cells respond early to microbial assault and interact with other cells of the innate immune system, but they recognize and intercept pathogenic infections through highly specific mechanisms that are similar to T cells. Thus, NK cells are positioned as a cellular bridge between innate and adaptive immunity. It is imperative, then, to include a careful assessment of NK cell populations and functions in most cases of suspected immunodeficiency.
Collapse
Affiliation(s)
- Jonathan W Heusel
- Departments of Pathology and Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa and the Iowa City VA Medical Center, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
458
|
Nikiforow S, Bottomly K, Miller G, Münz C. Cytolytic CD4(+)-T-cell clones reactive to EBNA1 inhibit Epstein-Barr virus-induced B-cell proliferation. J Virol 2003; 77:12088-104. [PMID: 14581546 PMCID: PMC254269 DOI: 10.1128/jvi.77.22.12088-12104.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the absence of immune surveillance, Epstein-Barr virus (EBV)-infected B cells generate neoplasms in vivo and transformed cell lines in vitro. In an in vitro system which modeled the first steps of in vivo immune control over posttransplant lymphoproliferative disease and lymphomas, our investigators previously demonstrated that memory CD4(+) T cells reactive to EBV were necessary and sufficient to prevent proliferation of B cells newly infected by EBV (S. Nikiforow et al., J. Virol. 75:3740-3752, 2001). Here, we show that three CD4(+)-T-cell clones reactive to the latent EBV antigen EBNA1 also prevent the proliferation of newly infected B cells from major histocompatibility complex (MHC) class II-matched donors, a crucial first step in the transformation process. EBNA1-reactive T-cell clones recognized B cells as early as 4 days after EBV infection through an HLA-DR-restricted interaction. They secreted Th1-type and Th2-type cytokines and lysed EBV-transformed established lymphoblastoid cell lines via a Fas/Fas ligand-dependent mechanism. Once specifically activated, they also caused bystander regression and bystander killing of non-MHC-matched EBV-infected B cells. Since EBNA1 is recognized by CD4(+) T cells from nearly all EBV-seropositive individuals and evades detection by CD8(+) T cells, EBNA1-reactive CD4(+) T cells may control de novo expansion of B cells following EBV infection in vivo. Thus, EBNA1-reactive CD4(+)-T-cell clones may find use as adoptive immunotherapy against EBV-related lymphoproliferative disease and many other EBV-associated tumors.
Collapse
Affiliation(s)
- Sarah Nikiforow
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
459
|
Halasa NB, Whitlock JA, McCurley TL, Smith JA, Zhu Q, Ochs H, Dermody TS, Crowe JE. Fatal Hemophagocytic Lymphohistiocytosis Associated with Epstein-Barr Virus Infection in a Patient with a Novel Mutation in the Signaling Lymphocytic Activation Molecule--Associated Protein. Clin Infect Dis 2003; 37:e136-41. [PMID: 14583885 DOI: 10.1086/379126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 07/10/2003] [Indexed: 01/30/2023] Open
Abstract
Individuals with X-linked lymphoproliferative disease are susceptible to severe Epstein-Barr virus (EBV) infections that are often fatal. Mutations in signaling lymphocytic activation molecule-associated protein (SAP) are associated with this illness. We describe a patient with a novel serine-to-proline mutation at aa 57 in SAP and compare the location of the altered amino acid with all known missense mutations in the SAP-encoding SH2D1A gene, including those of 4 additional individuals whose cases have not been described elsewhere. The patient's genetic condition was discovered only after he exhibited an abnormal host response to primary EBV infection that resulted in hemophagocytic lymphohistiocytosis syndrome, which was complicated by marrow aplasia with terminal disseminated aspergillosis.
Collapse
Affiliation(s)
- Natasha B Halasa
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2581, USA
| | | | | | | | | | | | | | | |
Collapse
|
460
|
Yin L, Al-Alem U, Liang J, Tong WM, Li C, Badiali M, Médard JJ, Sumegi J, Wang ZQ, Romeo G. Mice deficient in the X-linked lymphoproliferative disease gene sap exhibit increased susceptibility to murine gammaherpesvirus-68 and hypo-gammaglobulinemia. J Med Virol 2003; 71:446-55. [PMID: 12966553 DOI: 10.1002/jmv.10504] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
X-linked lymphoproliferative disease is characterized by immune dysregulation and uncontrolled lymphoproliferation on exposure to Epstein-Barr virus (EBV). This disease has been attributed to mutations in the SAP gene (also denominated as SH2D1A or DSHP). To delineate the role of SAP in the pathophysiology of X-linked lymphoproliferative disease, a strain of sap-deficient mice has been generated by deleting exon 2 of the gene. After infection with murine gammaherpesvirus-68, which is homologous to EBV, the mutant mice exhibit more vigorous CD8+ T cell proliferation and more disseminated lymphocyte infiltration compared to their wild-type littermates. Chronic tissue damage and hemophagocytosis were evident in sap-deficient mice but not in their wild-type littermates. Concordantly, murine gammaherpesvirus-68 reactivation was observed in sap-deficient mice, indicating an impaired control of the virus. Notably, IgE deficiency and decreased serum IgG level were observed in mutant mice prior to and after murine gammaherpesvirus-68 infection, which reproduces hypo-gammaglobulinemia in X-linked lymphoproliferative disease patients. This mouse model will therefore be a useful tool for dissecting the various phenotypes of X-linked lymphoproliferative disease.
Collapse
Affiliation(s)
- Luo Yin
- Unit of Genetic Cancer Susceptibility, International Agency for Research on Cancer, 150 cours Albert-Thomas, 69372 Lyon Cedex 08, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
461
|
Mahajan NP, Earp HS. An SH2 domain-dependent, phosphotyrosine-independent interaction between Vav1 and the Mer receptor tyrosine kinase: a mechanism for localizing guanine nucleotide-exchange factor action. J Biol Chem 2003; 278:42596-603. [PMID: 12920122 DOI: 10.1074/jbc.m305817200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mer belongs to the Mer/Axl/Tyro3 receptor tyrosine kinase family, which regulates immune homeostasis in part by triggering monocyte ingestion of apoptotic cells. Mutations in Mer can also cause retinitis pigmentosa, again due to defective phagocytosis of apoptotic material. Although, some functional aspects of Mer have been deciphered, how receptor activation lead to the physiological consequences is not understood. By using yeast two-hybrid assays, we identified the carboxyl-terminal region of the guanine nucleotide-exchange factor (GEF) Vav1 as a Mer-binding partner. Unlike similar (related) receptors, Mer interacted with Vav1 constitutively and independently of phosphotyrosine, yet the site of binding localized to the Vav1 SH2 domain. Mer activation resulted in tyrosine phosphorylation of Vav1 and release from Mer, whereas Vav1 was neither phosphorylated nor released from kinase-dead Mer. Mutation of the Vav1 SH2 domain phosphotyrosine coordinating Arg-696 did not alter Mer/Vav1 constitutive binding or Vav1 tyrosine phosphorylation but did retard Vav1 release from autophosphorylated Mer. Ligand-dependent activation of Mer in human monocytes led to Vav1 release and stimulated GDP replacement by GTP on RhoA family members. This unusual constitutive, SH2 domain-dependent, but phosphotyrosine-independent, interaction and its regulated local release and subsequent activation of Rac1, Cdc42, and RhoA may explain how Mer coordinates precise cytoskeletal changes governing the ingestion of apoptotic material by macrophages and pigmented retinal epithelial cells.
