501
|
Jeanclos E, Schork NJ, Kyvik KO, Kimura M, Skurnick JH, Aviv A. Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension 2000; 36:195-200. [PMID: 10948077 DOI: 10.1161/01.hyp.36.2.195] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is evidence that telomeres, the ends of chromosomes, serve as clocks that pace cellular aging in vitro and in vivo. In industrialized nations, pulse pressure rises with age, and it might serve as a phenotype of biological aging of the vasculature. We therefore conducted a twin study to investigate the relation between telomere length in white blood cells and pulse pressure while simultaneously assessing the role of genetic factors in determining telomere length. We measured by Southern blot analysis the mean length of the terminal restriction fragments (TRF) in white blood cells of 49 twin pairs from the Danish Twin Register and assessed the relations of blood pressure parameters with TRF. TRF length showed an inverse relation with pulse pressure. Both TRF length and pulse pressure were highly familial. We conclude that telomere length, which is under genetic control, might play a role in mechanisms that regulate pulse pressure, including vascular aging.
Collapse
Affiliation(s)
- E Jeanclos
- Hypertension Research Center, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
502
|
Funk WD, Wang CK, Shelton DN, Harley CB, Pagon GD, Hoeffler WK. Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model. Exp Cell Res 2000; 258:270-8. [PMID: 10896778 DOI: 10.1006/excr.2000.4945] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lifespan of human fibroblasts and other primary cell strains can be extended by expression of the telomerase catalytic subunit (hTERT). Since replicative senescence is accompanied by substantial alterations in gene expression, we evaluated characteristics of in vitro-aged dermal fibroblast populations before and after immortalization with telomerase. The biological behavior of these populations was assessed by incorporation into reconstituted human skin. Reminiscent of skin in the elderly, we observed increased fragility and subepidermal blistering with increased passage number of dermal fibroblasts, but the expression of telomerase in late passage populations restored the normal nonblistering phenotype. DNA microarray analysis showed that senescent fibroblasts express reduced levels of collagen I and III, as well as increased levels of a series of markers associated with the destruction of dermal matrix and inflammatory processes, and that the expression of telomerase results in mRNA expression patterns that are substantially similar to early passage cells. Thus, telomerase activity not only confers replicative immortality to skin fibroblasts, but can also prevent or reverse the loss of biological function seen in senescent cell populations.
Collapse
Affiliation(s)
- W D Funk
- Geron Corporation, 230 Constitution Drive, Menlo Park, California 94025, USA.
| | | | | | | | | | | |
Collapse
|
503
|
Iredale JP, Mann DA. Chromosomes and cirrhosis: all's well that ends well? Hepatology 2000; 32:153-4. [PMID: 10869304 DOI: 10.1002/hep.510320124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- J P Iredale
- Liver Group Division of Cell and Molecular Medicine University of Southampton Southampton General Hospital Southampton, UK
| | | |
Collapse
|
504
|
Abstract
Shortening of the telomeric DNA at chromosome ends is postulated to limit the lifespan of human cells. In contrast, activation of telomerase, the enzyme that synthesizes telomeric DNA, is proposed to be an essential step in cancer cell immortalization and cancer progression. This review discusses the structure and function of telomeres and telomerase, the role of telomerase in cell immortalization, and the effects of telomerase inactivation on normal and cancer cells. Moreover, data on the experimental use of telomerase assays for cancer detection and diagnosis are reviewed. Finally, the review considers the evidence regarding whether telomerase inhibitors could be used to treat human cancers.
