451
|
Uric acid priming in human monocytes is driven by the AKT-PRAS40 autophagy pathway. Proc Natl Acad Sci U S A 2017; 114:5485-5490. [PMID: 28484006 DOI: 10.1073/pnas.1620910114] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metabolic triggers are important inducers of the inflammatory processes in gout. Whereas the high serum urate levels observed in patients with gout predispose them to the formation of monosodium urate (MSU) crystals, soluble urate also primes for inflammatory signals in cells responding to gout-related stimuli, but also in other common metabolic diseases. In this study, we investigated the mechanisms through which uric acid selectively lowers human blood monocyte production of the natural inhibitor IL-1 receptor antagonist (IL-1Ra) and shifts production toward the highly inflammatory IL-1β. Monocytes from healthy volunteers were first primed with uric acid for 24 h and then subjected to stimulation with lipopolysaccharide (LPS) in the presence or absence of MSU. Transcriptomic analysis revealed broad inflammatory pathways associated with uric acid priming, with NF-κB and mammalian target of rapamycin (mTOR) signaling strongly increased. Functional validation did not identify NF-κB or AMP-activated protein kinase phosphorylation, but uric acid priming induced phosphorylation of AKT and proline-rich AKT substrate 40 kDa (PRAS 40), which in turn activated mTOR. Subsequently, Western blot for the autophagic structure LC3-I and LC3-II (microtubule-associated protein 1A/1B-light chain 3) fractions, as well as fluorescence microscopy of LC3-GFP-overexpressing HeLa cells, revealed lower autophagic activity in cells exposed to uric acid compared with control conditions. Interestingly, reactive oxygen species production was diminished by uric acid priming. Thus, the Akt-PRAS40 pathway is activated by uric acid, which inhibits autophagy and recapitulates the uric acid-induced proinflammatory cytokine phenotype.
Collapse
|
452
|
Nakayama A, Nakaoka H, Yamamoto K, Sakiyama M, Shaukat A, Toyoda Y, Okada Y, Kamatani Y, Nakamura T, Takada T, Inoue K, Yasujima T, Yuasa H, Shirahama Y, Nakashima H, Shimizu S, Higashino T, Kawamura Y, Ogata H, Kawaguchi M, Ohkawa Y, Danjoh I, Tokumasu A, Ooyama K, Ito T, Kondo T, Wakai K, Stiburkova B, Pavelka K, Stamp LK, Dalbeth N, Sakurai Y, Suzuki H, Hosoyamada M, Fujimori S, Yokoo T, Hosoya T, Inoue I, Takahashi A, Kubo M, Ooyama H, Shimizu T, Ichida K, Shinomiya N, Merriman TR, Matsuo H. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann Rheum Dis 2017; 76:869-877. [PMID: 27899376 PMCID: PMC5530361 DOI: 10.1136/annrheumdis-2016-209632] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 11/05/2022]
Abstract
OBJECTIVE A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. RESULTS In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (p<5.0×10-8): urate transporter genes (SLC22A12 and SLC17A1) and HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10-8). CONCLUSIONS Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia.
Collapse
Affiliation(s)
- Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Masayuki Sakiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Dermatology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Amara Shaukat
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yuko Shirahama
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiraku Ogata
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Inaho Danjoh
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | | | | | - Toshimitsu Ito
- Department of Internal Medicine, Self-Defense Forces Central Hospital, Tokyo, Japan
| | - Takaaki Kondo
- Program in Radiological and Medical Laboratory Sciences, Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Blanka Stiburkova
- First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Institute of Inherited Metabolic Disorders, Prague, Czech Republic
- Institute of Rheumatology, Prague, Czech Republic
| | | | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Grafton, Auckland, New Zealand
| | - Yutaka Sakurai
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Hosoyamada
- Department of Human Physiology and Pathology, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Shin Fujimori
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Tatsuo Hosoya
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
- Department of Pathophysiology and Therapy in Chronic Kidney Disease, Jikei University School of Medicine, Tokyo, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | | | - Toru Shimizu
- Midorigaoka Hospital, Takatsuki, Osaka, Japan
- Kyoto Industrial Health Association, Kyoto, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology and Therapy in Chronic Kidney Disease, Jikei University School of Medicine, Tokyo, Japan
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tony R Merriman
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
453
|
Cleophas MC, Joosten LA, Stamp LK, Dalbeth N, Woodward OM, Merriman TR. ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:129-142. [PMID: 28461764 PMCID: PMC5404803 DOI: 10.2147/pgpm.s105854] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a result of the association of a common polymorphism (rs2231142, Q141K) in the ATP-binding cassette G2 (ABCG2) transporter with serum urate concentration in a genome-wide association study, it was revealed that ABCG2 is an important uric acid transporter. This review discusses the relevance of ABCG2 polymorphisms in gout, possible etiological mechanisms, and treatment approaches. The 141K ABCG2 urate-increasing variant causes instability in the nucleotide-binding domain, leading to decreased surface expression and function. Trafficking of the protein to the cell membrane is altered, and instead, there is an increased ubiquitin-mediated proteasomal degradation of the variant protein as well as sequestration into aggresomes. In humans, this leads to decreased uric acid excretion through both the kidney and the gut with the potential for a subsequent compensatory increase in renal urinary excretion. Not only does the 141K polymorphism in ABCG2 lead to hyperuricemia through renal overload and renal underexcretion, but emerging evidence indicates that it also increases the risk of acute gout in the presence of hyperuricemia, early onset of gout, tophi formation, and a poor response to allopurinol. In addition, there is some evidence that ABCG2 dysfunction may promote renal dysfunction in chronic kidney disease patients, increase systemic inflammatory responses, and decrease cellular autophagic responses to stress. These results suggest multiple benefits in restoring ABCG2 function. It has been shown that decreased ABCG2 141K surface expression and function can be restored with colchicine and other small molecule correctors. However, caution should be exercised in any application of these approaches given the role of surface ABCG2 in drug resistance.
Collapse
Affiliation(s)
- M C Cleophas
- Department of Internal Medicine.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - L A Joosten
- Department of Internal Medicine.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - L K Stamp
- Department of Medicine, University of Otago Christchurch, Christchurch
| | - N Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - O M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
454
|
Nolte IM, van der Most PJ, Alizadeh BZ, de Bakker PI, Boezen HM, Bruinenberg M, Franke L, van der Harst P, Navis G, Postma DS, Rots MG, Stolk RP, Swertz MA, Wolffenbuttel BH, Wijmenga C, Snieder H. Missing heritability: is the gap closing? An analysis of 32 complex traits in the Lifelines Cohort Study. Eur J Hum Genet 2017; 25:877-885. [PMID: 28401901 DOI: 10.1038/ejhg.2017.50] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/03/2017] [Accepted: 02/14/2017] [Indexed: 01/08/2023] Open
Abstract
Despite the recent explosive rise in number of genetic markers for complex disease traits identified in genome-wide association studies, there is still a large gap between the known heritability of these traits and the part explained by these markers. To gauge whether this 'heritability gap' is closing, we first identified genome-wide significant SNPs from the literature and performed replication analyses for 32 highly relevant traits from five broad disease areas in 13 436 subjects of the Lifelines Cohort. Next, we calculated the variance explained by multi-SNP genetic risk scores (GRSs) for each trait, and compared it to their broad- and narrow-sense heritabilities captured by all common SNPs. The majority of all previously-associated SNPs (median=75%) were significantly associated with their respective traits. All GRSs were significant, with unweighted GRSs generally explaining less phenotypic variance than weighted GRSs, for which the explained variance was highest for height (15.5%) and varied between 0.02 and 6.7% for the other traits. Broad-sense common-SNP heritability estimates were significant for all traits, with the additive effect of common SNPs explaining 48.9% of the variance for height and between 5.6 and 39.2% for the other traits. Dominance effects were uniformly small (0-1.5%) and not significant. On average, the variance explained by the weighted GRSs accounted for only 10.7% of the common-SNP heritability of the 32 traits. These results indicate that GRSs may not yet be ready for accurate personalized prediction of complex disease traits limiting widespread adoption in clinical practice.
Collapse
Affiliation(s)
- Ilja M Nolte
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter J van der Most
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Behrooz Z Alizadeh
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul Iw de Bakker
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Marike Boezen
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerjan Navis
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirkje S Postma
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Department of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ronald P Stolk
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bruce Hr Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
455
|
Grigorova M, Punab M, Poolamets O, Adler M, Vihljajev V, Laan M. Genetics of Sex Hormone-Binding Globulin and Testosterone Levels in Fertile and Infertile Men of Reproductive Age. J Endocr Soc 2017; 1:560-576. [PMID: 29264510 PMCID: PMC5686641 DOI: 10.1210/js.2017-00050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023] Open
Abstract
Context Testosterone (T) is a central androgenic hormone, and sex hormone-binding globulin (SHBG) is the major determinant of its bioactivity. There are no acknowledged genetic variants with clear-cut clinical implications, modulating T levels in men. Objective To confirm genetic associations of top loci (SHBG, GCKR, SLCO1B1, and JMJD1C) from genome-wide association (GWA) studies for serum SHBG and T. Design Patients Groups differing in general and reproductive parameters: young men (n = 540; 19.3 ± 1.8 years), severe idiopathic male infertility patients (n = 641; 31.6 ± 6.0 years), and male partners of pregnant women (n = 324; 31.9 ± 6.6 years). All patients were recruited at the Andrology Centre, Tartu University Hospital, Estonia. Main Outcome Measures Genetic associations with reproductive hormones, testicular and sperm parameters (linear regression, additive model); intergroup allele/genotype distribution comparisons. Results Associations with serum SHBG levels were robust for SHBG -68 G>A [rs1799941; meta-analysis: P = 3.7 × 10-14; allelic effect (standard error) = 4.67 (0.62) nmol/L], SHBG +1091 C>T [rs727428; P = 7.3 × 10-11; -3.74 (0.57)], SHBG Pro185Leu [rs6258; P = 1.2 × 10-4, -12.2 (3.17)], and GCKR Pro446Leu [rs1260326; P = 1.5 × 10-4; -2.2 (0.59)]. Measured T concentrations correlated with genetically modulated levels of SHBG (r = 0.48 to 0.74, P < 0.0001), guaranteeing stable availability of free T. Among infertile men, SHBG Pro185Leu substitution showed additional downstream effect on luteinizing hormone [P = 5.1 × 10-5; -1.66 (0.57) IU/L] and follicle-stimulating hormone [P = 3.4 × 10-3; -2.48 (1.23) IU/L]. No associations with male reproductive parameters were detected for SHBG Asp327Asn (rs6259), SLCO1B1 Val174Ala (rs4149056), and JMJD1C intronic variant rs7910927. Conclusions Claims were replicated and additional associations were detected for four of seven tested GWAS top loci. Perspective clinical investigations of these variants are hypotestosteronemia among aging men and pharmacogenetics of hormone replacement therapy.