Collapse
Affiliation(s)
- Nupam P Mahajan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 7599-7295, USA
| | | |
Collapse
|
462
|
Katano H, Ali MA, Patera AC, Catalfamo M, Jaffe ES, Kimura H, Dale JK, Straus SE, Cohen JI. Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. Blood 2003; 103:1244-52. [PMID: 14576041 DOI: 10.1182/blood-2003-06-2171] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic active Epstein-Barr virus infection (CAEBV) is a rare disease in which previously healthy persons develop severe, life-threatening illness. Mutations in the perforin gene have been found in familial hemophagocytic lymphohistiocytosis, which shares some features with CAEBV. We studied a patient who died at age 18, 10 years after the onset of CAEBV. The patient had high titers of antibodies to EBV, EBV RNA in lymph nodes, T-cell lymphoproliferative disease, and hemophagocytic lymphohistiocytosis. DNA sequencing showed novel mutations in both alleles of the perforin gene that resulted in amino acid changes in the protein. The quantity of the native form of perforin from the patient's stimulated peripheral blood mononuclear cells (PBMCs) was extremely low and immunoblotting showed accumulation of an uncleaved precursor form of perforin. Stimulated PBMCs from the patient were defective for Fas-independent cytotoxicity. These data imply that mutations in this patient resulted in reduced perforin-mediated cytotoxicity by his lymphocytes. This is the first case in which perforin mutations have been shown to result in accumulation of the uncleaved, immature form of perforin. Mutations in the perforin gene are associated with some cases of CAEBV with hemophagocytic lymphohistiocytosis.
Collapse
Affiliation(s)
- Harutaka Katano
- Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
463
|
Abstract
Otolaryngologists are frequently consulted to manage infectious and noninfectious complications of immune deficiency. Although defects of host defense and recurrent or severe infections are the most obvious manifestations of immune deficiency, patients are often at increased risk for autoimmune and malignant disease as well. Knowledge of primary and acquired immune deficiencies will facilitate appropriate identification, treatment, and referral of patients with these defects. When immunodeficiency is known or suspected, it is particularly important to have a high index of suspicion for unusual or severe manifestations of infection, to have a low threshold for obtaining imaging to aid in diagnosis, and to treat infections for longer periods of time with higher doses of antibiotic. Surgery may be required for definitive treatment of infections that do not respond to medical therapy and for management of complications of infectious disease
Collapse
Affiliation(s)
- Andrew G Sikora
- Department of Otolaryngology, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
464
|
Virgo P, Denning-Kendall PA, Erickson-Miller CL, Singha S, Evely R, Hows JM, Freeman SD. Identification of the CD33-related Siglec receptor, Siglec-5 (CD170), as a useful marker in both normal myelopoiesis and acute myeloid leukaemias. Br J Haematol 2003; 123:420-30. [PMID: 14617000 DOI: 10.1046/j.1365-2141.2003.04625.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectin (Siglec)-5 or CD170 is a CD33-related receptor, containing cytoplasmic immune receptor-based tyrosine signalling motifs, that has previously been reported to be myeloid-specific like CD33 and thus may be useful in the characterization of both normal and malignant haemopoiesis. This study showed that Siglec-5 had a distinct expression pattern to CD33 both on normal myeloid cells and in acute myeloid leukaemia (AML). In normal bone marrow and cord blood, myeloid cells predominantly expressed Siglec-5 at the later stages of granulocytic differentiation. Siglec-5 was not expressed at significant levels by CD34+ progenitors either from bone marrow or mobilized peripheral blood. During in vitro myeloid differentiation of cord blood purified CD34+ cells, Siglec-5 was upregulated later than CD33. Siglec-5 expression remained absent or very low on cultured CD34+ cells, unlike CD33, which was present on almost all CD34+ cells by day 4. However, analysis of blasts from 23 patients with AML revealed aberrant expression of Siglec-5 with CD34 in 50% (seven of 14) of patients with CD34+ AML; 61% (14 of 23) of AML cases were positive for Siglec-5 with an increased frequency in the French-American-British subtypes M3-5 (80%) compared with M0-2 (25%). All 13 acute lymphoblastic leukaemic (ALL) samples tested, including a CD33+ ALL, were Siglec-5 negative. These results support the further evaluation of Siglec-5 antibodies in the diagnosis and monitoring of AML.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antibodies/blood
- Antibodies/therapeutic use
- Antigens, CD/analysis
- Antigens, CD/immunology
- Antigens, CD34/analysis
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/immunology
- Biomarkers/analysis
- Bone Marrow Cells/immunology
- Case-Control Studies
- Cell Differentiation/immunology
- Child
- Flow Cytometry
- Fluorescent Antibody Technique
- Humans
- Immunization, Passive
- Infant, Newborn
- Lectins/analysis
- Lectins/immunology
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/therapy
- Middle Aged
- Myelopoiesis/immunology
- Sialic Acid Binding Ig-like Lectin 3
- Stem Cells/immunology
Collapse
Affiliation(s)
- Paul Virgo
- Department of Immunology and Immunogenetics, North Bristol, NHS Trust, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
465
|
Engel P, Eck MJ, Terhorst C. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol 2003; 3:813-21. [PMID: 14523387 DOI: 10.1038/nri1202] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SAP (signalling lymphocytic activation molecule (SLAM)-associated protein) is a T- and natural killer (NK)-cell-specific protein containing a single SH2 domain encoded by a gene that is defective or absent in patients with X-linked lymphoproliferative syndrome (XLP). The SH2 domain of SAP binds with high affinity to the cytoplasmic tail of the haematopoietic cell-surface glycoprotein SLAM and five related receptors. SAP regulates signal transduction of the SLAM-family receptors by recruiting SRC kinases. Similarly, the SAP-related proteins EAT2A and EAT2B are thought to control signal transduction that is initiated by SLAM-related receptors in professional antigen-presenting cells. In this review, we discuss recent findings on the structure and function of proteins of the SAP and SLAM families.
Collapse
Affiliation(s)
- Pablo Engel
- Immunology Unit, Department of Cellular Biology and Pathology, Medical School, University of Barcelona, Barcelona 08036, Spain.
| | | | | |
Collapse
|
466
|
Tangye SG, Nichols KE, Hare NJ, van de Weerdt BCM. Functional requirements for interactions between CD84 and Src homology 2 domain-containing proteins and their contribution to human T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2485-95. [PMID: 12928397 DOI: 10.4049/jimmunol.171.5.2485] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell surface receptors belonging to the CD2 subset of the Ig superfamily of molecules include CD2, CD48, CD58, 2B4, signaling lymphocytic activation molecule (SLAM), Ly9, CD84, and the recently identified molecules NTB-A/Ly108/SLAM family (SF) 2000, CD84H-1/SF2001, B lymphocyte activator macrophage expressed (BLAME), and CRACC (CD2-like receptor-activating cytotoxic cells)/CS-1. Some of these receptors, such as CD2, SLAM, 2B4, CRACC, and NTB-A, contribute to the activation and effector function of T cells and NK cells. Signaling pathways elicited via some of these receptors are believed to involve the Src homology 2 (SH2) domain-containing cytoplasmic adaptor protein SLAM-associated protein (SAP), as it is recruited to SLAM, 2B4, CD84, NTB-A, and Ly-9. Importantly, mutations in SAP cause the inherited human immunodeficiency X-linked lymphoproliferative syndrome (XLP), suggesting that XLP may result from perturbed signaling via one or more of these SAP-associating receptors. We have now studied the requirements for SAP recruitment to CD84 and lymphocyte activation elicited following ligation of CD84 on primary and transformed human T cells. CD84 was found to be rapidly tyrosine phosphorylated following receptor ligation on activated T cells, an event that involved the Src kinase Lck. Phosphorylation of CD84 was indispensable for the recruitment of SAP, which was mediated by Y(262) within the cytoplasmic domain of CD84 and by R(32) within the SH2 domain of SAP. Furthermore, ligating CD84 enhanced the proliferation of anti-CD3 mAb-stimulated human T cells. Strikingly, this effect was also apparent in SAP-deficient T cells obtained from patients with XLP. These results reveal a novel function of CD84 on human lymphocytes and suggest that CD84 can activate human T cells via a SAP-independent mechanism.
