451
|
Chen TQ, Hu N, Huo B, Masau JF, Yi X, Zhong XX, Chen YJ, Guo X, Zhu XH, Wei X, Jiang DS. EHMT2/G9a Inhibits Aortic Smooth Muscle Cell Death by Suppressing Autophagy Activation. Int J Biol Sci 2020; 16:1252-1263. [PMID: 32174799 PMCID: PMC7053323 DOI: 10.7150/ijbs.38835] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Although EHMT2 (also known as G9a) plays a critical role in several kinds of cancers and cardiac remodeling, its function in vascular smooth muscle cells (VSMCs) remains unknown. In the present study, we revealed a novel function of EHMT2 in regulating autophagic cell death (ACD) of VSMC. Inhibition of EHMT2 by BIX01294 or knockdown of EHMT2 resulted in reduced VSMC numbers which were independent of proliferation and apoptosis. Interestingly, EHMT2 protein levels were significantly decreased in VSMCs treated with autophagic inducers. Moreover, more autophagic vacuoles and accumulated LC3II were detected in VSMCs treated with BIX01294 or lenti-shEHMT2 than their counterparts. Furthermore, we found that EHMT2 inhibited the ACD of VSMCs by suppressing autophagosome formation. Mechanistically, the pro-autophagic effect elicited by EHMT2 inhibition was associated with SQSTM1 and BECN1 overexpression. Moreover, these detrimental effects were largely nullified by SQSTM1 or BECN1 knockdown. More importantly, similar results were observed in primary human aortic VSMCs. Overall, these findings suggest that EHMT2 functions as a crucial negative regulator of ACD via decreasing SQSTM1 or BECN1 expression and that EHMT2 could be a potent therapeutic target for cardiovascular diseases (e.g., aortic dissection).
Collapse
Affiliation(s)
- Tai-Qiang Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Hu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jackson Ferdinand Masau
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao-Xuan Zhong
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong-Jie Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- NHC Key Laboratory of Organ Transplantation
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- NHC Key Laboratory of Organ Transplantation
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- NHC Key Laboratory of Organ Transplantation
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences
| |
Collapse
|
452
|
Belashov AV, Zhikhoreva AA, Belyaeva TN, Kornilova ES, Salova AV, Semenova IV, Vasyutinskii OS. In vitro monitoring of photoinduced necrosis in HeLa cells using digital holographic microscopy and machine learning. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:346-352. [PMID: 32118916 DOI: 10.1364/josaa.382135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Digital holographic microscopy supplemented with the developed cell segmentation and machine learning and classification algorithms is implemented for quantitative description of the dynamics of cellular necrosis induced by photodynamic treatment in vitro. It is demonstrated that the developed algorithms operating with a set of optical, morphological, and physiological parameters of cells, obtained from their phase images, can be used for automatic distinction between live and necrotic cells. The developed classifier provides high accuracy of about 95.5% and allows for calculation of survival rates in the course of cell death.
Collapse
|
453
|
Beebe SJ, Celestine MJ, Bullock JL, Sandhaus S, Arca JF, Cropek DM, Ludvig TA, Foster SR, Clark JS, Beckford FA, Tano CM, Tonsel-White EA, Gurung RK, Stankavich CE, Tse-Dinh YC, Jarrett WL, Holder AA. Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand. J Inorg Biochem 2020; 203:110907. [PMID: 31715377 PMCID: PMC7053658 DOI: 10.1016/j.jinorgbio.2019.110907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 01/09/2023]
Abstract
In this study, 9-anthraldehyde-N(4)-methylthiosemicarbazone (MeATSC) 1 and [Co(phen)2(O2CO)]Cl·6H2O 2 (where phen = 1,10-phenanthroline) were synthesized. [Co(phen)2(O2CO)]Cl·6H2O 2 was used to produce anhydrous [Co(phen)2(H2O)2](NO3)33. Subsequently, anhydrous [Co(phen)2(H2O)2](NO3)33 was reacted with MeATSC 1 to produce [Co(phen)2(MeATSC)](NO3)3·1.5H2O·C2H5OH 4. The ligand, MeATSC 1 and all complexes were characterized by elemental analysis, FT IR, UV-visible, and multinuclear NMR (1H, 13C, and 59Co) spectroscopy, along with HRMS, and conductivity measurements, where appropriate. Interactions of MeATSC 1 and complex 4 with calf thymus DNA (ctDNA) were investigated by carrying out UV-visible spectrophotometric studies. UV-visible spectrophotometric studies revealed weak interactions between ctDNA and the analytes, MeATSC 1 and complex 4 (Kb = 8.1 × 105 and 1.6 × 104 M-1, respectively). Topoisomerase inhibition assays and cleavage studies proved that complex 4 was an efficient catalytic inhibitor of human topoisomerases I and IIα. Based upon the results obtained from the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay on 4T1-luc metastatic mammary breast cancer cells (IC50 = 34.4 ± 5.2 μM when compared to IC50 = 13.75 ± 1.08 μM for the control, cisplatin), further investigations into the molecular events initiated by exposure to complex 4 were investigated. Studies have shown that complex 4 activated both the apoptotic and autophagic signaling pathways in addition to causing dissipation of the mitochondrial membrane potential (ΔΨm). Furthermore, activation of cysteine-aspartic proteases3 (caspase 3) in a time- and concentration-dependent manner coupled with the ΔΨm, studies implicated the intrinsic apoptotic pathway as the major regulator of cell death mechanism.
Collapse
Affiliation(s)
- Stephen J Beebe
- The Frank Reidy Center for Bioelectrics, 4211 Monarch Way, Suite 300, Norfolk, VA 23529, USA
| | - Michael J Celestine
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Jimmie L Bullock
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Shayna Sandhaus
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jessa Faye Arca
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Donald M Cropek
- U.S. Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL 61822, USA
| | - Tekettay A Ludvig
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Sydney R Foster
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Jasmine S Clark
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Floyd A Beckford
- The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, USA
| | - Criszcele M Tano
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Elizabeth A Tonsel-White
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Raj K Gurung
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Courtney E Stankavich
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - William L Jarrett
- School of Polymers and High-Performance Materials, The University of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, MS 39406, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA.
| |
Collapse
|
454
|
The Quantitative-Phase Dynamics of Apoptosis and Lytic Cell Death. Sci Rep 2020; 10:1566. [PMID: 32005874 PMCID: PMC6994697 DOI: 10.1038/s41598-020-58474-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/15/2020] [Indexed: 01/26/2023] Open
Abstract
Cell viability and cytotoxicity assays are highly important for drug screening and cytotoxicity tests of antineoplastic or other therapeutic drugs. Even though biochemical-based tests are very helpful to obtain preliminary preview, their results should be confirmed by methods based on direct cell death assessment. In this study, time-dependent changes in quantitative phase-based parameters during cell death were determined and methodology useable for rapid and label-free assessment of direct cell death was introduced. The goal of our study was distinction between apoptosis and primary lytic cell death based on morphologic features. We have distinguished the lytic and non-lytic type of cell death according to their end-point features (Dance of Death typical for apoptosis versus swelling and membrane rupture typical for all kinds of necrosis common for necroptosis, pyroptosis, ferroptosis and accidental cell death). Our method utilizes Quantitative Phase Imaging (QPI) which enables the time-lapse observation of subtle changes in cell mass distribution. According to our results, morphological and dynamical features extracted from QPI micrographs are suitable for cell death detection (76% accuracy in comparison with manual annotation). Furthermore, based on QPI data alone and machine learning, we were able to classify typical dynamical changes of cell morphology during both caspase 3,7-dependent and -independent cell death subroutines. The main parameters used for label-free detection of these cell death modalities were cell density (pg/pixel) and average intensity change of cell pixels further designated as Cell Dynamic Score (CDS). To the best of our knowledge, this is the first study introducing CDS and cell density as a parameter typical for individual cell death subroutines with prediction accuracy 75.4% for caspase 3,7-dependent and -independent cell death.
Collapse
|
455
|
The Anti-Neuron-Specific Enolase Antibody Induced Neuronal Cell Death in a Novel Fashion. Mol Neurobiol 2020; 57:2265-2278. [PMID: 32006234 DOI: 10.1007/s12035-020-01876-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/09/2020] [Indexed: 01/02/2023]
Abstract
Suppression of ubiquitin proteasome pathway (UPP) and stimulation of caspase-3 are involved in neurodegeneration. Can UPP activators and caspase-3 inhibitors ameliorate neurodegeneration? Here, we found a novel neuronal cell death accompanied with UPP activation and caspase-3 inhibition. Recently, plasmalemmal neuron-specific enolase (NSE) has been identified as one of membrane targets of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). 15d-PGJ2 induces neuronal apoptosis via activating caspase-3 and inactivating UPP, whereas the anti-NSE antibody inactivated caspase-3, activated UPP, and caused neuronal cell death. The anti-NSE antibody activated caspase-1 (pyroptosis marker), but not condense chromatin (apoptosis marker). The anti-NSE antibody declined intracellular level of ATP, which is not altered in pyroptosis. The intracellular level of calcium is elevated in necrosis and pyroptosis, but its chelator did not ameliorate the neurotoxicity of anti-NSE. Thiol antioxidants such as N-acetyl cysteine and glutathione reduced the neurotoxicity of 15d-PGJ2 but enhanced that of the anti-NSE antibody. The anti-NSE antibody incorporated propidium iodide into neurons through the disrupted plasma membrane, which are not observed in ferroptosis and autophagic cell death. Thus, the anti-NSE antibody induced neuronal cell death in a novel fashion distinguished from necrosis, necroptosis, apoptosis, pyroptosis, ferroptosis, and autophagic cell death.
Collapse
|
456
|
Fu S, Wu D, Jiang W, Li J, Long J, Jia C, Zhou T. Molecular Biomarkers in Drug-Induced Liver Injury: Challenges and Future Perspectives. Front Pharmacol 2020; 10:1667. [PMID: 32082163 PMCID: PMC7002317 DOI: 10.3389/fphar.2019.01667] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is one among the common adverse drug reactions and the leading causes of drug development attritions, black box warnings, and post-marketing withdrawals. Despite having relatively low clinical incidence, its potentially severe adverse events should be considered in the individual patients due to the high risk of acute liver failure. Although traditional liver parameters have been applied to the diagnosis of DILI, the lack of specific and sensitive biomarkers poses a major limitation, and thus accurate prediction of the subsequent clinical course remains a significant challenge. These drawbacks prompt the investigation and discovery of more effective biomarkers, which could lead to early detection of DILI, and improve its diagnosis and prognosis. Novel promising biomarkers include glutamate dehydrogenase, keratin 18, sorbitol dehydrogenase, glutathione S-transferase, bile acids, cytochrome P450, osteopontin, high mobility group box-1 protein, fatty acid binding protein 1, cadherin 5, miR-122, genetic testing, and omics technologies, among others. Furthermore, several clinical scoring systems have gradually emerged for the diagnosis of DILI including the Roussel Uclaf Causality Assessment Method (RUCAM), Clinical Diagnostic Scale (CDS), and Digestive Disease Week Japan (DDW-J) systems. However, currently their predictive value is limited with certain inherent deficiencies. Thus, perhaps the greatest benefit would be achieved by simultaneously combining the scoring systems and those biomarkers. Herein, we summarized the recent research progress on molecular biomarkers for DILI to improved approaches for its diagnosis and clinical management.
