451
|
Wang Z, Wang Y, Tong Q, Xu G, Xu M, Li H, Fan P, Li S, Liang Z. Transcriptomic analysis of grapevine Dof transcription factor gene family in response to cold stress and functional analyses of the VaDof17d gene. PLANTA 2021; 253:55. [PMID: 33523295 DOI: 10.1007/s00425-021-03574-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/16/2021] [Indexed: 05/11/2023]
Abstract
Dof genes enhance cold tolerance in grapevine and VaDof17d is tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides. DNA-binding with one finger (Dof) proteins comprise a large family that plays important roles in the regulation of abiotic stresses. No in-depth analysis of Dof genes has been performed in the grapevine. In this study, we analyzed a total of 25 putative Dof genes in grapevine at genomic and transcriptomic levels, compiled expression profiles of 11 selected VaDof genes under cold stress and studied the potential function of the VaDof17d gene in grapevine calli. The 25 Dof proteins can be classified into four phylogenetic groups. RNA-seq and qRT-PCR results demonstrated that a total of 11 VaDof genes responded to cold stress. Comparative mRNA sequencing of 35S::VaDof17d grape calli showed that VaDof17d was tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides (RFOs), as observed by the up-regulation of galactinol synthase (GolS) and raffinose synthase genes. We found that the Dof17d-ED (CRISPR/Cas9-mediated mutagenesis of Dof17d-ED) mutant had low cold tolerance with a decreased RFOs level during cold stress. These results formed the fundamental knowledge for further analysis of the biological roles of Dof genes in the grapevine's adaption to cold stresses.
Collapse
Affiliation(s)
- Zemin Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Tong
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guangzhao Xu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Meilong Xu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- State Key Laboratory of the Seedling Bioengineering, Yinchuan, 750004, People's Republic of China
| | - Huayang Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- China Wine Industry Technology Institute, Yinchuan, 750021, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China.
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
452
|
Zhang X, Wu S, Liu S, Takano T. The Arabidopsis sucrose non-fermenting-1-related protein kinase AtSnRK2.4 interacts with a transcription factor, AtMYB21, that is involved in salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110685. [PMID: 33487368 DOI: 10.1016/j.plantsci.2020.110685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 05/02/2023]
Abstract
Sucrose non-fermenting-1-related protein kinase 2 s (SnRK2 s) are important stress-related plant protein kinases in plants. The interaction partners and phosphorylation substrates of group II and III SnRK2 s in Arabidopsis thaliana have been identified, but similar data for group I SnRK2 s are very limited. Here, we used a yeast two-hybrid (Y2H) screen to find proteins that interact with Arabidopsis AtSnRK2.4, a group I SnRK2. The transcription factor AtMYB21 was identified as an AtSnRK2.4 interaction partner, and its interaction with AtSnRK2.4 was confirmed by an in vitro pull-down assay and a bimolecular fluorescence complementation (BiFC) assay. A subcellular localization assay demonstrated that AtSnRK2.4 and AtMYB21 were located in the cytoplasm and nucleus of onion epidermal cells. AtSnRK2.4 and AtMYB21 were expressed in many tissues and upregulated in response to NaCl stress. Transgenic plants that overexpressed AtSnRK2.4 or AtMYB21 gene exhibited enhanced tolerance to salt stress at germination and post-germination stages. Moreover, the expression of downstream stress-responsive genes was upregulated in salt-stressed AtSnRK2.4 and AtMYB21 transgenic Arabidopsis. These results suggest that AtSnRK2.4 may act synergistically with AtMYB21 to mediate the response to salt stress through the upregulation of downstream stress-responsive genes.
Collapse
Affiliation(s)
- Xinxin Zhang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA); Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China; Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education; Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China.
| | - Shan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education; Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Tetsuo Takano
- Asian Natural Environment Science Center (ANESC), The University of Tokyo, 1-1-1 Midori Cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| |
Collapse
|
453
|
Zhang H, Pan X, Liu S, Lin W, Li Y, Zhang X. Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development. Genomics 2021; 113:474-489. [PMID: 33359830 DOI: 10.1016/j.ygeno.2020.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
The APETALA2/ethylene-responsive factor (AP2/ERF) has important roles in regulating developmental processes and hormone signaling transduction in plants. Pineapple demonstrates a special sensitivity to ethylene, and AP2/ERFs may contribute to this distinct sensitivity of pineapples to ethylene. However, little information is available on the AP2/ERF of pineapple. In this study, 97 AP2/ERF family members were identified from the pineapple genome. The AcAP2/ERF superfamily could be further divided into five subfamilies, and different subfamily existed functional divergence in multifarious biological processes. ERF and RAV subfamily genes might play important roles in the process of ethylene response of pineapple; ERF and DREB subfamily genes had particular functions in the floral organ development. This study is the first to provide detailed information on the features of AP2/ERFs in pineapple, provide new insights into the potential functional roles of the AP2/ERF superfamily members, and will facilitate a better understanding of the molecular mechanism of flower in pineapple.
Collapse
Affiliation(s)
- Hongna Zhang
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China; Hainan University, Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Tropical Crop New Variety Breeding Education Engineering Center, Haikou 570102, PR China
| | - Xiaolu Pan
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China; Hainan University, Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Tropical Crop New Variety Breeding Education Engineering Center, Haikou 570102, PR China
| | - Shenghui Liu
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Wenqiu Lin
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Yunhe Li
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Xiumei Zhang
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| |
Collapse
|
454
|
Tamang P, Richards JK, Solanki S, Ameen G, Sharma Poudel R, Deka P, Effertz K, Clare SJ, Hegstad J, Bezbaruah A, Li X, Horsley RD, Friesen TL, Brueggeman RS. The Barley HvWRKY6 Transcription Factor Is Required for Resistance Against Pyrenophora teres f. teres. Front Genet 2021; 11:601500. [PMID: 33519904 PMCID: PMC7844392 DOI: 10.3389/fgene.2020.601500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Barley is an important cereal crop worldwide because of its use in the brewing and distilling industry. However, adequate supplies of quality malting barley are threatened by global climate change due to drought in some regions and excess precipitation in others, which facilitates epidemics caused by fungal pathogens. The disease net form net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres (Ptt) has emerged as a global threat to barley production and diverse populations of Ptt have shown a capacity to overcome deployed genetic resistances. The barley line CI5791 exhibits remarkably effective resistance to diverse Ptt isolates from around the world that maps to two major QTL on chromosomes 3H and 6H. To identify genes involved in this effective resistance, CI5791 seed were γ-irradiated and two mutants, designated CI5791-γ3 and CI5791-γ8, with compromised Ptt resistance were identified from an M2 population. Phenotyping of CI5791-γ3 and -γ8 × Heartland F2 populations showed three resistant to one susceptible segregation ratios and CI5791-γ3 × -γ8 F1 individuals were susceptible, thus these independent mutants are in a single allelic gene. Thirty-four homozygous mutant (susceptible) CI5791-γ3 × Heartland F2 individuals, representing 68 recombinant gametes, were genotyped via PCR genotype by sequencing. The data were used for single marker regression mapping placing the mutation on chromosome 3H within an approximate 75 cM interval encompassing the 3H CI5791 resistance QTL. Sequencing of the mutants and wild-type (WT) CI5791 genomic DNA following exome capture identified independent mutations of the HvWRKY6 transcription factor located on chromosome 3H at ∼50.7 cM, within the genetically delimited region. Post transcriptional gene silencing of HvWRKY6 in barley line CI5791 resulted in Ptt susceptibility, confirming that it functions in NFNB resistance, validating it as the gene underlying the mutant phenotypes. Allele analysis and transcript regulation of HvWRKY6 from resistant and susceptible lines revealed sequence identity and upregulation upon pathogen challenge in all genotypes analyzed, suggesting a conserved transcription factor is involved in the defense against the necrotrophic pathogen. We hypothesize that HvWRKY6 functions as a conserved signaling component of defense mechanisms that restricts Ptt growth in barley.
Collapse
Affiliation(s)
- Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, United States
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Gazala Ameen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Priyanka Deka
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Justin Hegstad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Achintya Bezbaruah
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Cereal Crops Research Unit, United States Department of Argiculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
455
|
Ried MK, Wild R, Zhu J, Pipercevic J, Sturm K, Broger L, Harmel RK, Abriata LA, Hothorn LA, Fiedler D, Hiller S, Hothorn M. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis. Nat Commun 2021; 12:384. [PMID: 33452263 PMCID: PMC7810988 DOI: 10.1038/s41467-020-20681-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/09/2020] [Indexed: 12/05/2022] Open
Abstract
Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signaling cascades, enabling them to stably maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signaling molecules (PP-InsPs), which are sensed by SPX domain-containing proteins. In plants, PP-InsP-bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8–SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors. Plants regulate phosphate homeostasis via the interaction of PHR transcription factors with SPX receptors bound to inositol pyrophosphate signaling molecules. Here the authors show that inositol pyrophosphate-bound SPX interacts with the coiled-coil domain of PHR, which regulates the oligomerization and activity of the transcription factor.
Collapse
Affiliation(s)
- Martina K Ried
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.,Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Rebekka Wild
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.,Institut de Biologie Structurale (IBS), 38044, Grenoble, France
| | - Jinsheng Zhu
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | | | - Kristina Sturm
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Larissa Broger
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Luciano A Abriata
- Protein production and structure Core Facility, EPFL, 1015, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, 30419, Hannover, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | | | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
456
|
Orchid B sister gene PeMADS28 displays conserved function in ovule integument development. Sci Rep 2021; 11:1205. [PMID: 33441740 PMCID: PMC7806631 DOI: 10.1038/s41598-020-79877-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022] Open
Abstract
The ovules and egg cells are well developed to be fertilized at anthesis in many flowering plants. However, ovule development is triggered by pollination in most orchids. In this study, we characterized the function of a Bsister gene, named PeMADS28, isolated from Phalaenopsis equestris, the genome-sequenced orchid. Spatial and temporal expression analysis showed PeMADS28 predominantly expressed in ovules between 32 and 48 days after pollination, which synchronizes with integument development. Subcellular localization and protein–protein interaction analyses revealed that PeMADS28 could form a homodimer as well as heterodimers with D-class and E-class MADS-box proteins. In addition, ectopic expression of PeMADS28 in Arabidopsis thaliana induced small curled rosette leaves, short silique length and few seeds, similar to that with overexpression of other species’ Bsister genes in Arabidopsis. Furthermore, complementation test revealed that PeMADS28 could rescue the phenotype of the ABS/TT16 mutant. Together, these results indicate the conserved function of BsisterPeMADS28 associated with ovule integument development in orchid.