Collapse
Affiliation(s)
- Marina Grigorova
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.,Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Margus Punab
- Andrology Unit, Tartu University Hospital, 50406 Tartu, Estonia
| | - Olev Poolamets
- Andrology Unit, Tartu University Hospital, 50406 Tartu, Estonia
| | - Mart Adler
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.,Andrology Unit, Tartu University Hospital, 50406 Tartu, Estonia
| | | | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.,Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| |
Collapse
|
456
|
Böger CA, Gorski M, McMahon GM, Xu H, Chang YPC, van der Most PJ, Navis G, Nolte IM, de Borst MH, Zhang W, Lehne B, Loh M, Tan ST, Boerwinkle E, Grams ME, Sekula P, Li M, Wilmot B, Moon JG, Scheet P, Cucca F, Xiao X, Lyytikäinen LP, Delgado G, Grammer TB, Kleber ME, Sedaghat S, Rivadeneira F, Corre T, Kutalik Z, Bergmann S, Nielson CM, Srikanth P, Teumer A, Müller-Nurasyid M, Brockhaus AC, Pfeufer A, Rathmann W, Peters A, Matsumoto M, de Andrade M, Atkinson EJ, Robinson-Cohen C, de Boer IH, Hwang SJ, Heid IM, Gögele M, Concas MP, Tanaka T, Bandinelli S, Nalls MA, Singleton A, Tajuddin SM, Adeyemo A, Zhou J, Doumatey A, McWeeney S, Murabito J, Franceschini N, Flessner M, Shlipak M, Wilson JG, Chen G, Rotimi CN, Zonderman AB, Evans MK, Ferrucci L, Devuyst O, Pirastu M, Shuldiner A, Hicks AA, Pramstaller PP, Kestenbaum B, Kardia SLR, Turner ST, Study LC, Briske TE, Gieger C, Strauch K, Meisinger C, Meitinger T, Völker U, Nauck M, Völzke H, Vollenweider P, Bochud M, Waeber G, Kähönen M, Lehtimäki T, März W, Dehghan A, Franco OH, Uitterlinden AG, Hofman A, Taylor HA, Chambers JC, Kooner JS, Fox CS, Hitzemann R, Orwoll ES, et alBöger CA, Gorski M, McMahon GM, Xu H, Chang YPC, van der Most PJ, Navis G, Nolte IM, de Borst MH, Zhang W, Lehne B, Loh M, Tan ST, Boerwinkle E, Grams ME, Sekula P, Li M, Wilmot B, Moon JG, Scheet P, Cucca F, Xiao X, Lyytikäinen LP, Delgado G, Grammer TB, Kleber ME, Sedaghat S, Rivadeneira F, Corre T, Kutalik Z, Bergmann S, Nielson CM, Srikanth P, Teumer A, Müller-Nurasyid M, Brockhaus AC, Pfeufer A, Rathmann W, Peters A, Matsumoto M, de Andrade M, Atkinson EJ, Robinson-Cohen C, de Boer IH, Hwang SJ, Heid IM, Gögele M, Concas MP, Tanaka T, Bandinelli S, Nalls MA, Singleton A, Tajuddin SM, Adeyemo A, Zhou J, Doumatey A, McWeeney S, Murabito J, Franceschini N, Flessner M, Shlipak M, Wilson JG, Chen G, Rotimi CN, Zonderman AB, Evans MK, Ferrucci L, Devuyst O, Pirastu M, Shuldiner A, Hicks AA, Pramstaller PP, Kestenbaum B, Kardia SLR, Turner ST, Study LC, Briske TE, Gieger C, Strauch K, Meisinger C, Meitinger T, Völker U, Nauck M, Völzke H, Vollenweider P, Bochud M, Waeber G, Kähönen M, Lehtimäki T, März W, Dehghan A, Franco OH, Uitterlinden AG, Hofman A, Taylor HA, Chambers JC, Kooner JS, Fox CS, Hitzemann R, Orwoll ES, Pattaro C, Schlessinger D, Köttgen A, Snieder H, Parsa A, Cohen DM. NFAT5 and SLC4A10 Loci Associate with Plasma Osmolality. J Am Soc Nephrol 2017; 28:2311-2321. [PMID: 28360221 DOI: 10.1681/asn.2016080892] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/02/2017] [Indexed: 12/20/2022] Open
Abstract
Disorders of water balance, an excess or deficit of total body water relative to body electrolyte content, are common and ascertained by plasma hypo- or hypernatremia, respectively. We performed a two-stage genome-wide association study meta-analysis on plasma sodium concentration in 45,889 individuals of European descent (stage 1 discovery) and 17,637 additional individuals of European descent (stage 2 replication), and a transethnic meta-analysis of replicated single-nucleotide polymorphisms in 79,506 individuals (63,526 individuals of European descent, 8765 individuals of Asian Indian descent, and 7215 individuals of African descent). In stage 1, we identified eight loci associated with plasma sodium concentration at P<5.0 × 10-6 Of these, rs9980 at NFAT5 replicated in stage 2 meta-analysis (P=3.1 × 10-5), with combined stages 1 and 2 genome-wide significance of P=5.6 × 10-10 Transethnic meta-analysis further supported the association at rs9980 (P=5.9 × 10-12). Additionally, rs16846053 at SLC4A10 showed nominally, but not genome-wide, significant association in combined stages 1 and 2 meta-analysis (P=6.7 × 10-8). NFAT5 encodes a ubiquitously expressed transcription factor that coordinates the intracellular response to hypertonic stress but was not previously implicated in the regulation of systemic water balance. SLC4A10 encodes a sodium bicarbonate transporter with a brain-restricted expression pattern, and variant rs16846053 affects a putative intronic NFAT5 DNA binding motif. The lead variants for NFAT5 and SLC4A10 are cis expression quantitative trait loci in tissues of the central nervous system and relevant to transcriptional regulation. Thus, genetic variation in NFAT5 and SLC4A10 expression and function in the central nervous system may affect the regulation of systemic water balance.
Collapse
Affiliation(s)
- Carsten A Böger
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Mathias Gorski
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Gearoid M McMahon
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Huichun Xu
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Yen-Pei C Chang
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Peter J van der Most
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Gerjan Navis
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Ilja M Nolte
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Martin H de Borst
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Weihua Zhang
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Benjamin Lehne
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Marie Loh
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Sian-Tsung Tan
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Eric Boerwinkle
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Morgan E Grams
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Peggy Sekula
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Man Li
- Due to the number of contributing authors, the affiliations are listed in the supplemental material.
| | - Beth Wilmot
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - James G Moon
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Paul Scheet
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Francesco Cucca
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Xiangjun Xiao
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Leo-Pekka Lyytikäinen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Graciela Delgado
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Tanja B Grammer
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Marcus E Kleber
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Sanaz Sedaghat
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Fernando Rivadeneira
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Tanguy Corre
- Due to the number of contributing authors, the affiliations are listed in the supplemental material.
| | - Zoltan Kutalik
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Sven Bergmann
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Carrie M Nielson
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Priya Srikanth
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Alexander Teumer
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Martina Müller-Nurasyid
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Anne Catharina Brockhaus
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Arne Pfeufer
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Wolfgang Rathmann
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Annette Peters
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Martha Matsumoto
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Mariza de Andrade
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Elizabeth J Atkinson
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Cassianne Robinson-Cohen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Ian H de Boer
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Shih-Jen Hwang
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Iris M Heid
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Martin Gögele
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Maria Pina Concas
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Toshiko Tanaka
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Stefania Bandinelli
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Mike A Nalls
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Andrew Singleton
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Salman M Tajuddin
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Adebowale Adeyemo
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Jie Zhou
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Ayo Doumatey
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Shannon McWeeney
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Joanne Murabito
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Nora Franceschini
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Michael Flessner
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Michael Shlipak
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - James G Wilson
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Guanjie Chen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Charles N Rotimi
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Alan B Zonderman
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Michele K Evans
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Luigi Ferrucci
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Olivier Devuyst
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Mario Pirastu
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Alan Shuldiner
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Andrew A Hicks
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Peter Paul Pramstaller
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Bryan Kestenbaum
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Sharon L R Kardia
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Stephen T Turner
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - LifeLines Cohort Study
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Tamara Ellefson Briske
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Christian Gieger
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Konstantin Strauch
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Christa Meisinger
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Thomas Meitinger
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Uwe Völker
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Matthias Nauck
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Henry Völzke
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Peter Vollenweider
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Murielle Bochud
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Gerard Waeber
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Mika Kähönen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Terho Lehtimäki
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Winfried März
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Abbas Dehghan
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Oscar H Franco
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Andre G Uitterlinden
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Albert Hofman
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Herman A Taylor
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - John C Chambers
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Jaspal S Kooner
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Caroline S Fox
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Robert Hitzemann
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Eric S Orwoll
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Cristian Pattaro
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - David Schlessinger
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Anna Köttgen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Harold Snieder
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - Afshin Parsa
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| | - David M Cohen
- Due to the number of contributing authors, the affiliations are listed in the supplemental material
| |
Collapse
|
457
|
Grassmann F, Kiel C, Zimmermann ME, Gorski M, Grassmann V, Stark K, Heid IM, Weber BHF. Genetic pleiotropy between age-related macular degeneration and 16 complex diseases and traits. Genome Med 2017; 9:29. [PMID: 28347358 PMCID: PMC5368911 DOI: 10.1186/s13073-017-0418-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common condition of vision loss with disease development strongly influenced by environmental and genetic factors. Recently, 34 loci were associated with AMD at genome-wide significance. So far, little is known about a genetic overlap between AMD and other complex diseases or disease-relevant traits. METHODS For each of 60 complex diseases/traits with publicly available genome-wide significant association data, the lead genetic variant per independent locus was extracted and a genetic score was calculated for each disease/trait as the weighted sum of risk alleles. The association with AMD was estimated based on 16,144 AMD cases and 17,832 controls using logistic regression. RESULTS Of the respective disease/trait variance, the 60 genetic scores explained on average 4.8% (0.27-20.69%) and 16 of them were found to be significantly associated with AMD (Q-values < 0.01, p values from < 1.0 × 10-16 to 1.9 × 10-3). Notably, an increased risk for AMD was associated with reduced risk for cardiovascular diseases, increased risk for autoimmune diseases, higher HDL and lower LDL levels in serum, lower bone-mineral density as well as an increased risk for skin cancer. By restricting the analysis to 1824 variants initially used to compute the 60 genetic scores, we identified 28 novel AMD risk variants (Q-values < 0.01, p values from 1.1 × 10-7 to 3.0 × 10-4), known to be involved in cardiovascular disorders, lipid metabolism, autoimmune diseases, anthropomorphic traits, ocular disorders, and neurological diseases. The latter variants represent 20 novel AMD-associated, pleiotropic loci. Genes in the novel loci reinforce previous findings strongly implicating the complement system in AMD pathogenesis. CONCLUSIONS We demonstrate a substantial overlap of the genetics of several complex diseases/traits with AMD and provide statistically significant evidence for an additional 20 loci associated with AMD. This highlights the possibility that so far unrelated pathologies may have disease pathways in common.
Collapse
Affiliation(s)
- Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christina Kiel
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Martina E Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Veronika Grassmann
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Klaus Stark
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | | | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
458
|
Genetic risk scores, sex and dietary factors interact to alter serum uric acid trajectory among African-American urban adults. Br J Nutr 2017; 117:686-697. [PMID: 28345493 DOI: 10.1017/s0007114517000411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Serum uric acid (SUA), a causative agent for gout among others, is affected by both genetic and dietary factors, perhaps differentially by sex. We evaluated cross-sectional (SUAbase) and longitudinal (SUArate) associations of SUA with a genetic risk score (GRS), diet and sex. We then tested the interactive effect of GRS, diet and sex on SUA. Longitudinal data on 766 African-American urban adults participating in the Healthy Aging in Neighborhood of Diversity across the Lifespan study were used. In all, three GRS for SUA were created from known SUA-associated SNP (GRSbase (n 12 SNP), GRSrate (n 3 SNP) and GRStotal (n 15 SNP)). Dietary factors included added sugar, total alcohol, red meat, total fish, legumes, dairy products, caffeine and vitamin C. Mixed-effects linear regression models were conducted. SUAbase was higher among men compared with that among women, and increased with GRStotal tertiles. SUArate was positively associated with legume intake in women (γ=+0·14; 95 % CI +0·06, +0·22, P=0·001) and inversely related to dairy product intake in both sexes combined (γ=-0·042; 95 % CI -0·075, -0·009), P=0·010). SUAbase was directly linked to alcohol consumption among women (γ=+0·154; 95 % CI +0·046, +0·262, P=0·005). GRSrate was linearly related to SUArate only among men. Legume consumption was also positively associated with SUArate within the GRStotal's lowest tertile. Among women, a synergistic interaction was observed between GRSrate and red meat intake in association with SUArate. Among men, a synergistic interaction between low vitamin C and genetic risk was found. In sum, sex-diet, sex-gene and gene-diet interactions were detected in determining SUA. Further similar studies are needed to replicate our findings.
Collapse
|
459
|
Abstract
Gout is the most common crystal arthropathy and the leading cause of inflammatory arthritis. It is associated with functional impairment and, for many, a diminished health-related quality of life. Numerous studies have demonstrated the impact of gout and its associated conditions on patient morbidity and mortality. Unfortunately, gout remains under-diagnosed and under-treated in the general community. Despite major advances in treatment strategies, as many as 90% of patients with gout are poorly controlled or improperly managed and their hyperuricemia and recurrent flares continue. The introduction of novel urate-lowering therapies, new imaging modalities, and a deeper understanding of the pathogenesis of gout raise the possibility of better gout care and improved patient outcomes. Here, we spotlight recent advances in the diagnosis and management of gout and discuss novel therapeutics in gout treatment.