Collapse
Affiliation(s)
- Stuart G Tangye
- Centenary Institute for Cancer Medicine and Cell Biology, Newtown 2042, Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
467
|
Ohno S, Seki F, Ono N, Yanagi Y. Histidine at position 61 and its adjacent amino acid residues are critical for the ability of SLAM (CD150) to act as a cellular receptor for measles virus. J Gen Virol 2003; 84:2381-2388. [PMID: 12917459 DOI: 10.1099/vir.0.19248-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signalling lymphocyte activation molecule (SLAM, also known as CD150), a membrane glycoprotein involved in lymphocyte activation, has two extracellular immunoglobulin superfamily domains, V and C2. It has been shown previously that human SLAM is a cellular receptor for measles virus (MV) and that its V domain is necessary and sufficient for receptor function. Although mouse SLAM has functional and structural similarity to human SLAM, it hardly acts as a receptor for MV. By producing human/mouse chimeric molecules and assessing their receptor function with a vesicular stomatitis virus pseudotype assay, the region at amino acid positions 58-67 was found to be critically responsible for the difference in MV receptor function between human and mouse SLAMs. Exchange of this region allowed mouse SLAM to act as a receptor for MV, almost comparable to human SLAM. Among three amino acid differences (positions 60, 61 and 63) in this region, histidine 61 present in human SLAM was most significant, but combined substitutions with this residue and one or both of isoleucine 60 and valine 63 increased further the receptor activity of mouse SLAM. On the other hand, converse substitution at position 61 compromised receptor function of human SLAM. Thus, histidine 61 and its adjacent residues at positions 60 and 63 are critical for SLAM to act as a receptor for MV. Notably, the pseudotype assay indicated that residues at these three positions are also critical for the function of SLAM as a receptor for canine distemper virus.
Collapse
Affiliation(s)
- Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan
| | - Fumio Seki
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan
| | - Nobuyuki Ono
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
468
|
Zaiss M, Hirtreiter C, Rehli M, Rehm A, Kunz-Schughart LA, Andreesen R, Hennemann B. CD84 expression on human hematopoietic progenitor cells. Exp Hematol 2003; 31:798-805. [PMID: 12962726 DOI: 10.1016/s0301-472x(03)00187-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE CD84 is a member of the CD2 subgroup of the immunoglobulin receptor superfamily. Members of this family have been implicated in the activation of T cells and NK cells. Expression of CD84 was originally described on most mononuclear blood cells as well as platelets. To elucidate its presence on other blood cell types, we analyzed the expression pattern of CD84 on human immature CD34+ and mature hematopoietic cells. METHODS Expression analysis was carried out by flow cytometry. The differentiation potential of CD84+ progenitor cells was assessed by colony-forming assays and long-term cultures. RT-PCR was used to analyze CD84 mRNA isoforms. RESULTS In addition to monocytes, macrophages, B cells, and some T cells, CD84 is expressed on the cell surface of the majority of granulocytes. In addition, 64%+/-5% of CD34+ progenitor cells isolated from peripheral blood and 30.5%+/-5% from bone marrow of healthy volunteers also express CD84. The majority of CD34+ cells coexpressing lineage antigens were CD84+. In methylcellulose CD34+CD84+ cells formed primarily erythroid colonies, whereas myeloid or mixed colonies were scarce. The frequency of long-term culture-initiating cells in peripheral blood was approximately fivefold higher in CD34+CD84- vs CD34+CD84+ cells. In short-term cultures, 95% of the initially CD34+CD84- cells became CD84+ after 72 hours. CONCLUSIONS CD84 is expressed on cells from almost all hematopoietic lineages and on CD34+ hematopoietic progenitor cells. The proliferative potential of CD34+ cells decreases with increasing CD84 expression, suggesting that CD84 serves as a marker for committed hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Matthias Zaiss
- Abteilung für Hämatologie und Internistische Onkologie and Institut für Pathologie, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
469
|
Colomar M, Puga I, López M, Massot M, Jorquera JI, Reina M, Vilaró S, Espel E. Neutralization of measles virus infectivity and antibody-dependent cell-mediated cytotoxicity activity against an Epstein-Barr virus-infected cell line by intravenous immunoglobulin G [corrected]. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:751-6. [PMID: 12965899 PMCID: PMC193912 DOI: 10.1128/cdli.10.5.751-756.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with antibody deficiency disorders are highly susceptible to microbial infections. Intravenous (i.v.) immunoglobulin concentrates were originally developed as replacement therapy for such patients. The present study assesses the measles virus neutralizing antibody titers and the antibody-dependent cell-mediated cytotoxicity (ADCC) capacities against Epstein-Barr virus (EBV)-infected cells of immunoglobulin G (IgG) preparations produced for i.v. use (i.v. IgG). The level of neutralizing antibodies against measles virus was determined by a syncytium neutralization test with Vero cells as targets. The measles virus neutralizing antibody titers of the i.v. IgG preparations were >3 x 10(2) and were an average of 1.0 log higher than the titers in pooled plasma from healthy subjects. The two IgG preparations tested showed similar ADCC activities against EBV-infected Raji cells, being active at concentrations of 3 mg/ml or higher. i.v. IgG bound to Raji cells but not to the EBV-negative Ramos cells, as evaluated by flow cytometry. Our in vitro findings may provide further support for the use of i.v. IgG for the prevention and treatment of infections caused by specific viral pathogens.
Collapse
Affiliation(s)
- MariCarmen Colomar
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
470
|
Sanzone S, Zeyda M, Saemann MD, Soncini M, Holter W, Fritsch G, Knapp W, Candotti F, Stulnig TM, Parolini O. SLAM-associated protein deficiency causes imbalanced early signal transduction and blocks downstream activation in T cells from X-linked lymphoproliferative disease patients. J Biol Chem 2003; 278:29593-9. [PMID: 12766168 DOI: 10.1074/jbc.m300565200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of SAP (SLAM (signaling lymphocyte activation molecule)-associated protein) protein is associated with a severe immunodeficiency, the X-linked lymphoproliferative disease (XLP) characterized by an inappropriate immune reaction against Epstein-Barr virus infection often resulting in a fatal clinical course. Several studies demonstrated altered NK and T cell function in XLP patients; however, the mechanisms underlying XLP disease are still largely unknown. Here, we show that non-transformed T cell lines obtained from XLP patients were defective in several activation events such as IL-2 production, CD25 expression, and homotypic cell aggregation when cells were stimulated via T cell antigen receptor (TCR).CD3 but not when early TCR-dependent events were bypassed by stimulation with phorbol 12-myristate 13-acetate/ionomycin. Analysis of proximal T cell signaling revealed imbalanced TCR.CD3-induced signaling in SAP-deficient T cells. Although phospholipase C gamma 1 phosphorylation and calcium response were both enhanced in T cells from XLP patients, phosphorylation of VAV and downstream signal transduction events such as mitogen-activated protein kinase phosphorylation and IL-2 production were diminished. Importantly, reconstitution of SAP expression by retroviral-mediated gene transfer completely restored abnormal signaling events in T cell lines derived from XLP patients. In conclusion, SAP mutation or deletion in XLP patients causes profound defects in T cell activation, resulting in immune deficiency. Moreover, these data provide evidence that SAP functions as an essential integrator in early TCR signal transduction.