Collapse
|
457
|
Yang X, Zhou T, Wang M, Li T, Wang G, Fu FF, Cao F. Systematic investigation and expression profiles of the GbR2R3-MYB transcription factor family in ginkgo (Ginkgo biloba L.). Int J Biol Macromol 2021; 172:250-262. [PMID: 33450345 DOI: 10.1016/j.ijbiomac.2021.01.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
As one of the largest families of transcription factors, the R2R3-MYB family plays a significant role in plant growth, development, and response to hormone and environmental stress. To explore its evolutionary mechanism and potential function in Ginkgo biloba, a gymnosperm of great economic and ecological value, we presented a comprehensive analysis of the R2R3-MYB genes in ginkgo. Sixty-nine GbR2R3-MYB genes were identified and these genes could be classified into 33 groups based on the characteristics of the amino acid sequence of the R2R3-MYB domain and gene structure. Syntenic analyses indicated that few tandem and segmental duplications possibly resulted in the contraction of the GbR2R3-MYB gene family. Based on the transcriptome data, expression profiles of eight different tissues and different developmental stages of leaf and kernel showed that GbR2R3-MYB genes had distinct temporal and spatial expression characteristics. Specific expression patterns of the sixteen GbR2R3-MYB genes were also identified in response to different abiotic stresses and hormonal exposures. Further investigation revealed that GbR2R3-MYB19 was located in the nucleus and possessed transcriptional activity, implying its potential roles in the regulation of multiple biological processes. Our findings provide a robust basis for future comprehensive evolutionary and functional analyses of GbR2R3-MYB genes in ginkgo.
Collapse
Affiliation(s)
- Xiaoming Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Tingting Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Mengke Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Tingting Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Fang-Fang Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
458
|
Lei P, Liu Z, Hu Y, Kim H, Liu S, Liu J, Xu L, Li J, Zhao Y, Yu Z, Qu Y, Huang F, Meng F. Transcriptome analysis of salt stress responsiveness in the seedlings of wild and cultivated Ricinus communis L. J Biotechnol 2021; 327:106-116. [PMID: 33421510 DOI: 10.1016/j.jbiotec.2020.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022]
Abstract
Soil salinity is one of the major environmental factors, influencing agricultural productivity of crops. As a non-edible and ideal oilseed crop, castor (Ricinus communis L.) has great industrial value in biofuel, but molecular mechanisms of salt stress regulation are still unknown. In this study, the differentially expressed genes (DEGs) for differential salt tolerance in two castor cultivar (wild castor : Y, cultivated castor 'Tongbi 5': Z) were identified. 12 libraries were sampled for Illumina high-throughput sequencing to consider 132,426 nonredundant unigenes and 31,221 gene loci. Multiple phytohormones and transcription factors (TFs) were correlated with salt-tolerance and differently enriched in these two genotypes. The type 2C protein phosphatases (PP2C) homologs were all upregulated under salt stress. Importantly, IAA (1), DELLA (1) and Jasmonate zim domain (JAZ) (1) were also identified and found to be differentially expressed. Based on the co-expressed module by regulatory networks and heatmap analysis, ERF/AP2, WRKY and bHLH families were prominently participate in high salt stress response of wild and cultivated castor. Finally, these results highlight that the hub DEGs and families were more accumulated in cultivated castor than those in wild castor, providing novel insights into the salinity adaptive mechanisms and genetic improvement in castor.
Collapse
Affiliation(s)
- Pei Lei
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Zhi Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Yanbo Hu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - HyokChol Kim
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Shuo Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Jiaqi Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Liping Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Jianxin Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Yong Zhao
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028043, China; Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, 028043, China.
| | - Zhenliang Yu
- Heilongjiang Hydraulic Research Institute, Harbin, 150080, China.
| | - Yanting Qu
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences (HAS), Harbin, 150040, China.
| | - Fenglang Huang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028043, China; Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, 028043, China.
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
459
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Wang C, Wang X, Li X, Yue Y, Yu R, Fan Y. Genome-Wide Analysis Reveals the Potential Role of MYB Transcription Factors in Floral Scent Formation in Hedychium coronarium. FRONTIERS IN PLANT SCIENCE 2021; 12:623742. [PMID: 33719296 PMCID: PMC7952619 DOI: 10.3389/fpls.2021.623742] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 05/19/2023]
Abstract
The MYB gene family is one of the largest groups of transcription factors (TFs) playing diverse roles in several biological processes. Hedychium coronarium (white ginger lily) is a renowned ornamental plant both in tropical and subtropical regions due to its flower shape and strong floral scent mainly composed of terpenes and benzenoids. However, there is no information available regarding the role of the MYB gene family in H. coronarium. In the current study, the MYB gene family was identified and extensively analyzed. The identified 253 HcMYB genes were unevenly mapped on 17 chromosomes at a different density. Promoter sequence analysis showed numerous phytohormones related to cis-regulatory elements. The majority of HcMYB genes contain two to three introns and motif composition analysis showed their functional conservation. Phylogenetic analysis revealed that HcMYBs could be classified into 15 distinct clades, and the segmental duplication events played an essential role in the expansion of the HcMYB gene family. Tissue-specific expression patterns of HcMYB genes displayed spatial and temporal expression. Furthermore, seven HcMYB (HcMYB7/8/75/79/145/238/248) were selected for further investigation. Through RT-qPCR, the response of candidates HcMYB genes toward jasmonic acid methyl ester (MeJA), abscisic acid (ABA), ethylene, and auxin was examined. Yeast one-hybrid (Y1H) assays revealed that candidate genes directly bind to the promoter of bottom structural volatile synthesis genes (HcTPS1, HcTPS3, HcTPS10, and HcBSMT2). Moreover, yeast two-hybrid (Y2H) assay showed that HcMYB7/8/75/145/248 interact with HcJAZ1 protein. In HcMYB7/8/79/145/248-silenced flowers, the floral volatile contents were decreased and downregulated the expression of key structural genes, suggesting that these genes might play crucial roles in floral scent formation in H. coronarium by regulating the expression of floral scent biosynthesis genes. Collectively, these findings indicate that HcMYB genes might be involved in the regulatory mechanism of terpenoids and benzenoid biosynthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Chutian Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- *Correspondence: Yanping Fan,
| |
Collapse
|
460
|
Teshome S, Kebede M. Analysis of regulatory elements in GA2ox, GA3ox and GA20ox gene families in Arabidopsis thaliana: an important trait. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1995494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Shiferaw Teshome
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Department of Biotechnology, College of Natural and Computational Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Mulugeta Kebede
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
461
|
Ning Z, Hu K, Zhou Z, Zhao D, Tang J, Wang H, Li L, Ding C, Chen X, Yao G, Zhang H. IbERF71, with IbMYB340 and IbbHLH2, coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potato (Ipomoea batatas L.). PLANT CELL REPORTS 2021; 40:157-169. [PMID: 33084965 DOI: 10.1007/s00299-020-02621-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE The transcription factor (TF) IbERF71 forms a novel complex, IbERF71-IbMYB340-IbbHLH2, to coregulate anthocyanin biosynthesis by binding to the IbANS1 promoter in purple-fleshed sweet potatoes. Purple-fleshed sweet potato (Ipomoea batatas L.) is very popular because of its abundant anthocyanins, which are natural pigments with multiple physiological functions. TFs involved in regulating anthocyanin biosynthesis have been identified in many plants. However, the molecular mechanism of anthocyanin biosynthesis in purple-fleshed sweet potatoes has rarely been examined. In this study, TF IbERF71 and its partners were screened by bioinformatics and RT-qPCR analysis. The results showed that the expression levels of IbERF71 and partners IbMYB340 and IbbHLH2 were higher in purple-fleshed sweet potatoes than in other colors and that the expression levels positively correlated with anthocyanin contents. Moreover, transient expression assays showed that cotransformation of IbMYB340+IbbHLH2 resulted in anthocyanin accumulation in tobacco leaves and strawberry receptacles, and additional IbERF71 significantly increased visual aspects. Furthermore, the combination of the three TFs significantly increased the expression levels of FvANS and FvGST, which are involved in anthocyanin biosynthesis and transport of strawberry receptacles. The dual-luciferase reporter system verified that cotransformation of the three TFs enhanced the transcription activity of IbANS1. In addition, yeast two-hybrid and firefly luciferase complementation assays revealed that IbMYB340 interacted with IbbHLH2 and IbERF71 but IbERF71 could not interact with IbbHLH2 in vitro. In summary, our findings provide novel evidence that IbERF71 and IbMYB340-IbbHLH2 form the regulatory complex IbERF71-IbMYB340-IbbHLH2 that coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potatoes. Thus, the present study provides a new regulatory network of anthocyanin biosynthesis and strong insight into the color development of purple-fleshed sweet potatoes.
Collapse
Affiliation(s)
- Zhiyuan Ning
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Donglan Zhao
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Hong Wang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lixia Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chen Ding
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaoyan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
462
|
Wang ZQ, Yu TF, Sun GZ, Zheng JC, Chen J, Zhou YB, Chen M, Ma YZ, Wei WL, Xu ZS. Genome-Wide Analysis of the Catharanthus roseus RLK1-Like in Soybean and GmCrRLK1L20 Responds to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:614909. [PMID: 33815437 PMCID: PMC8012678 DOI: 10.3389/fpls.2021.614909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/15/2021] [Indexed: 05/22/2023]
Abstract
Abiotic stresses, such as drought and salinity, severely affects the growth, development and productivity of the plants. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase family is involved in several processes in the plant life cycle. However, there have been few studies addressing the functions of CrRLK1L proteins in soybean. In this study, 38 CrRLK1L genes were identified in the soybean genome (Glycine max Wm82.a2.v1). Phylogenetic analysis demonstrated that soybean CrRLK1L genes were grouped into clusters, cluster I, II, III. The chromosomal mapping demonstrated that 38 CrRLK1L genes were located in 14 of 20 soybean chromosomes. None were discovered on chromosomes 1, 4, 6, 7, 11, and 14. Gene structure analysis indicated that 73.6% soybean CrRLK1L genes were characterized by a lack of introns.15.7% soybean CrRLK1L genes only had one intron and 10.5% soybean CrRLK1L genes had more than one intron. Five genes were obtained from soybean drought- and salt-induced transcriptome databases and were found to be highly up-regulated. GmCrRLK1L20 was notably up-regulated under drought and salinity stresses, and was therefore studied further. Subcellular localization analysis revealed that the GmCrRLK1L20 protein was located in the cell membrane. The overexpression of the GmCrRLK1L20 gene in soybean hairy roots improved both drought tolerance and salt stresses and enhanced the expression of the stress-responsive genes GmMYB84, GmWRKY40, GmDREB-like, GmGST15, GmNAC29, and GmbZIP78. These results indicated that GmCrRLK1L20 could play a vital role in defending against drought and salinity stresses in soybean.