Collapse
Affiliation(s)
- Talia F Igel
- The Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA; The School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Svetlana Krasnokutsky
- The Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Michael H Pillinger
- The Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
460
|
Nagy R, Boutin TS, Marten J, Huffman JE, Kerr SM, Campbell A, Evenden L, Gibson J, Amador C, Howard DM, Navarro P, Morris A, Deary IJ, Hocking LJ, Padmanabhan S, Smith BH, Joshi P, Wilson JF, Hastie ND, Wright AF, McIntosh AM, Porteous DJ, Haley CS, Vitart V, Hayward C. Exploration of haplotype research consortium imputation for genome-wide association studies in 20,032 Generation Scotland participants. Genome Med 2017; 9:23. [PMID: 28270201 PMCID: PMC5339960 DOI: 10.1186/s13073-017-0414-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/09/2017] [Indexed: 01/31/2023] Open
Abstract
Background The Generation Scotland: Scottish Family Health Study (GS:SFHS) is a family-based population cohort with DNA, biological samples, socio-demographic, psychological and clinical data from approximately 24,000 adult volunteers across Scotland. Although data collection was cross-sectional, GS:SFHS became a prospective cohort due to of the ability to link to routine Electronic Health Record (EHR) data. Over 20,000 participants were selected for genotyping using a large genome-wide array. Methods GS:SFHS was analysed using genome-wide association studies (GWAS) to test the effects of a large spectrum of variants, imputed using the Haplotype Research Consortium (HRC) dataset, on medically relevant traits measured directly or obtained from EHRs. The HRC dataset is the largest available haplotype reference panel for imputation of variants in populations of European ancestry and allows investigation of variants with low minor allele frequencies within the entire GS:SFHS genotyped cohort. Results Genome-wide associations were run on 20,032 individuals using both genotyped and HRC imputed data. We present results for a range of well-studied quantitative traits obtained from clinic visits and for serum urate measures obtained from data linkage to EHRs collected by the Scottish National Health Service. Results replicated known associations and additionally reveal novel findings, mainly with rare variants, validating the use of the HRC imputation panel. For example, we identified two new associations with fasting glucose at variants near to Y_RNA and WDR4 and four new associations with heart rate at SNPs within CSMD1 and ASPH, upstream of HTR1F and between PROKR2 and GPCPD1. All were driven by rare variants (minor allele frequencies in the range of 0.08–1%). Proof of principle for use of EHRs was verification of the highly significant association of urate levels with the well-established urate transporter SLC2A9. Conclusions GS:SFHS provides genetic data on over 20,000 participants alongside a range of phenotypes as well as linkage to National Health Service laboratory and clinical records. We have shown that the combination of deeper genotype imputation and extended phenotype availability make GS:SFHS an attractive resource to carry out association studies to gain insight into the genetic architecture of complex traits. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0414-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reka Nagy
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Thibaud S Boutin
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Jonathan Marten
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Jennifer E Huffman
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Shona M Kerr
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Louise Evenden
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Jude Gibson
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Carmen Amador
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - David M Howard
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Pau Navarro
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Andrew Morris
- Farr Institute of Health Informatics Research, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Lynne J Hocking
- Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Sandosh Padmanabhan
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Blair H Smith
- Medical Research Institute, University of Dundee, Dundee, UK
| | - Peter Joshi
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - James F Wilson
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Nicholas D Hastie
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Alan F Wright
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Chris S Haley
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
461
|
He W, Phipps-Green A, Stamp LK, Merriman TR, Dalbeth N. Population-specific association between ABCG2 variants and tophaceous disease in people with gout. Arthritis Res Ther 2017; 19:43. [PMID: 28270222 PMCID: PMC5341474 DOI: 10.1186/s13075-017-1254-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/08/2017] [Indexed: 11/26/2022] Open
Abstract
Background Tophi contribute to musculoskeletal disability, joint damage and poor health-related quality of life in people with gout. The aim of this study was to examine the role of SLC2A9 and ABCG2 variants in tophaceous disease in people with gout. Methods Participants (n = 1778) with gout fulfilling the 1977 American Rheumatism Association (ARA) classification criteria, who were recruited from primary and secondary care, attended a detailed study visit. The presence of palpable tophi was recorded. SLC2A9 rs11942223, ABCG2 rs2231142 and ABCG2 rs10011796 were genotyped. Data were analysed according to tophus status. Results Compared to participants without tophi, those with tophi were older, had longer disease duration and higher serum creatinine, and were more likely to be of Māori or Pacific (Polynesian) ancestry. SLC2A9 rs11942223 was not associated with tophi. However, the risk alleles for both ABCG2 single nucleotide polymorphisms (SNPs) were present more frequently in those with tophi (OR (95% CI) 1.24 (1.02–1.51) for rs2231142 and 1.33 (1.01–1.74) for rs10011796, p < 0.05 for both). The effect of rs2231142 was limited to participants of Māori or Pacific ancestry (OR 1.50 (1.14–1.99), p = 0.004), with a significant effect observed in those of Western Polynesian ancestry only (OR 1.71 (1.07–2.72), p = 0.017). The rs10011796 risk allele was strongly associated with tophi in the Western Polynesian group (OR 3.76 (1.61–8.77), p = 0.002), but not in the Eastern Polynesian group (OR 0.87 (0.52–1.46), p = 0.60) nor in the non-Polynesian group (OR 1.16 (0.81–1.66), p = 0.32). The ABCG2 associations persisted in the Western Polynesian group after adjusting for serum urate, creatinine, and disease duration, and when including both ABCG2 variants in the regression models. Conclusions Variation in ABCG2 function may play a role in the development of tophaceous disease in some populations with high prevalence of severe gout. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1254-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wendy He
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand
| | | | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand.
| |
Collapse
|
462
|
Effects of multiple genetic loci on the pathogenesis from serum urate to gout. Sci Rep 2017; 7:43614. [PMID: 28252667 PMCID: PMC5333621 DOI: 10.1038/srep43614] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/26/2017] [Indexed: 01/01/2023] Open
Abstract
Gout is a common arthritis resulting from increased serum urate, and many loci have been identified that are associated with serum urate and gout. However, their influence on the progression from elevated serum urate levels to gout is unclear. This study aims to explore systematically the effects of genetic variants on the pathogenesis in approximately 5,000 Chinese individuals. Six genes (PDZK1, GCKR, TRIM46, HNF4G, SLC17A1, LRRC16A) were determined to be associated with serum urate (PFDR < 0.05) in the Chinese population for the first time. ABCG2 and a novel gene, SLC17A4, contributed to the development of gout from hyperuricemia (OR = 1.56, PFDR = 3.68E-09; OR = 1.27, PFDR = 0.013, respectively). Also, HNF4G is a novel gene associated with susceptibility to gout (OR = 1.28, PFDR = 1.08E-03). In addition, A1CF and TRIM46 were identified as associated with gout in the Chinese population for the first time (PFDR < 0.05). The present study systematically determined genetic effects on the progression from elevated serum urate to gout and suggests that urate-associated genes functioning as urate transporters may play a specific role in the pathogenesis of gout. Furthermore, two novel gout-associated genes (HNF4G and SLC17A4) were identified.
Collapse
|
463
|
Ying Y, Chen Y, Li Z, Huang H, Gong Q. Investigation into the association between P2RX7 gene polymorphisms and susceptibility to primary gout and hyperuricemia in a Chinese Han male population. Rheumatol Int 2017; 37:571-578. [DOI: 10.1007/s00296-017-3669-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/28/2017] [Indexed: 11/30/2022]
|
464
|
Ahola AJ, Sandholm N, Forsblom C, Harjutsalo V, Dahlström E, Groop PH. The serum uric acid concentration is not causally linked to diabetic nephropathy in type 1 diabetes. Kidney Int 2017; 91:1178-1185. [PMID: 28238338 DOI: 10.1016/j.kint.2016.11.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Previous studies have shown a relationship between uric acid concentration and progression of renal disease. Here we studied causality between the serum uric acid concentration and progression of diabetic nephropathy in 3895 individuals with type 1 diabetes in the FinnDiane Study. The renal status was assessed with the urinary albumin excretion rate and estimated glomerular filtration rate (eGFR) at baseline and at the end of the follow-up. Based on previous genomewide association studies on serum uric acid concentration, 23 single nucleotide polymorphisms (SNPs) with good imputation quality were selected for the SNP score. This score was used to assess the causality between serum uric acid and renal complications using a Mendelian randomization approach. At baseline, the serum uric acid concentration was higher with worsening renal status. In multivariable Cox regression analyses, baseline serum uric acid concentration was not independently associated with progression of diabetic nephropathy over a mean follow-up of 7 years. However, over the same period, baseline serum uric acid was independently associated with the decline in eGFR. In the cross-sectional logistic regression analyses, the SNP score was associated with the serum uric acid concentration. Nevertheless, the Mendelian randomization showed no causality between uric acid and diabetic nephropathy, eGFR categories, or eGFR as a continuous variable. Thus, our results suggest that the serum uric acid concentration is not causally related to diabetic nephropathy but is a downstream marker of kidney damage.
Collapse
Affiliation(s)
- Aila J Ahola
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland; Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Emma Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland; Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | | |
Collapse
|
465
|
Chittoor G, Haack K, Mehta NR, Laston S, Cole SA, Comuzzie AG, Butte NF, Voruganti VS. Genetic variation underlying renal uric acid excretion in Hispanic children: the Viva La Familia Study. BMC MEDICAL GENETICS 2017; 18:6. [PMID: 28095793 PMCID: PMC5240212 DOI: 10.1186/s12881-016-0366-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 12/30/2016] [Indexed: 01/01/2023]
Abstract
Background Reduced renal excretion of uric acid plays a significant role in the development of hyperuricemia and gout in adults. Hyperuricemia has been associated with chronic kidney disease and cardiovascular disease in children and adults. There are limited genome-wide association studies associating genetic polymorphisms with renal urate excretion measures. Therefore, we investigated the genetic factors that influence the excretion of uric acid and related indices in 768 Hispanic children of the Viva La Familia Study. Methods We performed a genome-wide association analysis for 24-h urinary excretion measures such as urinary uric acid/urinary creatinine ratio, uric acid clearance, fractional excretion of uric acid, and glomerular load of uric acid in SOLAR, while accounting for non-independence among family members. Results All renal urate excretion measures were significantly heritable (p <2 × 10−6) and ranged from 0.41 to 0.74. Empirical threshold for genome-wide significance was set at p <1 × 10−7. We observed a strong association (p < 8 × 10−8) of uric acid clearance with a single nucleotide polymorphism (SNP) in zinc finger protein 446 (ZNF446) (rs2033711 (A/G), MAF: 0.30). The minor allele (G) was associated with increased uric acid clearance. Also, we found suggestive associations of uric acid clearance with SNPs in ZNF324, ZNF584, and ZNF132 (in a 72 kb region of 19q13; p <1 × 10−6, MAFs: 0.28–0.31). Conclusion For the first time, we showed the importance of 19q13 region in the regulation of renal urate excretion in Hispanic children. Our findings indicate differences in inherent genetic architecture and shared environmental risk factors between our cohort and other pediatric and adult populations. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0366-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geetha Chittoor
- Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nitesh R Mehta
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sandra Laston
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nancy F Butte
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - V Saroja Voruganti
- Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA.
| |
Collapse
|
466
|
Iacono WG, Malone SM, Vrieze SI. Endophenotype best practices. Int J Psychophysiol 2017; 111:115-144. [PMID: 27473600 PMCID: PMC5219856 DOI: 10.1016/j.ijpsycho.2016.07.516] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/19/2023]
Abstract
This review examines the current state of electrophysiological endophenotype research and recommends best practices that are based on knowledge gleaned from the last decade of molecular genetic research with complex traits. Endophenotype research is being oversold for its potential to help discover psychopathology relevant genes using the types of small samples feasible for electrophysiological research. This is largely because the genetic architecture of endophenotypes appears to be very much like that of behavioral traits and disorders: they are complex, influenced by many variants (e.g., tens of thousands) within many genes, each contributing a very small effect. Out of over 40 electrophysiological endophenotypes covered by our review, only resting heart, a measure that has received scant advocacy as an endophenotype, emerges as an electrophysiological variable with verified associations with molecular genetic variants. To move the field forward, investigations designed to discover novel variants associated with endophenotypes will need extremely large samples best obtained by forming consortia and sharing data obtained from genome wide arrays. In addition, endophenotype research can benefit from successful molecular genetic studies of psychopathology by examining the degree to which these verified psychopathology-relevant variants are also associated with an endophenotype, and by using knowledge about the functional significance of these variants to generate new endophenotypes. Even without molecular genetic associations, endophenotypes still have value in studying the development of disorders in unaffected individuals at high genetic risk, constructing animal models, and gaining insight into neural mechanisms that are relevant to clinical disorder.
Collapse
|
467
|
Haslam DE, McKeown NM, Herman MA, Lichtenstein AH, Dashti HS. Interactions between Genetics and Sugar-Sweetened Beverage Consumption on Health Outcomes: A Review of Gene-Diet Interaction Studies. Front Endocrinol (Lausanne) 2017; 8:368. [PMID: 29375475 PMCID: PMC5767076 DOI: 10.3389/fendo.2017.00368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/15/2017] [Indexed: 01/23/2023] Open
Abstract
The consumption of sugar-sweetened beverages (SSB), which includes soft drinks, fruit drinks, and other energy drinks, is associated with excess energy intake and increased risk for chronic metabolic disease among children and adults. Thus, reducing SSB consumption is an important strategy to prevent the onset of chronic diseases, and achieve and maintain a healthy body weight. The mechanisms by which excessive SSB consumption may contribute to complex chronic diseases may partially depend on an individual's genetic predisposition. Gene-SSB interaction investigations, either limited to single genetic loci or including multiple genetic variants, aim to use genomic information to define mechanistic pathways linking added sugar consumption from SSBs to those complex diseases. The purpose of this review is to summarize the available gene-SSB interaction studies investigating the relationships between genetics, SSB consumption, and various health outcomes. Current evidence suggests there are genetic predispositions for an association between SSB intake and adiposity; evidence for a genetic predisposition between SSB and type 2 diabetes or cardiovascular disease is limited.
