451
|
Upadhya P, Birkenmeier EH, Birkenmeier CS, Barker JE. Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc Natl Acad Sci U S A 2000; 97:217-21. [PMID: 10618398 PMCID: PMC26643 DOI: 10.1073/pnas.97.1.217] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1999] [Indexed: 01/25/2023] Open
Abstract
We previously have described a mouse model for polycystic kidney disease (PKD) caused by either of two mutations, kat or kat(2J), that map to the same locus on chromosome 8. The homozygous mutant animals have a latent onset, slowly progressing form of PKD with renal pathology similar to the human autosomal-dominant PKD. In addition, the mutant animals show pleiotropic effects that include facial dysmorphism, dwarfing, male sterility, anemia, and cystic choroid plexus. We previously fine-mapped the kat(2J) mutation to a genetic distance of 0.28 +/- 0.12 centimorgan between D8Mit128 and D8Mit129. To identify the underlying molecular defect in this locus, we constructed an integrated genetic and physical map of the critical region surrounding the kat(2J) mutation. Cloning and expression analysis of the transcribed sequences from this region identified Nek1, a NIMA (never in mitosis A)-related kinase as a candidate gene. Further analysis of the Nek1 gene from both kat/kat and kat(2J)/kat(2J) mutant animals identified a partial internal deletion and a single-base insertion as the molecular basis for these mutations. The complex pleiotropic phenotypes seen in the homozygous mutant animals suggest that the NEK1 protein participates in different signaling pathways to regulate diverse cellular processes. Our findings identify a previously unsuspected role for Nek1 in the kidney and open a new avenue for studying cystogenesis and identifying possible modes of therapy.
Collapse
Affiliation(s)
- P Upadhya
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|
452
|
Wu G, Markowitz GS, Li L, D'Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H, Kucherlapati R, Edelmann W, Somlo S. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 2000; 24:75-8. [PMID: 10615132 DOI: 10.1038/71724] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PKD2, mutations in which cause autosomal dominant polycystic kidney disease (ADPKD), encodes an integral membrane glycoprotein with similarity to calcium channel subunits. We induced two mutations in the mouse homologue Pkd2 (ref.4): an unstable allele (WS25; hereafter denoted Pkd2WS25) that can undergo homologous-recombination-based somatic rearrangement to form a null allele; and a true null mutation (WS183; hereafter denoted Pkd2-). We examined these mutations to understand the function of polycystin-2, the protein product of Pkd2, and to provide evidence that kidney and liver cyst formation associated with Pkd2 deficiency occurs by a two-hit mechanism. Pkd2-/- mice die in utero between embryonic day (E) 13.5 and parturition. They have structural defects in cardiac septation and cyst formation in maturing nephrons and pancreatic ducts. Pancreatic ductal cysts also occur in adult Pkd2WS25/- mice, suggesting that this clinical manifestation of ADPKD also occurs by a two-hit mechanism. As in human ADPKD, formation of kidney cysts in adult Pkd2WS25/- mice is associated with renal failure and early death (median survival, 65 weeks versus 94 weeks for controls). Adult Pkd2+/- mice have intermediate survival in the absence of cystic disease or renal failure, providing the first indication of a deleterious effect of haploinsufficiency at Pkd2on long-term survival. Our studies advance our understanding of the function of polycystin-2 in development and our mouse models recapitulate the complex human ADPKD phenotype.
Collapse
Affiliation(s)
- G Wu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
453
|
Abstract
Considerable progress toward understanding pathogenesis of autosomal dominant polycystic disease (ADPKD) has been made during the past 15 years. ADPKD is a heterogeneous human disease resulting from mutations in either of two genes, PKD1 and PKD2. The similarity in the clinical presentation and evidence of direct interaction between the COOH termini of polycystin-1 and polycystin-2, the respective gene products, suggest that both proteins act in the same molecular pathway. The fact that most mutations from ADPKD patients result in truncated polycystins as well as evidence of a loss of heterozygosity mechanism in individual PKD cysts indicate that the loss of the function of either PKD1 or PKD2 is the most likely pathogenic mechanism for ADPKD. A novel mouse model, WS25, has been generated with a targeted mutation at Pkd2 locus in which a mutant exon 1 created by inserting a neo(r) cassette exists in tandem with the wild-type exon 1. This causes an unstable allele that undergoes secondary recombination to produce a true null allele at Pkd2 locus. Therefore, the model Pkd2(WS25/-), which carries the WS25 unstable allele and a true null allele, produces somatic second hits during mouse development or adult life and establishes an extremely faithful model of human ADPKD.
Collapse
Affiliation(s)
- G Wu
- Section of Nephrology, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| | | |
Collapse
|
454
|
Abstract
Epithelins are polypeptides that are preferentially expressed in epithelial cells and modulate growth. Epithelin expression is predominant in tissues of epithelial origin such as the kidney, spleen, lung, placenta, and colon. Because polycystic kidney disease involves abnormal proliferation of the proximal and/or distal tubule epithelial cells, we investigated epithelin mRNA expression in polycystic kidneys of mice homozygous for the mutation. Epithelin mRNA was highly expressed in the polycystic kidneys of homozygous mice when compared with the heterozygotes or wild type controls. A study on the time course of epithelin expression indicated that epithelin mRNA expression paralleled cyst formation and progression of the disease. A 2-fold increase in expression was observed at Day 15, a stage when cystic changes were first visible. This increase in expression was also observed at Day 21, a stage of maximum disease pathology, which ultimately results in the death of the animal. In situ hybridization localized epithelin mRNA predominantly to the epithelial cell layer surrounding the cysts. The high levels of epithelin in epithelial cells suggest a role in renal epithelial cell proliferation and cyst formation in polycystic kidney disease.
Collapse
Affiliation(s)
- S M Ali
- Department of Renal Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA
| | | | | | | |
Collapse
|
455
|
Müller U, Brändli AW. Cell adhesion molecules and extracellular-matrix constituents in kidney development and disease. J Cell Sci 1999; 112 ( Pt 22):3855-67. [PMID: 10547347 DOI: 10.1242/jcs.112.22.3855] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Functional analyses of cell-matrix interactions during kidney organogenesis have provided compelling evidence that extracellular-matrix glycoproteins and their receptors play instructive roles during kidney development. Two concepts are worthy of emphasis. First, matrix molecules appear to regulate signal transduction pathways, either by activating cell-surface receptors such as integrins directly or by modulating the activity of signaling molecules such as WNTs. Second, basement membranes are highly organized structures and have distinct molecular compositions, which are optimized for their diverse functions. The importance of these findings is highlighted by the fact that mutations affecting basement-membrane components lead to inherited forms of kidney disease.
Collapse
Affiliation(s)
- U Müller
- Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
456
|
Huan Y, van Adelsberg J. Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest 1999; 104:1459-68. [PMID: 10562308 PMCID: PMC481982 DOI: 10.1172/jci5111] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1998] [Accepted: 10/05/1999] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease characterized by cyst formation in kidney tubules and other ductular epithelia. Cells lining the cysts have abnormalities in cell proliferation and cell polarity. The majority of ADPKD cases are caused by mutations in the PKD1 gene, which codes for polycystin-1, a large integral membrane protein of unknown function that is expressed on the plasma membrane of renal tubular epithelial cells in fetal kidneys. Because signaling from cell-cell and cell-matrix adhesion complexes regulates cell proliferation and polarity, we speculated that polycystin-1 might interact with these complexes. We show here that polycystin-1 colocalized with the cell adhesion molecules E-cadherin and alpha-, beta-, and gamma-catenin. Polycystin-1 coprecipitated with these proteins and comigrated with them on sucrose density gradients, but it did not colocalize, coprecipitate, or comigrate with focal adhesion kinase, a component of the focal adhesion. We conclude that polycystin-1 is in a complex containing E-cadherin and alpha-, beta-, and gamma-catenin. These observations raise the question of whether the defects in cell proliferation and cell polarity observed in ADPKD are mediated by E-cadherin or the catenins.