Collapse
Affiliation(s)
- Silvia Sanzone
- Centro Ricerche Parco Scientifico E. Menni, Ospedale Poliambulanza, Brescia 25124, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
471
|
Lee SH, Dimock K, Gray DA, Beauchemin N, Holmes KV, Belouchi M, Realson J, Vidal SM. Maneuvering for advantage: the genetics of mouse susceptibility to virus infection. Trends Genet 2003; 19:447-57. [PMID: 12902163 PMCID: PMC7127612 DOI: 10.1016/s0168-9525(03)00172-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetic studies of host susceptibility to infection contribute to our understanding of an organism's response to pathogens at the immunological, cellular, and molecular levels. In this review we describe how the study of host genetics in mouse models has helped our understanding of host defense mechanisms against viral infection, and how this knowledge can be extended to human infections. We focus especially on the innate mechanisms that function as the host's first line of defense against infection. We also discuss the main issues that confront this field, as well as its future.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | |
Collapse
|
472
|
McBride JM, Fathman CG. A complicated relationship: fulfilling the interactive needs of the T lymphocyte and the dendritic cell. THE PHARMACOGENOMICS JOURNAL 2003; 2:367-76. [PMID: 12629502 DOI: 10.1038/sj.tpj.6500145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Revised: 10/03/2002] [Accepted: 10/10/2002] [Indexed: 01/22/2023]
Abstract
T cells recognize antigenic peptides displayed on the surface of MHC-bearing antigen-presenting cells (APCs), and with sufficient costimulation become activated. However, the ability of an APC (even bearing the correct peptide) to initiate and fulfill the requirements for T cell activation is not easily achieved. Naive T cells use multiple copies of a single receptor to survey the vast array of peptides presented on an APC, and require multiple receptor engagements to initiate T cell activation. Dendritic cells (DCs) are specialized cells with optimal capabilities for priming naive CD4+ T cells. Activation occurs, after initial antigen recognition by T cells, followed by a rapid dialogue between the T cells and the DCs. The resulting changes in both the cytoskeleton and the expression or regulation of cell-surface molecules on both cell types act to further strengthen engagement. In this report, we review the fundamentals of CD4+ T helper cell : DC interactions and discuss recent data concerning the molecular characteristics of this engagement.
Collapse
Affiliation(s)
- J M McBride
- Department of Medicine, Division of Immunology, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
473
|
Chuang SS, Lee JK, Mathew PA. Protein kinase C is involved in 2B4 (CD244)-mediated cytotoxicity and AP-1 activation in natural killer cells. Immunology 2003; 109:432-9. [PMID: 12807490 PMCID: PMC1782976 DOI: 10.1046/j.1365-2567.2003.01662.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
2B4 (CD244) is a member of the CD2 subset of the immunoglobulin superfamily and functions as a triggering molecule on natural killer (NK) cells. Previously, we have found that 2B4-mediated activation of NK cells involves complex interactions involving LAT, Ras, Raf, ERK and p38 and that cytolytic function and cytokine production may be regulated by distinct pathways. Here we assessed the role of protein kinase C (PKC) in 2B4-mediated cytotoxicity of YT cells, a human NK cell line. Our data indicate that PKC-delta is activated upon stimulation with monoclonal antibody against 2B4. Treatment with the PKC inhibitor, bisindolylmaleimide I (Gö6850), of YT cells or YT cells depleted of Ca2+-dependent isoforms of PKC prior to 2B4 stimulation, resulted in inhibition of natural cytotoxicity and redirected antibody-dependent cellular cytotoxicity. However, inhibition of PKC failed to block 2B4 stimulation of interferon-gamma secretion as opposed to pretreatment with LY294002, a phosphoinositide 3-kinase inhibitor. We also examined the effect of phorbol 12-myristate 13-acetate (PMA) induction on 2B4 gene transcription. PMA induction resulted in a more than two-fold increase of 2B4 transcription. However, when we introduced a three-base substitution mutation to disrupt the activator protein-1 binding site at (-106 to -100) in the 2B4 promoter, we found complete loss of transcriptional activity, including the two-fold increase due to PMA induction of PKC. The present study indicated that PKC may play an important role in 2B4 signalling and activator protein-1 activation.
Collapse
Affiliation(s)
- Samuel S Chuang
- Department of Molecular Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107-2699, USA
| | | | | |
Collapse
|
474
|
Aghamohammadi A, Kanegane H, Moein M, Farhoudi A, Pourpak Z, Movahedi M, Gharagozlou M, Zargar AAA, Miyawaki T. Identification of an SH2D1A mutation in a hypogammaglobulinemic male patient with a diagnosis of common variable immunodeficiency. Int J Hematol 2003; 78:45-7. [PMID: 12894850 DOI: 10.1007/bf02983239] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Common variable immunodeficiency (CVID) is a highly heterogeneous disease with an unpredictable pattern. CVID appears to have an immunologic and clinical phenotype similar to some hereditary humoral immunodeficiencies, including X-linked lymphoproliferative disease (XLP). The differential diagnosis of CVID and XLP is clinically of importance, because the two diseases have markedly different prognoses and treatment. The recent identification of the XLP gene, known as SH2D1A, has permitted a definitive diagnosis of XLP. In this report, we describe a male patient with XLP who initially received a diagnosis of CVID and developed a fatal course. Using genetic analysis, we confirmed that the patient harbored the SH2D1A gene mutation. The results support the notion that the possibility of a SH2D1A gene mutation should be considered in hypogammaglobulinemic male patients before a diagnosis of CVID is made.
Collapse
Affiliation(s)
- Asghar Aghamohammadi
- Department of Clinical Pediatric Immunology, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Nutku E, Aizawa H, Hudson SA, Bochner BS. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 2003; 101:5014-20. [PMID: 12609831 DOI: 10.1182/blood-2002-10-3058] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sialic acid binding immunoglobulin-like lectin 8 (Siglec-8), which exists in 2 isoforms including one possessing cytoplasmic tyrosine motifs, is expressed only on human eosinophils, basophils, and mast cells. Until now, its function was unknown. Here we define a novel function of Siglec-8 on eosinophils. Siglec-8 cross-linking with antibodies rapidly generated caspase-3-like activity and reduced eosinophil viability through induction of apoptosis. The pancaspase inhibitor benzyloxycarbonyl (Cbz)-Val-Ala-Asp-(Ome)-fluoromethyl ketone (zVAD-FMK) completely blocked this response, implicating caspases in Siglec-8 cross-linking-induced apoptosis. Eosinophil survival-promoting cytokines such as interleukin 5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF) failed to block apoptosis and instead enhanced the sensitivity of eosinophils to undergo apoptosis in response to Siglec-8 antibody. Siglec-8 activation may provide a useful therapeutic approach to reduce numbers of eosinophils (and perhaps basophils and mast cells) in disease states where these cells are important.
Collapse
Affiliation(s)
- Esra Nutku
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
476
|
Abstract
Antigen-dependent T-cell activation is initiated by the organized interactions of a host of cell-surface receptors in the interface between the T cell and an antigen-presenting cell. Recent structural studies of many of the receptors that comprise this 'immunological synapse', including integrins, cadherins and co-stimulatory molecules, reveal in detail the molecular interactions that bridge the synapse. Additionally, structural analyses of the cytoplasmic tails of integrins and co-stimulatory receptors in complex with intracellular signaling proteins are providing insight into the mechanisms that couple receptor clustering on the cell surface with the initiation of cytoplasmic signaling.