Collapse
Affiliation(s)
- Danielle E. Haslam
- Nutritional Epidemiology Program, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Nicola M. McKeown
- Nutritional Epidemiology Program, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Mark A. Herman
- Division Of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Alice H. Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Hassan S. Dashti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States
- *Correspondence: Hassan S. Dashti,
| |
Collapse
|
468
|
Day RO, Kannangara DR, Stocker SL, Carland JE, Williams KM, Graham GG. Allopurinol: insights from studies of dose–response relationships. Expert Opin Drug Metab Toxicol 2016; 13:449-462. [DOI: 10.1080/17425255.2017.1269745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Richard O. Day
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- St Vincent’s Clinical School, UNSW Australia, Darlinghurst, Sydney, Australia
| | - Diluk R.W. Kannangara
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- St Vincent’s Clinical School, UNSW Australia, Darlinghurst, Sydney, Australia
| | - Sophie L. Stocker
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- School of Medical Sciences, UNSW Australia, Kensington, Sydney, Australia
| | - Jane E. Carland
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- School of Medical Sciences, UNSW Australia, Kensington, Sydney, Australia
| | - Kenneth M. Williams
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- School of Medical Sciences, UNSW Australia, Kensington, Sydney, Australia
| | - Garry G. Graham
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- School of Medical Sciences, UNSW Australia, Kensington, Sydney, Australia
| |
Collapse
|
469
|
Affiliation(s)
- Robert Terkeltaub
- a Department of Medicine, VA San Diego Healthcare System , University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
470
|
Juhanson P, Rull K, Kikas T, Laivuori H, Vaas P, Kajantie E, Heinonen S, Laan M. Stanniocalcin-1 Hormone in Nonpreeclamptic and Preeclamptic Pregnancy: Clinical, Life-Style, and Genetic Modulators. J Clin Endocrinol Metab 2016; 101:4799-4807. [PMID: 27603899 PMCID: PMC5155696 DOI: 10.1210/jc.2016-1873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/31/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT AND OBJECTIVES The study represents the first comprehensive analysis of Stanniocalcin-1 (STC1) hormone in human pregnancy, assessing clinical, lifestyle, and genetic determinants of circulating STC1 at term. DESIGN, SETTING, AND PARTICIPANTS Participants included women with (n = 50) and without (n = 316) preeclampsia (PE) at delivery, recruited in the REPROgrammed fetal and/or maternal METAbolism (REPROMETA) study (2006-2011, Estonia). Genetic association analysis combined PE cases (n = 597) and controls (n = 623) from the REPROMETA and Finnish Genetics of Preeclampsia Consortium (2008-2011) studies. MAIN OUTCOME MEASURE(S) Maternal postpartum plasma STC1 was measured by ELISA (n = 366) and placental STC1 gene expression by TaqMan quantitative RT-PCR (n = 120). Genotyping was performed using Sequenom MassArray. RESULTS Significantly higher STC1 plasma level was measured for the PE (median, 1952 pg/mL; 1030-4284 pg/mL) compared with non-PE group (median, 1562 pg/mL; 423-3781 pg/mL; P = 3.7 × 10-4, Mann-Whitney U test). Statistical significance was enhanced after adjustment for cofactors (linear regression, P = 1.8 × 10-6). STC1 measurements were negatively correlated with maternal smoking. Prepregnancy body mass index had a positive correlation with STC1 only among PE patients (r = 0.45; P = .001). The strongest genetic association with hormone concentrations was detected for STC1 single nucleotide polymorphisms rs3758089 (C allele: minor allele frequency, 5%; linear regression: β = 249.2 pg/mL; P = .014) and rs12678447 (G allele: minor allele frequency, 7%; β = 147.0 pg/mL; P = .082). rs12678447 placental genotypes were significantly associated with STC1 gene expression (P = .014). The REPROMETA/Finnish Genetics of Preeclampsia Consortium meta-analysis suggested an increased risk to develop late-onset PE for the rs12678447 G allele carriers (P = .05; odds ratio = 1.38 [0.98-1.93]). CONCLUSIONS Increased STC1 hormone represents a hallmark of late-onset PE. STC1 gene variants modulate placental gene expression and maternal hormone levels.
Collapse
Affiliation(s)
- Peeter Juhanson
- Human Molecular Genetics Research Group (P.J., K.R., T.K., M.L.), Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Department of Obstetrics and Gynaecology (K.R., P.V.), University of Tartu, and Women's Clinic of Tartu University Hospital (K.R., P.V.), Tartu 51014, Estonia; Medical and Clinical Genetics (H.L.), University of Helsinki and Helsinki University Hospital, and Institute for Molecular Medicine Finland (H.L.), University of Helsinki, FIN-00014 Helsinki, Finland; Obstetrics and Gynecology (H.L., S.H.) and Children's Hospital (E.K.), Helsinki University Hospital and University of Helsinki, FIN-00029 Helsinki, Finland; Chronic Disease Prevention Unit (E.K.), National Institute for Health and Welfare, FIN-00271 Helsinki, Finland; Research Unit of Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology, Ophtalmology (E.K.), Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90014 Oulu, Finland; and Institute of Biomedicine and Translational Medicine (M.L.), University of Tartu, Tartu 50411, Estonia
| | - Kristiina Rull
- Human Molecular Genetics Research Group (P.J., K.R., T.K., M.L.), Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Department of Obstetrics and Gynaecology (K.R., P.V.), University of Tartu, and Women's Clinic of Tartu University Hospital (K.R., P.V.), Tartu 51014, Estonia; Medical and Clinical Genetics (H.L.), University of Helsinki and Helsinki University Hospital, and Institute for Molecular Medicine Finland (H.L.), University of Helsinki, FIN-00014 Helsinki, Finland; Obstetrics and Gynecology (H.L., S.H.) and Children's Hospital (E.K.), Helsinki University Hospital and University of Helsinki, FIN-00029 Helsinki, Finland; Chronic Disease Prevention Unit (E.K.), National Institute for Health and Welfare, FIN-00271 Helsinki, Finland; Research Unit of Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology, Ophtalmology (E.K.), Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90014 Oulu, Finland; and Institute of Biomedicine and Translational Medicine (M.L.), University of Tartu, Tartu 50411, Estonia
| | - Triin Kikas
- Human Molecular Genetics Research Group (P.J., K.R., T.K., M.L.), Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Department of Obstetrics and Gynaecology (K.R., P.V.), University of Tartu, and Women's Clinic of Tartu University Hospital (K.R., P.V.), Tartu 51014, Estonia; Medical and Clinical Genetics (H.L.), University of Helsinki and Helsinki University Hospital, and Institute for Molecular Medicine Finland (H.L.), University of Helsinki, FIN-00014 Helsinki, Finland; Obstetrics and Gynecology (H.L., S.H.) and Children's Hospital (E.K.), Helsinki University Hospital and University of Helsinki, FIN-00029 Helsinki, Finland; Chronic Disease Prevention Unit (E.K.), National Institute for Health and Welfare, FIN-00271 Helsinki, Finland; Research Unit of Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology, Ophtalmology (E.K.), Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90014 Oulu, Finland; and Institute of Biomedicine and Translational Medicine (M.L.), University of Tartu, Tartu 50411, Estonia
| | - Hannele Laivuori
- Human Molecular Genetics Research Group (P.J., K.R., T.K., M.L.), Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Department of Obstetrics and Gynaecology (K.R., P.V.), University of Tartu, and Women's Clinic of Tartu University Hospital (K.R., P.V.), Tartu 51014, Estonia; Medical and Clinical Genetics (H.L.), University of Helsinki and Helsinki University Hospital, and Institute for Molecular Medicine Finland (H.L.), University of Helsinki, FIN-00014 Helsinki, Finland; Obstetrics and Gynecology (H.L., S.H.) and Children's Hospital (E.K.), Helsinki University Hospital and University of Helsinki, FIN-00029 Helsinki, Finland; Chronic Disease Prevention Unit (E.K.), National Institute for Health and Welfare, FIN-00271 Helsinki, Finland; Research Unit of Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology, Ophtalmology (E.K.), Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90014 Oulu, Finland; and Institute of Biomedicine and Translational Medicine (M.L.), University of Tartu, Tartu 50411, Estonia
| | - Pille Vaas
- Human Molecular Genetics Research Group (P.J., K.R., T.K., M.L.), Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Department of Obstetrics and Gynaecology (K.R., P.V.), University of Tartu, and Women's Clinic of Tartu University Hospital (K.R., P.V.), Tartu 51014, Estonia; Medical and Clinical Genetics (H.L.), University of Helsinki and Helsinki University Hospital, and Institute for Molecular Medicine Finland (H.L.), University of Helsinki, FIN-00014 Helsinki, Finland; Obstetrics and Gynecology (H.L., S.H.) and Children's Hospital (E.K.), Helsinki University Hospital and University of Helsinki, FIN-00029 Helsinki, Finland; Chronic Disease Prevention Unit (E.K.), National Institute for Health and Welfare, FIN-00271 Helsinki, Finland; Research Unit of Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology, Ophtalmology (E.K.), Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90014 Oulu, Finland; and Institute of Biomedicine and Translational Medicine (M.L.), University of Tartu, Tartu 50411, Estonia
| | - Eero Kajantie
- Human Molecular Genetics Research Group (P.J., K.R., T.K., M.L.), Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Department of Obstetrics and Gynaecology (K.R., P.V.), University of Tartu, and Women's Clinic of Tartu University Hospital (K.R., P.V.), Tartu 51014, Estonia; Medical and Clinical Genetics (H.L.), University of Helsinki and Helsinki University Hospital, and Institute for Molecular Medicine Finland (H.L.), University of Helsinki, FIN-00014 Helsinki, Finland; Obstetrics and Gynecology (H.L., S.H.) and Children's Hospital (E.K.), Helsinki University Hospital and University of Helsinki, FIN-00029 Helsinki, Finland; Chronic Disease Prevention Unit (E.K.), National Institute for Health and Welfare, FIN-00271 Helsinki, Finland; Research Unit of Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology, Ophtalmology (E.K.), Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90014 Oulu, Finland; and Institute of Biomedicine and Translational Medicine (M.L.), University of Tartu, Tartu 50411, Estonia
| | - Seppo Heinonen
- Human Molecular Genetics Research Group (P.J., K.R., T.K., M.L.), Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Department of Obstetrics and Gynaecology (K.R., P.V.), University of Tartu, and Women's Clinic of Tartu University Hospital (K.R., P.V.), Tartu 51014, Estonia; Medical and Clinical Genetics (H.L.), University of Helsinki and Helsinki University Hospital, and Institute for Molecular Medicine Finland (H.L.), University of Helsinki, FIN-00014 Helsinki, Finland; Obstetrics and Gynecology (H.L., S.H.) and Children's Hospital (E.K.), Helsinki University Hospital and University of Helsinki, FIN-00029 Helsinki, Finland; Chronic Disease Prevention Unit (E.K.), National Institute for Health and Welfare, FIN-00271 Helsinki, Finland; Research Unit of Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology, Ophtalmology (E.K.), Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90014 Oulu, Finland; and Institute of Biomedicine and Translational Medicine (M.L.), University of Tartu, Tartu 50411, Estonia
| | - Maris Laan
- Human Molecular Genetics Research Group (P.J., K.R., T.K., M.L.), Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Department of Obstetrics and Gynaecology (K.R., P.V.), University of Tartu, and Women's Clinic of Tartu University Hospital (K.R., P.V.), Tartu 51014, Estonia; Medical and Clinical Genetics (H.L.), University of Helsinki and Helsinki University Hospital, and Institute for Molecular Medicine Finland (H.L.), University of Helsinki, FIN-00014 Helsinki, Finland; Obstetrics and Gynecology (H.L., S.H.) and Children's Hospital (E.K.), Helsinki University Hospital and University of Helsinki, FIN-00029 Helsinki, Finland; Chronic Disease Prevention Unit (E.K.), National Institute for Health and Welfare, FIN-00271 Helsinki, Finland; Research Unit of Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology, Ophtalmology (E.K.), Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90014 Oulu, Finland; and Institute of Biomedicine and Translational Medicine (M.L.), University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
471
|
Becker MA. Summary of the 2015 Purine and Pyrimidine Society/Purine Metabolic Patients Association H. Anne Simmonds Memorial Lecture. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2016; 35:502-506. [PMID: 27906633 DOI: 10.1080/15257770.2016.1200075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Michael A Becker
- a Rheumatology Section, Department of Medicine , The University of Chicago Pritzker School of Medicine , Chicago , IL , USA
| |
Collapse
|
472
|
Iotchkova V, Huang J, Morris JA, Jain D, Barbieri C, Walter K, Min JL, Chen L, Astle W, Cocca M, Deelen P, Elding H, Farmaki AE, Franklin CS, Franberg M, Gaunt TR, Hofman A, Jiang T, Kleber ME, Lachance G, Luan J, Malerba G, Matchan A, Mead D, Memari Y, Ntalla I, Panoutsopoulou K, Pazoki R, Perry JR, Rivadeneira F, Sabater-Lleal M, Sennblad B, Shin SY, Southam L, Traglia M, van Dijk F, van Leeuwen EM, Zaza G, Zhang W, The UK10K Consortium, Amin N, Butterworth A, Chambers JC, Dedoussis G, Dehghan A, Franco OH, Franke L, Frontini M, Gambaro G, Gasparini P, Hamsten A, Issacs A, Kooner JS, Kooperberg C, Langenberg C, Marz W, Scott RA, Swertz MA, Toniolo D, Uitterlinden AG, van Duijn CM, Watkins H, Zeggini E, Maurano MT, Timpson NJ, Reiner AP, Auer PL, Soranzo N. Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. Nat Genet 2016; 48:1303-1312. [PMID: 27668658 PMCID: PMC5279872 DOI: 10.1038/ng.3668] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
Large-scale whole-genome sequence data sets offer novel opportunities to identify genetic variation underlying human traits. Here we apply genotype imputation based on whole-genome sequence data from the UK10K and 1000 Genomes Project into 35,981 study participants of European ancestry, followed by association analysis with 20 quantitative cardiometabolic and hematological traits. We describe 17 new associations, including 6 rare (minor allele frequency (MAF) < 1%) or low-frequency (1% < MAF < 5%) variants with platelet count (PLT), red blood cell indices (MCH and MCV) and HDL cholesterol. Applying fine-mapping analysis to 233 known and new loci associated with the 20 traits, we resolve the associations of 59 loci to credible sets of 20 or fewer variants and describe trait enrichments within regions of predicted regulatory function. These findings improve understanding of the allelic architecture of risk factors for cardiometabolic and hematological diseases and provide additional functional insights with the identification of potentially novel biological targets.