Collapse
Affiliation(s)
- Y Huan
- Department of Medicine, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
457
|
Reynolds DM, Hayashi T, Cai Y, Veldhuisen B, Watnick TJ, Lens XM, Mochizuki T, Qian F, Maeda Y, Li L, Fossdal R, Coto E, Wu G, Breuning MH, Germino GG, Peters DJ, Somlo S. Aberrant splicing in the PKD2 gene as a cause of polycystic kidney disease. J Am Soc Nephrol 1999; 10:2342-51. [PMID: 10541293 DOI: 10.1681/asn.v10112342] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It is estimated that approximately 15% of families with autosomal dominant polycystic kidney disease (ADPKD) have mutations in PKD2. Identification of these mutations is central to identifying functionally important regions of gene and to understanding the mechanisms underlying the pathogenesis of the disorder. The current study describes mutations in six type 2 ADPKD families. Two single base substitution mutations discovered in the ORF in exon 14 constitute the most COOH-terminal pathogenic variants described to date. One of these mutations is a nonsense change and the other encodes an apparent missense variant. Reverse transcription-PCR from patient lymphoblast RNA showed that, in addition, both mutations resulted in out-of-frame splice variants by activating cryptic splice sites via different mechanisms. The apparent missense variant produced such a strong splicing signal that the processed transcript from the mutant chromosome did not contain any of the normally spliced, missense product. A third mutation, a nonconservative missense change effecting a negatively charged residue in the third transmembrane span, is likely pathogenic and defines a highly conserved residue consistent with a potential channel subunit function for polycystin-2. The remaining three mutations included two frame shifts resulting from deletion of one or two bases in exons 6 and 10, respectively, and a nonsense mutation due to a single base substitution in exon 4. The study also defined a novel intragenic polymorphism in exon 1 that will be useful in analyzing "second hits" in PKD2. Finally, the study demonstrates that there are reduced levels of normal polycystin-2 protein in lymphoblast lines from PKD2-affected individuals and that truncated mutant polycystin-2 cannot be detected in patient lymphoblasts, suggesting that the latter may be unstable in at least some tissues. The mutations described will serve as critical reagents for future functional studies in PKD2.
Collapse
Affiliation(s)
- D M Reynolds
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
458
|
Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S. Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 1999; 274:28557-65. [PMID: 10497221 DOI: 10.1074/jbc.274.40.28557] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKD2, the second gene for the autosomal dominant polycystic kidney disease (ADPKD), encodes a protein, polycystin-2, with predicted structural similarity to cation channel subunits. However, the function of polycystin-2 remains unknown. We used polyclonal antisera specific for the intracellular NH(2) and COOH termini to identify polycystin-2 as an approximately 110-kDa integral membrane glycoprotein. Polycystin-2 from both native tissues and cells in culture is sensitive to Endo H suggesting the continued presence of high-mannose oligosaccharides typical of pre-middle Golgi proteins. Immunofluorescent cell staining of polycystin-2 shows a pattern consistent with localization in the endoplasmic reticulum. This finding is confirmed by co-localization with protein-disulfide isomerase as determined by double indirect immunofluorescence and co-distribution with calnexin in subcellular fractionation studies. Polycystin-2 translation products truncated at or after Gly(821) retain their exclusive endoplasmic reticulum localization while products truncated at or before Glu(787) additionally traffic to the plasma membrane. Truncation mutants that traffic to the plasma membrane acquire Endo H resistance and can be biotinylated on the cell surface in intact cells. The 34-amino acid region Glu(787)-Ser(820), containing two putative phosphorylation sites, is responsible for the exclusive endoplasmic reticulum localization of polycystin-2 and is the site of specific interaction with an as yet unidentified protein binding partner for polycystin-2. The localization of full-length polycystin-2 to intracellular membranes raises the possibility that the PKD2 gene product is a subunit of intracellular channel complexes.
Collapse
Affiliation(s)
- Y Cai
- Renal Division, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
459
|
Buechner M, Hall DH, Bhatt H, Hedgecock EM. Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell. Dev Biol 1999; 214:227-41. [PMID: 10491271 DOI: 10.1006/dbio.1999.9398] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The excretory cell extends a tubular process, or canal, along the basolateral surface of the epidermis to form the nematode renal epithelium. This cell can undergo normal tubulogenesis in isolated cell culture. Mutations in 12 genes cause excretory canal cysts in Caenorhabditis elegans. Genetic interactions, and their similar phenotypes, suggest these genes may encode functionally related proteins. Depending upon genotype and individual canal, defects range from focal cysts, flanked by normal width segments, to regional cysts involving the entire tubule. Oftentimes the enlarged regions are convoluted or partially septated. In mutants with very large cysts, renal function is measurably impaired. Based on histology and ultrastructure, canal cysts likely result from defects of the apical membrane domain. These mutants provide a model of tubulocystic disease without hyperplasia or basement membrane abnormalities. Similar apical mechanisms could regulate tubular morphology of vertebrate nephrons.
Collapse
Affiliation(s)
- M Buechner
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
460
|
Qian F, Watnick TJ. Somatic mutation as mechanism for cyst formation in autosomal dominant polycystic kidney disease. Mol Genet Metab 1999; 68:237-42. [PMID: 10527675 DOI: 10.1006/mgme.1999.2896] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- F Qian
- Division of Nephrology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| | | |
Collapse
|
461
|
Ong AC, Harris PC, Davies DR, Pritchard L, Rossetti S, Biddolph S, Vaux DJ, Migone N, Ward CJ. Polycystin-1 expression in PKD1, early-onset PKD1, and TSC2/PKD1 cystic tissue. Kidney Int 1999; 56:1324-33. [PMID: 10504485 DOI: 10.1046/j.1523-1755.1999.00659.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The mutational mechanism responsible for cyst formation in polycystic kidney disease 1 gene (PKD1) remains controversial, with data indicating a two-hit mechanism, but also evidence of polycystin-1 expression in cystic tissue. METHODS To investigate this apparent paradox, we analyzed polycystin-1 expression in cystic renal or liver tissue from 10 patients with truncating PKD1 mutations (including one early-onset case) and 2 patients with severe disease associated with contiguous deletions of TSC2 and PKD1, using monoclonal antibodies (mAbs) to both extreme N-(7e12) and C-terminal (PKS-A) regions of the protein. Truncation of the C-terminal epitope from the putative mutant proteins in each case allowed exclusive assessment of the nontruncated protein with PKS-A. RESULTS In adult PKD1 tissue, the majority of cysts (approximately 80%) showed polycystin-1 expression, although staining was absent in a variable but significant minority (approximately 20%), in spite of the normal expression of marker proteins. Unlike adult PKD1, however, negative cysts were rarely found in infantile PKD1 or TSC2/PKD1 deletion cases. CONCLUSIONS If a two-hit mutational mechanism is operational, these results suggest that the majority of somatic mutations in adult PKD1 are likely to be missense changes. The low level of polycystin-1-negative cysts in the three "early-onset" cases, however, suggests that a somatic PKD1 mutation may not always be required for cyst formation.
Collapse
Affiliation(s)
- A C Ong
- MRC Molecular Haematology Unit, Institute of Molecular Medicine, University of Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
462
|
|
463
|
Barr MM, Sternberg PW. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 1999; 401:386-9. [PMID: 10517638 DOI: 10.1038/43913] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stereotyped mating behaviour of the Caenorhabditis elegans male is made up of several substeps: response, backing, turning, vulva location, spicule insertion and sperm transfer. The complexity of this behaviour is reflected in the sexually dimorphic anatomy and nervous system. Behavioural functions have been assigned to most of the male-specific sensory neurons by means of cell ablations; for example, the hook sensory neurons HOA and HOB are specifically required for vulva location. We have investigated how sensory perception of the hermaphrodite by the C. elegans male controls mating behaviours. Here we identify a gene, lov-1 (for location of vulva), that is required for two male sensory behaviours: response and vulva location. lov-1 encodes a putative membrane protein with a mucin-like, serine-threonine-rich amino terminus followed by two blocks of homology to human polycystins, products of the autosomal dominant polycystic kidney-disease loci PKD1 and PKD2. LOV-1 is the closest C. elegans homologue of PKD1. lov-1 is expressed in adult males in sensory neurons of the rays, hook and head, which mediate response, vulva location, and potentially chemotaxis to hermaphrodites, respectively. PKD-2, the C. elegans homologue of PKD2, is localized to the same neurons as LOV-1, suggesting that they function in the same pathway.