Collapse
Affiliation(s)
- Siyu Fu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Infectious Diseases, Pidu District People's Hospital, Chengdu, China
| | - Jiang Long
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyao Jia
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
457
|
Park H, Kam TI, Dawson TM, Dawson VL. Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:1-29. [PMID: 32381174 DOI: 10.1016/bs.ircmb.2019.12.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disruption of cellular functions with aging-induced accumulation of neuronal stressors causes cell death which is a common feature of neurodegenerative diseases. Studies in a variety of neurodegenerative disease models demonstrate that poly (ADP-ribose) (PAR)-dependent cell death, also named parthanatos, is responsible for neuronal loss in neurological diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Parthanatos has distinct features that differ from caspase-dependent apoptosis, necrosis or autophagic cell death. Parthanatos can be triggered by the accumulation of PAR due to overactivation of PAR polymerase-1 (PARP-1). Excess PAR, induces the mitochondrial release apoptosis-inducing factor (AIF), which binds to macrophage migration inhibitory factor (MIF) carrying MIF into the nucleus where it cleaves genomic DNA into large fragments. In this review, we will discuss the molecular mechanisms of parthanatos and their role in neurodegenerative diseases. Furthermore, we will discuss promising therapeutic interventions within the pathological PAR signaling cascade that could be designed to halt the progression of neurodegeneration.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
458
|
Zhang B, Zhang Y, Li R, Li J, Lu X, Zhang Y. Oncolytic adenovirus Ad11 enhances the chemotherapy effect of cisplatin on osteosarcoma cells by inhibiting autophagy. Am J Transl Res 2020; 12:105-117. [PMID: 32051740 PMCID: PMC7013210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Targeted oncolytic adenoviruses can selectively replicate in cancer cells; combined with traditional chemotherapy drugs, this approach is expected to become an important treatment method for overcoming the current bottleneck of osteosarcoma treatment. Here, we investigate the effect of oncolytic adenovirus Ad11 combined with cisplatin on autophagy in osteosarcoma cells. Immunohistochemistry was used to detect CD46 expression in patients with osteosarcoma. A cytotoxicity assay was employed to detect the killing effect of Ad11, cisplatin and their combination on osteosarcoma cells under different time scenarios. Expression of autophagy proteins Beclin1, ATG3, and LC3A/B under treatment of osteosarcoma cells with Ad11, cisplatin and their combination under different time scenarios was detected by immunofluorescence and western blotting. We found that the oncolytic adenovirus Ad11 synergizes with cisplatin to kill osteosarcoma cells and that the synergistic effect was greatest when cells were first treated with Ad11. This synergy is due to oncolytic adenovirus Ad11-mediated inhibition of autophagy, which enhanced the sensitivity of cells to chemotherapy. In conclusion, this study provides evidence that the oncolytic adenovirus Ad11 can enhance the effect of chemotherapy by inhibiting autophagy. The findings provide a cytological basis for the treatment of osteosarcoma with oncolytic adenovirus combined with cisplatin.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, The People’s Republic of China
| | - Yan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, The People’s Republic of China
| | - Rongzhen Li
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, The People’s Republic of China
| | - Jiazhen Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, The People’s Republic of China
| | - Xinchang Lu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, The People’s Republic of China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, The People’s Republic of China
| |
Collapse
|
459
|
Yang D, Shu T, Zhao H, Sun Y, Xu W, Tu G. Knockdown of macrophage migration inhibitory factor (MIF), a novel target to protect neurons from parthanatos induced by simulated post-spinal cord injury oxidative stress. Biochem Biophys Res Commun 2020; 523:719-725. [PMID: 31948762 DOI: 10.1016/j.bbrc.2019.12.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 01/28/2023]
Abstract
Parthanatos is a form of regulated cell death (RCD) that is closely linked to DNA damage, which is a common consequence of oxidative stress due to central nervous trauma, such as spinal cord injury (SCI). The mechanism by which apoptosis-inducing factor (AIF) mediates DNA strand breaks in parthanatos was not clear until the discovery of the nuclease function of MIF. A previous study suggested that observed results may not be reliable if the oxidative stress induced in cells observed under experimental pathological conditions does not accurately replicate the specific pathologies being studied. According to an earlier direct measurement of extracellular oxidative stress in a rat SCI model, post-SCI oxidative stress was approximately the same as exposure to 150 μM H2O2. However, this concentration has been reported as sublethal oxidative stress in other cell types related to senescence, apoptosis, and parthanatos. Using sublethal H2O2 concentrations to induce oxidative stress is equivocal. Also, different cell types have diverse tolerances and responses to oxidative stress, and, therefore, exposure to H2O2. To avoid these limitations, the present study explored the mechanism of neuronal death under this simulated post-SCI oxidative stress and determined the effects of MIF knockdown in parthanatos associated with SCI. Immunofluorescence and flow cytometry were used to reveal typical characteristics of parthanatos that were blocked by PARP-1 inhibitors but not caspase inhibitors. In addition to classic features like PARP-1 and caspase-3 cleavage that were absent, we determined that parthanatos instead of apoptosis played a major role in the cell death caused by oxidative stress following SCI. Flow cytometry analysis of cells transfected by adenovirus with MIF-shRNA then exposed to H2O2 showed a significant decrease in cell death for MIF knockdown cells, even after AIF nuclear translocation. The comet assay also displayed significantly fewer DNA strand breaks after MIF knockdown. This is the first study has verified that MIF knockdown enables to protect neurons from parthanatos under a simulated in vivo oxidative stress following SCI. It suggests that MIF knockdown is a promising therapy to rescue neurons suffering from oxidative stress-induced SCI pathology.
Collapse
Affiliation(s)
- Dongfang Yang
- China Medical University, Shenbei New District, Shenyang City, Liaoning Province, PR China.
| | - Tingting Shu
- Dalian Medical University, Lvshunkou District, Dalian City, Liaoning Province, PR China.
| | - Haosen Zhao
- China Medical University, Shenbei New District, Shenyang City, Liaoning Province, PR China.
| | - Yang Sun
- Department of Hand and Foot Surgery, Dalian Municipal Central Hospital, Shahekou District, Dalian City, Liaoning Province, PR China.
| | - Weibing Xu
- Department of Spine Surgery, Dalian Municipal Central Hospital, Shahekou District, Dalian City, Liaoning Province, PR China.
| | - Guanjun Tu
- China Medical University, Shenbei New District, Shenyang City, Liaoning Province, PR China.
| |
Collapse
|
460
|
Hu SA, Wei W, Yuan J, Cheng J. Resveratrol Inhibits Proliferation in HBL-52 Meningioma Cells. Onco Targets Ther 2020; 12:11579-11586. [PMID: 31920345 PMCID: PMC6941613 DOI: 10.2147/ott.s228513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022] Open
Abstract
Objective To investigate the effects of resveratrol on apoptosis and proliferation in meningioma cells and characterize the underlying molecular mechanism. Methods HBL-52 meningioma cells were treated with resveratrol at doses of 10, 50, 100, 200, and 400 μM for 24, 36, and 48 hrs. Inhibition of proliferation was measured by CCK8 assay, and apoptosis was determined by annexin V staining and flow cytometry. Expression of apoptosis-associated proteins (cleaved-caspase-3, pro-caspase-3) and Bcl-2 were measured by Western blot. Levels of miR-34a-3p and Bcl-2 mRNA were analyzed by reverse transcriptase PCR. A dual luciferase assay was used to determine whether miR-34a-3p binds to the 3ʹUTR of Bcl-2. Results Resveratrol reduces proliferation and increases apoptosis in HBL-52 cells. These effects increase with increasing resveratrol concentration and exposure time. Resveratrol increases levels of cleaved-caspase 3 protein as well as decreases levels of pro-caspase 3 protein and Bcl-2 mRNA. The 3ʹUTR of Bcl-2 contains putative binding sites for miR-34a-3p, and these binding sites can regulate the expression of a luciferase reporter. Overexpression of miR-34a-3p reduces Bcl-2 protein levels in HBL-52 cells. Conclusion Resveratrol suppresses proliferation and induces apoptosis in meningioma cells by upregulating miR-34a-3p, which in turn downregulates Bcl-2. Resveratrol may be a useful drug for treating meningiomas.
Collapse
Affiliation(s)
- Shun-An Hu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Wei Wei
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Jia Yuan
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Jin Cheng
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| |
Collapse
|
461
|
All-trans-retinal induces autophagic cell death via oxidative stress and the endoplasmic reticulum stress pathway in human retinal pigment epithelial cells. Toxicol Lett 2020; 322:77-86. [PMID: 31931077 DOI: 10.1016/j.toxlet.2020.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 11/20/2022]
Abstract
Failure of all-trans-retinal (atRAL) clearance contributes to retina degeneration. However, whether autophagy can be activated by excess atRAL accumulation in retinal pigment epithelial (RPE) cells is not known. This study showed that atRAL provoked mitochondria-associated reactive oxygen species (ROS) production, activated the nuclear factor (erythroid-derived 2)-like 2 and apoptosis in a human RPE cell line, ARPE-19 cells. Moreover, we found that autophagic flux was functionally activated after atRAL treatment. The antioxidant N-acetylcysteine attenuated the expression of autophagy markers, suggesting that ROS triggered atRAL-activated autophagy. In addition, autophagic cell death was observed in atRAL-treated RPE cells, while inhibition of autophagy with 3-methyladenine or LC3, Beclin1, p62 silencing ameliorated atRAL-induced cytotoxicity. Suppression of autophagy quenched mitochondrial ROS and inhibited HO-1 and γ-GCSh expression, indicating that atRAL-activated autophagy enhances intracellular oxidative stress, thereby promoting RPE cell apoptosis. Furthermore, we found that inhibiting endoplasmic reticulum (ER) stress suppressed atRAL-induced mitochondrial ROS generation, subsequently attenuated autophagy and apoptosis in RPE cells. Taken together, these results suggest that atRAL-induced oxidative stress and ER stress modulate autophagy, which may contribute to RPE degeneration. There may be positive feedback regulatory mechanisms between atRAL-induced oxidative stress and autophagy or ER stress.