Collapse
Affiliation(s)
- Valentina Iotchkova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jie Huang
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Boston VA Research Institute, Boston, Massachusetts, USA
| | - John A. Morris
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Caterina Barbieri
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Klaudia Walter
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Josine L. Min
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Lu Chen
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Department of Hematology, University of Cambridge, Cambridge, UK
| | - William Astle
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Massimilian Cocca
- Medical Genetics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Patrick Deelen
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Heather Elding
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | | | - Mattias Franberg
- Cardiovascular Medicine Unit, Dep. Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tao Jiang
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Genevieve Lachance
- Department of Twin Research & Genetic Epidemiology, King's College London, Londo, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Giovanni Malerba
- Biology and Genetics, Department Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Angela Matchan
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Daniel Mead
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Yasin Memari
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Ioanna Ntalla
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Raha Pazoki
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - John R.B. Perry
- Department of Twin Research & Genetic Epidemiology, King's College London, Londo, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Maria Sabater-Lleal
- Cardiovascular Medicine Unit, Dep. Medicine, Karolinska Institute, Stockholm, Sweden
| | - Bengt Sennblad
- Cardiovascular Medicine Unit, Dep. Medicine, Karolinska Institute, Stockholm, Sweden
| | - So-Youn Shin
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Lorraine Southam
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Freerk van Dijk
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | | | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, St Mary’s campus, London, UK
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adam Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Cambridge, UK
| | - John C. Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, St Mary’s campus, London, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | | | - Giovanni Gambaro
- Division of Nephrology and Dialysis, Institute of Internal Medicine, Renal Program, Columbus-Gemelli University Hospital, Catholic University, Rome, Italy
| | - Paolo Gasparini
- Medical Genetics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Experimental Genetics Division, Sidra, Doha, Qatar
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Dep. Medicine, Karolinska Institute, Stockholm, Sweden
| | - Aaron Issacs
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jaspal S. Kooner
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Winfried Marz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinolgy, Diabetology), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Robert A. Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Morris A. Swertz
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
- LifeLines Cohort Study, University Medical Center Groningen, Groningen, Netherlands
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Andre G. Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hugh Watkins
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Mathew T. Maurano
- Institute for Systems Genetics, New York University Langone Medical Center, New York, USA
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nicole Soranzo
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Department of Hematology, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Cambridge, UK
| |
Collapse
|
473
|
Abstract
Hyperuricemia (elevated serum uric acid) is prevalent, and an important mediator of gout, an increasingly common condition. In addition, hyperuricemia is associated with metabolic syndrome, diabetes, hypertension, and kidney and cardiovascular diseases. Although it remains controversial whether hyperuricemia is a causal factor for kidney disease, the kidneys play a major role in the regulation of serum uric acid levels. Approximately two-thirds of the uric acid produced in humans is excreted by the kidneys. The handling of urate in the renal proximal tubule is extensive, as uric acid undergoes filtration, reabsorption, and secretion. Variations in renal urate handling have been shown to influence the risk of gout. In observational studies, hyperuricemia has been shown to predict kidney disease onset and progression, with a variety of mechanisms implicated. Because of this close association between hyperuricemia and kidney disease, and due to limited studies on the topic, it is important to conduct future studies on the treatment of hyperuricemia to slow kidney disease progression and improve cardiovascular survival in patients with chronic kidney disease. Furthermore, it is important to monitor for gout in patients with kidney disease and to follow the guidelines for treatment of hyperuricemia in this group of patients. This narrative review provides an in-depth discussion of the link between serum uric acid levels, renal handling of uric acid, and diseases associated with dysfunction in uric acid homeostasis.
Collapse
|
474
|
Dalbeth N, Schumacher HR, Fransen J, Neogi T, Jansen TL, Brown M, Louthrenoo W, Vazquez-Mellado J, Eliseev M, McCarthy G, Stamp LK, Perez-Ruiz F, Sivera F, Ea HK, Gerritsen M, Scire CA, Cavagna L, Lin C, Chou YY, Tausche AK, da Rocha Castelar-Pinheiro G, Janssen M, Chen JH, Cimmino MA, Uhlig T, Taylor WJ. Survey Definitions of Gout for Epidemiologic Studies: Comparison With Crystal Identification as the Gold Standard. Arthritis Care Res (Hoboken) 2016; 68:1894-1898. [PMID: 27014846 DOI: 10.1002/acr.22896] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/18/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To identify the best-performing survey definition of gout from items commonly available in epidemiologic studies. METHODS Survey definitions of gout were identified from 34 epidemiologic studies contributing to the Global Urate Genetics Consortium (GUGC) genome-wide association study. Data from the Study for Updated Gout Classification Criteria (SUGAR) were randomly divided into development and test data sets. A data-driven case definition was formed using logistic regression in the development data set. This definition, along with definitions used in GUGC studies and the 2015 American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) gout classification criteria were applied to the test data set, using monosodium urate crystal identification as the gold standard. RESULTS For all tested GUGC definitions, the simple definition of "self-report of gout or urate-lowering therapy use" had the best test performance characteristics (sensitivity 82%, specificity 72%). The simple definition had similar performance to a SUGAR data-driven case definition with 5 weighted items: self-report, self-report of doctor diagnosis, colchicine use, urate-lowering therapy use, and hyperuricemia (sensitivity 87%, specificity 70%). Both of these definitions performed better than the 1977 American Rheumatism Association survey criteria (sensitivity 82%, specificity 67%). Of all tested definitions, the 2015 ACR/EULAR criteria had the best performance (sensitivity 92%, specificity 89%). CONCLUSION A simple definition of "self-report of gout or urate-lowering therapy use" has the best test performance characteristics of existing definitions that use routinely available data. A more complex combination of features is more sensitive, but still lacks good specificity. If a more accurate case definition is required for a particular study, the 2015 ACR/EULAR gout classification criteria should be considered.
Collapse
Affiliation(s)
| | | | - Jaap Fransen
- Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tuhina Neogi
- Boston University School of Medicine, Boston, Massachusetts
| | | | | | | | | | - Maxim Eliseev
- Nasonova Research Institute of Rheumatology of Russia, Moscow, Russia
| | - Geraldine McCarthy
- Geraldine McCarthy, MD, FRCPI, University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | | | - Fernando Perez-Ruiz
- Hospital Universitario Cruces & BioCruces Health Research Institute, Vizcaya, Spain
| | | | - Hang-Korng Ea
- Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, INSERM, UMR 1132, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, and Hôpital Lariboisière, Paris, France
| | | | - Carlo A Scire
- Carlo A. Scire, MD, PhD, Italian Society for Rheumatology, Milan, Italy
| | - Lorenzo Cavagna
- University and IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Chingtsai Lin
- Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yin-Yi Chou
- Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
475
|
Abstract
Gout is a chronic disease of deposition of monosodium urate crystals, which form in the presence of increased urate concentrations. Although environmental factors contribute to hyperuricaemia, renal and gut excretion of urate is central to regulation of serum urate, and genetic factors are important. Activation of the NLRP3 inflammasome and release of interleukin 1β have key roles in initiation of acute gout flares. A "treat to target serum urate" approach is essential for effective gout management; long-term lowering of serum urate to less than 360 μmol/L leads to crystal dissolution and ultimately to suppression of flares. An allopurinol dose-escalation strategy is frequently effective for achieving treatment targets, and several new urate-lowering drugs are also available. Worldwide, rates of initiation and continuation of urate-lowering therapy are very low, and, consequently, achievement of serum urate targets is infrequent. Strategies to improve quality of gout care are needed.
Collapse
Affiliation(s)
- Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
476
|
Mechanism of high affinity inhibition of the human urate transporter URAT1. Sci Rep 2016; 6:34995. [PMID: 27713539 PMCID: PMC5054527 DOI: 10.1038/srep34995] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023] Open
Abstract
Gout is caused by elevated serum urate levels, which can be treated using inhibitors of the uric acid transporter, URAT1. We exploited affinity differences between the human and rat transporters to map inhibitor binding sites in URAT1. Human-rat transporter chimeras revealed that human URAT1 serine-35, phenylalanine-365 and isoleucine-481 are necessary and sufficient to provide up to a 100-fold increase in affinity for inhibitors. Moreover, serine-35 and phenylalanine-365 are important for high-affinity interaction with the substrate urate. A novel URAT1 binding assay provides support for direct interaction with these amino acids; thus, current clinically important URAT1 inhibitors likely bind the same site in URAT1. A structural model suggests that these three URAT1 residues are in close proximity potentially projecting within the channel. Our results indicate that amino acids from several transmembrane segments functionally cooperate to form a high-affinity URAT1 inhibitor binding site that, when occupied, prevents substrate interactions.
Collapse
|
477
|
Duyck SD, Petrie KJ, Dalbeth N. “You Don't Have to Be a Drinker to Get Gout, But It Helps”: A Content Analysis of the Depiction of Gout in Popular Newspapers. Arthritis Care Res (Hoboken) 2016; 68:1721-1725. [DOI: 10.1002/acr.22879] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/22/2016] [Accepted: 03/01/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Stefanie D. Duyck
- Stefanie D. Duyck, BPsych: University of Leuven, Leuven, Belgium; and University of Auckland; Auckland New Zealand
| | | | | |
Collapse
|
478
|
Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney. Arthritis Res Ther 2016; 18:214. [PMID: 27716403 PMCID: PMC5048659 DOI: 10.1186/s13075-016-1107-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/02/2016] [Indexed: 11/17/2022] Open
Abstract
Background Excess body burden of uric acid promotes gout. Diminished renal clearance of uric acid causes hyperuricemia in most patients with gout, and the renal urate transporter (URAT)1 is important for regulation of serum uric acid (sUA) levels. The URAT1 inhibitors probenecid and benzbromarone are used as gout therapies; however, their use is limited by drug–drug interactions and off-target toxicity, respectively. Here, we define the mechanism of action of lesinurad (Zurampic®; RDEA594), a novel URAT1 inhibitor, recently approved in the USA and Europe for treatment of chronic gout. Methods sUA levels, fractional excretion of uric acid (FEUA), lesinurad plasma levels, and urinary excretion of lesinurad were measured in healthy volunteers treated with lesinurad. In addition, lesinurad, probenecid, and benzbromarone were compared in vitro for effects on urate transporters and the organic anion transporters (OAT)1 and OAT3, changes in mitochondrial membrane potential, and human peroxisome proliferator-activated receptor gamma (PPARγ) activity. Results After 6 hours, a single 200-mg dose of lesinurad elevated FEUA 3.6-fold (p < 0.001) and reduced sUA levels by 33 % (p < 0.001). At concentrations achieved in the clinic, lesinurad inhibited activity of URAT1 and OAT4 in vitro, did not inhibit GLUT9, and had no effect on ABCG2. Lesinurad also showed a low risk for mitochondrial toxicity and PPARγ induction compared to benzbromarone. Unlike probenecid, lesinurad did not inhibit OAT1 or OAT3 in the clinical setting. Conclusion The pharmacodynamic effects and in vitro activity of lesinurad are consistent with inhibition of URAT1 and OAT4, major apical transporters for uric acid. Lesinurad also has a favorable selectivity and safety profile, consistent with an important role in sUA-lowering therapy for patients with gout. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1107-x) contains supplementary material, which is available to authorized users.
Collapse
|
479
|
Herman MA, Samuel VT. The Sweet Path to Metabolic Demise: Fructose and Lipid Synthesis. Trends Endocrinol Metab 2016; 27:719-730. [PMID: 27387598 PMCID: PMC5035631 DOI: 10.1016/j.tem.2016.06.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/04/2023]
Abstract
Epidemiological studies link fructose consumption with metabolic disease, an association attributable in part to fructose-mediated lipogenesis. The mechanisms governing fructose-induced lipogenesis and disease remain debated. Acutely, fructose increases de novo lipogenesis through the efficient and uninhibited action of ketohexokinase and aldolase B which yields substrates for fatty-acid synthesis. Chronic fructose consumption further enhances the capacity for hepatic fructose metabolism by activating several key transcription factors (i.e., SREBP1c and ChREBP) which augment the expression of lipogenic enzymes, increasing lipogenesis and further compounding hypertriglyceridemia and hepatic steatosis. Hepatic insulin resistance develops from diacylglycerol-PKCɛ-mediated impairment of insulin signaling and possibly additional mechanisms. Initiatives that decrease fructose consumption and therapies that block fructose-mediated lipogenesis will be necessary to avert future metabolic pandemics.