Collapse
Affiliation(s)
- Jia-huai Wang
- Department of Pediatrics, Harvard Medical School, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
477
|
Abstract
The 'signalling lymphocyte activation molecule' (SLAM) family is a newly appreciated group of immune-cell specific receptors that has the ability to regulate the function of several immune cell types. Recent studies show that the SLAM-related receptors mediate intracellular protein tyrosine phosphorylation signals. This property is dependent on the aptitude of SLAM-family receptors to bind with high affinity to SAP and/or EAT-2, two small adaptor molecules composed almost exclusively of a Src homology 2 domain. SAP is mutated in X-linked lymphoproliferative disease, a human immune dysfunction characterised by an inappropriate response to Epstein-Barr virus infection, thereby suggesting that the SLAM-related receptors may be critical for a normal immune response. The existence of the SLAM family broadens the spectrum of receptors known to be involved in immunomodulation.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montreal, Montréal, Québec, Canada.
| | | |
Collapse
|
478
|
Lee KM, Bhawan S, Majima T, Wei H, Nishimura MI, Yagita H, Kumar V. Cutting edge: the NK cell receptor 2B4 augments antigen-specific T cell cytotoxicity through CD48 ligation on neighboring T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4881-5. [PMID: 12734329 DOI: 10.4049/jimmunol.170.10.4881] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
2B4 is expressed on all NK and a subset of memory/effector CD8(+) T cells. 2B4 binds to CD48 and activates NK cytotoxicity, but its function on CD8(+) T cells is not clear. Furthermore, two isoforms of 2B4 (2B4S and 2B4L) exist in mice but the role of individual isoforms is not known. To address these questions, we generated primary T cell cultures from L(d)-specific 2C/Rag2(-/-) TCR transgenic mice and transduced them with 2B4S or 2B4L. 2B4S- or 2B4L-transduced T cells showed greater cytotoxicity over control cells against CD48(+) and CD48(-) targets, suggesting that ligation of 2B4 by CD48 on target cells was not necessary for 2B4 function. Rather, 2B4/CD48 interaction on adjacent T cells appeared to be critical for cytotoxicity. Therefore, 2B4 functions as a costimulator of CD8(+) T cells in MHC-restricted cytotoxicity. We conclude that 2B4/CD48 interactions among T cells themselves can augment CTL lysis of their specific targets.
Collapse
MESH Headings
- Adjuvants, Immunologic/antagonists & inhibitors
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Antibodies, Blocking/pharmacology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- CD48 Antigen
- Cell Communication/genetics
- Cell Communication/immunology
- Cytotoxicity, Immunologic/genetics
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Epitopes, T-Lymphocyte/physiology
- Genetic Vectors
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligands
- Lymphocyte Activation/genetics
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Retroviridae/genetics
- Signaling Lymphocytic Activation Molecule Family
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transduction, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Kyung-Mi Lee
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
479
|
Del Valle JM, Engel P, Martín M. The cell surface expression of SAP-binding receptor CD229 is regulated via its interaction with clathrin-associated adaptor complex 2 (AP-2). J Biol Chem 2003; 278:17430-7. [PMID: 12621057 DOI: 10.1074/jbc.m301569200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD229 (Ly9) is a cell surface receptor selectively expressed on T and B lymphocytes, and it belongs to the CD150 receptor family. Like other receptors of this family, CD229 interacts with SAP/SH2D1a protein, mutation of which is responsible for the fatal X-linked lymphoproliferative disease. Receptors of the CD150 family function as costimulatory molecules, regulating cytokine production and cytotoxicity. Thus, their signaling and regulation in lymphocytes may be critical to an understanding of the pathogenesis of the X-linked lymphoproliferative disease. Here we show that CD229 interacts with the mu(2) chain of the AP-2 adaptor complex that links transmembrane proteins to clathrin-coated pits. CD229 was the only member of the CD150 family associated with AP-2. We also show that the mu(2) chain interacts with the Y(470)EKL motif of CD229. The integrity of this site was necessary for CD229 internalization, but it was not involved in SAP recruitment. Moreover, CD229 binds to the AP-2 complex in T and B cell lines, and it is internalized rapidly from the cell surface on T cells after antibody ligation. In contrast, cross-linking of CD229 receptors with intact antibody inhibited CD229 internalization on B cells. However, when F(ab')(2) antibodies were used, CD229 internalization was similar on T and B cells, suggesting that Fcgamma receptors control CD229 cell surface expression. Furthermore, CD229 was regulated by T cell receptor and B cell receptor signaling because coligation with antibodies against anti-CD3 and anti-IgM increased the rate of CD229 endocytosis. These data suggest that CD229 cell surface expression on lymphocytes surface is strongly and differentially regulated within the CD150 family members.
Collapse
Affiliation(s)
- Juana M Del Valle
- Department of Cellular Biology and Pathology, University of Barcelona School of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona E-08036, Spain
| | | | | |
Collapse
|
480
|
Kis LL, Nagy N, Klein G, Klein E. Expression of SH2D1A in five classical Hodgkin's disease-derived cell lines. Int J Cancer 2003; 104:658-61. [PMID: 12594824 DOI: 10.1002/ijc.10986] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Src homology 2 domain protein 1A (SH2D1A) is a small, 128-amino acid protein consisting of a single SH2 domain; it is probably involved in signal regulation. It is expressed in activated T and natural killer (NK) cells, but not in B lymphocytes. It was discovered in studies on the rare hereditary condition X-linked lymphoproliferative disease (XLP). Individuals with this condition either lack or carry an altered protein. The serious symptoms (fatal mononucleosis) present almost exclusively at the first encounter with Epstein-Barr virus (EBV). The absence of SH2D1A in B cells, which are the targets of EBV, has to be reconciled with this clinical situation. In an earlier search for B lymphocytes expressing SH2D1A, we detected it in EBV-carrying type I Burkitt's lymphoma (BL) lines. We now show SH2D1A in 5 EBV-negative classical Hodgkin's disease (HD)-derived cell lines. Two lines belong to the T lineage and 3 to the B lineage. One B-HD line, which originated from nodular lymphocyte-predominant Hodgkin's lymphoma and differed in phenotype, was SH2D1A-negative. This finding is in accordance with the previously reported abundant SH2D1A mRNA in Hodgkin and Reed-Sternberg (HRS) cells. We thus found SH2D1A expression in lines of malignant origin assigned to the B lineage. Its presence in HRS cells may lead us closer to an understanding of the pathophysiology of the serious syndrome connected with EBV infection in XLP patients, because HRS-like cells have been detected in the lymphoid tissue of patients with infectious mononucleosis. It is likely therefore that in addition to the demonstrated functional defect of T and NK cells imposed by the SH2D1A mutation, the behavior of certain EBV-infected B lymphocytes is also modified.
Collapse
Affiliation(s)
- Loránd L Kis
- Microbiology and Tumor Biology Center (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
481
|
Parolini O, Weinhäusel A, Kagerbauer B, Sassmann J, Holter W, Gadner H, Haas OA, Knapp W. Differential methylation pattern of the X-linked lymphoproliferative (XLP) disease gene SH2D1A correlates with the cell lineage-specific transcription. Immunogenetics 2003; 55:116-21. [PMID: 12709835 DOI: 10.1007/s00251-003-0557-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 02/06/2003] [Indexed: 10/25/2022]
Abstract
SH2D1A, the X-linked lymphoproliferative disease (XLP) gene, encodes a cytoplasmic protein that plays an essential role in controlling Epstein-Barr virus infection. It is expressed in T and NK cells, but not in B cells or in granulocytes. The promoter, the regulatory regions, as well as the mechanisms controlling its tissue-specific expression, are still unknown. We tested the hypothesis that DNA methylation might contribute to tissue-specific SH2D1A gene expression and analyzed the methylation status of 2,300 bp upstream of the ATG starting codon, the coding region and part of intron 1. By bisulfite sequencing and methylation-sensitive restriction enzyme digestion, we show that a differential methylation pattern of CpG-rich regions in the 5' region and the adjacent exon 1 of the SH2D1A gene indeed correlates with the tissue-specific gene transcription.