Collapse
Affiliation(s)
- M Meyerson
- Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
505
|
Schwab TS, Stewart T, Lehr J, Pienta KJ, Rhim JS, Macoska JA. Phenotypic characterization of immortalized normal and primary tumor-derived human prostate epithelial cell cultures. Prostate 2000; 44:164-71. [PMID: 10881026 DOI: 10.1002/1097-0045(20000701)44:2<164::aid-pros9>3.0.co;2-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cell lines can provide powerful model systems for the study of human tumorigenesis. However, the human prostate cancer cell lines studied most intensively by investigators (PC3, DU145, and LNCaP) were established from metastatic lesions, and it is unlikely that they accurately recapitulate the genetic composition or biological behavior of primary prostate tumors. Cell lines more appropriate for the study of human prostate primary tumors would be those derived from spontaneously immortalized cells; unfortunately, explanted prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we examined whether cell lines developed through viral gene-mediated immortalization of human normal or primary tumor prostate epithelium express aspects of the normal or malignant phenotypes, and could serve as appropriate models for normal or transformed human prostatic epithelium. METHODS To accomplish these goals, we assessed the phenotypic expression of cell cultures established through the immortalization of normal (1532N, 1535N, 1542N, and PrEC-T) or malignant (1532T, 1535T, and 1542T) human prostate epithelium with the E6 and E7 genes of HPV-16, or the large T antigen gene of SV40. RESULTS Examination of these cell lines for their proliferative rates and their abilities to grow with or without serum or androgen stimulation, to form colonies in soft agar, or to form tumors in vivo, suggests that they may serve as valid, useful tools for the elucidation of prostate tumorigenesis. Moreover, the observation of structural alterations involving chromosome 8, including gain of 8q in 3 of the 4 cell lines expressing aspects of the malignant phenotype, implies that these cell lines accurately recapitulate the genetic composition of primary prostate tumors. CONCLUSIONS Taken together, these data suggest that cell lines generated from immortalized normal or primary tumor epithelium may be useful for the elucidation of early transforming events in the prostate.
Collapse
Affiliation(s)
- T S Schwab
- Section of Urology, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
506
|
Abstract
The regulation of telomere length may be involved in the cellular physiology of senescence, reproduction, cancer, immune response to infection, and possibly immune deficiency. The measurement of telomere length, critical to research in this area, has traditionally been performed by Southern blot analysis, which is cumbersome and time consuming. Several alternative methods have been described in recent years. Some, such as pulsed-field electrophoresis, slot blots, and centromere-to-telomere ratio measurements are essentially improvements to the Southern blot technique. However, other methods such as fluorescent in situ hybridization on metaphase chromosome spreads and flow cytometry-based fluorescent in situ hybridization represent a completely new technical approach to the problem. In this review, we compare methods, with particular emphasis placed on flow cytometric techniques for measuring telomere length in situ and identifying potential areas where improvements may still be made.
Collapse
Affiliation(s)
- W Lauzon
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
507
|
Affiliation(s)
- J Wang
- Genetica Inc., Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
508
|
Abstract
The ends of linear chromosomes are capped by specialized nucleoprotein structures termed telomeres. Telomeres comprise tracts of noncoding hexanucleotide repeat sequences that, in combination with specific proteins, protect against degradation, rearrangement, and chromosomal fusion events. Due to the polarity of conventional DNA synthesis, a net loss of telomeric sequences occurs at each cell division. It has been proposed that this cumulative telomeric erosion is a limiting factor in replicative capacity and elicits a signal for the onset of cellular senescence. To proliferate beyond the senescent checkpoint, cells must restore telomere length. This can be achieved by telomerase, an enzyme with reverse-transcriptase activity. This enzyme is absent in differentiated somatic tissues, but telomerase reactivation has been detected in most tumors. Much investigative effort is focusing on telomere dynamics with a view to possible manipulation of cellular proliferative potential. In this article, we review the role of telomeres and telomerase in senescence and tumor progression, and we discuss the potential use of telomerase in diagnosis and treatment.
Collapse
Affiliation(s)
- V Urquidi
- Cancer Center, University of California, San Diego School of Medicine, La Jolla 92093, USA.