Collapse
|
462
|
Dietrich J, Schindler M, Lampen A, Braeuning A, Hessel-Pras S. Comparison of long-term versus short-term effects of okadaic acid on the apoptotic status of human HepaRG cells. Chem Biol Interact 2020; 317:108937. [PMID: 31926150 DOI: 10.1016/j.cbi.2020.108937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/14/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023]
Abstract
The biotoxin okadaic acid (OA) is a lipophilic secondary metabolite of marine microalgae. Therefore, OA accumulates in the fatty tissue of various shellfish and may thus enter the food chain. The ingestion of OA via contaminated marine species can lead to the diarrhetic shellfish poisoning syndrome characterized by the occurrence of a series of acute gastrointestinal symptoms in humans. In addition, genotoxicity and tumor-promoting properties of OA might constitute a long-term threat to human health. In order to deepen our understanding of the molecular effects of OA, we compared long-term (14 d) and short-term (24 h and 48 h) apoptotic effects of the compound on human HepaRG hepatocarcinoma cells. Cells were treated either with single doses for 24 and 48 h, respectively, or seven times over a period of 14 d, so that the cumulated quantities of OA in the long-term approach were equal to the single doses upon short-term treatment. Both short-term treatment scenarios led to the induction of apoptosis. Specific caspase activation assays and transcriptional analysis of mRNAs encoding proteins involved in the regulation of apoptosis suggest that OA-induced apoptosis occurs presumably by activation of the intrinsic apoptotic pathway. In contrast, effects were much less pronounced in case of long-term treatment. This is possibly linked to cellular protective mechanisms against low amounts of toxins, e.g. transporter-mediated efflux. In conclusion, our results show a clear concentration- and time-dependency of OA-mediated apoptotic effects in HepaRG cells and contribute to the elucidation of molecular effects of OA.
Collapse
Affiliation(s)
- Jessica Dietrich
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Magdalena Schindler
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany.
| |
Collapse
|
463
|
Farah BL, Yen PM, Koeberl DD. Links between autophagy and disorders of glycogen metabolism - Perspectives on pathogenesis and possible treatments. Mol Genet Metab 2020; 129:3-12. [PMID: 31787497 PMCID: PMC7836271 DOI: 10.1016/j.ymgme.2019.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/17/2023]
Abstract
The glycogen storage diseases are a group of inherited metabolic disorders that are characterized by specific enzymatic defects involving the synthesis or degradation of glycogen. Each disorder presents with a set of symptoms that are due to the underlying enzyme deficiency and the particular tissues that are affected. Autophagy is a process by which cells degrade and recycle unneeded or damaged intracellular components such as lipids, glycogen, and damaged mitochondria. Recent studies showed that several of the glycogen storage disorders have abnormal autophagy which can disturb normal cellular metabolism and/or mitochondrial function. Here, we provide a clinical overview of the glycogen storage disorders, a brief description of autophagy, and the known links between specific glycogen storage disorders and autophagy.
Collapse
Affiliation(s)
- Benjamin L Farah
- Department of Pathology, Singapore General Hospital, Singapore, Singapore.
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA..
| |
Collapse
|
464
|
Zhang Z, Yang J, Maimaitiyimin R, Ma M, Zhang H, Wang R. Radiation-induced mitotic catastrophe is associated with down-regulated ribosomal biosynthesis and mitosis genes. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1806117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Zegao Zhang
- Department of Radiation Oncology, Tumor Hospital Affiliated To Xinjiang Medical University, Urumqi, People’s Republic of China
- Second Department of Radiation Oncology, People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, People’s Republic of China
| | - Jie Yang
- Second Department of Radiation Oncology, People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, People’s Republic of China
| | - Reyila Maimaitiyimin
- Second Department of Radiation Oncology, People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, People’s Republic of China
| | - Miaomiao Ma
- Second Department of Radiation Oncology, People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, People’s Republic of China
| | - Hui Zhang
- Research and Education Center, People’ s Hospital of Xinjiang Uyghur Autonomous Region
| | - Ruozheng Wang
- Department of Radiation Oncology, Tumor Hospital Affiliated To Xinjiang Medical University, Urumqi, People’s Republic of China
| |
Collapse
|
465
|
|
466
|
Xiang DB, Zhang KQ, Zeng YL, Yan QZ, Shi Z, Tuo QH, Lin LM, Xia BH, Wu P, Liao DF. Curcumin: From a controversial "panacea" to effective antineoplastic products. Medicine (Baltimore) 2020; 99:e18467. [PMID: 31914018 PMCID: PMC6959860 DOI: 10.1097/md.0000000000018467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Curcumin, a controversial "panacea," has been broadly studied. Its bioactivities including antioxidant, anti-inflammatory, and especially antineoplastic activities have been documented. However, due to its extensive bioactivities, some scientists hold a skeptical point of view toward curcumin and described curcumin as a "deceiver" to chemists. The objective of this study was to explore curcumin's another possibility as a potential supplementary leading compound to cancer treatments. METHODS Literature searches were conducted using electronic databases. Search terms such as "curcumin," "curcumin analogues," and so on were used. The literatures were collected and summarized. In this article, reported targets of curcumin are reviewed. The limitations of a curcumin as a therapeutic anticancer product including low bioavailability and poor targeting are mentioned. Furthermore, modified curcumin analogues and antitumor mechanisms are listed and discussed in the aspects of cell death and tumor microenvironment including angiogenesis, tissue hypoxia status, and energy metabolism. RESULTS Several possible modification strategies were presented by analyzing the relationships between the antitumor activity of curcumin analogues and their structural characteristics, including the introduction of hydrophilic group, shortening of redundant hydrocarbon chain, the introduction of extra chemical group, and so on. CONCLUSIONS From our perspective, after structural modification curcumin could be more effective complementary product for cancer therapies by the enhancement of targeting abilities and the improvement of bioavailability.
Collapse
Affiliation(s)
- De-Biao Xiang
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Kai-Qiang Zhang
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Ya-Ling Zeng
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qing-Zi Yan
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Zhe Shi
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Qin-Hui Tuo
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Li-Mei Lin
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Bo-Hou Xia
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Ping Wu
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| |
Collapse
|
467
|
Wu D, Forghani F, Daliri EBM, Li J, Liao X, Liu D, Ye X, Chen S, Ding T. Microbial response to some nonthermal physical technologies. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
468
|
Min CK, Shakya AK, Lee BJ, Streblow DN, Caposio P, Yurochko AD. The Differentiation of Human Cytomegalovirus Infected-Monocytes Is Required for Viral Replication. Front Cell Infect Microbiol 2020; 10:368. [PMID: 32850474 PMCID: PMC7411144 DOI: 10.3389/fcimb.2020.00368] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Viral dissemination is a key mechanism responsible for persistence and disease following human cytomegalovirus (HCMV) infection. Monocytes play a pivotal role in viral dissemination to organ tissue during primary infection and following reactivation from latency. For example, during primary infection, infected monocytes migrate into tissues and differentiate into macrophages, which then become a source of viral replication. In addition, because differentiated macrophages can survive for months to years, they provide a potential persistent infection source in various organ systems. We broadly note that there are three phases to infection and differentiation of HCMV-infected monocytes: (1) Virus enters and traffics to the nucleus through a virus receptor ligand engagement event that activates a unique signalsome that initiates the monocyte-to-macrophage differentiation process. (2) Following initial infection, HCMV undergoes a "quiescence-like state" in monocytes lasting for several weeks and promotes monocyte differentiation into macrophages. While, the initial event is triggered by the receptor-ligand engagement, the long-term cellular activation is maintained by chronic viral-mediated signaling events. (3) Once HCMV infected monocytes differentiate into macrophages, the expression of immediate early viral (IE) genes is detectable, followed by viral replication and long term infectious viral particles release. Herein, we review the detailed mechanisms of each phase during infection and differentiation into macrophages and discuss the biological significance of the differentiation of monocytes in the pathogenesis of HCMV.
Collapse
Affiliation(s)
- Chan-Ki Min
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Akhalesh K Shakya
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Byeong-Jae Lee
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Center of Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
469
|
Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis 2020; 35:11-30. [PMID: 31811496 DOI: 10.1007/s11011-019-00516-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
470
|
Grzegorzewska AK, Hrabia A, Kowalik K, Katarzyńska-Banasik D, Kozubek A, Sechman A. In vitro effects of PNP and PNMC on apoptosis and proliferation in the hen ovarian stroma and prehierarchal follicles. Acta Histochem 2020; 122:151463. [PMID: 31708232 DOI: 10.1016/j.acthis.2019.151463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
Abstract
This study aimed to examine the mRNA expression, activity, and immunolocalisation of apoptosis/proliferation regulating factors following in vitro exposure of the stroma, white (WFs), and yellowish (YFs) follicles of the chicken ovary to 4-nitrophenol (PNP) or 3-methyl-4-nitrophenol (PNMC). PNMC increased the mRNA expression of caspase-3, -8, Apaf-1, and cytochrome c in the ovarian stroma. The activity of caspase-3, -8, and -9 decreased in WFs in both nitrophenol-treated groups. PNP reduced the number of caspase-3-positive cells in the stromal connective tissue (CT) and the theca interna and externa layers of WFs. In the stroma, the proliferating index decreased in the wall of primary follicles in both nitrophenol-treated groups, however, in the CT, the effect of PNMC was opposite. In the theca interna of WFs, PNP diminished the proliferating index. These results suggest that nitrophenols might impact the development of chicken ovarian follicles by affecting cell death and proliferation.
Collapse
Affiliation(s)
- A K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - A Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - K Kowalik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - D Katarzyńska-Banasik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - A Kozubek
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - A Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
471
|
Acadesine Circumvents Azacitidine Resistance in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Int J Mol Sci 2019; 21:ijms21010164. [PMID: 31881723 PMCID: PMC6981810 DOI: 10.3390/ijms21010164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
Myelodysplastic syndrome (MDS) defines a group of heterogeneous hematologic malignancies that often progresses to acute myeloid leukemia (AML). The leading treatment for high-risk MDS patients is azacitidine (Aza, Vidaza®), but a significant proportion of patients are refractory and all patients eventually relapse after an undefined time period. Therefore, new therapies for MDS are urgently needed. We present here evidence that acadesine (Aca, Acadra®), a nucleoside analog exerts potent anti-leukemic effects in both Aza-sensitive (OCI-M2S) and resistant (OCI-M2R) MDS/AML cell lines in vitro. Aca also exerts potent anti-leukemic effect on bone marrow cells from MDS/AML patients ex-vivo. The effect of Aca on MDS/AML cell line proliferation does not rely on apoptosis induction. It is also noteworthy that Aca is efficient to kill MDS cells in a co-culture model with human medullary stromal cell lines, that mimics better the interaction occurring in the bone marrow. These initial findings led us to initiate a phase I/II clinical trial using Acadra® in 12 Aza refractory MDS/AML patients. Despite a very good response in one out 4 patients, we stopped this trial because the highest Aca dose (210 mg/kg) caused serious renal side effects in several patients. In conclusion, the side effects of high Aca doses preclude its use in patients with strong comorbidities.