Collapse
Affiliation(s)
- Zhi-Qi Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Guo-Zhong Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jia-Cheng Zheng
- College of Agronomy, Anhui Science and Technology University, Fengyang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- *Correspondence: Zhao-Shi Xu,
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Wen-Liang Wei,
| |
Collapse
|
463
|
Park HC, Park BO, Kim HS, Kim SH, Lee SW, Chung WS. AtMPK6-induced phosphorylation of AtERF72 enhances its DNA binding activity and interaction with TGA4/OBF4 in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:11-20. [PMID: 33073469 DOI: 10.1111/plb.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The ethylene-responsive element binding factor (ERF) family is a large family of transcription factors involved in plant development and environmental stress responses. We previously reported the identification of 29 putative substrates of Mitogen-activated Protein Kinase3 (AtMPK3), AtMPK4 and AtMPK6, based on a solid-phase phosphorylation screening using a lambda phage expression library in Arabidopsis thaliana. In this study, a putative MPK substrate, AtERF72 (At3g16770), was strongly phosphorylated by AtMPK6 on the serine residue at position 151 (Ser151). AtERF72 binds to the GCC box (AGCCGCC) in the promoters of several pathogenesis-related (PR) genes and activates their transcription. We also show that the DNA-binding activity of AtERF72 is enhanced upon phosphorylation by AtMPK6 in vitro. In addition, transient co-expression experiments in Arabidopsis protoplasts revealed that effector constructs expressing a mutant variant of AtERF72, AtERF72S151D (carrying a Ser to aspartic acid [Asp] substitution at amino acid position 151) showed higher expression of the β-glucuronidase (GUS) reporter gene driven by the GCC box element than effector constructs expressing the wild-type AtERF72. Furthermore, yeast two-hybrid assays revealed that the interaction between AtERF72S151D and TGA4/OBF4 was stronger than that between wild-type AtERF72 and TGA4/OBF4. Since AtERF72S151D is equivalent to AtERF72 phosphorylated by AtMPK6 at Ser151, these results suggest that the phosphorylation of AtERF72 by AtMPK6 triggers an event of transcriptional regulation from defence signalling in Arabidopsis.
Collapse
Affiliation(s)
- H C Park
- Team of Vulnerable Ecological Research, Division of Climate and Ecology, Bureau of Conservation & Assessment Research, National Institute of Ecology, Seocheon, Republic of Korea
| | - B O Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - H S Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - S H Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - S W Lee
- Department of Agronomy & Medicinal Plant Resources, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - W S Chung
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
464
|
Cheng C, Li Q, Wang X, Li Y, Qian C, Li J, Lou Q, Jahn M, Chen J. Identification and Expression Analysis of the CsMYB Gene Family in Root Knot Nematode-Resistant and Susceptible Cucumbers. Front Genet 2020; 11:550677. [PMID: 33343619 PMCID: PMC7744742 DOI: 10.3389/fgene.2020.550677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
MYB (myeloblastosis) transcription factors (TFs) play important roles in controlling various physiological processes in plants, such as responses to biotic and abiotic stress, metabolism, and defense. A previous study identified a gene, Csa6G410090, encoding a plant lipid transfer protein (LTP), as a possible regulator in cucumber (Cucumis sativus L.) of the resistance response to root-knot nematode (RKN) [Meloidogyne incognita Kofoid and White (Chitwood)]. Myb-type DNA-binding TFs were presumed to regulate downstream genes expression, including LTPs, however, the regulation mechanism remained unclear. To elucidate whether and which MYB TFs may be involved in regulation of the resistance response, this study identified 112 genes as candidate members of the CsMYB gene family by combining CDD and SMART databases, using the Hidden Markov Model (HMM) and manual calibration. Within this group, ten phylogenetic subgroups were resolved according to sequence-based classification, consistent with results from comprehensive investigation of gene structure, conserved motifs, chromosome locations, and cis-element analysis. Distribution and collinearity analysis indicated that amplification of the CsMYB gene family in cucumber has occurred mainly through tandem repeat events. Spatial gene expression analysis showed that 8 CsMYB genes were highly expressed at differing levels in ten different tissues or organs. The roots of RKN-resistant and susceptible cucumbers were inoculated with M. incognita, finding that CsMYB (Csa6G538700, Csa1G021940, and Csa5G641610) genes showed up-regulation coincident with upregulation of the "hub" gene LTP (Csa6G410090) previously implicated as a major gene in the resistance response to RKN in cucumber. Results of this study suggest hypotheses regarding the elements and regulation of the resistant response as well as possible RKN resistance-enhancing strategies in cucumber and perhaps more broadly in plants.
Collapse
Affiliation(s)
- Chunyan Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qingrong Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xing Wang
- Hebei University of Engineering, Handan, China
| | - Ying Li
- Nanjing Vegetable Science Research Institute, Nanjing, China
| | - Chuntao Qian
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ji Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qunfeng Lou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Molly Jahn
- Jahn Research Group, Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Jinfeng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
465
|
Salladini E, Jørgensen MLM, Theisen FF, Skriver K. Intrinsic Disorder in Plant Transcription Factor Systems: Functional Implications. Int J Mol Sci 2020; 21:E9755. [PMID: 33371315 PMCID: PMC7767404 DOI: 10.3390/ijms21249755] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic cells are complex biological systems that depend on highly connected molecular interaction networks with intrinsically disordered proteins as essential components. Through specific examples, we relate the conformational ensemble nature of intrinsic disorder (ID) in transcription factors to functions in plants. Transcription factors contain large regulatory ID-regions with numerous orphan sequence motifs, representing potential important interaction sites. ID-regions may affect DNA-binding through electrostatic interactions or allosterically as for the bZIP transcription factors, in which the DNA-binding domains also populate ensembles of dynamic transient structures. The flexibility of ID is well-suited for interaction networks requiring efficient molecular adjustments. For example, Radical Induced Cell Death1 depends on ID in transcription factors for its numerous, structurally heterogeneous interactions, and the JAZ:MYC:MED15 regulatory unit depends on protein dynamics, including binding-associated unfolding, for regulation of jasmonate-signaling. Flexibility makes ID-regions excellent targets of posttranslational modifications. For example, the extent of phosphorylation of the NAC transcription factor SOG1 regulates target gene expression and the DNA-damage response, and phosphorylation of the AP2/ERF transcription factor DREB2A acts as a switch enabling heat-regulated degradation. ID-related phase separation is emerging as being important to transcriptional regulation with condensates functioning in storage and inactivation of transcription factors. The applicative potential of ID-regions is apparent, as removal of an ID-region of the AP2/ERF transcription factor WRI1 affects its stability and consequently oil biosynthesis. The highlighted examples show that ID plays essential functional roles in plant biology and has a promising potential in engineering.
Collapse
Affiliation(s)
| | | | | | - Karen Skriver
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (E.S.); (M.L.M.J.); (F.F.T.)
| |
Collapse
|
466
|
Zhang Q, Zhang J, Wei H, Fu X, Ma L, Lu J, Wang H, Yu S. Genome-wide identification of NF-YA gene family in cotton and the positive role of GhNF-YA10 and GhNF-YA23 in salt tolerance. Int J Biol Macromol 2020; 165:2103-2115. [PMID: 33080263 DOI: 10.1016/j.ijbiomac.2020.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/19/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Nuclear factor YA (NF-YA) genes play important roles in many biological processes, such as leaf growth, nitrogen nutrition, drought resistance, and salt stress. The functions of NF-YA genes in cotton have not been elucidated. The current study identified a total of 16, 16, 31, and 29 genes from Gossypium raimondii, G. arboretum, G. barbadense, and G. hirsutum, respectively. The NF-YA genes in cotton were phylogenetically classified into 4 groups. Analysis of gene structure, conserved motifs and multiple sequence alignments supported the evolutionary conservation of NF-YA family genes in cotton. Analysis of the expression patterns of GhNF-YAs in cotton suggested that GhNF-YAs play important roles in plant growth, development, and stress responses. The quantitative real-time PCR (qRT-PCR) validation of selected genes suggested that GhNF-YA genes are induced in response to salt, drought, ABA, and MeJA treatments. GhNF-YA genes may regulate salt and drought stress via the ABA or MeJA pathway. Silencing of GhNF-YA10 and GhNF-YA23 significantly reduced the salt tolerance of cotton seedlings, indicating that these genes participate in the regulation of the response of cotton to salt stress. These results establish a foundation for subsequent functional studies of the NF-YA gene family in cotton.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China
| | - Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China.
| |
Collapse
|
467
|
Khan ZH, Agarwal S, Rai A, Memaya MB, Mehrotra S, Mehrotra R. Co-expression network analysis of protein phosphatase 2A (PP2A) genes with stress-responsive genes in Arabidopsis thaliana reveals 13 key regulators. Sci Rep 2020; 10:21480. [PMID: 33293553 PMCID: PMC7722862 DOI: 10.1038/s41598-020-77746-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Abiotic and biotic stresses adversely affect plant growth and development and eventually result in less yield and threaten food security worldwide. In plants, several studies have been carried out to understand molecular responses to abiotic and biotic stresses. However, the complete circuitry of stress-responsive genes that plants utilise in response to those environmental stresses are still unknown. The protein phosphatase 2A (PP2A) gene has been known to have a crucial role in abiotic and biotic stresses; but how it regulates the stress response in plants is still not known completely. In this study, we constructed gene co-expression networks of PP2A genes with stress-responsive gene datasets from cold, drought, heat, osmotic, genotoxic, salt, and wounding stresses to unveil their relationships with the PP2A under different conditions of stress. The graph analysis identified 13 hub genes and several influential genes based on closeness centrality score (CCS). Our findings also revealed the count of unique genes present in different settings of stresses and subunits. We also formed clusters of influential genes based on the stress, CCS, and co-expression value. Analysis of cis-regulatory elements (CREs), recurring in promoters of these genes was also performed. Our study has led to the identification of 16 conserved CREs.