Collapse
Affiliation(s)
- Mark A Herman
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Varman T Samuel
- Yale University School of Medicine, 950 Campbell Avenue, West Haven, CT 06516, USA; Veterans Affairs Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT 06516, USA.
| |
Collapse
|
480
|
Wang T, Huang T, Li Y, Zheng Y, Manson JE, Hu FB, Qi L. Low birthweight and risk of type 2 diabetes: a Mendelian randomisation study. Diabetologia 2016; 59:1920-7. [PMID: 27333884 PMCID: PMC4970938 DOI: 10.1007/s00125-016-4019-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Low birthweight has been associated with a high risk of type 2 diabetes mellitus in observational studies. However, it remains unclear whether this relation is causal. METHODS The present study included 3627 individuals with type 2 diabetes and 12,974 control participants of European ancestry from the Nurses' Health Study and the Health Professionals Follow-Up Study. A genetic risk score (GRS) was calculated based on five low-birthweight-related single nucleotide polymorphisms (SNPs). We assessed the evidence for causality first by examining the association of the GRS and the individual SNPs with type 2 diabetes, and second by performing a Mendelian randomisation analysis to estimate the potentially causal effect size of low birthweight on type 2 diabetes. RESULTS In a meta-analysis of the two studies, each 1 point increment in the GRS was associated with a 6% (95% CI 3%, 9%) higher risk of type 2 diabetes. CCNL1 rs900400 and 5q11.2 rs4432842 showed dose-response associations with risk of type 2 diabetes; the corresponding ORs and 95% CIs were 1.09 (1.03, 1.16) and 1.09 (1.02, 1.16), respectively. Furthermore, we observed an overall Mendelian randomisation OR of 2.94 (95% CI 1.70, 5.16; p < 0.001) for type 2 diabetes per 1 SD lower genetically determined birthweight. CONCLUSIONS/INTERPRETATION A genetically lowered birthweight was associated with increased susceptibility to type 2 diabetes. Our findings support a potential causal relation between birthweight and risk of type 2 diabetes, providing new evidence to support the role of intrauterine exposures in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Tiange Wang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA, 70112, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tao Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA, 70112, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yan Zheng
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA, 70112, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
481
|
Bartáková V, Kuricová K, Pácal L, Nová Z, Dvořáková V, Švrčková M, Malúšková D, Svobodová I, Řehořová J, Svojanovský J, Olšovský J, Bělobrádková J, Kaňková K. Hyperuricemia contributes to the faster progression of diabetic kidney disease in type 2 diabetes mellitus. J Diabetes Complications 2016; 30:1300-7. [PMID: 27324705 DOI: 10.1016/j.jdiacomp.2016.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 11/17/2022]
Abstract
AIMS The aims of the study were (i) to ascertain prognostic value of serum uric acid (SUA) for diabetic kidney disease (DKD) progression and major adverse cardiovascular event (MACE) in a cohort of T2DM patients, (ii) to ascertain eventual protective effect of allopurinol treatment, (iii) to determine the effect of genetic variability in UA transporters on DKD progression, and (iv) to define optimal cut-off values for SUA in patients with DKD. METHODS Study comprised 422 subjects with diabetes duration at least 15years followed-up for a median of 43 [IQR 22-77] months. Participants were categorized into stable or progressors according to their change in albuminuria or chronic kidney disease (CKD) stage. At baseline, 68% patients had hyperuricemia (SUA≥420μmol/l for men and ≥360μmol/l for women and/or allopurinol treatment). Five SNPs in the SLC2A9 and ABCG2 genes were determined by PCR. RESULTS Time-to-event analysis with subgroups defined by the presence/absence of initial hyperuricemia revealed significant differences in all three end-points (P<0.0001 for DKD progression, P=0.0022 for MACE and P=0.0002 for death, log-rank test). Subjects with normal SUA not requiring allopurinol had median time to DKD progression 49months compared with remaining subjects (32months, P=0.0002, log-rank test). Multivariate Cox regression model revealed hyperuricemia (i.e. high SUA and/or allopurinol treatment) significant predictor of DKD progression independent of baseline CKD stage. Optimal cut-off values identified by ROC analysis for T2DM subjects were ≤377.5μmol/l for men and ≤309.0μmol/l for women. We found no differences in allele or genotype frequencies in selected SNPs between patients with and without hyperuricemia (all P>0.05). CONCLUSIONS Our study demonstrated that initial hyperuricemia or need for allopurinol is an independent risk factor for DKD progression and that SUA levels in diabetic subjects conferring protection against DKD progression might be lower than current cut-offs for general population.
Collapse
Affiliation(s)
- Vendula Bartáková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Katarína Kuricová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukáš Pácal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zuzana Nová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Veronika Dvořáková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martina Švrčková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Denisa Malúšková
- Institute of Biostatistics and Analyses, Masaryk University, Netroufalky 797/5, 625 00 Brno, Czech Republic
| | - Ivana Svobodová
- Institute of Biostatistics and Analyses, Masaryk University, Netroufalky 797/5, 625 00 Brno, Czech Republic
| | - Jitka Řehořová
- Diabetes Centre, Department of Internal Medicine - Gastroenterology, University Hospital Brno, Jihlavská 20, 625 00 Brno, Czech Republic
| | - Jan Svojanovský
- Nephrology & Dialysis Unit, The 2nd Department of Internal Medicine, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jindřich Olšovský
- Nephrology & Dialysis Unit, The 2nd Department of Internal Medicine, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jana Bělobrádková
- Diabetes Centre, Department of Internal Medicine - Gastroenterology, University Hospital Brno, Jihlavská 20, 625 00 Brno, Czech Republic
| | - Kateřina Kaňková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
482
|
Han L, Cao C, Jia Z, Liu S, Liu Z, Xin R, Wang C, Li X, Ren W, Wang X, Li C. Epidermal growth factor gene is a newly identified candidate gene for gout. Sci Rep 2016; 6:31082. [PMID: 27506295 PMCID: PMC4978989 DOI: 10.1038/srep31082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations.
Collapse
Affiliation(s)
- Lin Han
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaotong Jia
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shiguo Liu
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhen Liu
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ruosai Xin
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Can Wang
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xinde Li
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wei Ren
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xuefeng Wang
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Changgui Li
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
483
|
Sekula P, Del Greco M F, Pattaro C, Köttgen A. Mendelian Randomization as an Approach to Assess Causality Using Observational Data. J Am Soc Nephrol 2016; 27:3253-3265. [PMID: 27486138 DOI: 10.1681/asn.2016010098] [Citation(s) in RCA: 1316] [Impact Index Per Article: 146.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mendelian randomization refers to an analytic approach to assess the causality of an observed association between a modifiable exposure or risk factor and a clinically relevant outcome. It presents a valuable tool, especially when randomized controlled trials to examine causality are not feasible and observational studies provide biased associations because of confounding or reverse causality. These issues are addressed by using genetic variants as instrumental variables for the tested exposure: the alleles of this exposure-associated genetic variant are randomly allocated and not subject to reverse causation. This, together with the wide availability of published genetic associations to screen for suitable genetic instrumental variables make Mendelian randomization a time- and cost-efficient approach and contribute to its increasing popularity for assessing and screening for potentially causal associations. An observed association between the genetic instrumental variable and the outcome supports the hypothesis that the exposure in question is causally related to the outcome. This review provides an overview of the Mendelian randomization method, addresses assumptions and implications, and includes illustrative examples. We also discuss special issues in nephrology, such as inverse risk factor associations in advanced disease, and outline opportunities to design Mendelian randomization studies around kidney function and disease.
Collapse
Affiliation(s)
- Peggy Sekula
- Division of Genetic Epidemiology, Institute for Medical Biometry and Statistics and
| | | | - Cristian Pattaro
- Center for Biomedicine, European Academy of Bolzano, Bolzano, Italy
| | - Anna Köttgen
- Division of Genetic Epidemiology, Institute for Medical Biometry and Statistics and.,Department of Medicine IV, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; and
| |
Collapse
|
484
|
Roman YM, Culhane-Pera KA, Menk J, Straka RJ. Assessment of genetic polymorphisms associated with hyperuricemia or gout in the Hmong. Per Med 2016; 13:429-440. [PMID: 28781600 DOI: 10.2217/pme-2016-0021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIM Hyperuricemia commonly causes gout. Minnesota Hmong exhibit a two- to fivefold higher prevalence of gout versus non-Hmong. To elucidate a possible genomic contribution to this disparity, prevalence of risk alleles for hyperuricemia in Hmong was compared with European (CEU) and Han-Chinese (CHB). METHODS In total, 235 Hmong were genotyped for eight SNPs representing five candidate genes (SLC22A12, SLC2A9, ABCG2, SLC17A1 and PDZK1). RESULTS The frequency of seven out of eight risk alleles in the Hmong was significantly different than CEU; six higher and one with lower prevalence. The frequency of three out of eight risk alleles in the Hmong was significantly different than CHB; two higher and one with lower prevalence. CONCLUSION Hyperuricemia risk alleles are more prevalent in the Hmong than CEU and HB.
Collapse
Affiliation(s)
- Youssef M Roman
- Department of Experimental & Clinical Pharmacology, University of Minnesota College of Pharmacy, MN 55455, USA
| | | | - Jeremiah Menk
- Center of Translational Science Institute, Biostatistical Design & Analysis Center, University of Minnesota, MN 55455, USA
| | - Robert J Straka
- Department of Experimental & Clinical Pharmacology, University of Minnesota College of Pharmacy, MN 55455, USA
| |
Collapse
|
485
|
Joshi AD, Andersson C, Buch S, Stender S, Noordam R, Weng LC, Weeke PE, Auer PL, Boehm B, Chen C, Choi H, Curhan G, Denny JC, De Vivo I, Eicher JD, Ellinghaus D, Folsom AR, Fuchs C, Gala M, Haessler J, Hofman A, Hu F, Hunter DJ, Janssen HL, Kang JH, Kooperberg C, Kraft P, Kratzer W, Lieb W, Lutsey PL, Murad SD, Nordestgaard BG, Pasquale LR, Reiner AP, Ridker PM, Rimm E, Rose LM, Shaffer CM, Schafmayer C, Tamimi RM, Uitterlinden AG, Völker U, Völzke H, Wakabayashi Y, Wiggs JL, Zhu J, Roden DM, Stricker BH, Tang W, Teumer A, Hampe J, Tybjærg-Hansen A, Chasman DI, Chan AT, Johnson AD. Four Susceptibility Loci for Gallstone Disease Identified in a Meta-analysis of Genome-Wide Association Studies. Gastroenterology 2016; 151:351-363.e28. [PMID: 27094239 PMCID: PMC4959966 DOI: 10.1053/j.gastro.2016.04.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS A genome-wide association study (GWAS) of 280 cases identified the hepatic cholesterol transporter ABCG8 as a locus associated with risk for gallstone disease, but findings have not been reported from any other GWAS of this phenotype. We performed a large-scale, meta-analysis of GWASs of individuals of European ancestry with available prior genotype data, to identify additional genetic risk factors for gallstone disease. METHODS We obtained per-allele odds ratio (OR) and standard error estimates using age- and sex-adjusted logistic regression models within each of the 10 discovery studies (8720 cases and 55,152 controls). We performed an inverse variance weighted, fixed-effects meta-analysis of study-specific estimates to identify single-nucleotide polymorphisms that were associated independently with gallstone disease. Associations were replicated in 6489 cases and 62,797 controls. RESULTS We observed independent associations for 2 single-nucleotide polymorphisms at the ABCG8 locus: rs11887534 (OR, 1.69; 95% confidence interval [CI], 1.54-1.86; P = 2.44 × 10(-60)) and rs4245791 (OR, 1.27; P = 1.90 × 10(-34)). We also identified and/or replicated associations for rs9843304 in TM4SF4 (OR, 1.12; 95% CI, 1.08-1.16; P = 6.09 × 10(-11)), rs2547231 in SULT2A1 (encodes a sulfoconjugation enzyme that acts on hydroxysteroids and cholesterol-derived sterol bile acids) (OR, 1.17; 95% CI, 1.12-1.21; P = 2.24 × 10(-10)), rs1260326 in glucokinase regulatory protein (OR, 1.12; 95% CI, 1.07-1.17; P = 2.55 × 10(-10)), and rs6471717 near CYP7A1 (encodes an enzyme that catalyzes conversion of cholesterol to primary bile acids) (OR, 1.11; 95% CI, 1.08-1.15; P = 8.84 × 10(-9)). Among individuals of African American and Hispanic American ancestry, rs11887534 and rs4245791 were associated positively with gallstone disease risk, whereas the association for the rs1260326 variant was inverse. CONCLUSIONS In this large-scale GWAS of gallstone disease, we identified 4 loci in genes that have putative functions in cholesterol metabolism and transport, and sulfonylation of bile acids or hydroxysteroids.
Collapse
Affiliation(s)
- Amit D. Joshi
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA,Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital Boston, MA,To whom correspondence should be addressed: Amit D. Joshi, MBBS, PhD, Clinical and Translational Epidemiology Unit, Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA. Tel: +1 617 724 7558; Charlotte Andersson, MD, PhD, The Framingham Heart Study, 73 Mt Wayte Avenue, Framingham, Massachusetts 01702, USA. , Andrew T. Chan, MD, MPH, Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, Division of Gastroenterology, GRJ-825C, Boston, Massachusetts 02114, USA. Tel:+1 617 724 0283; Fax: +1 617 726 3673; , Andrew D. Johnson, PhD, Division of Intramural Research, National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics Branch, The Framingham Heart Study, 73 Mt. Wayte Ave., Suite #2, Framingham, MA, 01702, USA. Tel: +1 508 663 4082; Fax: +1 508 626 1262;
| | - Charlotte Andersson
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts.