Collapse
|
472
|
Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019; 12:v12010014. [PMID: 31861926 PMCID: PMC7020001 DOI: 10.3390/v12010014] [Citation(s) in RCA: 701] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Collapse
|
473
|
Tompkins KD, Thorburn A. Regulation of Apoptosis by Autophagy to Enhance Cancer Therapy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:707-718. [PMID: 31866785 PMCID: PMC6913805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In cancer therapy, a principle goal is to kill cancer cells while minimizing death of normal cells. Traditional cytotoxic therapies and the newer agents that target specific signaling proteins that are critical for cancer cell growth do this by activating a specific type of programmed cell death - apoptosis. However, it has been well established that cancer cells have varying levels of responses to apoptotic stimuli, with some being close to an "apoptotic threshold" and others being further away and that this ultimately determines whether cancer therapy is successful or not. In this review, we will highlight how the underlying mechanisms that control apoptosis thresholds relate to another important homeostatic process in cell survival and cell death, autophagy, and discuss recent evidence suggesting how inhibition of autophagy can enhance the action of anti-cancer drugs by modulating the apoptotic response.
Collapse
Affiliation(s)
- Kenneth D. Tompkins
- Division of Endocrinology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO,To whom all correspondence should be addressed: Andrew Thorburn, 12801 East 17th Avenue, RC1 South, Room 6104, Mail Stop 8303, Aurora, CO, 80045; Tel: 303-724-3290, Fax: 303-724-3664,
| |
Collapse
|
474
|
Valiakhmetov AY, Kuchin AV, Suzina NE, Zvonarev AN, Shepelyakovskaya AO. Glucose causes primary necrosis in exponentially grown yeast Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:5347945. [PMID: 30785621 DOI: 10.1093/femsyr/foz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
In this paper, we present data on sugar-induced cell death (SICD) in the yeast Saccharomyces cerevisiae in the exponential phase of growth. We suggest that the nature of SICD in exponentially grown yeast is primary necrosis, in contrast to cells in the stationary growth phase, which exhibit apoptotic SICD. The following findings confirm this conclusion: (i) the process rate; (ii) the impairments of plasma membrane integrity; (iii) the drastic morphological changes in the intracellular content; (iv) the absence of chromatin condensation; (v) the absence of externalization of phosphotidylserine (PS) on the outer leaflet of plasma membrane and (vi) the insensitivity of the SICD process to cycloheximide (CHX). Research shows that SICD occurs in a subpopulation of cells in the S-phase.
Collapse
Affiliation(s)
- A Ya Valiakhmetov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS.,Moscow Region State University
| | - A V Kuchin
- Institute of Cell Biophysics, FRC PCBR RAS
| | - N E Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS
| | - A N Zvonarev
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS
| | | |
Collapse
|
475
|
Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends Neurosci 2019; 43:55-73. [PMID: 31843293 DOI: 10.1016/j.tins.2019.11.005] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Pyroptosis ('fiery death') is an inflammatory type of regulated cell death (RCD), which occurs downstream of inflammasome activation. Pyroptosis is mediated directly by the recently identified family of pore-forming proteins known as gasdermins, the best characterized of which is gasdermin D (GSDMD). Recent investigations implicate pyroptosis in the pathogenesis of multiple neurological diseases. In this review, we discuss molecular mechanisms that drive pyroptosis, evidence for pyroptosis within the CNS, and emerging therapeutic strategies for its inhibition in the context of neurological disease.
Collapse
|
476
|
Abstract
Leishmaniases still represent a global scourge and new therapeutic tools are necessary to replace the current expensive, difficult to administer treatments that induce numerous adverse effects and for which resistance is increasingly worrying. In this context, the particularly original organization of the Leishmania parasite in comparison to higher eukaryotes is a great advantage. It allows for the development of new, very specific, and thus non-cytotoxic treatments. Among these originalities, Leishmania cell death can be cited. Despite a classic pattern of apoptosis, key mammalian apoptotic proteins are not present in Leishmania, such as caspases, cell death receptors, and anti-apoptotic molecules. Recent studies have helped to develop a better understanding of parasite cell death, identifying new proteins or even new apoptotic pathways. This review provides an overview of the current knowledge on Leishmania cell death, describing its physiological roles and its phenotype, and discusses the involvement of various proteins: endonuclease G, metacaspase, aquaporin Li-BH3AQP, calpains, cysteine proteinase C, LmjHYD36 and Lmj.22.0600. From these data, potential apoptotic pathways are suggested. This review also offers tools to identify new Leishmania cell death effectors. Lastly, different approaches to use this knowledge for the development of new therapeutic tools are suggested: either inhibition of Leishmania cell death or activation of cell death for instance by treating cells with proteins or peptides involved in parasite death fused to a cell permeant peptide or encapsulated into a lipidic vector to target intra-macrophagic Leishmania cells.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis Team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Magali Casanova
- Aix-Marseille University, CNRS, LISM, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 09, France
| |
Collapse
|
477
|
Godlewski M, Kobylińska A. Bax Inhibitor 1 (BI-1) as a conservative regulator of Programmed Cell Death. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.6294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Programmed cell death (PCD) is a physiological process in which infected or unnecessary cells due to their suicidal death capability can be selectively eliminated. Pro- and antiapoptotic proteins play an important role in the induction or inhibition of this process. Presented article shows property of Bax-1 (BI-1) inhibitor which is one of the conservative protein associated with the endoplasmic reticulum (ER) as well as its cytoprotective role in the regulation of cellular processes. It was shown that: 1) BI-1 is a small protein consisting of 237 amino acids (human protein - 36 kDa) and has 6 (in animals) and 7 (in plants) α-helical transmembrane domains, 2) BI-1 is expressed in all organisms and in most tissues, moreover its level depends on the functional condition of cells and it is involved in the development or reaction to biotic and abiotic stresses, 3) BI-1 forms a pH-dependent Ca2+ channel enabling release of these ions from the ER, 4) cytoprotective effects of BI-1 requires a whole, unchanged C-terminus, 5) BI-1 can interact directly with numerous other proteins, BI-1 protein affects numerous cellular processes, including: counteracting ER stress, oxidative stress, loss of cellular Ca2+ homeostasis as well as this protein influences on sphingolipid metabolism, autophagy, actin polymerization, lysosomal activity and cell proliferation. Studies of BI-1 functions will allow understanding the mechanisms of anticancer therapy or increases the knowledge of crop tolerance to environmental stresses.
Collapse
Affiliation(s)
- Mirosław Godlewski
- Katedra Ekofizjologii Roślin, Instytut Biologii Eksperymentalnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| | - Agnieszka Kobylińska
- Katedra Ekofizjologii Roślin, Instytut Biologii Eksperymentalnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| |
Collapse
|
478
|
Ramos-Pérez C, Dominska M, Anaissi-Afonso L, Cazorla-Rivero S, Quevedo O, Lorenzo-Castrillejo I, Petes TD, Machín F. Cytological and genetic consequences for the progeny of a mitotic catastrophe provoked by Topoisomerase II deficiency. Aging (Albany NY) 2019; 11:11686-11721. [PMID: 31812950 PMCID: PMC6932922 DOI: 10.18632/aging.102573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023]
Abstract
Topoisomerase II (Top2) removes topological linkages between replicated chromosomes. Top2 inhibition leads to mitotic catastrophe (MC) when cells unsuccessfully try to split their genetic material between the two daughter cells. Herein, we have characterized the fate of these daughter cells in the budding yeast. Clonogenic and microcolony experiments, in combination with vital and apoptotic stains, showed that 75% of daughter cells become senescent in the short term; they are unable to divide but remain alive. Decline in cell vitality then occurred, yet slowly, uncoordinatedly when comparing pairs of daughters, and independently of the cell death mediator Mca1/Yca1. Furthermore, we showed that senescence can be modulated by ploidy, suggesting that gross chromosome imbalances during segregation may account for this phenotype. Indeed, we found that diploid long-term survivors of the MC are prone to genomic imbalances such as trisomies, uniparental disomies and terminal loss of heterozygosity (LOH), the latter affecting the longest chromosome arms.
Collapse
Affiliation(s)
- Cristina Ramos-Pérez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Tenerife, Spain.,Present address: BenchSci Analytics Inc., Toronto, Canada
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura Anaissi-Afonso
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Tenerife, Spain
| | - Sara Cazorla-Rivero
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Tenerife, Spain
| | - Oliver Quevedo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Present address: Genomic Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Isabel Lorenzo-Castrillejo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
479
|
Sugaya T, Kanno H, Matsuda M, Handa K, Tateda S, Murakami T, Ozawa H, Itoi E. B-RAF V600E Inhibitor Dabrafenib Attenuates RIPK3-Mediated Necroptosis and Promotes Functional Recovery after Spinal Cord Injury. Cells 2019; 8:cells8121582. [PMID: 31817643 PMCID: PMC6953123 DOI: 10.3390/cells8121582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The receptor-interacting protein kinase 3 (RIPK3) is a key regulator of necroptosis and is involved in various pathologies of human diseases. We previously reported that RIPK3 expression is upregulated in various neural cells at the lesions and necroptosis contributed to secondary neural tissue damage after spinal cord injury (SCI). Interestingly, recent studies have shown that the B-RAFV600E inhibitor dabrafenib has a function to selectively inhibit RIPK3 and prevents necroptosis in various disease models. In the present study, using a mouse model of thoracic spinal cord contusion injury, we demonstrate that dabrafenib administration in the acute phase significantly inhibites RIPK3-mediated necroptosis in the injured spinal cord. The administration of dabrafenib attenuated secondary neural tissue damage, such as demyelination, neuronal loss, and axonal damage, following SCI. Importantly, the neuroprotective effect of dabrafenib dramatically improved the recovery of locomotor and sensory functions after SCI. Furthermore, the electrophysiological assessment of the injured spinal cord objectively confirmed that the functional recovery was enhanced by dabrafenib. These findings suggest that the B-RAFV600E inhibitor dabrafenib attenuates RIPK3-mediated necroptosis to provide a neuroprotective effect and promotes functional recovery after SCI. The administration of dabrafenib may be a novel therapeutic strategy for treating patients with SCI in the future.