Collapse
Affiliation(s)
- M M Barr
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
464
|
Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J. Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 1999; 401:383-6. [PMID: 10517637 DOI: 10.1038/43907] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polycystic kidney diseases are genetic disorders in which the renal parenchyma is progressively replaced by fluid-filled cysts. Two members of the polycystin family (polycystin-1 and -2) are mutated in autosomal dominant polycystic kidney disease (ADPKD), and polycystin-L is deleted in mice with renal and retinal defects. Polycystins are membrane proteins that share significant sequence homology, especially polycystin-2 and -L (50% identity and 71% similarity). The functions of the polycystins remain unknown. Here we show that polycystin-L is a calcium-modulated nonselective cation channel that is permeable to sodium, potassium and calcium ions. Patch-clamp experiments revealed single-channel activity with a unitary conductance of 137 pS. Channel activity was substantially increased when either the extracellular or intracellular calcium-ion concentration was raised, indicating that polycystin-L may act as a transducer of calcium-mediated signalling in vivo. Its large single-channel conductance and regulation by calcium ions distinguish it from other structurally related cation channels.
Collapse
Affiliation(s)
- X Z Chen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
465
|
|
466
|
Peters DJ, van de Wal A, Spruit L, Saris JJ, Breuning MH, Bruijn JA, de Heer E. Cellular localization and tissue distribution of polycystin-1. J Pathol 1999; 188:439-46. [PMID: 10440756 DOI: 10.1002/(sici)1096-9896(199908)188:4<439::aid-path367>3.0.co;2-p] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of fluid-filled cysts in both kidneys, in addition to a variety of extra-renal manifestations. The PKD1 gene product, polycystin-1, encodes a novel protein with a putative role in cell-cell/cell-matrix interactions. The present study we focused on the (sub)cellular localization of polycystin-1 in cultured cells, and on its tissue distribution in various organs. In Madin Darby canine kidney (MDCK) cells, several polyclonal antibodies showed intense staining at the sites of interaction between adjacent cells, which remained after Triton extraction. Weak cytoplasmic staining was observed. No signal was detected at the free borders of cell aggregates, supporting a role for polycystin-1 in cell-cell interactions. At the tissue level, polycystin-1 expression was observed in specific cell types in tissues with known manifestations of the disease, but also in tissues of organs which have not been reported to be affected in ADPKD. Expression was frequently seen in epithelia, but also in endocrine cells (pancreatic islets, parathyroid-producing cells, clusters in the adenohypophysis, clusters in the adrenal gland, and Leydig cells in the testis). In addition, expression was observed in myocardium and more weakly in myocytes of cardiac valves, of the cerebral arteries, and of skeletal muscles.
Collapse
Affiliation(s)
- D J Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
467
|
Torra R, Badenas C, San Millán JL, Pérez-Oller L, Estivill X, Darnell A. A loss-of-function model for cystogenesis in human autosomal dominant polycystic kidney disease type 2. Am J Hum Genet 1999; 65:345-52. [PMID: 10417277 PMCID: PMC1377933 DOI: 10.1086/302501] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is genetically heterogeneous, with at least three chromosomal loci (PKD1, PKD2, and PKD3) that account for the disease. Mutations in the PKD2 gene, on the long arm of chromosome 4, are expected to be responsible for approximately 15% of cases of ADPKD. Although ADPKD is a systemic disease, it shows a focal expression, because <1% of nephrons become cystic. A feasible explanation for the focal nature of events in PKD1, proposed on the basis of the two-hit theory, suggests that cystogenesis results from the inactivation of the normal copy of the PKD1 gene by a second somatic mutation. The aim of this study is to demonstrate that somatic mutations are present in renal cysts from a PKD2 kidney. We have studied 30 renal cysts from a patient with PKD2 in which the germline mutation was shown to be a deletion that encompassed most of the disease gene. Loss-of-heterozygosity (LOH) studies showed loss of the wild-type allele in 10% of cysts. Screening of six exons of the gene by SSCP detected eight different somatic mutations, all of them expected to produce truncated proteins. Overall, >/=37% of the cysts studied presented somatic mutations. No LOH for the PKD1 gene or locus D3S1478 were observed in those cysts, which demonstrates that somatic alterations are specific. We have identified second-hit mutations in human PKD2 cysts, which suggests that this mechanism could be a crucial event in the development of cystogenesis in human ADPKD-type 2.
Collapse
Affiliation(s)
- R Torra
- Department of Nephrology, Hospital Clínic, 08036 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
468
|
Torra R, Viribay M, Tellería D, Badenas C, Watson M, Harris P, Darnell A, San Millán JL. Seven novel mutations of the PKD2 gene in families with autosomal dominant polycystic kidney disease. Kidney Int 1999; 56:28-33. [PMID: 10411676 DOI: 10.1046/j.1523-1755.1999.00534.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is genetically heterogeneous, with at least three chromosomal loci accounting for the disease. Mutations in the PKD2 gene on the long arm of chromosome 4 are expected to be responsible for approximately 15% of cases of ADPKD. METHODS We report a systematic screening for mutations covering the 15 exons of the PKD2 gene in eight unrelated families with ADPKD type 2, using the heteroduplex technique. RESULTS Seven novel mutations were identified and characterized that, together with the previously described changes, amount to a detection rate of 85% in the population studied. The newly described mutations are two nonsense mutations, a 1 bp deletion, a 1 bp insertion, a mutation that involves both a substitution and a deletion (2511AG-->C), a complex mutation in exon 6 consisting of a simultaneous 7 bp inversion and a 4 bp deletion, and the last one is a G-->C transversion that may be a missense mutation. Most of these mutations are expected to lead to the formation of shorter truncated proteins lacking the carboxyl terminus of PKD2. We have also characterized a frequent polymorphism, Arg-Pro, at codon 28 in this gene. The clinical features of these PKD2 patients are similar to the previously described, with the mean age of end-stage renal disease being 75.5 years (SE +/- 3.8 years). CONCLUSIONS Our results confirm that many different mutations are likely to be responsible for the disease and that most pathogenic defects probably are point or small changes in the coding region of the gene.
Collapse
Affiliation(s)
- R Torra
- Servicio de Nefrología, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universidad de Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
469
|
Markowitz GS, Cai Y, Li L, Wu G, Ward LC, Somlo S, D'Agati VD. Polycystin-2 expression is developmentally regulated. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F17-25. [PMID: 10409293 DOI: 10.1152/ajprenal.1999.277.1.f17] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PKD2 encodes a protein of unknown function that is mutated in 15% of autosomal dominant polycystic kidney disease (ADPKD) families. We used polyclonal antisera against PKD2 to examine the pattern of Pkd2 expression in staged mouse embryos. Staining for Pkd2 was documented as early as the 6th embryonic day (day E6) in the embryonic ectoderm and endoderm. Low-intensity staining is seen in metanephric ureteric bud at day E12.5. By day E15.5, the adult pattern of expression is established with low level staining in proximal tubules and high level, basolateral staining in distal tubules. Pkd2 expression is first detected in the medullary collecting ducts at postnatal day 14. Outside of the kidney, Pkd2 expression is widely distributed in utero and more restricted postnatally. The greatest intensity of staining is seen in the fetal but not adult adrenal cortex and in red blood cell precursors. Expression also is seen in multiple endocrine organs, in cardiac, skeletal, and smooth muscle, and in multiple mesenchymal tissues. The diffuse distribution and early expression of Pkd2 suggest a fundamental developmental role. The persistent strong expression in adult kidney is consistent with a more organ-specific function in the maintenance of the mature metanephric tubule.