| | - Stephan Buch
- Medical Department 1, University Hospital Dresden, TU Dresden, Dresden Germany
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Raymond Noordam
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lu-Chen Weng
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, MN
| | - Peter E. Weeke
- Department of Medicine, Vanderbilt University, Nashville, TN,Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Paul L. Auer
- Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Bernhard Boehm
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Constance Chen
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA
| | - Hyon Choi
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Gary Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Joshua C. Denny
- Department of Medicine, Vanderbilt University, Nashville, TN,Department of Biomedical Informatics, Vanderbilt University, Nashville, TN
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - John D. Eicher
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA,Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Aaron R. Folsom
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, MN
| | - Charles Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Manish Gala
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Frank Hu
- Department of Epidemiology, Harvard School of Public Health, Boston, MA,Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - David J. Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA,Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Harry L.A. Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands,Toronto Centre for Liver Disease, Toronto Western and General Hospital, University Health Network, Toronto, Canada
| | - Jae H. Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA,Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Wolfgang Kratzer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian Albrechts Universität Kiel, Niemannsweg 11, Kiel, Germany
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, MN
| | - Sarwa Darwish Murad
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| | - Børge G. Nordestgaard
- The Copenhagen General Population Study and,Department of Clinical Biochemistry, Herlev Hospital, Herlev Denmark,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louis R. Pasquale
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA
| | - Alex P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Paul M Ridker
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Eric Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,Department of Epidemiology, Harvard School of Public Health, Boston, MA,Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Lynda M. Rose
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | - Clemens Schafmayer
- Department of General, Abdominal, Thoracic and Transplantation Surgery, University of Kiel, Kiel, Germany
| | - Rulla M. Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany,German Center for Cardiovascular Research, Partner Site Greifswald,German Center for Diabetes Research, Site Greifswald
| | - Yoshiyuki Wakabayashi
- The National Heart, Lung, and Blood Institute, DNA Sequencing Core Laboratory, Bethesda, MD
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA
| | - Jun Zhu
- The National Heart, Lung, and Blood Institute, DNA Sequencing Core Laboratory, Bethesda, MD
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Bruno H. Stricker
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, MN
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, TU Dresden, Dresden Germany
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark,Department of Clinical Biochemistry, Herlev Hospital, Herlev Denmark
| | - Daniel I. Chasman
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Andrew T. Chan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,To whom correspondence should be addressed: Amit D. Joshi, MBBS, PhD, Clinical and Translational Epidemiology Unit, Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA. Tel: +1 617 724 7558; Charlotte Andersson, MD, PhD, The Framingham Heart Study, 73 Mt Wayte Avenue, Framingham, Massachusetts 01702, USA. , Andrew T. Chan, MD, MPH, Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, Division of Gastroenterology, GRJ-825C, Boston, Massachusetts 02114, USA. Tel:+1 617 724 0283; Fax: +1 617 726 3673; , Andrew D. Johnson, PhD, Division of Intramural Research, National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics Branch, The Framingham Heart Study, 73 Mt. Wayte Ave., Suite #2, Framingham, MA, 01702, USA. Tel: +1 508 663 4082; Fax: +1 508 626 1262;
| | - Andrew D. Johnson
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA,Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA,To whom correspondence should be addressed: Amit D. Joshi, MBBS, PhD, Clinical and Translational Epidemiology Unit, Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA. Tel: +1 617 724 7558; Charlotte Andersson, MD, PhD, The Framingham Heart Study, 73 Mt Wayte Avenue, Framingham, Massachusetts 01702, USA. , Andrew T. Chan, MD, MPH, Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, Division of Gastroenterology, GRJ-825C, Boston, Massachusetts 02114, USA. Tel:+1 617 724 0283; Fax: +1 617 726 3673; , Andrew D. Johnson, PhD, Division of Intramural Research, National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics Branch, The Framingham Heart Study, 73 Mt. Wayte Ave., Suite #2, Framingham, MA, 01702, USA. Tel: +1 508 663 4082; Fax: +1 508 626 1262;
| |
Collapse
|
486
|
Common variant of PDZ domain containing 1 (PDZK1) gene is associated with gout susceptibility: A replication study and meta-analysis in Japanese population. Drug Metab Pharmacokinet 2016; 31:464-466. [PMID: 27720648 DOI: 10.1016/j.dmpk.2016.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/04/2016] [Accepted: 07/25/2016] [Indexed: 11/20/2022]
Abstract
PDZ domain containing 1 (PDZK1) is a scaffold protein that organizes a transportsome and regulates several transporters' functions including urate and drug transporters. Therefore, PDZK1 in renal proximal tubules may affect serum uric acid levels through PDZK1-binding renal urate transporters. Two previous studies in Japanese male population reported that a PDZK1 single nucleotide polymorphism (SNP), rs12129861, was not associated with gout. In the present study, we performed a further association analysis between gout and rs12129861 in a different large-scale Japanese male population and a meta-analysis with previous Japanese population studies. We genotyped rs12129861 in 1210 gout cases and 1224 controls of a Japanese male population by TaqMan assay. As a result, we showed that rs12129861 was significantly associated with gout susceptibility (P = 0.016, odds ratio [OR] = 0.80, 95% confidence interval [CI] 0.67-0.96). The result of the meta-analysis among Japanese populations also showed a significant association (P = 0.013, OR = 0.85, 95%CI 0.75-0.97). Our findings show the significant association between gout susceptibility and common variant of PDZK1 which reportedly regulates the functions of urate transporters in the urate transportsome.
Collapse
|
487
|
Pan Y, Kong LD. Urate transporter URAT1 inhibitors: a patent review (2012 - 2015). Expert Opin Ther Pat 2016; 26:1129-1138. [DOI: 10.1080/13543776.2016.1213243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
488
|
Das Gupta E, Sakthiswary R, Lee SL, Wong SF, Hussein H, Gun SC. Clinical significance of SLC2A9/GLUT9
rs11722228 polymorphisms in gout. Int J Rheum Dis 2016; 21:705-709. [DOI: 10.1111/1756-185x.12918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Esha Das Gupta
- Department of Medicine; International Medical University; Seremban Malaysia
| | - Rajalingham Sakthiswary
- Department of Medicine; Universiti Kebangsaan Malaysia Medical Centre; Kuala Lumpur Malaysia
| | - Shing L. Lee
- Department of Medicine; International Medical University; Seremban Malaysia
| | - Shew F. Wong
- Department of Medicine; International Medical University; Seremban Malaysia
| | - Heselynn Hussein
- Department of Medicine; Putrajaya Hospital; Wilayah Persekutuan Putrajaya Malaysia
| | - Suk C. Gun
- Department of Medicine; Tuanku Jaafar Hospital; Seremban Malaysia
| |
Collapse
|
489
|
Torrico B, Chiocchetti AG, Bacchelli E, Trabetti E, Hervás A, Franke B, Buitelaar JK, Rommelse N, Yousaf A, Duketis E, Freitag CM, Caballero-Andaluz R, Martinez-Mir A, Scholl FG, Ribasés M, Battaglia A, Malerba G, Delorme R, Benabou M, Maestrini E, Bourgeron T, Cormand B, Toma C. Lack of replication of previous autism spectrum disorder GWAS hits in European populations. Autism Res 2016; 10:202-211. [DOI: 10.1002/aur.1662] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Bàrbara Torrico
- Departament de Genètica; Microbiologia i Estadística, Universitat de Barcelona; Av. Diagonal 643 08028 Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III; C/ Monforte de Lemos 3-5 28029 Madrid Spain
- Institut de Biomedicina, Universitat de Barcelona; Av. Diagonal 643 08028 Barcelona Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Dáu; Santa Rosa 39-57 08950 Esplugues de Llobregat Spain
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry; Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University; Deutschordenstraße 50 60528 Frankfurt am Main Frankfurt am Main Germany
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology; University of Bologna; via Selmi 3 40126 Bologna Italy
| | - Elisabetta Trabetti
- Department of Neurological; Biomedical and Movement Sciences, Section of Biology and Genetics, University of Verona; Strada le Grazie 8 37134 Verona Italy
| | - Amaia Hervás
- Child and Adolescent Mental Health Unit; University Hospital MutuaTerrassa; Plaza del Dr Robert s/n 08221 Terrassa Barcelona Spain
| | - Barbara Franke
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics; Geert Grooteplein-Zuid 10 6525 GA Nijmegen The Netherlands
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Psychiatry; Geert Grooteplein-Zuid 10 6525 GA Nijmegen The Netherlands
| | - Jan K. Buitelaar
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience; Geert Grooteplein Noord 21 6525 EZ Nijmegen The Netherlands
- Karakter Child and Adolescent Psychiatry University Center; Reinier Postlaan 12 6525 GC Nijmegen The Netherlands
| | - Nanda Rommelse
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Psychiatry; Geert Grooteplein-Zuid 10 6525 GA Nijmegen The Netherlands
- Karakter Child and Adolescent Psychiatry University Center; Reinier Postlaan 12 6525 GC Nijmegen The Netherlands
| | - Afsheen Yousaf
- Department of Child and Adolescent Psychiatry; Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University; Deutschordenstraße 50 60528 Frankfurt am Main Frankfurt am Main Germany
- Institute for Molecular Bioinformatics; Johann Wolfgang Goethe-University; Robert-Mayer-Str. 11-15 60325 Frankfurt am Main Germany
| | - Eftichia Duketis
- Department of Child and Adolescent Psychiatry; Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University; Deutschordenstraße 50 60528 Frankfurt am Main Frankfurt am Main Germany
| | - Christine M. Freitag
- Department of Child and Adolescent Psychiatry; Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University; Deutschordenstraße 50 60528 Frankfurt am Main Frankfurt am Main Germany
| | | | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS); Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla; Av. Manuel Siurot s/n 41013 Seville Spain
| | - Francisco G. Scholl
- Instituto de Biomedicina de Sevilla (IBiS); Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla; Av. Manuel Siurot s/n 41013 Seville Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona; Passeig Vall d'Hebron 119-129 08035 Barcelona Spain
- Department of Psychiatry; Hospital Universitari Vall d'Hebron; Passeig Vall d'Hebron 119-129, 08035 Barcelona Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM); Av. Monforte de Lemos, 3-5 28029 Madrid Spain
| | - Agatino Battaglia
- Stella Maris Clinical Research Institute for Child and Adolescent Neuropsychiatry, via dei Giacinti 2, 56128 Calambrone; Pisa Italy
| | - Giovanni Malerba
- Department of Neurological; Biomedical and Movement Sciences, Section of Biology and Genetics, University of Verona; Strada le Grazie 8 37134 Verona Italy
| | - Richard Delorme
- Institut Pasteur, Human Genetics and Cognitive Functions Unit; 25, rue du docteur Roux 75015 Paris France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur; 25, rue du docteur Roux 75015 Paris France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions; 5 Rue Thomas Mann 75013 Paris France
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital; 48Bd Sérurier 75019 Paris France
| | - Marion Benabou
- Institut Pasteur, Human Genetics and Cognitive Functions Unit; 25, rue du docteur Roux 75015 Paris France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur; 25, rue du docteur Roux 75015 Paris France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions; 5 Rue Thomas Mann 75013 Paris France
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology; University of Bologna; via Selmi 3 40126 Bologna Italy
| | - Thomas Bourgeron
- Institut Pasteur, Human Genetics and Cognitive Functions Unit; 25, rue du docteur Roux 75015 Paris France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur; 25, rue du docteur Roux 75015 Paris France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions; 5 Rue Thomas Mann 75013 Paris France
| | - Bru Cormand
- Departament de Genètica; Microbiologia i Estadística, Universitat de Barcelona; Av. Diagonal 643 08028 Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III; C/ Monforte de Lemos 3-5 28029 Madrid Spain
- Institut de Biomedicina, Universitat de Barcelona; Av. Diagonal 643 08028 Barcelona Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Dáu; Santa Rosa 39-57 08950 Esplugues de Llobregat Spain
| | - Claudio Toma
- Departament de Genètica; Microbiologia i Estadística, Universitat de Barcelona; Av. Diagonal 643 08028 Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III; C/ Monforte de Lemos 3-5 28029 Madrid Spain
- Institut de Biomedicina, Universitat de Barcelona; Av. Diagonal 643 08028 Barcelona Spain
- Neuroscience Research Australia; Barker St Randwick 2031 Sydney New South Wales Australia
- School of Medical Sciences, University of New South Wales; High St, Kensington 2052 Sydney New South Wales Australia
| | | |
Collapse
|
490
|
Robinson PC, Choi HK, Do R, Merriman TR. Insight into rheumatological cause and effect through the use of Mendelian randomization. Nat Rev Rheumatol 2016; 12:486-96. [PMID: 27411906 DOI: 10.1038/nrrheum.2016.102] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Establishing causality of risk factors is important to determine the pathogenetic mechanisms underlying rheumatic diseases, and can facilitate the design of interventions to improve care for affected patients. The presence of unmeasured confounders, as well as reverse causation, is a challenge to the assignment of causality in observational studies. Alleles for genetic variants are randomly inherited at meiosis. Mendelian randomization analysis uses these genetic variants to test whether a particular risk factor is causal for a disease outcome. In this Review of the Mendelian randomization technique, we discuss published results and potential applications in rheumatology, as well as the general clinical utility and limitations of the approach.
Collapse
Affiliation(s)
- Philip C Robinson
- School of Medicine, Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston Road, Brisbane, Queensland 4006, Australia.,Department of Rheumatology, Royal Brisbane and Women's Hospital, Butterfield St and Bowen Bridge Rd, Brisbane, Queensland 4029, Australia
| | - Hyon K Choi
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, 55 Fruit Street, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Ron Do
- Genetics and Genome Sciences, Mount Sinai School of Medicine, 1 Gustav L. Levy Place, New York 10029-5674, USA
| | - Tony R Merriman
- Department of Biochemistry, 710 Cumberland Street, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
491
|
Metabolomics: Bridging the Gap between Pharmaceutical Development and Population Health. Metabolites 2016; 6:metabo6030020. [PMID: 27399792 PMCID: PMC5041119 DOI: 10.3390/metabo6030020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/06/2016] [Accepted: 07/01/2016] [Indexed: 12/28/2022] Open
Abstract
Metabolomics has emerged as an essential tool for studying metabolic processes, stratification of patients, as well as illuminating the fundamental metabolic alterations in disease onset, progression, or response to therapeutic intervention. Metabolomics materialized within the pharmaceutical industry as a standalone assay in toxicology and disease pathology and eventually evolved towards aiding in drug discovery and pre-clinical studies via supporting pharmacokinetic and pharmacodynamic characterization of a drug or a candidate. Recent progress in the field is illustrated by coining of the new term—Pharmacometabolomics. Integration of data from metabolomics with large-scale omics along with clinical, molecular, environmental and behavioral analysis has demonstrated the enhanced utility of deconstructing the complexity of health, disease, and pharmaceutical intervention(s), which further highlight it as an essential component of systems medicine. This review presents the current state and trend of metabolomics applications in pharmaceutical development, and highlights the importance and potential of clinical metabolomics as an essential part of multi-omics protocols that are directed towards shaping precision medicine and population health.