Collapse
Affiliation(s)
- Takehiro Sugaya
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (M.M.); (K.H.); (S.T.); (T.M.); (E.I.)
| | - Haruo Kanno
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (M.M.); (K.H.); (S.T.); (T.M.); (E.I.)
- Correspondence: ; Tel.: +81-22-717-7245
| | - Michiharu Matsuda
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (M.M.); (K.H.); (S.T.); (T.M.); (E.I.)
| | - Kyoichi Handa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (M.M.); (K.H.); (S.T.); (T.M.); (E.I.)
| | - Satoshi Tateda
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (M.M.); (K.H.); (S.T.); (T.M.); (E.I.)
| | - Taishi Murakami
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (M.M.); (K.H.); (S.T.); (T.M.); (E.I.)
| | - Hiroshi Ozawa
- Department of Orthopaedic Surgery, Tohoku Medical and Pharmaceutical University, Faculty of Medicine, 1-15-1, Fukumuro Miyagino-ku, Sendai 983-8536, Japan;
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (M.M.); (K.H.); (S.T.); (T.M.); (E.I.)
| |
Collapse
|
480
|
Li Y, Jiang N, Fan Y, Zhou Y, Liu W, Xue M, Meng Y, Zeng L. Chinese Giant Salamander ( Andrias davidianus) Iridovirus Infection Leads to Apoptotic Cell Death through Mitochondrial Damage, Caspases Activation, and Expression of Apoptotic-Related Genes. Int J Mol Sci 2019; 20:ijms20246149. [PMID: 31817556 PMCID: PMC6940751 DOI: 10.3390/ijms20246149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Chinese giant salamander iridovirus (GSIV) is the causative pathogen of Chinese giant salamander (Andrias davidianus) iridovirosis, leading to severe infectious disease and huge economic losses. However, the infection mechanism by GSIV is far from clear. In this study, a Chinese giant salamander muscle (GSM) cell line is used to investigate the mechanism of cell death during GSIV infection. Microscopy observation and DNA ladder analysis revealed that DNA fragmentation happens during GSIV infection. Flow cytometry analysis showed that apoptotic cells in GSIV-infected cells were significantly higher than that in control cells. Caspase 8, 9, and 3 were activated in GSIV-infected cells compared with the uninfected cells. Consistently, mitochondria membrane potential (MMP) was significantly reduced, and cytochrome c was released into cytosol during GSIV infection. p53 expression increased at an early stage of GSIV infection and then slightly decreased late in infection. Furthermore, mRNA expression levels of pro-apoptotic genes participating in the extrinsic and intrinsic pathway were significantly up-regulated during GSIV infection, while those of anti-apoptotic genes were restrained in early infection and then rose in late infection. These results collectively indicate that GSIV induces GSM apoptotic cell death involving mitochondrial damage, caspases activation, p53 expression, and pro-apoptotic molecules up-regulation.
Collapse
|
481
|
Ibraheem K, Yhmed AMA, Qayyum T, Bryan NP, Georgopoulos NT. CD40 induces renal cell carcinoma-specific differential regulation of TRAF proteins, ASK1 activation and JNK/p38-mediated, ROS-dependent mitochondrial apoptosis. Cell Death Discov 2019; 5:148. [PMID: 31815003 PMCID: PMC6892818 DOI: 10.1038/s41420-019-0229-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
A unique feature of CD40 among the TNF receptor (TNFR) superfamily is its exquisitely contextual effects, as originally demonstrated in normal and malignant B-lymphocytes. We studied renal cell carcinoma (RCC) in comparison to normal (human renal proximal tubule) cells, as a model to better understand the role of CD40 in epithelial cells. CD40 ligation by membrane-presented CD40 ligand (mCD40L), but not soluble CD40 agonist, induced extensive apoptosis in RCC cells; by contrast, normal cells were totally refractory to mCD40L. These findings underline the importance of CD40 'signal-quality' on cell fate and explain the lack of pro-apoptotic effects in RCC cells previously, while confirming the tumour specificity of CD40 in epithelial cells. mCD40L differentially regulated TRAF expression, causing sustained TRAF2/TRAF3 induction in RCC cells, yet downregulation of TRAF2 and no TRAF3 induction in normal cells, observations strikingly reminiscent of TRAF modulation in B-lymphocytes. mCD40L triggered reactive oxygen species (ROS) production, critical in apoptosis, and NADPH oxidase (Nox)-subunit p40phox phosphorylation, with Nox blockade abrogating apoptosis thus implying Nox-dependent initial ROS release. mCD40L mediated downregulation of Thioredoxin-1 (Trx-1), ASK1 phosphorylation, and JNK and p38 activation. Although both JNK/p38 were essential in apoptosis, p38 activation was JNK-dependent, which is the first report of such temporally defined JNK-p38 interplay during an apoptotic programme. CD40-killing entrained Bak/Bax induction, controlled by JNK/p38, and caspase-9-dependent mitochondrial apoptosis, accompanied by pro-inflammatory cytokine secretion, the repertoire of which also depended on CD40 signal quality. Previous reports suggested that, despite the ability of soluble CD40 agonist to reduce RCC tumour size in vivo via immunocyte activation, RCC could be targeted more effectively by combining CD40-mediated immune activation with direct tumour CD40 signalling. Since mCD40L represents a potent tumour cell-specific killing signal, our work not only offers insights into CD40's biology in normal and malignant epithelial cells, but also provides an avenue for a 'double-hit' approach for inflammatory, tumour cell-specific CD40-based therapy.
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Albashir M. A. Yhmed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Present Address: Department of Medical Laboratory Sciences, University of Sebha, Tripoli, Libya
| | - Tahir Qayyum
- Urology Department, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield Royal Infirmary, Huddersfield, UK
| | - Nicolas P. Bryan
- Urology Department, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield Royal Infirmary, Huddersfield, UK
| | - Nikolaos T. Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
482
|
Wang LW, Yu Y, Chen J, Feng Y, Cui BM, Li XY, Wang JN, Chen HL, Zhang P. [Protein kinase D1 regulates the growth and metabolism of oral squamous carcinoma cells in tumor microenvironment]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:577-582. [PMID: 31875433 DOI: 10.7518/hxkq.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To observe the effect of protein kinase D1 (PKD1) on the growth and metabolism of oral squamous cell carcinoma HSC-4 cells and related molecular mechanisms in the tumor microenvironment. METHODS HSC-4 cell lines were transfected with shRNA plasmids. Three groups (Wild, control-shRNA, and PKD1-shRNA) were cultured under acidic or hypoxic environment for a certain time. Western blot was used to detect the expression of autophagy-related and glycolytic-related proteins. The proliferation changes were detected by CCK-8 kits. RESULTS The PKD1-knockdown HSC-4 cell line was established. PKD1 silencing increased autophagy activity. Under hypoxic and acidic conditions, the PKD1-knockdown HSC-4 cells showed lower proliferation than the parental cells. PKD1-knockdown also decreased the expression of hypoxia induciblefactor 1α (HIF-1α) and pyruvate kinase M2 (PKM2). CONCLUSIONS Under hypoxic and acidic conditions, PKD1 gene silencing can increase apoptotic autophagy activity. Downregulated PKD1 gene expression can reduce the glycolysis of oral squamous cell carcinoma cells and inhibit tumor cell proliferation. This study revealed the important role of PKD1 in the metabolism and growth of oral squamous cell carcinoma, making it a possible target for the treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Li-Wei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yun Feng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo-Miao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Ying Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing-Nan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hong-Li Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
483
|
Almabhouh FA, Md Mokhtar AH, Malik IA, Aziz NAAA, Durairajanayagam D, Singh HJ. Leptin and reproductive dysfunction in obese men. Andrologia 2019; 52:e13433. [DOI: 10.1111/and.13433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Ifrah Alam Malik
- Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
| | | | | | - Harbindar Jeet Singh
- Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
- I‐PerFForm Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
| |
Collapse
|
484
|
Lunov O, Uzhytchak M, Smolková B, Lunova M, Jirsa M, Dempsey NM, Dias AL, Bonfim M, Hof M, Jurkiewicz P, Petrenko Y, Kubinová Š, Dejneka A. Remote Actuation of Apoptosis in Liver Cancer Cells via Magneto-Mechanical Modulation of Iron Oxide Nanoparticles. Cancers (Basel) 2019; 11:cancers11121873. [PMID: 31779223 PMCID: PMC6966689 DOI: 10.3390/cancers11121873] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023] Open
Abstract
Lysosome-activated apoptosis represents an alternative method of overcoming tumor resistance compared to traditional forms of treatment. Pulsed magnetic fields open a new avenue for controlled and targeted initiation of lysosomal permeabilization in cancer cells via mechanical actuation of magnetic nanomaterials. In this study we used a noninvasive tool; namely, a benchtop pulsed magnetic system, which enabled remote activation of apoptosis in liver cancer cells. The magnetic system we designed represents a platform that can be used in a wide range of biomedical applications. We show that liver cancer cells can be loaded with superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs retained in lysosomal compartments can be effectively actuated with a high intensity (up to 8 T), short pulse width (~15 µs), pulsed magnetic field (PMF), resulting in lysosomal membrane permeabilization (LMP) in cancer cells. We revealed that SPION-loaded lysosomes undergo LMP by assessing an increase in the cytosolic activity of the lysosomal cathepsin B. The extent of cell death induced by LMP correlated with the accumulation of reactive oxygen species in cells. LMP was achieved for estimated forces of 700 pN and higher. Furthermore, we validated our approach on a three-dimensional cellular culture model to be able to mimic in vivo conditions. Overall, our results show that PMF treatment of SPION-loaded lysosomes can be utilized as a noninvasive tool to remotely induce apoptosis.
Collapse
Affiliation(s)
- Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (M.U.); (B.S.); (M.L.); (Š.K.); (A.D.)
- Correspondence: ; Tel.: +42-026-6052-131
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (M.U.); (B.S.); (M.L.); (Š.K.); (A.D.)
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (M.U.); (B.S.); (M.L.); (Š.K.); (A.D.)
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (M.U.); (B.S.); (M.L.); (Š.K.); (A.D.)