Collapse
Affiliation(s)
- G S Markowitz
- Department of Pathology, Renal Pathology Laboratory, Columbia Presbyterian Medical Center, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
470
|
Li HP, Geng L, Burrow CR, Wilson PD. Identification of phosphorylation sites in the PKD1-encoded protein C-terminal domain. Biochem Biophys Res Commun 1999; 259:356-63. [PMID: 10362514 DOI: 10.1006/bbrc.1999.0780] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PKD1-encoded protein, "polycystin-1", has a large N-terminal extracellular portion, multiple transmembrane domains, and a short intracellular C-terminal tail with four tyrosine residues and two putative sites for serine phosphorylation. Its function in kidney development and autosomal dominant polycystic kidney disease (ADPKD) is still unknown. We have subcloned the cDNA encoding the polycystin-1 C-terminal domain (PKD1-CTD) into a prokaryotic expression vector, and site-directed mutagenesis was performed to target the four tyrosine residues and four serine residues in two putative phosphorylation sites. In vitro phosphorylation assays were conducted on both wild type and mutant PKD1-CTD fusion proteins. It was found that the wild type PKD1-CTD and all mutant fusion proteins, except S4251G/S4252G, could be phosphorylated by lysates from cultured normal human renal collecting tubule (NHCT) cells, as well as by commercially purified cAMP-dependent protein kinase (PKA). The phosphorylation of the PKD1-CTD fusion protein by NHCT lysates was greatly enhanced by cAMP and its analog 8-Br-cAMP, and inhibited by the specific PKA inhibitors PKI(6-22) and H-89. Activators and inhibitors of protein kinase C (PKC) had no effects on the phosphorylation of the PKD1-CTD fusion protein. Using commercially purified pp60(c-src) (c-src) it was also shown that the PKD1-CTD fusion protein could be phosphorylated by c-src in vitro, and that this phosphorylation could be abolished by a mutation Y4237F. By comparing the amino acid sequence at 4249-4253 (RRSSR) with the consensus sequence for PKA phosphorylation (RRXSX), we suggest that the serine residue at 4252 is the target of phosphorylation by a cAMP-dependent protein kinase in NHCT cell lysates. In addition, we suggest that Y4237 might be phosphorylated by c-src in living cells.
Collapse
Affiliation(s)
- H P Li
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | |
Collapse
|
471
|
Ong AC, Ward CJ, Butler RJ, Biddolph S, Bowker C, Torra R, Pei Y, Harris PC. Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1721-9. [PMID: 10362797 PMCID: PMC1866619 DOI: 10.1016/s0002-9440(10)65428-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/1999] [Indexed: 11/21/2022]
Abstract
A second gene for autosomal dominant polycystic kidney disease (ADPKD), PKD2, has been recently identified. Using antisera raised to the human PKD2 protein, polycystin-2, we describe for the first time its distribution in human fetal tissues, as well as its expression in adult kidney and polycystic PKD2 tissues. Its expression pattern is correlated with that of the PKD1 protein, polycystin-1. In normal kidney, expression of polycystin-2 strikingly parallels that of polycystin-1, with prominent expression by maturing proximal and distal tubules during development, but with a more pronounced distal pattern in adult life. In nonrenal tissues expression of both polycystin molecules is identical and especially notable in the developing epithelial structures of the pancreas, liver, lung, bowel, brain, reproductive organs, placenta, and thymus. Of interest, nonepithelial cell types such as vascular smooth muscle, skeletal muscle, myocardial cells, and neurons also express both proteins. In PKD2 cystic kidney and liver, we find polycystin-2 expression in the majority of cysts, although a significant minority are negative, a pattern mirrored by the PKD1 protein. The continued expression of polycystin-2 in PKD2 cysts is similar to that seen by polycystin-1 in PKD1 cysts, but contrasts with the reported absence of polycystin-2 expression in the renal cysts of Pkd2+/- mice. These results suggest that if a two-hit mechanism is required for cyst formation in PKD2 there is a high rate of somatic missense mutation. The coordinate presence or loss of both polycystin molecules in the same cysts supports previous experimental evidence that heterotypic interactions may stabilize these proteins.
Collapse
Affiliation(s)
- A C Ong
- MRC Molecular Haematology Unit,* Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
472
|
Kim E, Arnould T, Sellin L, Benzing T, Comella N, Kocher O, Tsiokas L, Sukhatme VP, Walz G. Interaction between RGS7 and polycystin. Proc Natl Acad Sci U S A 1999; 96:6371-6. [PMID: 10339594 PMCID: PMC26888 DOI: 10.1073/pnas.96.11.6371] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1998] [Indexed: 11/18/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins accelerate the intrinsic GTPase activity of certain Galpha subunits and thereby modulate a number of G protein-dependent signaling cascades. Currently, little is known about the regulation of RGS proteins themselves. We identified a short-lived RGS protein, RGS7, that is rapidly degraded through the proteasome pathway. The degradation of RGS7 is inhibited by interaction with a C-terminal domain of polycystin, the protein encoded by PKD1, a gene involved in autosomal-dominant polycystic kidney disease. Furthermore, membranous expression of C-terminal polycystin relocalized RGS7. Our results indicate that rapid degradation and interaction with integral membrane proteins are potential means of regulating RGS proteins.
Collapse
Affiliation(s)
- E Kim
- Laboratory of Molecular and Developmental Neuroscience, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
473
|
Arnould T, Sellin L, Benzing T, Tsiokas L, Cohen HT, Kim E, Walz G. Cellular activation triggered by the autosomal dominant polycystic kidney disease gene product PKD2. Mol Cell Biol 1999; 19:3423-34. [PMID: 10207066 PMCID: PMC84135 DOI: 10.1128/mcb.19.5.3423] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by germ line mutations in at least three ADPKD genes. Two recently isolated ADPKD genes, PKD1 and PKD2, encode integral membrane proteins of unknown function. We found that PKD2 upregulated AP-1-dependent transcription in human embryonic kidney 293T cells. The PKD2-mediated AP-1 activity was dependent upon activation of the mitogen-activated protein kinases p38 and JNK1 and protein kinase C (PKC) epsilon, a calcium-independent PKC isozyme. Staurosporine, but not the calcium chelator BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N', N'-tetraacetate], inhibited PKD2-mediated signaling, consistent with the involvement of a calcium-independent PKC isozyme. Coexpression of PKD2 with the interacting C terminus of PKD1 dramatically augmented PKD2-mediated AP-1 activation. The synergistic signaling between PKD1 and PKD2 involved the activation of two distinct PKC isozymes, PKC alpha and PKC epsilon, respectively. Our findings are consistent with others that support a functional connection between PKD1 and PKD2 involving multiple signaling pathways that converge to induce AP-1 activity, a transcription factor that regulates different cellular programs such as proliferation, differentiation, and apoptosis. Activation of these signaling cascades may promote the full maturation of developing tubular epithelial cells, while inactivation of these signaling cascades may impair terminal differentiation and facilitate the development of renal tubular cysts.
Collapse
Affiliation(s)
- T Arnould
- Department of Medicine, Renal Division Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
474
|
Aguiari G, Manzati E, Penolazzi L, Micheletti F, Augello G, Vitali ED, Cappelli G, Cai Y, Reynolds D, Somlo S, Piva R, del Senno L. Mutations in autosomal dominant polycystic kidney disease 2 gene: Reduced expression of PKD2 protein in lymphoblastoid cells. Am J Kidney Dis 1999; 33:880-5. [PMID: 10213643 DOI: 10.1016/s0272-6386(99)70420-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The polycystic kidney disease 2 (PKD2) gene, encoding a 968-amino acid integral membrane protein with six predicted membrane-spanning domains and intracellular NH2 and COOH termini, is mutated in approximately 15% of the cases of autosomal dominant polycystic kidney disease (ADPKD), a common genetic disease frequently resulting in renal failure. For a better understanding of the cause of this disorder, we searched for mutations in the PKD2 gene in two PKD2-linked families characterized by different clinical phenotypes. A common polymorphism, a nonsense mutation, and a frameshift mutation were found. Both mutations are predicted to produce truncated proteins of 314 and 386 amino acids, arrested at the first extracellular loop of the protein. Restriction enzyme analysis of polymerase chain reaction (PCR) and reverse transcriptase (RT)-PCR products, respectively, showed that mutations cosegregated with the disease and mutated alleles were expressed at the messenger RNA level in lymphoblastoid cell lines. However, in these cells, Western blot analysis showed only PKD2 normal protein, and it was expressed at a lower level than that found in cells without the PKD2 mutation. These findings suggest that in lymphoblastoid cells, the truncated protein product of the mutant allele may not be stable.