Collapse
Affiliation(s)
- Zaiba Hasan Khan
- Department of Biological Sciences, K.K. Birla Goa Campus, BITS-Pilani, Goa, India
| | - Swati Agarwal
- Department of Computer Science and Information Systems, K.K. Birla Goa Campus, BITS-Pilani, Goa, India.
| | - Atul Rai
- Department of Computer Science and Information Systems, K.K. Birla Goa Campus, BITS-Pilani, Goa, India
| | - Mounil Binal Memaya
- Department of Computer Science and Information Systems, K.K. Birla Goa Campus, BITS-Pilani, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, K.K. Birla Goa Campus, BITS-Pilani, Goa, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, K.K. Birla Goa Campus, BITS-Pilani, Goa, India.
| |
Collapse
|
468
|
Moenga SM, Gai Y, Carrasquilla-Garcia N, Perilla-Henao LM, Cook DR. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1195-1214. [PMID: 32920943 DOI: 10.1111/tpj.14988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Ancestral adaptations in crop wild relatives can provide a genetic reservoir for crop improvement. Here we document physiological changes to mild and severe drought stress, and the associated transcriptome dynamics in both wild and cultivated chickpea. Over 60% of transcriptional changes were related to metabolism, indicating that metabolic plasticity is a core and conserved drought response. In addition, changes in RNA processing and protein turnover were predominant in the data, suggestive of broad restructuring of the chickpea proteome in response to drought. While 12% of the drought-responsive transcripts have similar dynamics in cultivated and wild accessions, numerous transcripts had expression patterns unique to particular genotypes, or that distinguished wild from cultivated genotypes and whose divergence may be a consequence of domestication. These and other comparisons provide a transcriptional correlate of previously described species' genetic diversity, with wild accessions well differentiated from each other and from cultivars, and cultivars essentially indistinguishable at the broad transcriptome level. We identified metabolic pathways such as phenylpropanoid metabolism, and biological processes such as stomatal development, which are differentially regulated across genotypes with potential consequences on drought tolerance. These data indicate that wild Cicer reticulatum may provide both conserved and divergent mechanisms as a resource in breeding for drought tolerance in cultivated chickpea.
Collapse
Affiliation(s)
- Susan M Moenga
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Yunpeng Gai
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Noelia Carrasquilla-Garcia
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Laura M Perilla-Henao
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Douglas R Cook
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
469
|
Liu Y, Zeng Y, Li Y, Liu Z, Lin-Wang K, Espley RV, Allan AC, Zhang J. Genomic survey and gene expression analysis of the MYB-related transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 164:2450-2464. [DOI: 10.1016/j.ijbiomac.2020.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
470
|
Li F, Chen X, Zhou S, Xie Q, Wang Y, Xiang X, Hu Z, Chen G. Overexpression of SlMBP22 in Tomato Affects Plant Growth and Enhances Tolerance to Drought Stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110672. [PMID: 33218637 DOI: 10.1016/j.plantsci.2020.110672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
MADS-box transcription factors play crucial and diverse roles in plant growth and development, and the responses to biotic and abiotic stresses. However, the implementation of MADS-box transcription factors in regulating plant architecture and stress responses has not been fully explored in tomato. Here, we found that a novel MADS-box transcription factor, SlMBP22, participated in the control of agronomical traits, tolerance to abiotic stress, and regulation of auxin and gibberellin signalling. Transgenic plants overexpressing SlMBP22 (SlMBP22-OE) displayed pleiotropic phenotypes, including reduced plant height and leaf size, by affecting auxin and/or gibberellin signalling. SlMBP22 was induced by dehydration treatment, and SlMBP22-OE plants were more tolerant to drought stress than wild-type (WT). Furthermore, SlMBP22 overexpression plants accumulated more chlorophyll, starch and soluble sugar than WT, indicating that the darker green leaves might be attributed to increased chlorophyll levels in the transgenic plants. RNA-Seq results showed that the transcript levels of a series of genes related to chloroplast development, chlorophyll metabolism, starch and sucrose metabolism, hormone signalling, and stress responses were altered. Collectively, our data demonstrate that SlMBP22 plays an important role in both regulating tomato growth and resisting drought stress.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xinyu Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shengen Zhou
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xiaoxue Xiang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
471
|
Zhu XF, Wu Q, Meng YT, Tao Y, Shen RF. AtHAP5A regulates iron translocation in iron-deficient Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1910-1925. [PMID: 33405355 DOI: 10.1111/jipb.12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 06/12/2023]
Abstract
Iron (Fe) deficient plants employ multiple strategies to increase root uptake and root-to-shoot translocation of Fe. The identification of genes that are responsible for these processes, and a comprehensive understanding of the regulatory effects of transcriptional networks on their expression, including transcription factors (TFs), is underway in Arabidopsis thaliana. Here, we show that a Histone- or heme-associated proteins (HAP) transcription factor (TF), HAP5A, is necessary for the response to Fe deficiency in Arabidopsis. Its expression was induced under Fe deficiency, and the lack of HAP5A significantly decreased Fe translocation from the root to the shoot, resulting in substantial chlorosis of the newly expanded leaves, compared with the wild-type (WT, Col-0). Further analysis found that the expression of a gene encoding nicotianamine (NA) synthase (NAS1) was dramatically decreased in the hap5a mutant, regardless of the Fe status. Yeast-one-hybrid and ChIP analyses suggested that HAP5A directly binds to the promoter region of NAS1. Moreover, overexpression of NAS1 could rescue the chlorosis phenotype of hap5a in Fe deficient conditions. In summary, a novel pathway was elucidated, showing that NAS1-dependent translocation of Fe from the root to the shoot is controlled by HAP5A in Fe-deficient Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Ting Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Tao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
472
|
Fu Y, Cheng M, Li M, Guo X, Wu Y, Wang J. Identification and Characterization of PLATZ Transcription Factors in Wheat. Int J Mol Sci 2020; 21:E8934. [PMID: 33255649 PMCID: PMC7728089 DOI: 10.3390/ijms21238934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
The PLATZ (plant AT-rich protein and zinc-binding protein) transcription factor family is a class of plant-specific zinc-dependent DNA-binding proteins. PLATZ has essential roles in seed endosperm development, as well as promoting cell proliferation duration in the earlier stages of the crops. In the present study, 62 TaPLATZ genes were identified from the wheat genome, and they were unequally distributed on 15 chromosomes. According to the phylogenetic analysis, 62 TaPLATZ genes were classified into six groups, including two groups that were unique in wheat. Members in the same groups shared similar exon-intron structures. The polyploidization, together with genome duplication of wheat, plays a crucial role in the expansion of the TaPLATZs family. Transcriptome data indicated a distinct divergence expression pattern of TaPLATZ genes that could be clustered into four modules. The TaPLATZs in Module b possessed a seed-specific expression pattern and displayed obvious high expression in the earlier development stage of seeds. Subcellular localization data of TaPLATZs suggesting that they likely perform a function as a conventional transcription factor. This study provides insight into understanding the structure divergence, evolutionary features, expression profiles, and potential function of PLATZ in wheat.
Collapse
Affiliation(s)
- Yuxin Fu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Mengping Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Ministry of Education, Chengdu 611130, China
| | - Maolian Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Ministry of Education, Chengdu 611130, China
| | - Xiaojiang Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Ministry of Education, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Use in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
473
|
Liu X, Zhang H, Ma L, Wang Z, Wang K. Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family Under Abiotic Stresses in Medicago truncatula. Genes (Basel) 2020; 11:genes11111389. [PMID: 33238556 PMCID: PMC7709032 DOI: 10.3390/genes11111389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The trihelix transcription factor (GT) family is widely involved in regulating plant growth and development, and most importantly, responding to various abiotic stresses. Our study first reported the genome-wide identification and analysis of GT family genes in Medicago truncatula. Overall, 38 trihelix genes were identified in the M. truncatula genome and were classified into five subfamilies (GT-1, GT-2, SH4, GTγ and SIP1). We systematically analyzed the phylogenetic relationship, chromosomal distribution, tandem and segmental duplication events, gene structures and conserved motifs of MtGTs. Syntenic analysis revealed that trihelix family genes in M. truncatula had the most collinearity relationship with those in soybean followed by alfalfa, but very little collinearity with those in the maize and rice. Additionally, tissue-specific expression analysis of trihelix family genes suggested that they played various roles in the growth and development of specific tissues in M. truncatula. Moreover, the expression of some MtGT genes, such as MtGT19, MtGT20, MtGT22, and MtGT33, was dramatically induced by drought, salt, and ABA treatments, illustrating their vital roles in response to abiotic stresses. These findings are helpful for improving the comprehensive understanding of trihelix family; additionally, the study provides candidate genes for achieving the genetic improvement of stress resistance in legumes.
Collapse
Affiliation(s)
- Xiqiang Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (H.Z.); (Z.W.)
| | - Han Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (H.Z.); (Z.W.)
| | - Lin Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Zan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (H.Z.); (Z.W.)
| | - Kun Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (H.Z.); (Z.W.)