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Nora M. Dempsey
- Institut Néel, Grenoble INP, CNRS, Université Grenoble Alpes, 38000 Grenoble, France; (N.M.D.); (A.L.D.)
| | - André L. Dias
- Institut Néel, Grenoble INP, CNRS, Université Grenoble Alpes, 38000 Grenoble, France; (N.M.D.); (A.L.D.)
| | - Marlio Bonfim
- Universidade Federal do Paraná, DELT, Curitiba 81531-980, Brazil;
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic; (M.H.); (P.J.)
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic; (M.H.); (P.J.)
| | - Yuri Petrenko
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (M.U.); (B.S.); (M.L.); (Š.K.); (A.D.)
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (M.U.); (B.S.); (M.L.); (Š.K.); (A.D.)
| |
Collapse
|
485
|
Shiomi A, Nagao K, Kasai H, Hara Y, Umeda M. Changes in the physicochemical properties of fish cell membranes during cellular senescence. Biosci Biotechnol Biochem 2019; 84:583-593. [PMID: 31760866 DOI: 10.1080/09168451.2019.1695576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fish cell lines are widely used for the studies of developmental biology, virology, biology of aging, and nutrition physiology. However, little is known about their physicochemical properties. Here, we report the phospholipid compositions and mechanical properties of cell membranes derived from freshwater, anadromous and marine fish species. Biophysical analyses revealed that fish cell lines have highly deformable cell membranes with significantly low membrane tensions and Young's moduli compared with those of mammalian cell lines. The induction of cellular senescence by DNA demethylation using 5-Aza-2'-deoxycytidine significantly reduced the deformability of fish cell membrane, but hydrogen peroxide-induced oxidative stress did not affect the deformability. Mass spectrometry analysis of phospholipids revealed that the level of phosphatidylethanolamine molecules containing polyunsaturated fatty acids significantly increased during the 5-Aza-2'-deoxycytidine-induced cellular senescence. Fish cell lines provide a useful model system for studying the changes in the physicochemical properties of cell membranes during cellular senescence.Abbreviations: 2D-TLC: two-dimensional thin layer chromatography; 5-Aza-dC: 5-Aza-2'-deoxycytidine; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; FBS: fetal bovine serum; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PI: phosphatidylinositol; PS: phosphatidylserine; PUFA: polyunsaturated fatty acid; SA-β-gal: senescence-associated beta-galactosidase; SM: sphingomyelin.
Collapse
Affiliation(s)
- Akifumi Shiomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hisae Kasai
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
486
|
Colhado Rodrigues BL, Lallo MA, Perez EC. The Controversial Role of Autophagy in Tumor Development: A Systematic Review. Immunol Invest 2019; 49:386-396. [PMID: 31726897 DOI: 10.1080/08820139.2019.1682600] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a natural regulatory mechanism of the cell that eliminates unnecessary and dysfunctional cellular components to maintain homeostasis. Several authors have demonstrated that this mechanism can be induced by pathological conditions as cancer. However, their role in tumor development is still a controversial issue in cancer research. Here, we discussed the most relevant findings concerning autophagy in tumor development. In this critical review performed with studies published between 2002 and 2018, we found that the main pathway involved in the autophagy process is the PI3K/AKT/mTOR intracellular signaling pathway. Regarding their role in cancer development, breast cancer is the main study target, followed by lung, prostate and colon cancer. In these issues, 46% of the works consulted suggesting that autophagy inhibits tumor progression by favor a better antitumor response, 4% suggest that favors growth and tumor progression and, 50% of the authors failed to establish whether autophagy inhibits or favors tumor development. Herein, we concluded that depending on the study model, autophagy may favor or inhibits growth and cancer progression.
Collapse
Affiliation(s)
- Bridilla Luiza Colhado Rodrigues
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista, São Paulo, Brazil.,Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista, São Paulo, Brazil
| | - Elizabeth Cristina Perez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista, São Paulo, Brazil
| |
Collapse
|
487
|
Khodamoradi K, Amini-Khoei H, Khosravizadeh Z, Hosseini SR, Dehpour AR, Hassanzadeh G. Oxidative stress, inflammatory reactions and apoptosis mediated the negative effect of chronic stress induced by maternal separation on the reproductive system in male mice. Reprod Biol 2019; 19:340-348. [PMID: 31711846 DOI: 10.1016/j.repbio.2019.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
Exposure to severe and long-lasting stressors during early postnatal life negatively affects development of the brain and associated biological networks. Maternal separation (MS) is a valid stressful experience in early life that adversely affects neurobiological circuits. In the present study, we aimed to evaluate the effects of MS on sperm quality and histology of the testis in adult male mice. In this study, male mice were subjected to MS during post-natal days (PND) 2-14. Sperm parameters, histological alterations in the testicular tissue, ROS production (using DCFH-DA assay), gene expression of TLR4, NLRP3, TNFα, BAX, ASC, caspase-1 and BCL-2 (using RT-PCR), protein levels of caspase-3 and caspase-8 (using western blotting), and protein levels of IL-1β, IL-18, GPx and ATP (using ELISA) as well as protein expression of caspase-1 and NLRP3 (using immunocytochemistry) were evaluated. Findings showed that MS decreased count, morphology and viability of spermatozoa. MS decreased the diameter of seminiferous tubules and decreased the thickness of seminiferous epithelium. Furthermore, MS increased the level of ROS production and decreased the concentrations of GPx and ATP. MS led to increased expression of TLR4, NlRP3, TNFα, caspase-1, ASC, IL-1β and IL-18. In addition, MS induced apoptosis as evidenced by increased BAX, caspase-3 and caspase-8 as well as decreased BCL-2 expression. We concluded that early life stress induced by MS has detrimental effects on sperm parameters and testicular tissue. Our results suggest that these effects are mediated by activation of ROS production, and alterations in mitochondrial function, inflammatory processes and apoptosis pathways.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini
- Department of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
488
|
The effects of oxygen concentration on cell death, anti-oxidant transcription, acute inflammation, and cell proliferation in precision-cut lung slices. Sci Rep 2019; 9:16239. [PMID: 31700101 PMCID: PMC6838147 DOI: 10.1038/s41598-019-52813-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Although animal models are often used in drug research, alternative experimental models are becoming more popular as they reduce animal use and suffering. Of particular interest are precision-cut lung slices, which refer to explants – with a reproducible thickness and diameter – that can be cultured ex vivo. Because lung slices (partially) reflect functional and structural features of whole tissue, they are often applied in the field of immunology, pharmacology, toxicology, and virology. Nevertheless, previous research failed to adequately address concerns with respect to the viability of lung slices. For instance, the effect of oxygen concentration on lung slice viability has never been thoroughly investigated. Therefore, the main goal of this study was to investigate the effect of oxygen concentration (20 vs. 80% O2) on the degree of cell death, anti-oxidant transcription, acute inflammation, and cell proliferation in lung slices. According to the results, slices incubated at 20% O2 displayed less cell death, anti-oxidant transcription, and acute inflammation, as well as more cell proliferation, demonstrating that these slices were considerably more viable than slices cultured at 80% O2. These findings expand our knowledge on lung slices and their use as an alternative experimental model in drug research.
Collapse
|
489
|
DeGracia DJ, Taha D, Anggraini FT, Huang ZF. Nonautonomous dynamics of acute cell injury. Phys Rev E 2019; 100:052407. [PMID: 31870014 DOI: 10.1103/physreve.100.052407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Indexed: 06/10/2023]
Abstract
Medical conditions due to acute cell injury, such as stroke and heart attack, are of tremendous impact and have attracted huge amounts of research effort. The biomedical research that seeks cures for these conditions has been dominated by a qualitative, inductive mind-set. Although the inductive approach has not been effective in developing medical treatments, it has amassed enough information to allow construction of quantitative, deductive models of acute cell injury. In this work we develop a modeling approach by extending an autonomous nonlinear dynamic theory of acute cell injury that offered new ways to conceptualize cell injury but possessed limitations that decrease its effectiveness. Here we study the global dynamics of the cell injury theory using a nonautonomous formulation. Different from the standard scenario in nonlinear dynamics that is determined by the steady state and fixed points of the model equations, in this nonautonomous model with a trivial fixed point, the system property is dominated by the transient states and the corresponding dynamic processes. The model gives rise to four qualitative types of dynamical patterns that can be mapped to the behavior of cells after clinical acute injuries. The nonautonomous theory predicts the existence of a latent stress response capacity (LSRC) possessed by injured cells. The LSRC provides a theoretical explanation of how therapies, such as hypothermia, can prevent cell death after lethal injuries. The nonautonomous theory of acute cell injury provides an improved quantitative framework for understanding cell death and recovery and lays a foundation for developing effective therapeutics for acute injury.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University, Detroit, Michigan 48201, USA
| | - Doaa Taha
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | - Fika Tri Anggraini
- Department of Physiology, Wayne State University, Detroit, Michigan 48201, USA
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
490
|
Tang S, Wang J, Liu J, Huang Y, Zhou Y, Yang S, Zhang W, Yang M, Zhang H. Niban protein regulates apoptosis in HK-2 cells via caspase-dependent pathway. Ren Fail 2019; 41:455-466. [PMID: 31163002 PMCID: PMC6566711 DOI: 10.1080/0886022x.2019.1619582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose: To investigate whether Niban protein plays a role in renal interstitial fibrosis by regulating renal tubular epithelial cell apoptosis and explore the underlying mechanism. Methods: Unilateral ureteral obstruction (UUO) model was performed in C57B/6J mice, and divided into sham operation group and groups of days 3, days 7, and days 14. Niban expression was detected by immunohistochemistry and Western blot. TUNEL assays were used to detected apoptosis. Niban siRNA and overexpression Niban plasmid were transfected in HK-2 cells respectively to explore apoptosis related mechanisms of Niban during angiotensin II (AngII) - and endoplasmic reticulum (ER) stress-induced injury. Results: With the development of obstruction, Niban's expression decreased gradually while apoptosis increased. Silencing of Niban not only increased the AngII- and ER stress-induced apoptosis, but also promoted the expression of caspase 8, caspase 9, Bip, and Chop. Overexpression of Niban reduced AngII-induced apoptosis and the expression of caspase 8 and caspase 9. Conclusions: Niban protein is involved in apoptosis regulation in HK-2 cells, and most likely via caspase-dependent pathway.