Collapse
|
492
|
Abstract
This issue provides a clinical overview of gout, focusing on prevention and screening, diagnosis, and treatment. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.
Collapse
|
493
|
Kannangara DRW, Phipps-Green AJ, Dalbeth N, Stamp LK, Williams KM, Graham GG, Day RO, Merriman TR. Hyperuricaemia: contributions of urate transporter ABCG2 and the fractional renal clearance of urate. Ann Rheum Dis 2016; 75:1363-6. [PMID: 26835700 DOI: 10.1136/annrheumdis-2015-208111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/07/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the contributions towards hyperuricaemia of known risk factors, focusing on fractional (renal) clearance of urate (FCU) and variation in the ATP-binding cassette transporter, sub-family G 2 (ABCG2) gene. METHODS The contributions of age, sex, ancestry, Q141K genotype for ABCG2, FCU, sugar-sweetened beverage and alcohol consumption, metabolic syndrome disorders and measures of renal function to the risk of hyperuricaemia were evaluated by comparing hyperuricaemic (serum urate≥0.42 mmol/L, n=448) with normouricaemic (serum urate<0.42 mmol/L, n=344) participants using stepwise logistic regression. Model performance was evaluated using the area under the receiver operator characteristic curve (AUROC). RESULTS ABCG2 genotype, FCU, male sex, body mass index, serum triglyceride concentrations, estimated glomerular filtration rate and consumption of alcohol were the best predictors of hyperuricaemia (AUROC 0.90, 81% accuracy). Homozygosity in the 141K variant for ABCG2 conferred an adjusted OR of 10.5 for hyperuricaemia (95% CI 2.4 to 46.2). For each 1% decrease of FCU, the adjusted OR increased by 51% (OR 1.51, 95% CI 1.37 to 1.66). There was no association between ABCG2 genotype and FCU (r=0.02, p=0.83). CONCLUSIONS The ABCG2 141K variant and the FCU contribute strongly but independently to hyperuricaemia. These findings provide further evidence for a significant contribution of ABCG2 to extra-renal (gut) clearance of urate.
Collapse
Affiliation(s)
- Diluk R W Kannangara
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | | | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, Canterbury, New Zealand
| | - Kenneth M Williams
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Garry G Graham
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Richard O Day
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, New South Wales, Australia St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
494
|
Tan PK, Farrar JE, Gaucher EA, Miner JN. Coevolution of URAT1 and Uricase during Primate Evolution: Implications for Serum Urate Homeostasis and Gout. Mol Biol Evol 2016; 33:2193-200. [PMID: 27352852 PMCID: PMC4989112 DOI: 10.1093/molbev/msw116] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Uric acid is the highly insoluble end-product of purine metabolism in humans. Serum levels exceeding the solubility threshold can trigger formation of urate crystals resulting in gouty arthritis. Uric acid is primarily excreted through the kidneys with 90% reabsorbed back into the bloodstream through the uric acid transporter URAT1. This reabsorption process is essential for the high serum uric acid levels found in humans. We discovered that URAT1 proteins from humans and baboons have higher affinity for uric acid compared with transporters from rats and mice. This difference in transport kinetics of URAT1 orthologs, along with inability of modern apes to oxidize uric acid due to loss of the uricase enzyme, prompted us to ask whether these events occurred concomitantly during primate evolution. Ancestral URAT1 sequences were computationally inferred and ancient transporters were resurrected and assayed, revealing that affinity for uric acid was increased during the evolution of primates. This molecular fine-tuning occurred between the origins of simians and their diversification into New- and Old-World monkey and ape lineages. Remarkably, it was driven in large-part by only a few amino acid replacements within the transporter. This alteration in primate URAT1 coincided with changes in uricase that greatly diminished the enzymatic activity and took place 27–77 Ma. These results suggest that the modifications to URAT1 transporters were potentially adaptive and that maintaining more constant, high levels of serum uric acid may have provided an advantage to our primate ancestors.
Collapse
Affiliation(s)
- Philip K Tan
- Biology Department, Ardea Biosciences, Inc, San Diego, CA
| | | | - Eric A Gaucher
- School of Biology, Georgia Institute of Technology General Genomics, Atlanta, GA
| | | |
Collapse
|
495
|
Yang L, Dong Z, Zhou J, Ma Y, Pu W, Zhao D, He H, Ji H, Yang Y, Wang X, Xu X, Pang Y, Zou H, Jin L, Yang C, Wang J. Common UCP2 variants contribute to serum urate concentrations and the risk of hyperuricemia. Sci Rep 2016; 6:27279. [PMID: 27273589 PMCID: PMC4897637 DOI: 10.1038/srep27279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Elevated serum urate, which is regulated at multiple levels including genetic variants, is a risk factor for gout and other metabolic diseases. This study aimed to investigate the association between UCP2 variants and serum urate as well as hyperuricemia in a Chinese population. In total, 4332 individuals were genotyped for two common UCP2 variants, -866G/A and Ala55Val. These loci were not associated either serum urate level or with a risk of hyperuricemia in the total group of subjects. However, in females, -866G/A and Ala55Val were associated with a lower serum urate (P = 0.006 and 0.014, seperately) and played a protective role against hyperuricemia (OR = 0.80, P = 0.018; OR = 0.79, P = 0.016). These associations were not observed in the males. After further stratification, the two loci were associated with serum urate in overweight, but not underweight females. The haplotype A-T (-866G/A-Ala55Val) was a protective factor for hyperuricemia in the female subgroup (OR = 0.80, P = 0.017). This present study identified a novel gene, UCP2, that influences the serum urate concentration and the risk of hyperuricemia, and the degree of association varies with gender and BMI levels.
Collapse
Affiliation(s)
- Luyu Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheng Dong
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingru Zhou
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongbao Zhao
- Division of Rheumatology and Immunology, Changhai Hospital, Shanghai, China
| | - Hongjun He
- Division of Rheumatology, Taixing People's Hospital, Jiangsu Province, China
| | - Hengdong Ji
- Division of Rheumatology, Taizhou People's Hospital, Jiangsu Province, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu Province, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu Province, China
| | - Xia Xu
- Division of Rheumatology and Immunology, Changhai Hospital, Shanghai, China
| | - Yafei Pang
- Division of Rheumatology and Immunology, Changhai Hospital, Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu Province, China
| | - Chengde Yang
- Division of Rheumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu Province, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
496
|
Abstract
Elevated serum urate concentration is the primary cause of gout. Understanding the processes that affect serum urate concentration is important for understanding the etiology of gout and thereby understanding treatment. Urate handing in the human body is a complex system including three major processes: production, renal elimination, and intestinal elimination. A change in any one of these can affect both the steady-state serum urate concentration as well as other urate processes. The remarkable complexity underlying urate regulation and its maintenance at high levels in humans suggests that this molecule could potentially play an interesting role other than as a mere waste product to be eliminated as rapidly as possible.
Collapse
Affiliation(s)
- David Hyndman
- Ardea Biosciences, Inc., Biology Department, 9390 Towne Centre Drive, San Diego, CA, 92121, USA.
| | - Sha Liu
- Ardea Biosciences, Inc., Biology Department, 9390 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Jeffrey N Miner
- Ardea Biosciences, Inc., Biology Department, 9390 Towne Centre Drive, San Diego, CA, 92121, USA
| |
Collapse
|
497
|
Isaka Y, Takabatake Y, Takahashi A, Saitoh T, Yoshimori T. Hyperuricemia-induced inflammasome and kidney diseases. Nephrol Dial Transplant 2016; 31:890-896. [DOI: 10.1093/ndt/gfv024] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
498
|
Causal Assessment of Serum Urate Levels in Cardiometabolic Diseases Through a Mendelian Randomization Study. J Am Coll Cardiol 2016; 67:407-416. [PMID: 26821629 DOI: 10.1016/j.jacc.2015.10.086] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although epidemiological studies have reported positive associations between circulating urate levels and cardiometabolic diseases, causality remains uncertain. OBJECTIVES Through a Mendelian randomization approach, we assessed whether serum urate levels are causally relevant in type 2 diabetes mellitus (T2DM), coronary heart disease (CHD), ischemic stroke, and heart failure (HF). METHODS This study investigated 28 single nucleotide polymorphisms known to regulate serum urate levels in association with various vascular and nonvascular risk factors to assess pleiotropy. To limit genetic confounding, 14 single nucleotide polymorphisms exclusively associated with serum urate levels were used in a genetic risk score to assess associations with the following cardiometabolic diseases (cases/controls): T2DM (26,488/83,964), CHD (54,501/68,275), ischemic stroke (14,779/67,312), and HF (4,526/18,400). As a positive control, this study also investigated our genetic instrument in 3,151 gout cases and 68,350 controls. RESULTS Serum urate levels, increased by 1 SD due to the genetic score, were not associated with T2DM, CHD, ischemic stroke, or HF. These results were in contrast with previous prospective studies that did observe increased risks of these 4 cardiometabolic diseases for an equivalent increase in circulating urate levels. However, a 1 SD increase in serum urate levels due to the genetic score was associated with increased risk of gout (odds ratio: 5.84; 95% confidence interval: 4.56 to 7.49), which was directionally consistent with previous observations. CONCLUSIONS Evidence from this study does not support a causal role of circulating serum urate levels in T2DM, CHD, ischemic stroke, or HF. Decreasing serum urate levels may not translate into risk reductions for cardiometabolic conditions.
Collapse
|
499
|
Tu HP, Chung CM, Min-Shan Ko A, Lee SS, Lai HM, Lee CH, Huang CM, Liu CS, Ko YC. Additive composite ABCG2, SLC2A9 and SLC22A12 scores of high-risk alleles with alcohol use modulate gout risk. J Hum Genet 2016; 61:803-10. [PMID: 27225847 DOI: 10.1038/jhg.2016.57] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 04/23/2016] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to evaluate the contribution of urate transporter genes and alcohol use to the risk of gout/tophi. Eight variants of ABCG2, SLC2A9, SLC22A12, SLC22A11 and SLC17A3 were genotyped in male individuals in a case-control study with 157 gout (33% tophi), 106 asymptomatic hyperuricaemia and 295 control subjects from Taiwan. The multilocus profiles of the genetic risk scores for urate gene variants were used to evaluate the risk of asymptomatic hyperuricaemia, gout and tophi. ABCG2 Q141K (T), SLC2A9 rs1014290 (A) and SLC22A12 rs475688 (C) under an additive model and alcohol use independently predicted the risk of gout (respective odds ratio for each factor=2.48, 2.03, 1.95 and 2.48). The additive composite Q141K, rs1014290 and rs475688 scores of high-risk alleles were associated with gout risk (P<0.0001). We observed the supramultiplicative interaction effect of genetic urate scores and alcohol use on gout and tophi risk (P for interaction=0.0452, 0.0033). The synergistic effect of genetic urate score 5-6 and alcohol use indicates that these combined factors correlate with gout and tophi occurrence.
Collapse
Affiliation(s)
- Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Min Chung
- Environment-Omics-Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Albert Min-Shan Ko
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig Germany
| | - Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Han-Ming Lai
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | - Chien-Hung Lee
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Ming Huang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chiu-Shong Liu
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
500
|
Sakiyama M, Matsuo H, Nakaoka H, Yamamoto K, Nakayama A, Nakamura T, Kawai S, Okada R, Ooyama H, Shimizu T, Shinomiya N. Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus. Sci Rep 2016; 6:25360. [PMID: 27181629 PMCID: PMC4867610 DOI: 10.1038/srep25360] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/15/2016] [Indexed: 01/28/2023] Open
Abstract
Gout is a common disease resulting from hyperuricemia. Recently, a genome-wide association study identified an association between gout and a single nucleotide polymorphism (SNP) rs2188380, located on an intergenic region between MYL2 and CUX2 on chromosome 12. However, other genes around rs2188380 could possibly be gout susceptibility genes. Therefore, we performed a fine-mapping study of the MYL2-CUX2 region. From 8,595 SNPs in the MYL2-CUX2 region, 9 tag SNPs were selected, and genotyping of 1,048 male gout patients and 1,334 male controls was performed by TaqMan method. Eight SNPs showed significant associations with gout after Bonferroni correction. rs671 (Glu504Lys) of ALDH2 had the most significant association with gout (P = 1.7 × 10−18, odds ratio = 0.53). After adjustment for rs671, the other 8 SNPs no longer showed a significant association with gout, while the significant association of rs671 remained. rs671 has been reportedly associated with alcohol drinking behavior, and it is well-known that alcohol drinking elevates serum uric acid levels. These data suggest that rs671, a common functional SNP of ALDH2, is a genuine gout-associated SNP in the MYL2-CUX2 locus and that “A” allele (Lys) of rs671 plays a protective role in the development of gout.
Collapse
Affiliation(s)
- Masayuki Sakiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.,Department of Dermatology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-0801, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Hiroshi Ooyama
- Ryougoku East Gate Clinic, 3-21-1 Ryougoku, Sumida-ku, Tokyo 130-0026, Japan
| | - Toru Shimizu
- Kyoto Industrial Health Association, 67 Kitatsuboi-cho, Nishinokyo, Nakagyo-ku, Kyoto 604-8472, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|