Collapse
Affiliation(s)
- G Aguiari
- Dipartimento di Biochimica e Biologia Molecolare, Universitàdegli Studi, Ferrara, NY, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Guillaume R, D'Agati V, Daoust M, Trudel M. Murine Pkd1 is a developmentally regulated gene from morula to adulthood: role in tissue condensation and patterning. Dev Dyn 1999; 214:337-48. [PMID: 10213389 DOI: 10.1002/(sici)1097-0177(199904)214:4<337::aid-aja6>3.0.co;2-o] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PKD1 is the most common genetically mutated gene involved in autosomal dominant polycystic kidney disease (ADPKD). Our previous studies have shown that the pathogenesis of human and murine polycystic kidney disease (PKD) involves failure to switch out of a renal developmental program, suggesting a role for PKD1 in development. To investigate this hypothesis, we have cloned a portion of the murine Pkd1 gene and characterized the fetal to adult tissue expression pattern of Pkd1. We chose to clone the transmembrane region of Pkd1, a region prone to mutations in ADPKD. The transmembrane coding region (2.6 kb) has 80.3% nucleotide homology with human PKD1 and 85.3% amino acid similarity. The cloned murine Pkd1 fragment closely resembles that of human PKD1 with respect to both genomic size and exon/intron position. We have demonstrated that this Pkd1 region is not conserved in lower organisms and is mammalian specific. A detailed expression analysis of Pkd1 revealed expression as early as the morula stage and in ES cells with differential expression levels in various tissues/organs throughout development. Highest expression levels were observed in the early condensing mesenchyme of primitive mesoderm and ectoderm. Pkd1 was also expressed at high levels in developing neural tube, neural crest derivatives, prechondrogenic tissue, metanephros, bladder, salivary glands, lung, and blood vessels with lower expression levels in other organs and tissues. Specific spatial and temporal patterns of Pkd1 expression were demonstrated in individual organs, such as lung, kidney, brain, indicating it is highly developmentally regulated. Particularly high levels persisted in mature derivatives of neural tube, neural crest, chondrogenic tissue, metanephros, and lung. In summary, our data suggest that Pkd1 has at least two cellular functions, one a basic function involved in early tissue condensation processes, and the other a mammalian-specific function, that evolved with tissue patterning and tubulogenesis in metanephric and pulmonary development.
Collapse
Affiliation(s)
- R Guillaume
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l'Université de Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
476
|
Badenas C, Torra R, San Millán JL, Lucero L, Milà M, Estivill X, Darnell A. Mutational analysis within the 3' region of the PKD1 gene. Kidney Int 1999; 55:1225-33. [PMID: 10200984 DOI: 10.1046/j.1523-1755.1999.00368.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic diseases in humans, affecting 1 out of 1000 individuals. At least three different genes are involved in this disease. The search for mutations in PKD1 is complicated because most of the transcript is encoded by a genomic region reiterated more proximally on chromosome 16, and no prevalent mutation has been reported. METHODS We have screened DNA from exon 43 through exon 46 and intron 40 of the PKD1 sequence by single-stranded conformational polymorphism (SSCP) analysis in 175 ADPKD patients. RESULTS We have found 25 differences with respect to the reported PKD1 DNA sequence, seven of which are mutations (Q4041X, Q4124X, IVS44-1G-->C, IVS45-1G-->A, 12801del28, R4275W, and Q4224P). We found different phenotypical expressions of the same mutation in the families studied. We have detected several common polymorphisms, and some of them cosegregate, suggesting a common origin of these alleles in PKD1. CONCLUSIONS The detection of only seven mutations in 175 unrelated ADPKD patients for this region of the PKD1 analyzed suggests that mutations could be widespread throughout all of the gene and that a prevalent mutation is not expected to occur. The identified PKD1 missense mutations may help to refine critical regions of the protein. Until a quicker and more sensitive method for the detection of mutations becomes available, linkage studies will continue to be the basis for the molecular diagnosis of ADPKD families.
Collapse
Affiliation(s)
- C Badenas
- Department of Genetics, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
477
|
Abstract
Renal cystic diseases constitute the most common genetic cause for end-stage renal disease in children and young adults. Recently, there has been rapid progress regarding the identification or chromosomal localization of some of the responsible disease genes. Studies of the respective gene products and of related animal models have led to new insights into the pathophysiology of these disorders. In this review, very recent developments are discussed as they pertain to molecular genetic diagnosis, the understanding of pathophysiology, and potential novel therapeutic approaches to renal cystic diseases.
Collapse
|
478
|
Murcia NS, Sweeney WE, Avner ED. New insights into the molecular pathophysiology of polycystic kidney disease. Kidney Int 1999; 55:1187-97. [PMID: 10200981 DOI: 10.1046/j.1523-1755.1999.00370.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polycystic kidney diseases are characterized by the progressive expansion of multiple cystic lesions, which compromise the function of normal parenchyma. Throughout the course of these diseases, renal tubular function and structure are altered, changing the tubular microenvironment and ultimately causing the formation and progressive expansion of cystic lesions. Renal tubules are predisposed to cystogenesis when a germ line mutation is inherited in either the human PKD1 or PKD2 genes in autosomal dominant polycystic kidney disease (ADPKD) or when a homozygous mutation in Tg737 is inherited in the orpk mouse model of autosomal recessive polycystic kidney disease (ARPKD). Recent information strongly suggests that the protein products of these disease genes may form a macromolecular signaling structure, the polycystin complex, which regulates fundamental aspects of renal epithelial development and cell biology. Here, we re-examine the cellular pathophysiology of renal cyst formation and enlargement in the context of our current understanding of the molecular genetics of ADPKD and ARPKD.
Collapse
Affiliation(s)
- N S Murcia
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | | | | |
Collapse
|
479
|
Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP. Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci U S A 1999; 96:3934-9. [PMID: 10097141 PMCID: PMC22398 DOI: 10.1073/pnas.96.7.3934] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The function(s) of the genes (PKD1 and PKD2) responsible for the majority of cases of autosomal dominant polycystic kidney disease is unknown. While PKD1 encodes a large integral membrane protein containing several structural motifs found in known proteins involved in cell-cell or cell-matrix interactions, PKD2 has homology to PKD1 and the major subunit of the voltage-activated Ca2+ channels. We now describe sequence homology between PKD2 and various members of the mammalian transient receptor potential channel (TRPC) proteins, thought to be activated by G protein-coupled receptor activation and/or depletion of internal Ca2+ stores. We show that PKD2 can directly associate with TRPC1 but not TRPC3 in transfected cells and in vitro. This association is mediated by two distinct domains in PKD2. One domain involves a minimal region of 73 amino acids in the C-terminal cytoplasmic tail of PKD2 shown previously to constitute an interacting domain with PKD1. However, distinct residues within this region mediate specific interactions with TRPC1 or PKD1. The C-terminal domain is sufficient but not necessary for the PKD2-TRPC1 association. A more N-terminal domain located within transmembrane segments S2 and S5, including a putative pore helical region between S5 and S6, is also responsible for the association. Given the ability of the TRPC to form functional homo- and heteromultimeric complexes, these data provide evidence that PKD2 may be functionally related to TRPC proteins and suggest a possible role of PKD2 in modulating Ca2+ entry in response to G protein-coupled receptor activation and/or store depletion.