Collapse
Affiliation(s)
- Shiqi Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jishi Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yueyi Zhou
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Minghui Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
491
|
Dihydrochalcone Derivative Induces Breast Cancer Cell Apoptosis via Intrinsic, Extrinsic, and ER Stress Pathways but Abolishes EGFR/MAPK Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7298539. [PMID: 31772936 PMCID: PMC6855007 DOI: 10.1155/2019/7298539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/07/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Dihydrochalcone derivatives are active compounds that have been purified from the Thai medicinal plant Cyathostemma argenteum. The objectives of this study were to investigate the effects of two dihydrochalcone derivatives on human breast cancer MDA-MB-231 and MCF-7 cell proliferation and to study the relevant mechanisms involved. The two dihydrochalcone derivatives are 4′,6′-dihydroxy-2′,4-dimethoxy-5′-(2″-hydroxybenzyl)dihydrochalcone (compound 1) and calomelanone (2′,6′-dihydroxy-4,4′-dimethoxydihydrochalcone, compound 2), both of which induced cytotoxicity toward both cell lines in a dose-dependent manner by using MTT assay. Treatment with both derivatives induced apoptosis as determined by annexin V-FITC/propidium iodide employing flow cytometry. The reduction of mitochondrial transmembrane potential (staining with 3,3′-dihexyloxacarbocyanine iodide, DiOC6, employing a flow cytometer) was established in the compound 1-treated cells. Compound 1 induced caspase-3, caspase-8, and caspase-9 activities in both cell lines, as has been determined by specific colorimetric substrates and a spectrophotometric microplate reader which indicated the involvement of both the extrinsic and intrinsic pathways. Calcium ion levels in mitochondrial and cytosolic compartments increased in compound 1-treated cells as detected by Rhod-2AM and Fluo-3AM intensity, respectively, indicating the involvement of the endoplasmic reticulum (ER) stress pathway. Compound 1 induced cell cycle arrest via enhanced atm and atr expressions and by upregulating proapoptotic proteins, namely, Bim, Bad, and tBid. Moreover, compound 1 significantly inhibited the EGFR/MAPK signaling pathway. In conclusion, compound 1 induced MDA-MB-231 and MCF-7 cell apoptosis via intrinsic, extrinsic, and ER stress pathways, whereas it ameliorated the EGFR/MAPK pathway in the MCF-7 cell line. Consequently, it is believed that compound 1 could be effectively developed for cancer treatments.
Collapse
|
492
|
Yan C, Liu J, Gao J, Sun Y, Zhang L, Song H, Xue L, Zhan L, Gao G, Ke Z, Liu Y, Liu J. IRE1 promotes neurodegeneration through autophagy-dependent neuron death in the Drosophila model of Parkinson's disease. Cell Death Dis 2019; 10:800. [PMID: 31641108 PMCID: PMC6805898 DOI: 10.1038/s41419-019-2039-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 10/01/2019] [Indexed: 01/05/2023]
Abstract
Abnormal aggregation of misfolded pathological proteins in neurons is a prominent feature of neurodegenerative disorders including Parkinson’s disease (PD). Perturbations of proteostasis at the endoplasmic reticulum (ER) triggers ER stress, activating the unfolded protein response (UPR). Chronic ER stress is thought to underlie the death of neurons during the neurodegenerative progression, but the precise mechanism by which the UPR pathways regulate neuronal cell fate remains incompletely understood. Here we report a critical neurodegenerative role for inositol-requiring enzyme 1 (IRE1), the evolutionarily conserved ER stress sensor, in a Drosophila model of PD. We found that IRE1 was hyperactivated upon accumulation of α-synuclein in the fly photoreceptor neurons. Ectopic overexpression of IRE1 was sufficient to trigger autophagy-dependent neuron death in an XBP1-independent, JNK-dependent manner. Furthermore, IRE1 was able to promote dopaminergic neuron loss, progressive locomotor impairment, and shorter lifespan, whereas blocking IRE1 or ATG7 expression remarkably ameliorated the progression of α-synuclein-caused Parkinson’s disease. These results provide in vivo evidence demonstrating that the IRE1 pathway drives PD progression through coupling ER stress to autophagy-dependent neuron death.
Collapse
Affiliation(s)
- Cheng Yan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Medicine, Xinxiang University, Xinxiang, Henan, 453003, China
| | - Jingqi Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiamei Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ying Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lei Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haiyun Song
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lei Xue
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Lixing Zhan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zunji Ke
- Department of Biochemistry, Basic Medical College, Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| | - Jingnan Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
493
|
Postovalova EA, Makarova OV, Kosyreva AM, Michailova LP. [Morphology of the thymus and the specific features of its cellular composition in experimental acute and chronic ulcerative colitis]. Arkh Patol 2019; 81:53-63. [PMID: 31626205 DOI: 10.17116/patol20198105153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate morphological changes in the thymus, the subpopulation composition of lymphocytes and its non-lymphoid cells in dextran-induced experimental acute ulcerative colitis and in different periods of chronic ulcerative colitis. MATERIAL AND METHODS Acute and chronic ulcerative colitis was simulated in C57BL/6 mice, by replacing drinking water with a 1% aqueous dextran sulfate sodium solution. Thymic changes were morphometrically assessed; the number and absolute area of thymic corpuscles and epithelial cells were calculated; and the subpopulation composition of lymphocytes and thymic stromal cells was determined using flow cytofluorimetry; the Kruskal-Wallis test and the Mann-Whitney test were used to compare the groups. RESULTS In acute catarrhal and ulcerative colitis, there was acute accidental thymic involution with devastation of the cortical substance and with a decline in its volume fraction, with an increase in the levels of cells dying through the mechanism of apoptosis, and with a decrease in the absolute number of lymphocytes, T-helper cells, cytotoxic T-cells, regulatory T-lymphocytes, B-lymphocytes, and dendritic cells, with a rise in the index of the area of thymic corpuscles and in the content of late-phase corpuscles among them, and with the appearance of thymic corpuscles as cyst-like cavities. In chronic ulcerative colitis, the cortex was expanded and the area of thymic corpuscles and the count of medullary epithelial cells increased. The cyst-like thymic corpuscles formed clusters, the count of dendritic cells increased in early-stage chronic ulcerative colitis, but the levels of macrophages decreased in both periods of its development. CONCLUSION There is acute accidental involution and thymic hyperplasia with an increase in medullary epithelial cells and thymic corpuscles consisting of cytokeratin 19+ in the epithelial cells in experimental acute and chronic ulcerative colitis, respectively. The more pronounced epithelial cell response found in end-stage experimental chronic ulcerative colitis reflects the enhanced differentiation of regulatory T-lymphocytes and the larger number of which is observed in peripheral blood and in the focus of inflammation in patients with ulcerative colitis, according to the literature.
Collapse
Affiliation(s)
- E A Postovalova
- Research Institute of Human Morphology, Ministry of Science and Higher Education of Russia, Moscow, Russia
| | - O V Makarova
- Research Institute of Human Morphology, Ministry of Science and Higher Education of Russia, Moscow, Russia
| | - A M Kosyreva
- Research Institute of Human Morphology, Ministry of Science and Higher Education of Russia, Moscow, Russia
| | - L P Michailova
- Research Institute of Human Morphology, Ministry of Science and Higher Education of Russia, Moscow, Russia
| |
Collapse
|
494
|
Uribe P, Cabrillana ME, Fornés MW, Treulen F, Boguen R, Isachenko V, Isachenko E, Sánchez R, Villegas JV. Nitrosative stress in human spermatozoa causes cell death characterized by induction of mitochondrial permeability transition-driven necrosis. Asian J Androl 2019; 20:600-607. [PMID: 29956685 PMCID: PMC6219306 DOI: 10.4103/aja.aja_29_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxynitrite is a highly reactive nitrogen species and a potent inducer of apoptosis and necrosis in somatic cells. Peroxynitrite-induced nitrosative stress has emerged as a major cause of impaired sperm function; however, its ability to trigger cell death has not been described in human spermatozoa. The objective here was to characterize biochemical and morphological features of cell death induced by peroxynitrite-mediated nitrosative stress in human spermatozoa. For this, spermatozoa were incubated with and without (untreated control) 3-morpholinosydnonimine (SIN-1), in order to generate peroxynitrite. Sperm viability, mitochondrial permeability transition (MPT), externalization of phosphatidylserine, DNA oxidation and fragmentation, caspase activation, tyrosine nitration, and sperm ultrastructure were analyzed. The results showed that at 24 h of incubation with SIN-1, the sperm viability was significantly reduced compared to untreated control (P < 0.001). Furthermore, the MPT was induced (P < 0.01) and increment in DNA oxidation (P < 0.01), DNA fragmentation (P < 0.01), tyrosine nitration (P < 0.0001) and ultrastructural damage were observed when compared to untreated control. Caspase activation was not evidenced, and although phosphatidylserine externalization increased compared to untreated control (P < 0.001), this process was observed in <10% of the cells and the gradual loss of viability was not characterized by an important increase in this parameter. In conclusion, peroxynitrite-mediated nitrosative stress induces the regulated variant of cell death known as MPT-driven necrosis in human spermatozoa. This study provides a new insight into the pathophysiology of nitrosative stress in human spermatozoa and opens up a new focus for developing specific therapeutic strategies to better preserve sperm viability or to avoid cell death.
Collapse
Affiliation(s)
- Pamela Uribe
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco 4811230, Chile.,Center of Excellence in Translational Medicine, University of La Frontera, Temuco 4810296, Chile.,Department of Internal Medicine, Faculty of Medicine, University of La Frontera, Temuco 4781218, Chile
| | - María E Cabrillana
- Laboratory of Andrology Research of Mendoza (LIAM) Institute of Histology and Embriology of Mendoza (IHEM) Histology and Embryology Area, Department of Morphology and Physiology, School of Medicine, National University of Cuyo and CCT-Mendoza, CONICET, Mendoza 5500, Argentina.,Research Institute (CIUDA), Medicine Faculty, Aconcagua University, Mendoza 5500, Argentina
| | - Miguel W Fornés
- Laboratory of Andrology Research of Mendoza (LIAM) Institute of Histology and Embriology of Mendoza (IHEM) Histology and Embryology Area, Department of Morphology and Physiology, School of Medicine, National University of Cuyo and CCT-Mendoza, CONICET, Mendoza 5500, Argentina.,Research Institute (CIUDA), Medicine Faculty, Aconcagua University, Mendoza 5500, Argentina
| | - Favián Treulen
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco 4811230, Chile
| | - Rodrigo Boguen
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco 4811230, Chile
| | - Vladimir Isachenko
- Research Group for Reproductive Medicine, Cologne University Cologne 50937, Germany
| | - Evgenia Isachenko
- Research Group for Reproductive Medicine, Cologne University Cologne 50937, Germany
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine, University of La Frontera, Temuco 4810296, Chile.,Department of Preclinical Sciences, Faculty of Medicine, University of La Frontera, Temuco 4781218, Chile
| | - Juana V Villegas
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco 4811230, Chile.,Department of Internal Medicine, Faculty of Medicine, University of La Frontera, Temuco 4781218, Chile
| |
Collapse
|
495
|
Li R, Wei X, Jiang DS. Protein methylation functions as the posttranslational modification switch to regulate autophagy. Cell Mol Life Sci 2019; 76:3711-3722. [PMID: 31222372 PMCID: PMC11105718 DOI: 10.1007/s00018-019-03161-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Studies over the past decades have elucidated the critical role of autophagy in human health and diseases. Although the processes of autophagy in the cytoplasm have been well studied, the posttranscriptional and epigenetic regulation mechanisms of autophagy are still poorly understood. Protein methylation, including histone methylation and non-histone protein methylation, is the most important type of posttranscriptional and epigenetic modification. Recent studies have shown that protein methylation is associated with effects on autophagosome formation, autophagy-related protein expression, and signaling pathway activation, but the details are still unclear. Thus, it is important to summarize the current status and discuss the future directions of research on protein methylation in the context of autophagy.