Collapse
Affiliation(s)
- Ornella Parolini
- Institute of Immunology, University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
482
|
Ferrand V, Li C, Romeo G, Yin L. Absence of SLAM mutations in EBV-associated lymphoproliferative disease patients. J Med Virol 2003; 70:131-6. [PMID: 12629654 DOI: 10.1002/jmv.10373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
X-linked lymphoproliferative disease is a rare inherited immunodeficiency in which affected males present abnormal responses to Epstein-Barr virus (EBV) infection. The gene defective in X-linked lymphoproliferative disease, SH2D1A (also named SAP or DSHP), has been identified and shown to code for an adapter protein that interacts with signaling lymphocytic activation molecule (SLAM) and several other members of the CD2 superfamily. SH2D1A is mutated in no more than 60% of X-linked lymphoproliferative disease patients. It could be postulated that a certain percentage of patients without apparent maternal transmission might be caused by other gene(s) in SH2D1A-related signal transduction pathways. Being a partner of SH2D1A and having a key role in proliferation and differentiation of the T- and B-lymphocytes, SLAM was considered as a candidate gene for patients who manifest symptoms of X-linked lymphoproliferative disease but who have no mutations in SH2D1A. As a first step, SLAM mutations were screened for from cDNA of the lymphoblastoid cell line of all available patients. Then conditions for PCR, single-strand conformational polymorphism (SSCP), heteroduplex analysis, and sequencing were established in all eight exons of SLAM. A total of 31 typical and atypical patients were analysed, from which six novel nucleotide variants were identified; however, none of these variants seems to cause abnormal function of the SLAM gene. Therefore, mutations in coding regions or splicing sites of SLAM are unlikely to play a major role in the mechanism of EBV-associated lymphoproliferation.
Collapse
|
483
|
Abstract
In this chapter, we have described the biophysical investigations which have dissected the mechanisms of SH2 domain function. Due to nearly a decade and a half of investigation on SH2 domains, much about their binding mechanism has been characterized. SH2 domains have been found to have a positively charged binding cavity, largely conserved between different SH2 domains, which coordinates binding of the pTyr in the target. The ionic interactions between this pocket and the pTyr, in particular, between Arg beta B5 and the phosphate, provide the majority of the binding energy stabilizing SH2 domain-target interactions. The specificity in SH2 domain-target interactions emanates most often from the interactions between the residues C-terminal to the pTyr in the target and the specificity determining residues in the C-terminal half of the SH2 domain. However, the interactions in the specificity determining region of SH2 domains are weak, and hence single SH2 domains show only a modest level of specificity for tyrosine phosphorylated targets. Greater specificity in SH2 domain-containing protein-tyrosine phosphorylated target interactions can be achieved by placing SH2 domains in tandem (as is often found) or possibly through specific localization of SH2 domain-containing proteins within the cell. Although a relatively good understanding of how SH2 domains function in isolation has been obtained, the ways in which SH2 domain binding is coupled to allosteric transmission of signals in larger SH2 domain-containing proteins are still not clear. Hence, the future should bring further investigations of the mechanisms by which SH2 domain ligation alters the enzymatic activity and cellular localization of SH2 domain-containing proteins.
Collapse
Affiliation(s)
- J Michael Bradshaw
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
484
|
Abstract
The sequencing of complete genomes provides a list that includes the proteins responsible for cellular regulation. However, this does not immediately reveal what these proteins do, nor how they are assembled into the molecular machines and functional networks that control cellular behavior. The regulation of many different cellular processes requires the use of protein interaction domains to direct the association of polypeptides with one another and with phospholipids, small molecules, or nucleic acids. The modular nature of these domains, and the flexibility of their binding properties, have likely facilitated the evolution of cellular pathways. Conversely, aberrant interactions can induce abnormal cellular behavior and disease. The fundamental properties of protein interaction domains are discussed in this review and in detailed reviews on individual domains at Science's STKE at http://www.sciencemag.org/cgi/content/full/300/5618/445/DC1.
Collapse
Affiliation(s)
- Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | | |
Collapse
|
485
|
Abstract
There is abundant information on the distinguishing features of TCR-mediated signaling in Th1 and Th2 cells. However, the primary signals that determine the commitment and differentiation of naive T cells toward those T helper subsets, especially prior to the contribution of polarizing cytokines, remain elusive. This minireview discusses the potential contribution of SLAT in favoring differentiation along the Th2 lineage and how this may bring us closer to a framework model for Th1/Th2 differentiation.
Collapse
Affiliation(s)
- Joaquín Madrenas
- The Robarts Research Institute, The University of Western Ontario, London, Canada N6A 5K8.
| |
Collapse
|
486
|
Saito T, Yamasaki S. Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol Rev 2003; 192:143-60. [PMID: 12670402 DOI: 10.1034/j.1600-065x.2003.00022.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antigen recognition by the T cell receptor (TCR) complex induces the formation of a TCR signalosome by recruiting various signaling molecules, generating the recognition signals for T cell activation. The activation status and functional outcome are positively and negatively regulated by dynamic organization of the signalosome and by costimulation signals. We have studied the negative regulation of T cell activation, particularly through inhibitory adapters and costimulation receptors that are little expressed in resting cells but are induced upon T cell activation. We described Grb-associated binder 2 (Gab2) and cytotoxic T lymphocyte antigen-4 (CTLA-4) as a representative inhibitory adapter and a negative costimulation receptor, respectively, both of which exhibit negative feedback. Gab2 functions as a signal branch for activation vs. inhibition, as phosphorylation of either Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) or Gab2 by zeta-associated protein of 70 kDa (ZAP-70) determines the fate of the response. As a professional inhibitory receptor, CTLA-4 inhibits T cell response by competition of ligand binding with positive costimulator receptor CD28, and also induces inhibitory signaling. The trafficking and the cell surface expression of CTLA-4 are dynamically regulated and induced. CTLA-4 is accumulated in lysosomes and secreted to the T cell-APC contact site upon TCR stimulation. As T cell activation proceeds, these inhibitory adapters and costimulation receptors are induced and suppress/regulate the responses as negative feedback.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | |
Collapse
|
487
|
|
488
|
Abstract
X-linked lymphoproliferative (XLP) disease is a human immune dysfunction characterized primarily by an inappropriate response to Epstein-Barr virus infection. In 1998, it was discovered that XLP is caused by inactivating mutations in the SAP/SH2D1A/DSHP gene. This gene codes for an immune cell-specific polypeptide termed SAP (SLAM-associated protein) that is composed almost exclusively of an Src homology 2 (SH2) domain. By way of its SH2 domain, SAP interacts with tyrosine-based motifs located in the cytoplasmic region of members of the SLAM (signaling lymphocyte activation molecule) family of receptors. Recent findings indicate that SAP is required for the function of SLAM-related receptors, as a consequence of its capacity to promote the recruitment and activation of the Src-related protein tyrosine kinase FynT, thereby allowing SLAM receptor-mediated protein tyrosine phosphorylation signals in immune cells. Functional and genetic analyses suggest that the phenotype associated with XLP is caused in large part by defects in the functions of SLAM-related receptors due to SAP deficiency.