- Correspondence: ; Tel.: +86-010-6273-3338
| |
Collapse
|
474
|
Mann M, Serif M, Wrobel T, Eisenhut M, Madhuri S, Flachbart S, Weber APM, Lepetit B, Wilhelm C, Kroth PG. The Aureochrome Photoreceptor PtAUREO1a Is a Highly Effective Blue Light Switch in Diatoms. iScience 2020; 23:101730. [PMID: 33235981 PMCID: PMC7670200 DOI: 10.1016/j.isci.2020.101730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
Aureochromes represent a unique type of blue light photoreceptors that possess a blue light sensing flavin-binding LOV-domain and a DNA-binding bZIP domain, thus being light-driven transcription factors. The diatom Phaeodactylum tricornutum, a member of the essential marine primary producers, possesses four aureochromes (PtAUREO1a, 1b, 1c, 2). Here we show a dramatic change in the global gene expression pattern of P. tricornutum wild-type cells after a shift from red to blue light. About 75% of the genes show significantly changed transcript levels already after 10 and 60 min of blue light exposure, which includes genes of major transcription factors as well as other photoreceptors. Very surprisingly, this light-induced regulation of gene expression is almost completely inhibited in independent PtAureo1a knockout lines. Such a massive and fast transcriptional change depending on one single photoreceptor is so far unprecedented. We conclude that PtAUREO1a plays a key role in diatoms upon blue light exposure. Blue light induces a very fast transcriptional response in the diatom P. tricornutum This strong response is almost completely inhibited when Aureochrome 1a is absent The results imply a key role of PtAureo1a in blue light-induced responses in diatoms
Collapse
Affiliation(s)
- Marcus Mann
- Institut für Biologie, Universität Leipzig, 04009 Leipzig, Germany
| | - Manuel Serif
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Thomas Wrobel
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Marion Eisenhut
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Shvaita Madhuri
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Samantha Flachbart
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Bernard Lepetit
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
475
|
Bassolino L, Buti M, Fulvio F, Pennesi A, Mandolino G, Milc J, Francia E, Paris R. In Silico Identification of MYB and bHLH Families Reveals Candidate Transcription Factors for Secondary Metabolic Pathways in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1540. [PMID: 33187168 PMCID: PMC7697600 DOI: 10.3390/plants9111540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Plant secondary metabolic pathways are finely regulated by the activity of transcription factors, among which members of the bHLH and MYB subfamilies play a main role. Cannabis sativa L. is a unique officinal plant species with over 600 synthesized phytochemicals having diverse scale-up industrial and pharmaceutical usage. Despite comprehensive knowledge of cannabinoids' metabolic pathways, very little is known about their regulation, while the literature on flavonoids' metabolic pathways is still scarce. In this study, we provide the first genome-wide analysis of bHLH and MYB families in C. sativa reference cultivar CBDRx and identification of candidate coding sequences for these transcription factors. Cannabis sativa bHLHs and MYBs were then classified into functional subfamilies through comparative phylogenetic analysis with A. thaliana transcription factors. Analyses of gene structure and motif distribution confirmed that CsbHLHs and CsMYBs belonging to the same evolutionary clade share common features at both gene and amino acidic level. Candidate regulatory genes for key metabolic pathways leading to flavonoid and cannabinoid synthesis in Cannabis were also retrieved. Furthermore, a candidate gene approach was used to identify structural enzyme-coding genes for flavonoid and cannabinoid synthesis. Taken as a whole, this work represents a valuable resource of candidate genes for further investigation of the C. sativa cannabinoid and flavonoid metabolic pathways for genomic studies and breeding programs.
Collapse
Affiliation(s)
- Laura Bassolino
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy;
| | - Flavia Fulvio
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Alessandro Pennesi
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Giuseppe Mandolino
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Justyna Milc
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (J.M.); (E.F.)
| | - Enrico Francia
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (J.M.); (E.F.)
| | - Roberta Paris
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| |
Collapse
|
476
|
Huang J, Wang S, Wang X, Fan Y, Han Y. Structure and expression analysis of seven salt-related ERF genes of Populus. PeerJ 2020; 8:e10206. [PMID: 33150090 PMCID: PMC7583627 DOI: 10.7717/peerj.10206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
Ethylene response factors (ERFs) are plant-specific transcription factors (TFs) that play important roles in plant growth and stress defense and have received a great amount of attention in recent years. In this study, seven ERF genes related to abiotic stress tolerance and response were identified in plants of the Populus genus. Systematic bioinformatics, including sequence phylogeny, genome organisation, gene structure, gene ontology (GO) annotation, etc. were detected. Expression-pattern of these seven ERF genes were analyzed using RT-qPCR and cross validated using RNA-Seq. Data from a phylogenetic tree and multiple alignment of protein sequences indicated that these seven ERF TFs belong to three subfamilies and contain AP2, YRG, and RAYD conserved domains, which may interact with downstream target genes to regulate the plant stress response. An analysis of the structure and promoter region of these seven ERF genes showed that they have multiple stress-related motifs and cis-elements, which may play roles in the plant stress-tolerance process through a transcriptional regulation mechanism; moreover, the cellular_component and molecular_function terms associated with these ERFs determined by GO annotation supported this hypothesis. In addition, the spatio-temporal expression pattern of these seven ERFs, as detected using RT-qPCR and RNA-seq, suggested that they play a critical role in mediating the salt response and tolerance in a dynamic and tissue-specific manner. The results of this study provide a solid basis to explore the functions of the stress-related ERF TFs in Populus abiotic stress tolerance and development process.
Collapse
Affiliation(s)
- Juanjuan Huang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Xingdou Wang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Yan Fan
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
477
|
Lira BS, Oliveira MJ, Shiose L, Wu RTA, Rosado D, Lupi ACD, Freschi L, Rossi M. Light and ripening-regulated BBX protein-encoding genes in Solanum lycopersicum. Sci Rep 2020; 10:19235. [PMID: 33159121 PMCID: PMC7648751 DOI: 10.1038/s41598-020-76131-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Light controls several aspects of plant development through a complex signalling cascade. Several B-box domain containing proteins (BBX) were identified as regulators of Arabidopsis thaliana seedling photomorphogenesis. However, the knowledge about the role of this protein family in other physiological processes and species remains scarce. To fill this gap, here BBX protein encoding genes in tomato genome were characterised. The robust phylogeny obtained revealed how the domain diversity in this protein family evolved in Viridiplantae and allowed the precise identification of 31 tomato SlBBX proteins. The mRNA profiling in different organs revealed that SlBBX genes are regulated by light and their transcripts accumulation is directly affected by the chloroplast maturation status in both vegetative and fruit tissues. As tomato fruits develops, three SlBBXs were found to be upregulated in the early stages, controlled by the proper chloroplast differentiation and by the PHYTOCHROME (PHY)-dependent light perception. Upon ripening, other three SlBBXs were transcriptionally induced by RIPENING INHIBITOR master transcriptional factor, as well as by PHY-mediated signalling and proper plastid biogenesis. Altogether, the results obtained revealed a conserved role of SlBBX gene family in the light signalling cascade and identified putative members affecting tomato fruit development and ripening.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Maria José Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Lumi Shiose
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Raquel Tsu Ay Wu
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil.
| |
Collapse
|
478
|
He C, Liu X, Teixeira da Silva JA, Liu N, Zhang M, Duan J. Transcriptome sequencing and metabolite profiling analyses provide comprehensive insight into molecular mechanisms of flower development in Dendrobium officinale (Orchidaceae). PLANT MOLECULAR BIOLOGY 2020; 104:529-548. [PMID: 32876816 DOI: 10.1007/s11103-020-01058-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 05/21/2023]
Abstract
This research provides comprehensive insight into the molecular networks and molecular mechanisms underlying D. officinale flower development. Flowers are complex reproductive organs and play a crucial role in plant propagation, while also providing sustenance for insects and natural bioactive metabolites for humans. However, knowledge about gene regulation and floral metabolomes in flowers is limited. In this study, we used an important orchid species (Dendrobium officinale), whose flowers can be used to make herbal tea, to perform transcriptome sequencing and metabolic profiling of early- and medium-stage flower buds, as well as opened flowers, to provide comprehensive insight into the molecular mechanisms underlying flower development. A total of 8019 differentially expressed genes (DEGs) and 239 differentiated metabolites were found. The transcription factors that were identified and analyzed belong exclusively to the MIKC-type MADS-box proteins and auxin responsive factors that are known to be involved in flower development. The expression of genes involved in chlorophyll and carotenoid biosynthesis strongly matched the metabolite accumulation patterns. The genes related to flavonoid and polysaccharide biosynthesis were active during flower development. Interestingly, indole-3-acetic acid and abscisic acid, whose trend of accumulation was inverse during flower development, may play an important role in this process. Collectively, the identification of DEGs and differentiated metabolites could help to illustrate the regulatory networks and molecular mechanisms important for flower development in this orchid.
Collapse
Affiliation(s)
- Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
479
|
Iqbal S, Pan Z, Wu X, Shi T, Ni X, Bai Y, Gao J, Khalil-Ur-Rehman M, Gao Z. Genome-wide analysis of PmTCP4 transcription factor binding sites by ChIP-Seq during pistil abortion in Japanese apricot. THE PLANT GENOME 2020; 13:e20052. [PMID: 33217203 DOI: 10.1002/tpg2.20052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The TCP4 transcription factor plays an important role in plant growth and development, especially in flower development. PmTCP4 is involved in the process of pistil abortion in Japanese apricot, but its molecular mechanism, particularly the DNA binding sites and co-regulatory genes, are quite unknown. Therefore, to identify the genome-wide binding sites of PmTCP4 transcription factors and their co-regulatory genes, chromatin immunoprecipitation sequencing (ChIP-Seq) was carried out. ChIP-Seq data produced the maximum enriched peaks in two Japanese apricot cultivars 'Daqiandi' (DQD) and 'Longyan' (LY), which showed that the majority of DNA-protein interactions are relevant and have a significant function in binding sites. Moreover, 720 and 251 peak-associated genes regulated by PmTCP4 were identified in DQD and LY, respectively, and most of them were involved in the flower and pistil development process. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that photosynthesis and oxidative phosphorylation were the most enriched pathways in both cultivars and all identified genes related to these pathways were down-regulated. This study will provide a reference for a better understanding of the PmTCP4 regulatory mechanism during pistil abortion in Japanese apricot.
Collapse
Affiliation(s)
- Shahid Iqbal
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhenpeng Pan
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai An, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography Shenzhen University, Shenzhen, China
| | - Ting Shi
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaopeng Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yang Bai
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Khalil-Ur-Rehman
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
480
|
Rehman S, Jørgensen B, Aziz E, Batool R, Naseer S, Rasmussen SK. Genome Wide Identification and Comparative Analysis of the Serpin Gene Family in Brachypodium and Barley. PLANTS 2020; 9:plants9111439. [PMID: 33114466 PMCID: PMC7692276 DOI: 10.3390/plants9111439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Serpins (serine protease inhibitors) constitute one of the largest and most widely distributed superfamilies of protease inhibitors and have been identified in nearly all organisms. To gain significant insights, a comprehensive in silico analysis of the serpin gene family was carried out in the model plant for temperate grasses Brachypodium distachyon and barley Hordeum vulgare using bioinformatic tools at the genome level for the first time. We identified a total of 27 BdSRPs and 25 HvSRP genes in Brachypodium and barley, respectively, showing an unexpectedly high gene number in these model plants. Gene structure, conserved motifs and phylogenetic comparisons of serpin genes supported the role of duplication events in the expansion and evolution of serpin gene family. Further, purifying selection pressure was found to be a main driving force in the evolution of serpin genes. Genome synteny analysis indicated that BdSRP genes were present in syntenic regions of barley, rice, sorghum and maize, suggesting that they evolved before the divergence of these species from common ancestor. The distinct expression pattern in specific tissues further suggested a specialization of functions during development and in plant defense. These results suggest that the LR serpins (serpins with Leu-Arg residues at P2-P1') identified here can be utilized as candidates for exploitation in disease resistance, pest control and preventing stress-induced cell death. Additionally, serpins were identified that could lead to further research aimed at validating and functionally characterizing the role of potential serpin genes from other plants.