Collapse
Affiliation(s)
- L Tsiokas
- Renal Division, RW 563, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
480
|
Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL, Chothia C. The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J 1999; 18:297-305. [PMID: 9889186 PMCID: PMC1171124 DOI: 10.1093/emboj/18.2.297] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Most cases of autosomal dominant polycystic kidney disease (ADPKD) are the result of mutations in the PKD1 gene. The PKD1 gene codes for a large cell-surface glycoprotein, polycystin-1, of unknown function, which, based on its predicted domain structure, may be involved in protein-protein and protein-carbohydrate interactions. Approximately 30% of polycystin-1 consists of 16 copies of a novel protein module called the PKD domain. Here we show that this domain has a beta-sandwich fold. Although this fold is common to a number of cell-surface modules, the PKD domain represents a distinct protein family. The tenth PKD domain of human and Fugu polycystin-1 show extensive conservation of surface residues suggesting that this region could be a ligand-binding site. This structure will allow the likely effects of missense mutations in a large part of the PKD1 gene to be determined.
Collapse
Affiliation(s)
- M Bycroft
- MRC Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW.
| | | | | | | | | | | | | |
Collapse
|
481
|
Hateboer N, v Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 1999; 353:103-7. [PMID: 10023895 DOI: 10.1016/s0140-6736(98)03495-3] [Citation(s) in RCA: 379] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although autosomal dominant polycystic kidney disease type 2 (PKD2) is known to have a milder clinical phenotype than PKD1, neither disorder has been compared with an unaffected control population in terms of survival. We report the findings of a multicentre survey that aimed to define more precisely the survival and clinical expression of PKD1 and PKD2. METHODS Clinical data from 333 people with PKD1 (31 families) were compared with data from 291 people with PKD2 (31 families) and 398 geographically matched controls. Survival analysis was used to compare age-at-event data. Differences in the prevalence of complications were assessed by logistic regression. FINDINGS Median age at death or onset of end-stage renal disease was 53.0 years (95% CI 51.2-54.8) in individuals with PKD1, 69.1 years (66.9-71.3) in those with PKD2, and 78.0 years (73.8-82.2) in controls. Women with PKD2 had a significantly longer median survival than men (71.0 [67.4-74.8] vs 67.3 [64.9-69.7] years), but no sex influence was apparent in PKD1. Age at presentation with kidney failure was later in PKD2 than in PKD1 (median age 74.0 [67.2-80.8] vs 54.3 [52.7-55.9] years). PKD2 patients were less likely to have hypertension (odds ratio 0.25 [95% CI 0.15-0.42]), a history of urinary-tract infection (0.50 [0.31-0.83]), or haematuria (0.59 [0.35-0.98]). INTERPRETATION Although PKD2 is clinically milder than PKD1, it has a deleterious impact on overall life expectancy and cannot be regarded as a benign disorder.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Female
- Gene Expression/physiology
- Humans
- Kidney Failure, Chronic/diagnosis
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/mortality
- Male
- Middle Aged
- Phenotype
- Polycystic Kidney, Autosomal Dominant/diagnosis
- Polycystic Kidney, Autosomal Dominant/genetics
- Polycystic Kidney, Autosomal Dominant/mortality
- Polycystic Kidney, Autosomal Recessive/diagnosis
- Polycystic Kidney, Autosomal Recessive/genetics
- Polycystic Kidney, Autosomal Recessive/mortality
- Survival Rate
Collapse
Affiliation(s)
- N Hateboer
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Wu G, Hayashi T, Park JH, Dixit M, Reynolds DM, Li L, Maeda Y, Cai Y, Coca-Prados M, Somlo S. Identification of PKD2L, a human PKD2-related gene: tissue-specific expression and mapping to chromosome 10q25. Genomics 1998; 54:564-8. [PMID: 9878261 DOI: 10.1006/geno.1998.5618] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in PKD2 cause autosomal dominant kidney disease (ADPKD). Polycystin-2, the PKD2 gene product, is an integral membrane glycoprotein of unknown function. We have identified PKD2L, another member of the PKD2 gene family. PKD2L is expressed in adult heart and skeletal muscle, brain, spleen, testis, and retina, and alternative transcripts of 2.4, 2.7, and 3.0 kb are seen. PKD2L shows 56% identity and 76% similarity with polycystin-2 over a 581-amino-acid span; however, the COOH-terminal 65 residues of PKD2L are unrelated to PKD2. PKD2L is localized to chromosome 10q25 and is excluded as a candidate gene for autosomal recessive polycystic kidney disease, autosomal dominant polycystic liver disease, and the third form of ADPKD. Given the high degree of homology between PKD2L and PKD2, it is likely that the respective functions of these proteins are also closely related.
Collapse
Affiliation(s)
- G Wu
- Department of Medicine and Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
483
|
|
484
|
Parnell SC, Magenheimer BS, Maser RL, Rankin CA, Smine A, Okamoto T, Calvet JP. The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro. Biochem Biophys Res Commun 1998; 251:625-31. [PMID: 9792824 DOI: 10.1006/bbrc.1998.9514] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Analysis of the C-terminal cytosolic domain of human and mouse polycystin-1 has identified a number of conserved protein motifs, including a 20-amino-acid heterotrimeric G-protein activation sequence. A peptide specific for this sequence was synthesized and shown to activate purified bovine brain heterotrimeric Gi/Go in vitro. To test whether the C-terminal cytosolic domain of polycystin-1 stably binds G-proteins, GST-fusion constructs were used in pull-down and co-immunoprecipitation assays with purified bovine brain Gi/Go and rat brain lysates. This identified a 74-amino-acid minimal binding domain that includes the G-protein activation sequence. This region of polycystin-1, including the G-protein activation peptide and flanking amino acid sequences, is highly conserved in mouse, human, and puffer fish, lending further support to the functional importance of the minimal binding domain. These results suggest that polycystin-1 may function as a heterotrimeric G-protein coupled receptor.
Collapse
Affiliation(s)
- S C Parnell
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | | | | | | | | | | | | |
Collapse
|
485
|
Aguiari G, Piva R, Manzati E, Mazzoni E, Augello G, Chiari E, Moretti S, Neri LM, del Senno L. K562 erythroid and HL60 macrophage differentiation downregulates polycystin, a large membrane-associated protein. Exp Cell Res 1998; 244:259-67. [PMID: 9770368 DOI: 10.1006/excr.1998.4198] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polycystin, the PKD1 gene product mutated in autosomal dominant polycystic kidney disease, is a large membrane protein which is important in the differentiation of epithelial tubular structure. Furthermore, PKD1 mRNA is expressed in various tissues and in neoplastic cell lines particularly, suggesting that polycystin might be involved in differentiation and/or proliferation of other cell types. Therefore, in order to investigate such a possible role, polyclonal antibodies against a recombinant polycystin peptide were raised and used to study polycystin expression in human leukemia cell lines committed to differentiation. Using Western blot and laser scanning confocal microscopy analyses, we demonstrated expression of polycystin in erythroleukemia K562 cells as a membrane-associated polypeptide of approximately 450 kDa, mainly localized in cell-cell contacts. Protein size and subcellular distribution were similar to those found in the kidney epithelial KJ29 cell line. In addition, K562 cell erythroid differentiation induced by hemin was characterized by a reduction in polycystin expression, as measured by Western blot and Northern blot analyses. Cytofluorimetric analysis indicated that upon hemin treatment there was a progressive reduction in the number of polycystin-expressing cells as well as in proliferation rate. Furthermore, reduction in proliferating and polycystin-expressing cells was also observed in K562 cells after serum starvation. When serum was added to the serum-deprived cells an increase in cell number as well as in number of polycystin-positive cells was observed. In addition, polycystin, also expressed in promyelocytic leukemia HL60 cells, was downregulated when macrophage differentiation in HL60 was induced by TPA. Therefore, in these leukemic cells downregulation of polycystin appeared to be closely related to reduction in cell proliferation and to induction of differentiation. This suggests that polycystin may play a relevant role in these cell processes.