Collapse
Affiliation(s)
- Sylvain Latour
- Unité INSERM U429, Hôpital Necker Enfants-Malades, Paris, France.
| | | |
Collapse
|
489
|
Hahm B, Arbour N, Naniche D, Homann D, Manchester M, Oldstone MBA. Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. J Virol 2003; 77:3505-15. [PMID: 12610126 PMCID: PMC149525 DOI: 10.1128/jvi.77.6.3505-3515.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Humans are the only natural reservoir of measles virus (MV), one of the most contagious viruses known. MV infection and the profound immunosuppression it causes are currently responsible for nearly one million deaths annually. Human signaling lymphocytic activation molecule (hSLAM) was identified as a receptor for wild-type MV as well as for MV strains prepared as vaccines. To better evaluate the role of hSLAM in MV pathogenesis and MV-induced immunosuppression, we created transgenic (tg) mice that expressed the hSLAM molecule under the control of the lck proximal promoter. hSLAM was expressed on CD4(+) and CD8(+) T cells in the blood and spleen and also on CD4(+), CD8(+), CD4(+) CD8(+), and CD4(-) CD8(-) thymocytes. Wild-type MV, after limited passage on B95-8 marmoset B cells, and the Edmonston laboratory strain of MV infected hSLAM-expressing cells. There was a direct correlation between the amount of hSLAM expressed on the cells' surface and the degree of viral infection. Additionally, MV infection induced downregulation of receptor hSLAM and inhibited cell division and proliferation of hSLAM(+) but not hSLAM(-) T cells. Therefore, these tg mice provide the opportunity for analyzing and comparing MV-T cell interactions and MV pathogenesis in cells expressing only the hSLAM MV receptor with those of tg mice whose T cells selectively express another MV receptor, CD46.
Collapse
Affiliation(s)
- Bumsuk Hahm
- Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
490
|
Abstract
Epstein-Barr virus is a tumorigenic herpes virus that is ubiquitous in the adult population. The virus is generally spread to and between young children through salivary contact, and only causes clinical illness where primary infection is delayed until adolescence or beyond, when an intense immunopathological reaction leads to the symptoms of infectious mononucleosis in roughly 50% of cases. More than 90% of the world's population carry Epstein-Barr virus as a life-long, latent infection of B lymphocytes. Recent data show that by mimicking B-cell antigen-activation pathways the virus enters the long-lived memory B lymphocyte pool where it evades immune elimination by severely restricting its own gene expression. By influencing B-cell survival mechanisms Epstein-Barr virus may induce tumours such as B lymphoproliferative disease and Hodgkin's disease. Vaccines are being developed to prevent and/or treat these conditions, but an animal model is required to study pathogenesis before a rational vaccine strategy can be formulated.
Collapse
|
491
|
Li C, Iosef C, Jia CYH, Han VKM, Li SSC. Dual functional roles for the X-linked lymphoproliferative syndrome gene product SAP/SH2D1A in signaling through the signaling lymphocyte activation molecule (SLAM) family of immune receptors. J Biol Chem 2003; 278:3852-9. [PMID: 12458214 DOI: 10.1074/jbc.m206649200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The X-linked lymphoproliferative (XLP) syndrome gene encodes a protein named SAP or SH2D1A that is composed of a single Src homology 2 (SH2) domain. Two models have been proposed for its function in lymphocyte signaling. One postulates that it acts as an inhibitor of interactions between the phosphatase SHP-2 and the immune receptor SLAM. The other suggests that it functions as an adaptor to promote the recruitment of a kinase, FynT, to SLAM. Here, we provide evidence in support of both roles for SAP. Using an array of peptides derived from the SLAM family of receptors, we demonstrate that SAP binds with comparable affinities to the same sites in these receptors as do the SH2 domains of SHP-2 and SHIP, suggesting that these three proteins may compete against one another in binding to a given SLAM family receptor. Furthermore, in vitro and in vivo binding studies indicate that SAP is capable of binding directly to FynT, an interaction mediated by the FynT SH3 domain. In cells, FynT was shown to be indispensable for SLAM tyrosine phosphorylation, which, in turn, was drastically enhanced by SAP. Because SAP also blocked the recruitment of SHP-2 to SLAM in these cells, we propose a dual functional role for SAP in SLAM signaling by acting both as an adaptor for FynT and an inhibitor to SHP-2 binding. The physiological relevance of the dual functional role for SAP is underscored by the observation that disease-causing SAP mutants exhibited significantly reduced affinities to both FynT and SLAM.
Collapse
Affiliation(s)
- Chengjun Li
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
492
|
Latour S, Roncagalli R, Chen R, Bakinowski M, Shi X, Schwartzberg PL, Davidson D, Veillette A. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nat Cell Biol 2003; 5:149-54. [PMID: 12545173 DOI: 10.1038/ncb919] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Revised: 10/09/2002] [Accepted: 10/28/2002] [Indexed: 11/08/2022]
Abstract
SAP (or SH2D1A), an adaptor-like molecule expressed in immune cells, is composed almost exclusively of a Src homology 2 (SH2) domain. In humans, SAP is mutated and either absent or non-functional in X-linked lymphoproliferative (XLP) syndrome, a disease characterized by an inappropriate response to Epstein-Barr virus (EBV) infection. Through its SH2 domain, SAP associates with tyrosines in the cytoplasmic domain of the SLAM family of immune cell receptors, and is absolutely required for the function of these receptors. This property results from the ability of SAP to promote the selective recruitment and activation of FynT, a cytoplasmic Src-related protein tyrosine kinase (PTK). Here, we demonstrate that SAP operates in this pathway by binding to the SH3 domain of FynT, through a second region in the SAP SH2 domain distinct from the phosphotyrosine-binding motif. We demonstrate that this interaction is essential for SAP-mediated signalling in T cells, and for the capacity of SAP to modulate immune cell function. These observations characterize a biologically important signalling mechanism in which an adaptor molecule composed only of an SH2 domain links a receptor devoid of intrinsic catalytic activity to the kinase required for its function.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Molecular Oncology, Clinical Research Institute of Montreal, Montréal, Québec, H2W 1R7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
493
|
Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, Poy F, Howie D, Sumegi J, Terhorst C, Eck MJ. SAP couples Fyn to SLAM immune receptors. Nat Cell Biol 2003; 5:155-60. [PMID: 12545174 DOI: 10.1038/ncb920] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 11/20/2002] [Indexed: 11/08/2022]
Abstract
SAP (SLAM-associated protein) is a small lymphocyte-specific signalling molecule that is defective or absent in patients with X-linked lymphoproliferative syndrome (XLP). Consistent with its single src homology 2 (SH2) domain architecture and unusually high affinity for SLAM (also called CD150), SAP has been suggested to function by blocking binding of SHP-2 or other SH2-containing signalling proteins to SLAM receptors. Additionally, SAP has recently been shown to be required for recruitment and activation of the Src-family kinase FynT after SLAM ligation. This signalling 'adaptor' function has been difficult to conceptualize, because unlike typical SH2-adaptor proteins, SAP contains only a single SH2 domain and lacks other recognized protein interaction domains or motifs. Here, we show that the SAP SH2 domain binds to the SH3 domain of FynT and directly couples FynT to SLAM. The crystal structure of a ternary SLAM-SAP-Fyn-SH3 complex reveals that SAP binds the FynT SH3 domain through a surface-surface interaction that does not involve canonical SH3 or SH2 binding interactions. The observed mode of binding to the Fyn-SH3 domain is expected to preclude the auto-inhibited conformation of Fyn, thereby promoting activation of the kinase after recruitment. These findings broaden our understanding of the functional repertoire of SH3 and SH2 domains.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/metabolism
- Binding Sites
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Crystallography, X-Ray
- Genes, Reporter
- Glycoproteins/chemistry
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Immunoglobulins/chemistry
- Immunoglobulins/genetics
- Immunoglobulins/metabolism
- Intracellular Signaling Peptides and Proteins
- Lymphoproliferative Disorders/immunology
- Lymphoproliferative Disorders/metabolism
- Macromolecular Substances
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Structure, Quaternary
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Cell Surface
- Receptors, Virus/metabolism
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Signal Transduction/physiology
- Signaling Lymphocytic Activation Molecule Associated Protein
- Signaling Lymphocytic Activation Molecule Family Member 1
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Two-Hybrid System Techniques
- src Homology Domains
Collapse
Affiliation(s)
- Betty Chan
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
494
|
Jordan MS, Singer AL, Koretzky GA. Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 2003; 4:110-6. [PMID: 12555096 DOI: 10.1038/ni0203-110] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptors are molecular scaffolds that recruit effectors, which are critical for immune cell activation. Recent work has underscored the requirement for adaptors in propagating stimulatory signals as well as their ability to inhibit immune cell function. The mechanisms by which adaptors function rely not only on the intermolecular interactions they mediate, but also on where they are localized within the cell. The use of sophisticated genetic, biochemical, cellular and imaging approaches has provided important new insights into the biology of adaptor protein function. Here we focus on T lymphocytes as a model to illustrate the critical roles adaptors play as regulators of cellular activation.