Collapse
Affiliation(s)
- Shazia Rehman
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46200, Pakistan
- Department of Botany, Govt. Gordon College Rawalpindi, Rawalpindi 46000, Pakistan
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
- Correspondence: (S.R.); (S.K.R.)
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
| | - Ejaz Aziz
- Department of Botany, Government Degree College Khanpur, Haripur 22650, Pakistan;
| | - Riffat Batool
- University Institute of Biochemistry and Biotechnology, PMAS, Arid Agriculture University, Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Samar Naseer
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan;
| | - Søren K. Rasmussen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
- Correspondence: (S.R.); (S.K.R.)
| |
Collapse
|
481
|
Zhong H, Zhang F, Pan M, Wu X, Zhang W, Han S, Xie H, Zhou X, Wang M, Ai CM, He T. Comparative phenotypic and transcriptomic analysis of Victoria and flame seedless grape cultivars during berry ripening. FEBS Open Bio 2020; 10:2616-2630. [PMID: 33090714 PMCID: PMC7714085 DOI: 10.1002/2211-5463.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Grape berry development is a highly coordinated and intricate process. Herein, we analyzed the phenotypic and transcriptomic patterns of Victoria (VT) and Flame Seedless (FS) grape varieties during berry development. Physiological analysis and transcriptomic sequencing were performed at four berry developmental phases. VT berry size was comparatively larger to the FS variety. At maturity, 80 days postanthesis (DPA), the FS soluble solids were 61.8% higher than VT. Further, 4889 and 2802 differentially expressed genes were identified from VT and FS 40 DPA to 80 DPA development stages, respectively. VvSWEET15, VvHXK, and MYB44 genes were up‐regulated during the postanthesis period, while bHLH14, linked to glucose metabolism, was gradually down‐regulated during berry development. These genes may have significant roles in berry development, ripening, and sugar accumulation.
Collapse
Affiliation(s)
- Haixia Zhong
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Fuchun Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Mingqi Pan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xinyu Wu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shouan Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hui Xie
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiaoming Zhou
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Min Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Caikasimu Maikeer Ai
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tianming He
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
482
|
Feng X, Liu W, Dai H, Qiu Y, Zhang G, Chen ZH, Wu F. HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6057-6073. [PMID: 32588054 DOI: 10.1093/jxb/eraa290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/20/2020] [Indexed: 05/10/2023]
Abstract
Aluminum (Al) toxicity is the primary limiting factor of crop production on acid soils. Tibetan wild barley germplasm is a valuable source of potential genes for breeding barley with acid and Al tolerance. We performed microRNA and RNA sequencing using wild (XZ16, Al-tolerant; XZ61, Al-sensitive) and cultivated (Dayton, Al-tolerant) barley. A novel homeobox-leucine zipper transcription factor, HvHOX9, was identified as a target gene of miR166b and functionally characterized. HvHOX9 was up-regulated by Al stress in XZ16 (but unchanged in XZ61 and Dayton) and was significantly induced only in root tip. Phylogenetic analysis showed that HvHOX9 is most closely related to wheat TaHOX9 and orthologues of HvHOX9 are present in the closest algal relatives of Zygnematophyceae. Barley stripe mosaic virus-induced gene silencing of HvHOX9 in XZ16 led to significantly increased Al sensitivity but did not affect its sensitivity to other metals and low pH. Disruption of HvHOX9 did not change Al concentration in the root cell sap, but led to more Al accumulation in root cell wall after Al exposure. Silencing of HvHOX9 decreased H+ influx after Al exposure. Our findings suggest that miR166b/HvHOX9 play a critical role in Al tolerance by decreasing root cell wall Al binding and increasing apoplastic pH for Al detoxification in the root.
Collapse
Affiliation(s)
- Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Huaxin Dai
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yue Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
483
|
Pucker B, Pandey A, Weisshaar B, Stracke R. The R2R3-MYB gene family in banana (Musa acuminata): Genome-wide identification, classification and expression patterns. PLoS One 2020; 15:e0239275. [PMID: 33021974 PMCID: PMC7537896 DOI: 10.1371/journal.pone.0239275] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
The R2R3-MYB genes comprise one of the largest transcription factor gene families in plants, playing regulatory roles in plant-specific developmental processes, defense responses and metabolite accumulation. To date MYB family genes have not yet been comprehensively identified in the major staple fruit crop banana. In this study, we present a comprehensive, genome-wide analysis of the MYB genes from Musa acuminata DH-Pahang (A genome). A total of 285 R2R3-MYB genes as well as genes encoding three other classes of MYB proteins containing multiple MYB repeats were identified and characterised with respect to structure and chromosomal organisation. Organ- and development-specific expression patterns were determined from RNA-Seq data. For 280 M. acuminata MYB genes for which expression was found in at least one of the analysed samples, a variety of expression patterns were detected. The M. acuminata R2R3-MYB genes were functionally categorised, leading to the identification of seven clades containing only M. acuminata R2R3-MYBs. The encoded proteins may have specialised functions that were acquired or expanded in Musa during genome evolution. This functional classification and expression analysis of the MYB gene family in banana establishes a solid foundation for future comprehensive functional analysis of MaMYBs and can be utilized in banana improvement programmes.
Collapse
Affiliation(s)
- Boas Pucker
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, Germany
| | - Ashutosh Pandey
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, Germany
- National Institute of Plant Genome Research, New Delhi, India
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, Germany
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
484
|
Vall-Llaura N, Giné-Bordonaba J, Usall J, Larrigaudière C, Teixidó N, Torres R. Ethylene biosynthesis and response factors are differentially modulated during the interaction of peach petals with Monilinia laxa or Monilinia fructicola. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110599. [PMID: 32900437 DOI: 10.1016/j.plantsci.2020.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Monilinia spp. may infect stone fruit at any growth stage, although susceptibility to brown rot depends on both host properties and climatological conditions. This said, no studies deciphering the host response in the interaction between peach blossoms and Monilinia spp. are yet available. This study presents an in-depth characterization of the role of ethylene in the interaction of 'Merrill O'Henry' peach petals (Prunus persica (L.) Batch) with Monilinia laxa and M. fructicola. We investigated the physiological responses of the host and the fungi to the application of ethylene and 1-methylcyclopropene (1-MCP) as well as the molecular patterns associated with the biosynthetic and ethylene-dependent responses during the interaction of both Monilinia species with the host. The incidence of both species was differentially affected by 1-MCP and ethylene; M. laxa was favoured by the enhanced host ethylene production associated with the treatments whereas M. fructicola reduced its infection capacity. Such differences were host-dependent as treatments did not affect growth or colony morphology of Monilinia spp. Besides, host ethylene production was altered in M. laxa inoculated petals, either by the fungus or the host itself. Molecular analysis revealed some important ERFs that could be involved in the different ability of both species to activate a cascade response of peach petals against these pathogens.
Collapse
Affiliation(s)
- Núria Vall-Llaura
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Jordi Giné-Bordonaba
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Josep Usall
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Christian Larrigaudière
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Neus Teixidó
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Rosario Torres
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| |
Collapse
|
485
|
Large-Scale Cloning and Comparative Analysis of TaNAC Genes in Response to Stripe Rust and Powdery Mildew in Wheat ( Triticum aestivum L.). Genes (Basel) 2020; 11:genes11091073. [PMID: 32932603 PMCID: PMC7564338 DOI: 10.3390/genes11091073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
The NAM, ATAF1/2, and CUC2 (NAC) transcription factors (TFs) constitute the largest plant-specific TF superfamily, and play important roles in various physiological processes, including stress responses. Stripe rust and powdery mildew are the most damaging of the fungal diseases that afflict wheat (Triticum aestivum L.). However, studies on Triticum aestivum NAC (TaNAC)s’ role in resistance to the two diseases are still limited, especially in an overall comparative analysis of TaNACs responding or not to fungal stress. In the present study, 186 TaNAC transcripts were obtained from the resistant hexaploid wheat line N9134 under fungal stress, and 180 new transcripts were submitted to GenBank. Statistical results show that 35.1% (54/154) of TaNAC genes responded to stripe rust and powdery mildew in the seedling stage. “Abnormal” coding transcripts of differentially expressed (DE)-TaNAC genes in wheat responding to fungal stress were found in a significantly higher proportion (24/117 vs. 8/69, p = 0.0098) than in non-DE-NACs. This hinted that the alternative splicing of TaNAC genes was active in transcriptional or post-transcriptional regulation during plant-pathogen interactions. Full-length NAC proteins were classified into nine groups via phylogenetic analysis. Multiple-sequence alignment revealed diversity in the C-terminal structural organization, but the differentially expressed gene (DEG)-encoding proteins enriched in Subgroups VI and VII were conserved, with WV[L/V]CR amino acid residues in Motif 7 following the NAM domain. Our data that showed TaNAC TFs responded to fungal disease, which was affected by expression levels and by the regulation of multifarious transcript variants. These data for TaNAC responses to stripe rust and/or powdery mildew and their numerous structural variants provide a good resource for NAC function–mechanism analysis in the context of biotic-stress tolerance in wheat.
Collapse
|
486
|
Characterization and Comparative Analysis of RWP-RK Proteins from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea. Int J Genomics 2020; 2020:2568640. [PMID: 32908854 PMCID: PMC7474775 DOI: 10.1155/2020/2568640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
RWP-RK proteins are important factors involved in nitrate response and gametophyte development in plants, and the functions of RWP-RK proteins have been analyzed in many species. However, the characterization of peanut RWP-RK proteins is limited. In this study, we identified 16, 19, and 32 RWP-RK members from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively, and investigated their evolution relationships. The RWP-RK proteins were classified into two groups, RWP-RK domain proteins and NODULE-INCEPTION-like proteins. Chromosomal distributions, gene structures, and conserved motifs of RWP-RK genes were compared among wild and cultivated peanuts. In addition, we identified 12 orthologous gene pairs from the two wild peanut species, 13 from A. duranensis and A. hypogaea, and 13 from A. ipaensis and A. hypogaea. One, one, and seventeen duplicated gene pairs were identified within the A. duranensis, A. ipaensis, and A. hypogaea genomes, respectively. Moreover, different numbers of cis-acting elements in the RWP-RK promoters were found in wild and cultivated species (87 in A. duranensis, 89 in A. ipaensis, and 92 in A. hypogaea), and as a result, many RWP-RK genes showed distinct expression patterns in different tissues. Our study will provide useful information for further functional and evolutionary analysis of the RWP-RK genes.