Collapse
Affiliation(s)
- G Aguiari
- Dipartimento di Morfologia ed Embriologia, Universitá degli Studi, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
486
|
Nomura H, Turco AE, Pei Y, Kalaydjieva L, Schiavello T, Weremowicz S, Ji W, Morton CC, Meisler M, Reeders ST, Zhou J. Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. J Biol Chem 1998; 273:25967-73. [PMID: 9748274 DOI: 10.1074/jbc.273.40.25967] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycystin-1 and polycystin-2 are the products of PKD1 and PKD2, genes that are mutated in most cases of autosomal dominant polycystic kidney disease. Polycystin-2 shares approximately 46% homology with pore-forming domains of a number of cation channels. It has been suggested that polycystin-2 may function as a subunit of an ion channel whose activity is regulated by polycystin-1. Here we report the identification of a human gene, PKDL, which encodes a new member of the polycystin protein family designated polycystin-L. Polycystin-L has 50% amino acid sequence identity and 71% homology to polycystin-2 and has striking sequence and structural resemblance to the pore-forming alpha1 subunits of Ca2+ channels, suggesting that polycystin-L may function as a subunit of an ion channel. The full-length transcript of PKDL is expressed at high levels in fetal tissues, including kidney and liver, and down-regulated in adult tissues. PKDL was assigned to 10q24 by fluorescence in situ hybridization and is linked to D10S603 by radiation hybrid mapping. There is no evidence of linkage to PKDL in six ADPKD families that are unlinked to PKD1 or PKD2. The mouse homologue of PKDL is deleted in Krd mice, a deletion mutant with defects in the kidney and eye. We propose that PKDL is an excellent candidate for as yet unmapped cystic diseases in man and animals.
Collapse
Affiliation(s)
- H Nomura
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
487
|
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), the genetic defect results in the slow growth of a multitude of epithelial cysts within the renal parenchyma. Cysts originate within the glomeruli and all tubular structures, and their growth is the result of proliferation of incompletely differentiated epithelial cells and the accumulation of fluid within the cysts. The majority of cysts disconnect from tubular structures as they grow but still accumulate fluid within the lumen. The fluid accumulation is the result of secretion of fluid driven by active transepithelial Cl- secretion. Proliferation of the cells and fluid secretion are activated by agonists of the cAMP signaling pathway. The transport mechanisms involved include the cystic fibrosis transmembrane conductance regulator (CFTR) present in the apical membrane of the cystic cells and a bumetanide-sensitive transporter located in the basolateral membrane. A lipid factor, called cyst activating factor, has been found in the cystic fluid. Cyst activating factor stimulates cAMP production, proliferation, and fluid secretion by cultured renal epithelial cells and also is a chemotactic agent. Cysts also appear in the intrahepatic biliary tree in ADPKD. Normal ductal cells secrete Cl- and HCO3-. The cystic ductal cell also secretes Cl-, but HCO3- secretion is diminished, probably as the result of a lower population of Cl-/HCO3- exchangers in the apical membrane as compared with the normal cells. Some segments of the normal renal tubule are also capable of utilizing CFTR to secrete Cl-, particularly the inner medullary collecting duct. The ability of Madin-Darby canine kidney cells and normal human kidney cortex cells to form cysts in culture and to secrete fluid and the functional similarities between these incompletely differentiated, proliferative cells and developing cells in the intestinal crypt and in the fetal lung have led us to suggest that Cl- and fluid secretion may be a common property of at least some renal epithelial cells in an intermediate stage of development. The genetic defect in ADPKD may not directly affect membrane transport mechanisms but rather may arrest the development of certain renal epithelial cells in an incompletely differentiated, proliferative stage.
Collapse
Affiliation(s)
- L P Sullivan
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | |
Collapse
|
488
|
|
489
|
Watnick TJ, Torres VE, Gandolph MA, Qian F, Onuchic LF, Klinger KW, Landes G, Germino GG. Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol Cell 1998; 2:247-51. [PMID: 9734362 DOI: 10.1016/s1097-2765(00)80135-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), Type I is a common genetic disorder and an important cause of renal failure. The disease is characterized by progressive cyst formation in a variety of organs including the kidney, liver and pancreas. We have previously shown that in the case of PKD1, renal cyst development is likely to require somatic inactivation of the normal allele coupled to a germline PKD1 mutation. In this report, we have used unique reagents to show that intragenic, somatic mutations are common in hepatic cysts. All pathogenic mutations were shown to have altered the previously normal copy of the gene. These data extend the "two-hit" model of cystogenesis to include a second focal manifestation of the disease.
Collapse
Affiliation(s)
- T J Watnick
- Division of Nephrology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
490
|
Roberts T, Chernova O, Cowell JK. NB4S, a member of the TBC1 domain family of genes, is truncated as a result of a constitutional t(1;10)(p22;q21) chromosome translocation in a patient with stage 4S neuroblastoma. Hum Mol Genet 1998; 7:1169-78. [PMID: 9618176 DOI: 10.1093/hmg/7.7.1169] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Molecular cloning of the breakpoints of a t(1;10)(p22q21) constitutional translocation breakpoint in a patient with stage 4S neuroblastoma has identified two genes which are fused in-frame to generate a novel gene. The 1p22 gene, which we have called NB4S , encodes a 7.5 kb transcript with an 810 amino acid open reading frame and is expressed in a wide variety of tissues. NB4S has >88% homology with the mouse EVI -5 gene within the coding region and shows strong homology over a 200 amino acid region with TBC1 box motif genes involved in cell growth and differentiation. The C-teminal end of the protein contains a number of coiled coil domains, indicating a possible protein-protein binding function. The chromosome 10 breakpoint interrupts a novel transcript (TRNG10) which could only be detected in tumor cells. This transcript has no exon/intron structure or significant open reading frame, suggesting that it is a structural RNA which is transcribed but not translated. The chromosome rearrangement creates a fusion gene product which combines the TBC1 motif of NB4S with a polyadenylation signal from TRNG10 , potentially generating a truncated protein with oncogenic properties.
Collapse
Affiliation(s)
- T Roberts
- Department of Neurosciences-NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
491
|
Pei Y, Wang K, Kasenda M, Paterson AD, Liang Y, Huang E, Lian J, Rogovea E, Somlo S, St George-Hyslop P. A novel frameshift mutation induced by an adenosine insertion in the polycystic kidney disease 2 (PKD2) gene. Kidney Int 1998; 53:1127-32. [PMID: 9573526 DOI: 10.1046/j.1523-1755.1998.00890.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common Mendelian disorders and is genetically heterogeneous. Linkage studies have shown that the majority (approximately 85%) of ADPKD cases are due to mutations in PKD1 on chromosome 16p13.3, while mutations in PKD2 on chromosome 4q21-q23 are thought to account for most of the remaining cases. In this report, we describe the mutation in a large four-generation ADPKD family (TOR-PKD77) which we had mapped to the PKD2 locus by linkage analysis. In this family, we screened for mutations by directly sequencing two nested RT-PCR fragments (PKD2N1 and PKD2N2) that cover approximately 90% of the PKD2 open reading frame. In the affected members, we identified a novel single adenosine insertion (2160InsA) in the PKD2N2 fragment. This mutation occurred in the polyadenosine tract (nt2152-2159) of exon 11 and is predicted to result in a frameshift with premature translation termination of the PKD2 product, polycystin 22, immediately after codon 723. The truncated polycystin 2 is predicted to lack the calcium-binding EF-hand domain and two cytoplasmic domains required for the homodimerization of polycystin 2 with itself and for the heterodimerization of polycystin 2 with polycystin 1.