Collapse
Affiliation(s)
- Martha S Jordan
- Signal Transduction Program, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
495
|
Crotty S, Kersh EN, Cannons J, Schwartzberg PL, Ahmed R. SAP is required for generating long-term humoral immunity. Nature 2003; 421:282-7. [PMID: 12529646 DOI: 10.1038/nature01318] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 11/14/2002] [Indexed: 11/09/2022]
Abstract
Long-lived plasma cells and memory B cells are the primary cellular components of long-term humoral immunity and as such are vitally important for the protection afforded by most vaccines. The SAP gene has been identified as the genetic locus responsible for X-linked lymphoproliferative disease, a fatal immunodeficiency. Mutations in SAP have also been identified in some cases of severe common variable immunodeficiency disease. The underlying cellular basis of this genetic disorder remains unclear. We have used a SAP knockout mouse model system to explore the role of SAP in immune responses. Here we report that mice lacking expression of SAP generate strong acute IgG antibody responses after viral infection, but show a near complete absence of virus-specific long-lived plasma cells and memory B cells, despite the presence of virus-specific memory CD4+ T cells. Adoptive transfer experiments show that SAP-deficient B cells are normal and the defect is in CD4+ T cells. Thus, SAP has a crucial role in CD4+ T-cell function: it is essential for late B-cell help and the development of long-term humoral immunity but is not required for early B-cell help and class switching.
Collapse
Affiliation(s)
- Shane Crotty
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
496
|
Middeldorp JM, Brink AATP, van den Brule AJC, Meijer CJLM. Pathogenic roles for Epstein-Barr virus (EBV) gene products in EBV-associated proliferative disorders. Crit Rev Oncol Hematol 2003; 45:1-36. [PMID: 12482570 DOI: 10.1016/s1040-8428(02)00078-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with a still growing spectrum of clinical disorders, ranging from acute and chronic inflammatory diseases to lymphoid and epithelial malignancies. Based on a combination of in vitro and in vivo findings, EBV is thought to contribute in the pathogenesis of these diseases. The different EBV gene expression patterns in the various disorders, suggest different EBV-mediated pathogenic mechanisms. In the following pages, an overview of the biology of EBV-infection is given and functional aspects of EBV-proteins are discussed and their putative role in the various EBV-associated disorders is described. EBV gene expression patterns and possible pathogenic mechanisms are discussed. In addition, expression of the cellular genes upregulated by EBV in vitro is discussed, and a comparison with the in vivo situation is made.
Collapse
Affiliation(s)
- Jaap M Middeldorp
- Department of Pathology, Vrije Universiteit Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
497
|
Abstract
The CD150 subfamily within the CD2 family is a growing group of dual-function receptors that have within their cytoplasmic tails a characteristic signaling motif. The ITSM (immunoreceptor tyrosine-based switch motif) enables these receptors to bind to and be regulated by small SH2 domain adaptor proteins, including SH2D1A (SH2-containing adaptor protein SH2 domain protein 1A) and EAT-2 (EWS-activated transcript 2). A major signaling pathway through the prototypic receptor in this subfamily, CD150, leads to the activation of interferon-gamma, a key cytokine for viral immunity. As a result, many viruses have designed strategies to usurp or alter CD150 functions. Measles virus uses CD150 as a receptor and Molluscum contagiosum virus encodes proteins that are homologous to CD150. Thus, viruses use CD150 subfamily receptors to create a favorable environment to elude detection and destruction. Understanding the CD150 subfamily may lead to new strategies for vaccine development and antiviral therapies.
Collapse
Affiliation(s)
- Svetlana P Sidorenko
- Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology NAS Ukraine, 45 Vasylkivska str., Kiev 03022, Ukraine
| | | |
Collapse
|
498
|
Abstract
Morbilliviruses are highly contagious pathogens that cause some of the most devastating viral diseases of humans and animals, including measles virus (MV), canine distemper virus (CDV), and rinderpest virus (RPV). They replicate mainly in lymphoid organs throughout the body and cause severe immunosuppression accompanied with lymphopenia. We have recently shown that human, canine, and bovine signaling lymphocyte activation molecules (SLAMs; also known as CD150) act as cellular receptors for MV, CDV, and RPV, respectively. In these three morbilliviruses, all strains examined were shown to use SLAMs of their respective host species, and laboratory strains passaged on SLAM-negative cells were found to use, besides SLAM, alternative receptors, such as human CD46 for the Edmonston strain of MV. The use of SLAM as a receptor may be a property common to most, if not all, of the members of morbilliviruses. Human SLAM is a membrane glycoprotein selectively expressed on the cells of the immune system (immature thymocytes, activated lymphocytes, activated monocytes, and mature dendritic cells) and seems to mediate lymphocyte activation and to control interferon-gamma production. The destruction and/or impairment of infected SLAM-positive cells may be a mechanism for the immunosuppression induced by morbilliviruses, but other mechanisms may be also involved.
Collapse
Affiliation(s)
- Hironobu Tatsuo
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
499
|
Abstract
Natural killer (NK) cells can mount an immediate response against viral infection, secreting cytokines and killing virus-infected cells. However, viruses have devised strategies to avoid immune detection. Here, we discuss NK cell recognition of viruses and propose that viruses may provide the evolutionary pressure causing the diversification of the NK cell receptors.
Collapse
Affiliation(s)
- Hisashi Arase
- Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, Box 0414, San Francisco, CA 94143-0414, USA
| | | |
Collapse
|
500
|
Abstract
Epstein-Barr virus (EBV) associated diseases and studies performed in Japan are reviewed. Infectious mononucleosis is a common disease in Japanese infants. Chronic and severe EBV-infections include severe chronic active EBV-infection (SCAEBV), EBV-associated hemophagocytic syndrome, and mosquito allergy with granular lymphocyte proliferative disorder (GLPD). Autoimmune lymphoproliferative syndrome (ALPS), a disease caused by a defect in the Fas-Fas ligand pathway of cell-death, may develop into lymphoproliferative disease after early exposure to EBV. More than ten cases of X-linked lymphoproliferative syndrome (XLP) were discovered in Japanese children, and the frequency of post-transplant lymphoproliferative disorder (PTLD) increased after the number of patients receiving organ transplantation increased. Recently, an association of EBV with gastric carcinoma and hepatocellular carcinoma has been suggested. EBV-infected cells, such as B-cells, T-cells, NK-cells, and epithelial cells in EBV-associated diseases have also been clarified.
Collapse
Affiliation(s)
- Hiroshi Wakiguchi
- Department of Pediatrics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan. wakiguti/
| |
Collapse
|