Collapse
|
487
|
Zhai K, Zhao G, Jiang H, Sun C, Ren J. Overexpression of Maize ZmMYB59 Gene Plays a Negative Regulatory Role in Seed Germination in Nicotiana tabacum and Oryza sativa. FRONTIERS IN PLANT SCIENCE 2020; 11:564665. [PMID: 33013985 PMCID: PMC7516257 DOI: 10.3389/fpls.2020.564665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/17/2020] [Indexed: 05/05/2023]
Abstract
MYB transcription factors are involved in many biological processes, including metabolism, stress response and plant development. In our previous work, ZmMYB59 was down-regulated by deep sowing during maize seed germination. However, there are few reports on seed germination regulated by MYB proteins. In this study, to examine its functions during seed germination, Agrobacterium-mediated transformation was exploited to generate ZmMYB59 overexpression (OE) tobacco and rice. In T2 generation transgenic tobacco, germination rate, germination index, vigor index and hypocotyl length were significantly decreased by 25.0-50.9, 34.5-54.4, 57.5-88.3, and 21.9-31.3% compared to wild-type (WT) lines. In T2 generation transgenic rice, above corresponding parameters were notably reduced by 39.1-53.8, 51.4-71.4, 52.5-74.0, and 28.3-41.5%, respectively. On this basis, antioxidant capacity and endogenous hormones were determined. The activities of catalase, peroxidase, superoxide dismutase, ascorbate peroxidase of OE lines were significantly lower than those of WT, suggesting that ZmMYB59 reduced their oxidation resistance. As well, ZmMYB59 overexpression extremely inhibited the synthesis of gibberellin A1 (GA1) and cytokinin (CTK), and promoted the synthesis of abscisic acid (ABA) concurrently. Taken together, it proposed that ZmMYB59 was a negative regulator during seed germination in tobacco and rice, which also contributes to illuminate the molecular mechanisms regulated by MYB transcription factors.
Collapse
Affiliation(s)
- Kaihui Zhai
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Guangwu Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Hongye Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Caixia Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jingyu Ren
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
488
|
Fan H, Cui M, Li N, Li X, Liang Y, Liu L, Cai Y, Lin Y. Genome-wide identification and expression analyses of R2R3-MYB transcription factor genes from two Orchid species. PeerJ 2020; 8:e9781. [PMID: 32953268 PMCID: PMC7473048 DOI: 10.7717/peerj.9781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
MYB transcription factors play important roles in different plant biological processes during plant growth, development and stress response. In this study, 101 (DoMYB1-101) and 99 (PaMYB1-99) R2R3-MYB genes were identified in the genomes of Dendrobium officinale and Phalaenopsis aphrodite, respectively. To classify the isolated candidate genes, the R2R3-MYB genes from A. thaliana were selected as references. As a result, all identified DoMYB and PaMYB genes were classified into 22 subfamilies. Phylogenetic analysis revealed that S21 had the largest number of members of all the subfamilies. The numbers of introns, exons and conserved sequences in all of the identified genes are different. In addition, 20 DoMYB genes from six subfamilies were selected for further analysis of tissue-specific expression and responses to various abiotic stresses treatments. The results showed that all of the DoMYB genes in S4 and S19 subfamilies exhibited the highest relative expression levels in flowers. And five DoMYB genes including DoMYB31, DoMYB40, DoMYB49, DoMYB52 and DoMYB54, responded to the stress response. These results may provide useful information for further studies of the R2R3-MYB gene family.
Collapse
Affiliation(s)
- Honghong Fan
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Manli Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ninghong Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xujuan Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yuxuan Liang
- Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Lin Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
489
|
Sengupta S, Ray A, Mandal D, Nag Chaudhuri R. ABI3 mediated repression of RAV1 gene expression promotes efficient dehydration stress response in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194582. [DOI: 10.1016/j.bbagrm.2020.194582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023]
|
490
|
Zhang L, Wan X, Xu Y, Niyitanga S, Qi J, Zhang L. De novo assembly of transcriptome and genome-wide identification reveal GA 3 stress-responsive WRKY transcription factors involved in fiber formation in jute (Corchorus capsularis). BMC PLANT BIOLOGY 2020; 20:403. [PMID: 32867682 PMCID: PMC7460746 DOI: 10.1186/s12870-020-02617-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/23/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND WRKY is a group of transcription factors (TFs) that play a vital role in plant growth, development, and stress tolerance. To date, none of jute WRKY (CcWRKY) genes have been identified, even if jute (Corchorus capsularis) is one of the most important natural fiber crops in the world. Little information about the WRKY genes in jute is far from sufficient to understand the molecular mechanism of bast fiber biosynthesis. RESULTS A total of 244,489,479 clean reads were generated using Illumina paired-end sequencing. De novo assembly yielded 90,982 unigenes with an average length of 714 bp. By sequence similarity searching for known proteins, 48,896 (53.74%) unigenes were annotated. To mine the CcWRKY TFs and identify their potential function, the search for CcWRKYs against the transcriptome data of jute was performed, and a total of 43 CcWRKYs were identified in this study. The gene structure, phylogeny, conserved domain and three-dimensional structure of protein were analyzed by bioinformatics tools of GSDS2.0, MEGA7.0, DNAMAN5.0, WebLogo 3 and SWISS-MODEL respectively. Phylogenetic analysis showed that 43 CcWRKYs were divided into three groups: I, II and III, containing 9, 28, and 6 members respectively, according to the WRKY conserved domain features and the evolution analysis with Arabidopsis thaliana. Gene structure analysis indicated that the number of exons of these CcWRKYs varied from 3 to 11. Among the 43 CcWRKYs, 10, 2, 2, and 14 genes showed higher expression in leaves, stem sticks, stem barks, and roots at the vigorous vegetative growth stage, respectively. Moreover, the expression of 21 of 43 CcWRKYs was regulated significantly with secondary cell wall biosynthesis genes using FPKM and RT-qPCR by GA3 stress to a typical GA3 sensitive dwarf germplasm in comparison to an elite cultivar in jute. The Cis-element analysis showed that promoters of these 21 CcWRKYs had 1 to 4 cis-elements involved in gibberellin-responsiveness, suggesting that they might regulate the development of bast fiber in response to GA3 stress. CONCLUSIONS A total of 43 CcWRKYs were identified in jute for the first time. Analysis of phylogenetic relationship and gene structure revealed that these CcWRKYs might have a functional diversity. Expression analysis showed 21 TFs as GA3 stress responsive genes. The identification of these CcWRKYs and the characterization of their expression pattern will provide a basis for future clarification of their functions in bast fiber development in jute.
Collapse
Affiliation(s)
- Lilan Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xuebei Wan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yi Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Sylvain Niyitanga
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianmin Qi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
491
|
Jiang W, Geng Y, Liu Y, Chen S, Cao S, Li W, Chen H, Ma D, Yin J. Genome-wide identification and characterization of SRO gene family in wheat: Molecular evolution and expression profiles during different stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:590-611. [PMID: 32912491 DOI: 10.1016/j.plaphy.2020.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
SRO (SIMILAR TO RCD ONE), a type of plant-specific small protein family, play important roles in plant growth and development, as well as in response to biotic/abiotic stresses. Although characterization of SROs have been performed in model plants, little is known about their function in wheat, especially under stress conditions. In this study, 30 SRO genes were identified from the wheat genome (TaSRO). They were phylogenetically separated into two groups with distinct structures. The cis-regulatory elements in the promoter region of TaSROs were analyzed and numerous elements functionally associated with stress responding and hormones were interpreted, implying the reason for induction expression patterns of TaSROs during abiotic and biotic stresses in wheat. Whole-genome replication events in the SRO gene family of wheat and seven other species (Arabidopsis thaliana, rice, maize, barley, soybean, upland cotton, and cucumber) were analyzed, resulting in 1, 12, 9, 23, 6, 5, and 3 of gene pairs, respectively. The tissue-specific expression pattern profiling revealed that most TaSROs are highly expressed in one or more tissues and may play an important role in wheat growth and development. In addition, qRT-PCR results further confirmed that these TaSRO genes are involved in wheat stress response. In summary, our study laid a theoretical basis for molecular function deciphering of TaSROs, especially in plant hormones and biotic/abiotic stress responses.
Collapse
Affiliation(s)
- Wenqiang Jiang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center/College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yuepan Geng
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210014, Jiangsu, China
| | - Yike Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Shuhui Chen
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center/College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Dongfang Ma
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center/College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China.