Collapse
Affiliation(s)
- Y Pei
- Department of Medicine, Toronto Hospital, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
492
|
Wu G, D'Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H, Kucherlapati R, Edelmann W, Somlo S. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 1998; 93:177-88. [PMID: 9568711 DOI: 10.1016/s0092-8674(00)81570-6] [Citation(s) in RCA: 411] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Germline mutations in PKD2 cause autosomal dominant polycystic kidney disease. We have introduced a mutant exon 1 in tandem with the wild-type exon 1 at the mouse Pkd2 locus. This is an unstable allele that undergoes somatic inactivation by intragenic homologous recombination to produce a true null allele. Mice heterozygous and homozygous for this mutation, as well as Pkd+/- mice, develop polycystic kidney and liver lesions that are indistinguishable from the human phenotype. In all cases, renal cysts arise from renal tubular cells that lose the capacity to produce Pkd2 protein. Somatic loss of Pkd2 expression is both necessary and sufficient for renal cyst formation in ADPKD, suggesting that PKD2 occurs by a cellular recessive mechanism.
Collapse
Affiliation(s)
- G Wu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
493
|
Arnould T, Kim E, Tsiokas L, Jochimsen F, Grüning W, Chang JD, Walz G. The polycystic kidney disease 1 gene product mediates protein kinase C alpha-dependent and c-Jun N-terminal kinase-dependent activation of the transcription factor AP-1. J Biol Chem 1998; 273:6013-8. [PMID: 9497315 DOI: 10.1074/jbc.273.11.6013] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common hereditary disorder that accounts for 8-10% of end stage renal disease. PKD1, one of two recently isolated ADPKD gene products, has been implicated in cell-cell and cell-matrix interactions. However, the signaling pathway of PKD1 remains undefined. We found that the C-terminal 226 amino acids of PKD1 transactivate an AP-1 promoter construct in human embryonic kidney cells (293T). PKD1-induced transcription is specific for AP-1; promoter constructs containing cAMP response element-binding protein, c-Fos, c-Myc, or NFkappaB-binding sites are unaffected by PKD1. In vitro kinase assays revealed that PKD1 triggers the activation of c-Jun N-terminal kinase (JNK), but not of mitogen-activated protein kinases p38 or p44. Dominant-negative Rac-1 and Cdc42 mutations abrogated PKD1-mediated JNK and AP-1 activation, suggesting a critical role for small GTP-binding proteins in PKD1-mediated signaling. Several protein kinase C (PKC) inhibitors decreased PKD1-mediated AP-1 activation. Conversely, expression of the C-terminal domain of PKD1 increased PKC activity in 293T cells. A dominant-negative PKC alpha, but not a dominant-negative PKC beta or delta, abrogated PKD1-mediated AP-1 activation. These findings indicate that small GTP-binding proteins and PKC alpha mediate PKD1-induced JNK/AP-1 activation, together comprising a signaling cascade that may regulate renal tubulogenesis.
Collapse
Affiliation(s)
- T Arnould
- Renal Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
494
|
Abstract
Major advances in the understanding of the genetics and pathogenesis of autosomal dominant polycystic kidney disease have occurred within the past year. The proteins encoded by the PKD1 and PKD2 genes, polycystin 1 and polycystin 2, are membrane proteins, capable of interacting physically in vitro, and are likely components of a complex signalling pathway. The majority of PKD1 and PKD2 mutations so far identified are unique inactivating mutations dispersed over the entire genes. Immunohistochemical studies have shown that polycystin 1 and polycystin 2 are developmentally regulated and are overexpressed in polycystic kidneys. The cysts probably result from clonal expansions of single cells. The demonstration of loss of heterozygosity for PKD1 and the absence of immunoreactive polycystin 1 in approximately 20% of the cysts supports a two-hit tumor suppressor gene model of cystogenesis. Regardless of the nature of the initial pathogenic mechanism, the cysts in autosomal dominant polycystic kidney disease are accompanied by partial dedifferentiation of the epithelial cells, disregulation of epithelial cell proliferation, expression of a secretory phenotype, and disarray of cell matrix interactions which leads to interstitial inflammation and matrix accumulation. Recent observations in animal models of inherited polycystic kidney disease have implicated oxidative stress in its pathogenesis. These downstream pathogenetic events have been targeted for intervention, and an increasing number of studies have demonstrated that the course of polycystic kidney disease in rodents can be altered by environmental and pharmacological interventions. Nevertheless, these experimental observations cannot be extrapolated to human autosomal dominant polycystic kidney disease. The recent generation of mice with PKD1 or PKD2 targeted mutations will help to bridge this gap.
Collapse
Affiliation(s)
- V E Torres
- Nephrology and Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
495
|
Affiliation(s)
- F Qian
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | |
Collapse
|
496
|
Wu G, Mochizuki T, Le TC, Cai Y, Hayashi T, Reynolds DM, Somlo S. Molecular cloning, cDNA sequence analysis, and chromosomal localization of mouse Pkd2. Genomics 1997; 45:220-3. [PMID: 9339380 DOI: 10.1006/geno.1997.4920] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The gene responsible for the second form of autosomal dominant polycystic kidney disease, PKD2, has recently been identified. We now describe the cloning, genomic localization, cDNA sequence, and expression analysis of its murine homologue, Pkd2. The cloned cDNA sequence is 5134 bp long and is predicted to encode a 966-amino-acid integral membrane protein with six membrane-spanning domains and intracellular NH2 and COOH termini. Pkd2 is highly conserved with 91% identity and 98% similarity to polycystin-2 at the amino acid level. Pkd2 mRNA is widely expressed in mouse tissues. Pkd2 maps to mouse Chromosome 5 and is excluded as a candidate gene for previously mapped mouse mutations resulting in a polycystic kidney phenotype.
Collapse
Affiliation(s)
- G Wu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
497
|
Veldhuisen B, Saris JJ, de Haij S, Hayashi T, Reynolds DM, Mochizuki T, Elles R, Fossdal R, Bogdanova N, van Dijk MA, Coto E, Ravine D, Nørby S, Verellen-Dumoulin C, Breuning MH, Somlo S, Peters DJ. A spectrum of mutations in the second gene for autosomal dominant polycystic kidney disease (PKD2). Am J Hum Genet 1997; 61:547-55. [PMID: 9326320 PMCID: PMC1715954 DOI: 10.1086/515497] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recently the second gene for autosomal dominant polycystic kidney disease (ADPKD), located on chromosome 4q21-q22, has been cloned and characterized. The gene encodes an integral membrane protein, polycystin-2, that shows amino acid similarity to the PKD1 gene product and to the family of voltage-activated calcium (and sodium) channels. We have systematically screened the gene for mutations by single-strand conformation-polymorphism analysis in 35 families with the second type of ADPKD and have identified 20 mutations. So far, most mutations found seem to be unique and occur throughout the gene, without any evidence of clustering. In addition to small deletions, insertions, and substitutions leading to premature translation stops, one amino acid substitution and five possible splice-site mutations have been found. These findings suggest that the first step toward cyst formation in PKD2 patients is the loss of one functional copy of polycystin-2.
Collapse
Affiliation(s)
- B Veldhuisen
- Department of Human Genetics, Leiden University, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
498
|
Hayashi T, Mochizuki T, Reynolds DM, Wu G, Cai Y, Somlo S. Characterization of the exon structure of the polycystic kidney disease 2 gene (PKD2). Genomics 1997; 44:131-6. [PMID: 9286709 DOI: 10.1006/geno.1997.4851] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PKD2, the gene defective in the second form of autosomal dominant polycystic kidney disease (ADPKD), has been identified by positional cloning and found to encode an integral membrane protein with similarity to the gene for the more common form of ADPKD and to calcium channels. We have determined the exon-intron structure of the PKD2 gene. PKD2 is encoded in at least 15 exons with the translation start site in exon 1. All the splice acceptor and donor sites conform to the AG/GT rule. We have designed a series of intronic oligonucleotide primers for amplifying the entire coding sequence from genomic DNA in segments well suited to mutation analysis using conventional screening strategies such as SSCA or heteroduplex analysis.
Collapse
Affiliation(s)
- T Hayashi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|