Collapse
Affiliation(s)
- Rui Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
496
|
Beneficial Role of ROS in Cell Survival: Moderate Increases in H 2O 2 Production Induced by Hepatocyte Isolation Mediate Stress Adaptation and Enhanced Survival. Antioxidants (Basel) 2019; 8:antiox8100434. [PMID: 31581418 PMCID: PMC6826461 DOI: 10.3390/antiox8100434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023] Open
Abstract
High levels of reactive oxygen species (ROS) can lead to impairment of cell structure, biomolecules' loss of function and cell death and are associated with liver diseases. Cells that survive increased ROS often undergo malignant transformation. Many cancer cells tolerate high levels of ROS. Here we report a transiently increased production of H2O2 and concomitant upregulation of antioxidative enzymes triggered by hepatocyte isolation; the H2O2 levels revert in about two days in culture. Three-day survival rate of the isolated cells in the presence of 2.5-fold increase of H2O2 is almost 80%. Apoptosis activation through the mitochondrial pathway is meanwhile reduced by inhibition of caspase-9 triggering. This reduction depends on the amount of H2O2 production, as decreased production of H2O2 in the presence of an antioxidant results in increased apoptosis triggering. These stress adaptations do not influence urea production, which is unchanged throughout the normal and stress adapted phases. We conclude that hepatocytes' stress adaptation is mediated by increased ROS production. In this case, high ROS improve cell survival.
Collapse
|
497
|
Zille M, Ikhsan M, Jiang Y, Lampe J, Wenzel J, Schwaninger M. The impact of endothelial cell death in the brain and its role after stroke: A systematic review. Cell Stress 2019; 3:330-347. [PMID: 31799500 PMCID: PMC6859425 DOI: 10.15698/cst2019.11.203] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The supply of oxygen and nutrients to the brain is vital for its function and requires a complex vascular network that, when disturbed, results in profound neurological dysfunction. As part of the pathology in stroke, endothelial cells die. As endothelial cell death affects the surrounding cellular environment and is a potential target for the treatment and prevention of neurological disorders, we have systematically reviewed important aspects of endothelial cell death with a particular focus on stroke. After screening 2876 publications published between January 1, 2010 and August 7, 2019, we identified 154 records to be included. We found that endothelial cell death occurs rapidly as well as later after the onset of stroke conditions. Among the different cell death mechanisms, apoptosis was the most widely investigated (92 records), followed by autophagy (20 records), while other, more recently defined mechanisms received less attention, such as lysosome-dependent cell death (2 records) and necroptosis (2 records). We also discuss the differential vulnerability of brain cells to injury after stroke and the role of endothelial cell death in the no-reflow phenomenon with a special focus on the microvasculature. Further investigation of the different cell death mechanisms using novel tools and biomarkers will greatly enhance our understanding of endothelial cell death. For this task, at least two markers/criteria are desirable to determine cell death subroutines according to the recommendations of the Nomenclature Committee on Cell Death.
Collapse
Affiliation(s)
- Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Maulana Ikhsan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Yun Jiang
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
498
|
Zhou R, Qu Y, Huang Q, Sun X, Mu D, Li X. Recombinant CC16 regulates inflammation, oxidative stress, apoptosis and autophagy via the inhibition of the p38MAPK signaling pathway in the brain of neonatal rats with sepsis. Brain Res 2019; 1725:146473. [PMID: 31557475 DOI: 10.1016/j.brainres.2019.146473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/05/2019] [Accepted: 09/22/2019] [Indexed: 12/29/2022]
Abstract
Sepsis has a high in clinic neonatal mortality. Moreover, a considerable number of children's brains remain affected even after the treatment of sepsis and it often leaves sequelae. Therefore, early intervention for sepsis is of considerable significance. Recent studies have shown that Club cell protein (CC16) is closely related to the p38 mitogen-activated protein kinase (MAPK) signaling pathway, which can regulate inflammation, oxidative stress, apoptosis, and autophagy during sepsis. Thus, we analyzed the neuroprotective effect of recombinant CC16 (rCC16) in a neonatal sepsis rat model. For the first time, we found that the p38MAPK signaling pathway was activated in neonatal brain tissue of rats with sepsis, and the CC16 levels decreased significantly. Secondly, after the rCC16 interference, the occurrence of inflammation, oxidative stress and apoptosis were subsequently reversed, and autophagy was further stimulated. Finally, through further intervention using the p38MAPK signaling pathway inhibitor, SB203580, or its agonist, anisomycin, we confirmed that rCC16 reduced rat mortality and improve general conditions. Simultaneously, it had also neuroprotective effect. Its mechanism could be related to oxidative stress, inflammation, and apoptosis reduced and autophagy activated by rCC16 inhibiting the p38MAPK signaling pathway. Taken together, these findings provide insight into the pathogenesis, prevention, and treatment of sepsis via the activity of rCC16.
Collapse
Affiliation(s)
- Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Qun Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xuemei Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China.
| |
Collapse
|
499
|
Conway GE, He Z, Hutanu AL, Cribaro GP, Manaloto E, Casey A, Traynor D, Milosavljevic V, Howe O, Barcia C, Murray JT, Cullen PJ, Curtin JF. Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. Sci Rep 2019; 9:12891. [PMID: 31501494 PMCID: PMC6733837 DOI: 10.1038/s41598-019-49013-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Room temperature Cold Atmospheric Plasma (CAP) has shown promising efficacy for the treatment of cancer but the exact mechanisms of action remain unclear. Both apoptosis and necrosis have been implicated as the mode of cell death in various cancer cells. We have previously demonstrated a caspase-independent mechanism of cell death in p53-mutated glioblastoma multiforme (GBM) cells exposed to plasma. The purpose of this study was to elucidate the molecular mechanisms involved in caspase-independent cell death induced by plasma treatment. We demonstrate that plasma induces rapid cell death in GBM cells, independent of caspases. Accumulation of vesicles was observed in plasma treated cells that stained positive with acridine orange. Western immunoblotting confirmed that autophagy is not activated following plasma treatment. Acridine orange intensity correlates closely with the lysosomal marker Lyso TrackerTM Deep Red. Further investigation using isosurface visualisation of confocal imaging confirmed that lysosomal accumulation occurs in plasma treated cells. The accumulation of lysosomes was associated with concomitant cell death following plasma treatment. In conclusion, we observed rapid accumulation of acidic vesicles and cell death following CAP treatment in GBM cells. We found no evidence that either apoptosis or autophagy, however, determined that a rapid accumulation of late stage endosomes/lysosomes precedes membrane permeabilisation, mitochondrial membrane depolarisation and caspase independent cell death.
Collapse
Affiliation(s)
- Gillian E Conway
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland. .,FOCAS Research Institute, Technological University Dublin, Dublin, Ireland. .,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland. .,In-Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK.
| | - Zhonglei He
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland.,FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland
| | - Ana Lacramioara Hutanu
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - George Paul Cribaro
- Institut de Neurociències & Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eline Manaloto
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland.,FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland
| | - Alan Casey
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Damien Traynor
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Vladimir Milosavljevic
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Orla Howe
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland.,School of Biological & Health Sciences, Technological University Dublin, Dublin, Ireland
| | - Carlos Barcia
- Institut de Neurociències & Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - James T Murray
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Patrick J Cullen
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland.,FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland.,School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, Australia
| | - James F Curtin
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland. .,FOCAS Research Institute, Technological University Dublin, Dublin, Ireland. .,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
500
|
Srivorakul S, Guntawang T, Kochagul V, Photichai K, Sittisak T, Janyamethakul T, Boonprasert K, Khammesri S, Langkaphin W, Punyapornwithaya V, Chuammitri P, Thitaram C, Pringproa K. Possible roles of monocytes/macrophages in response to elephant endotheliotropic herpesvirus (EEHV) infections in Asian elephants (Elephas maximus). PLoS One 2019; 14:e0222158. [PMID: 31491031 PMCID: PMC6730851 DOI: 10.1371/journal.pone.0222158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Elephant endotheliotropic herpesvirus-hemorrhagic disease (EEHV-HD) is the primary cause of acute, highly fatal, hemorrhagic diseases in young Asian elephants. Although monocytopenia is frequently observed in EEHV-HD cases, the role monocytes play in EEHV-disease pathogenesis is unknown. This study seeks to explain the responses of monocytes/macrophages in the pathogenesis of EEHV-HD. Samples of blood, frozen tissues, and formalin-fixed, paraffin-embedded (FFPE) tissues from EEHV1A-HD, EEHV4-HD, co-infected EEHV1A and 4-HD, and EEHV-negative calves were analyzed. Peripheral blood mononuclear cells (PBMCs) from the persistent EEHV4-infected and EEHV-negative calves were also studied. The results showed increased infiltration of Iba-1-positive macrophages in the inflamed tissues of the internal organs of elephant calves with EEHV-HD. In addition, cellular apoptosis also increased in the tissues of elephants with EEHV-HD, especially in the PBMCs, compared to the EEHV-negative control. In the PBMCs of persistent EEHV4-infected elephants, cytokine mRNA expression was high, particularly up-regulation of TNF-α and IFN-γ. Moreover, viral particles were observed in the cytoplasm of the persistent EEHV4-infected elephant monocytes. Our study demonstrated for the first time that apoptosis of the PBMCs increased in cases of EEHV-HD. Furthermore, this study showed that monocytes may serve as a vehicle for viral dissemination during EEHV infection in Asian elephants.
Collapse
Affiliation(s)
- Saralee Srivorakul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thunyamas Guntawang
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varankpicha Kochagul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kornravee Photichai
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tidaratt Sittisak
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Khajohnpat Boonprasert
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchote Thitaram
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Companion Animals and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|