| | - Junliang Yin
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center/College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China; Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
492
|
Yu Y, Qian Y, Jiang M, Xu J, Yang J, Zhang T, Gou L, Pi E. Regulation Mechanisms of Plant Basic Leucine Zippers to Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:1258. [PMID: 32973828 PMCID: PMC7468500 DOI: 10.3389/fpls.2020.01258] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/30/2020] [Indexed: 05/05/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
493
|
Li M, He Q, Zhang Y, Sun B, Luo Y, Zhang Y, Chen Q, Wang Y, Zhang F, Zhang Y, Lin Y, Wang X, Tang H. New insights into the evolution of the SBP-box family and expression analysis of genes in the growth and development of Brassica juncea. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1803131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mengyao Li
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qi He
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yu Zhang
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Bo Sun
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Ya Luo
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yong Zhang
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qing Chen
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yan Wang
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Fen Zhang
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yunting Zhang
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuanxiu Lin
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaorong Wang
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Haoru Tang
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
494
|
Wang Y, Liu A. Genomic Characterization and Expression Analysis of Basic Helix-Loop-Helix (bHLH) Family Genes in Traditional Chinese Herb Dendrobium officinale. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9081044. [PMID: 32824436 PMCID: PMC7463459 DOI: 10.3390/plants9081044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
Dendrobium officinale Kimura et Migo is of great importance as a traditional Chinese herb due to its abundant metabolites. The family of basic helix-loop-helix (bHLH) transcription factors widely exists in plants and plays an essential role in plant growth and development, secondary metabolism as well as responses to environmental changes. However, there is limited information on bHLH genes in D. officinale. In the present study, a total of 98 putative DobHLH genes were identified at the genomic level, which could be classified into 18 clades. Gene structures and conserved motifs in DobHLH genes showed high conservation during their evolution. The conserved amino acids and DNA bindings of DobHLH proteins were predicted, both of which are pivotal for their function. Furthermore, gene expression from eight tissues showed that some DobHLH genes were ubiquitously expressed while other DobHLH genes were expressed in the specific tissues. Expressional changes of DobHLH genes under MeJA and ABA treatments were detected by qRT-PCR. The protein-protein interactions between DobHLHs were predicted and several interactions were confirmed by yeast two hybrid. Therefore, our results here contribute to the understanding of bHLH genes in D. officinale and lay a foundation for the further functional study of its biological processes.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China;
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 Yunnan, China
| |
Collapse
|
495
|
Genome-Wide Analysis of the Role of NAC Family in Flower Development and Abiotic Stress Responses in Cleistogenes songorica. Genes (Basel) 2020; 11:genes11080927. [PMID: 32806602 PMCID: PMC7464430 DOI: 10.3390/genes11080927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
Plant-specific NAC (NAM, ATAF, CUC) transcription factor (TF) family plays important roles in biological processes such as plant growth and response to stress. Nevertheless, no information is known about NAC TFs in Cleistogenes songorica, a prominent xerophyte desert grass in northwestern China. In this study, 162 NAC genes were found from the Cleistogenes songorica genome, among which 156 C. songoricaNAC (CsNAC) genes (96.3%) were mapped onto 20 chromosomes. The phylogenetic tree constructed by CsNAC and rice NAC TFs can be separated into 14 subfamilies. Syntenic and Ka/Ks analyses showed that CsNACs were primarily expanded by genomewide replication events, and purifying selection was the primary force driving the evolution of CsNAC family genes. The CsNAC gene expression profiles showed that 36 CsNAC genes showed differential expression between cleistogamous (CL) and chasmogamous (CH) flowers. One hundred and two CsNAC genes showed differential expression under heat, cold, drought, salt and ABA treatment. Twenty-three CsNAC genes were commonly differentially expressed both under stress responses and during dimorphic floret development. Gene Ontology (GO) annotation, coexpression network and qRT-PCR tests revealed that these CsNAC genes may simultaneously regulate dimorphic floret development and the response to stress. Our results may help to characterize the NAC transcription factors in C. songorica and provide new insights into the functional research and application of the NAC family in crop improvement, especially in dimorphic floret plants.
Collapse
|
496
|
Genome-Wide Characterization and Comparative Analysis of MYB Transcription Factors in Ganoderma Species. G3-GENES GENOMES GENETICS 2020; 10:2653-2660. [PMID: 32471942 PMCID: PMC7407476 DOI: 10.1534/g3.120.401372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Numerous studies in plants have shown the vital roles of MYB transcription factors in signal transduction, developmental regulation, biotic/abiotic stress responses and secondary metabolism regulation. However, less is known about the functions of MYBs in Ganoderma. In this study, five medicinal macrofungi of genus Ganoderma were subjected to a genome-wide comparative analysis of MYB genes. A total of 75 MYB genes were identified and classified into four types: 1R-MYBs (52), 2R-MYBs (19), 3R-MYBs (2) and 4R-MYBs (2). Gene structure analysis revealed varying exon numbers (3-14) and intron lengths (7-1058 bp), and noncanonical GC-AG introns were detected in G. lucidum and G. sinense. In a phylogenetic analysis, 69 out of 75 MYB genes were clustered into 15 subgroups, and both single-copy orthologous genes and duplicated genes were identified. The promoters of the MYB genes harbored multiple cis-elements, and specific genes were co-expressed with the G. lucidum MYB genes, indicating the potential roles of these MYB genes in stress response, development and metabolism. This comprehensive and systematic study of MYB family members provides a reference and solid foundation for further functional analysis of MYB genes in Ganoderma species.
Collapse
|
497
|
Zhang L, Xu Y, Zhang X, Ma X, Zhang L, Liao Z, Zhang Q, Wan X, Cheng Y, Zhang J, Li D, Zhang L, Xu J, Tao A, Lin L, Fang P, Chen S, Qi R, Xu X, Qi J, Ming R. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fibre and leaf shape biogenesis. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1796-1809. [PMID: 31975524 PMCID: PMC7336286 DOI: 10.1111/pbi.13341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 05/03/2023]
Abstract
Kenaf is an annual crop that is widely cultivated as a source of bast (phloem) fibres, the phytoremediation of heavy metal-contaminated farmlands and textile-relevant compounds. Leaf shape played a unique role in kenaf improvement, due to the inheritance as a single locus and the association with fibre development in typical lobed-leaf varieties. Here we report a high-quality genome assembly and annotation for var. 'Fuhong 952' with 1078 Mbp genome and 66 004 protein-coding genes integrating single-molecule real-time sequencing, a high-density genetic map and high-throughput chromosome conformation capture techniques. Gene mapping assists the identification of a homeobox transcription factor LATE MERISTEM IDENTITY 1 (HcLMI1) gene controlling lobed-leaf. Virus-induced gene silencing (VIGS) of HcLMI1 in a lobed-leaf variety was critical to induce round (entire)-like leaf formation. Candidate genes involved in cell wall formation were found in quantitative trait loci (QTL) for fibre yield and quality-related traits. Comparative genomic and transcriptome analyses revealed key genes involved in bast fibre formation, among which there are twice as many cellulose synthase A (CesA) genes due to a recent whole-genome duplication after divergence from Gossypium. Population genomic analysis showed two recent population bottlenecks in kenaf, suggesting domestication and improvement process have led to an increase in fibre biogenesis and yield. This chromosome-scale genome provides an important framework and toolkit for sequence-directed genetic improvement of fibre crops.
Collapse
Affiliation(s)
- Liwu Zhang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yi Xu
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xingtan Zhang
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaokai Ma
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lilan Zhang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhenyang Liao
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qing Zhang
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xuebei Wan
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yan Cheng
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jisen Zhang
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dongxu Li
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liemei Zhang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiantang Xu
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Aifen Tao
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lihui Lin
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pingping Fang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shuai Chen
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rui Qi
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiuming Xu
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianmin Qi
- Key Laboratory for Genetics, Breeding and Multiple Utilization of CropsMinistry of Education/Fujian Provincial Key Laboratory of Crop Breeding by Design/College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs/Public Platform for Germplasm Resources of Bast Fiber Crops of Fujian/Fujian International Cooperation Base of Science and Technology for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ray Ming
- Center for Genomics and Biotechnology of Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
498
|
Shan T, Fu R, Xie Y, Chen Q, Wang Y, Li Z, Song X, Li P, Wang B. Regulatory Mechanism of Maize (Zea mays L.) miR164 in Salt Stress Response. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420070133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
499
|
Genome-wide identification and evolution of Dof transcription factor family in cultivated and ancestral cotton species. Genomics 2020; 112:4155-4170. [PMID: 32650093 DOI: 10.1016/j.ygeno.2020.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 06/03/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
The DNA-binding with one finger (Dof) proteins are transcription factors involved in many biological processes in plants. To predict the evolutionary pattern, a genome-wide in-silico analysis of Dof TFs family in diploid (Gossypium arboreum and Gossypium raimondii) and allotetraploid (Gossypium hirsutum and Gossypium barbadense) cotton species were carried out. In G. arboreum, we have identified 58 non-redundant genes encoding Dof proteins renamed as GaDof (G. arboreum Dof), 55 Dof genes were identified in G. raimondii (GrDof), 89 were predicted ffrom G. hirsutum (GhDof) and the highest, 110 Dof genes were identified in G. barbadense (GbDof). The phylogenetic analysis, physical location, gene structure, conserved domain analyses were also investigated for G. arboreum, G. raimondii, and G. hirsutum. The gene expression pattern in G. hirsutum, at different growth stages, revealing the probable involvement of some GhDof genes in growth and development. These genes may improve seed germination and growth in cotton.
Collapse
|
500
|
Xian J, Wang Y, Niu K, Ma H, Ma X. Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. CHEMOSPHERE 2020; 250:126158. [PMID: 32092564 DOI: 10.1016/j.chemosphere.2020.126158] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Kentucky bluegrass has good capability to absorb and accumulate cadmium (Cd) through developed root system, thus having potential phytoremediation function in Cd contaminated soils. Understanding the molecular mechanisms of Cd tolerance and accumulation in this species will be crucial to generating novel Cd-tolerance cultivars through genetic improvement, while it has not well documented yet. In the present study, comparative transcriptome analysis was performed for the seedlings of high Cd-tolerant genotype (M) and low Cd-tolerant genotype (R) under Cd stress. A total of 7022 up-regulated and 1033 down-regulated transcripts were identified in M genotype, whereas, only 850 up-regulated and 846 down-regulated transcripts were detected in R. Further transcriptional regulation analysis in M genotype showed that Dof, MADS25, BBR-BPC, B3, bZIP23 and MYB30 might be the hub transcription factors in response to Cd stress due to the orchestrated multiple functional genes associated with carbohydrate, lipid and secondary metabolism, as well as signal transduction. Differential expressed genes involved in auxin, ethylene, brassinosteroid and ABA signalling formed signal transduction cascades, which interacted with hub transcription factors, thereby finally orchestrated the expression of multiple genes associated with cell wall and membrane stability, cell elongation and Cd tolerance, including IAAs, ARFs, SnRK2, PP2C, PIFs, BES1/BZR1, CCR, CAD, FATB, fabF and HACD. Additionally, post-transcriptional modification of CIPKs, MAPKs, WAXs, UBCs, and E3 ubiquitin ligases were identified and also involved in plant signalling pathways and abiotic resistance. The study could contribute to our understanding the transcriptional regulation and complex internal network associated with Cd tolerance in Kentucky bluegrass.
Collapse
Affiliation(s)
- Jingping Xian
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China; School of Science and Technology, Xinxiang University, Xinxiang, Henan, 453000, China
| | - Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| | - Xiang Ma
- Academy of Animal Sciences and Veterinary, Qinghai University, Xining, 810016, PR China; Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, 810016, China
| |
Collapse
|