| | | | | |
Collapse
|
509
|
|
510
|
Chang JT, Liao CT, Jung SM, Wang TC, See LC, Cheng AJ. Telomerase activity is frequently found in metaplastic and malignant human nasopharyngeal tissues. Br J Cancer 2000; 82:1946-51. [PMID: 10864202 PMCID: PMC2363256 DOI: 10.1054/bjoc.2000.1194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase is a specialized ribonucleoprotein polymerase that directs the synthesis of telomere repeats at chromosome ends. Accumulating evidence has indicated that telomerase is stringently repressed in normal human somatic tissues but reactivated in cancers and immortal cells, suggesting that reactivation of telomerase plays an important role in carcinogenesis. In this study, the status of telomerase activity in diseased human nasopharyngeal lesions was determined by the telomeric repeat amplification protocol (TRAP). Fifty-four patients participated including 17 inflammation or hyperplasia, eight with squamous metaplasia, and 29 with different stages of carcinomas. Telomerase activity was detected in 1 of 17 (5.9%) inflammatory or lymphoid hyperplastic tissues, 3 of 8 (37.5%) squamous metaplastic, and 25 of 29 (86.2%) carcinoma tissues. The differences in telomerase expression in these groups is statistically significant (P < 0.001). Levels of telomerase activity correlated with tumour stage (P = 0.024). These results suggest that telomerase reactivation plays a role in the carcinogenesis of nasopharyngeal cancer. Since telomerase activity is found in the majority of nasopharyngeal cancers and a subset of metaplasia, this enzyme may be served as a reference to monitoring the status of abnormal nasopharyngeal tissues.
Collapse
Affiliation(s)
- J T Chang
- Department of Radiation Oncology, Chang Guang Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
511
|
Gao Q, Kumar A, Srinivasan S, Singh L, Mukai H, Ono Y, Wazer DE, Band V. PKN binds and phosphorylates human papillomavirus E6 oncoprotein. J Biol Chem 2000; 275:14824-30. [PMID: 10809724 DOI: 10.1074/jbc.275.20.14824] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The high risk human papillomaviruses (HPVs) are associated with carcinomas of cervix and other genital tumors. Previous studies have identified two viral oncoproteins E6 and E7, which are expressed in the majority of HPV-associated carcinomas. The ability of high risk HPV E6 protein to immortalize human mammary epithelial cells has provided a single gene model to study the mechanisms of E6-induced oncogenic transformation. In recent years, it has become clear that in addition to E6-induced degradation of p53 tumor suppressor protein, other targets of E6 are required for mammary epithelial cells immortalization. Using the yeast two-hybrid system, we have identified a novel interaction of HPV16 E6 with protein kinase PKN, a fatty acid- and Rho small G protein-activated serine/threonine kinase with a catalytic domain highly homologous to protein kinase C. We demonstrate direct binding of high risk HPV E6 proteins to PKN in wheat-germ lysate in vitro and in 293T cells in vivo. Importantly, E6 proteins of high risk HPVs but not low risk HPVs were able to bind PKN. Furthermore, all the immortalization-competent and many immortalization-non-competent E6 mutants bind PKN. These data suggest that binding to PKN may be required but not sufficient for immortalizing normal mammary epithelial cells. Finally, we show that PKN phosphorylates E6, demonstrating for the first time that HPV E6 is a phosphoprotein. Our finding suggests a novel link between HPV E6 mediated oncogenesis and regulation of a well known phosphorylation cascade.
Collapse
Affiliation(s)
- Q Gao
- Department of Radiation Oncology, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
512
|
|
513
|
Farwell DG, Shera KA, Koop JI, Bonnet GA, Matthews CP, Reuther GW, Coltrera MD, McDougall JK, Klingelhutz AJ. Genetic and epigenetic changes in human epithelial cells immortalized by telomerase. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1537-47. [PMID: 10793065 PMCID: PMC1876907 DOI: 10.1016/s0002-9440(10)65025-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Exogenous expression of hTERT, the catalytic component of telomerase, is sufficient for the immortalization of human fibroblasts but insufficient for the immortalization of human foreskin keratinocytes (HFKs) and human mammary epithelial cells (HMECs). These latter cell types can overcome senescence by coexpression of hTERT and human papillomavirus (HPV) E7 or by expression of hTERT and loss of p16(INK4a) expression, indicating that the retinoblastoma (Rb) pathway, along with a telomere maintenance pathway, plays a role in determining the life span of epithelial cells. In this study, we further characterize hTERT-immortalized HFKs and human adenoid epithelial cells (HAKs) for genotypic and phenotypic alterations that are associated with immortalization. Of five hTERT-immortalized HFK and HAK cell lines examined, four exhibited repression of p16(INK4a) expression by promoter methylation or specific large-scale deletion of chromosome 9p, the location of p16(INK4a). Interestingly, one cell line exhibited complete down-regulation of expression of p14(ARF), with only slight down-regulation of expression of p16(INK4a). Yet, all of the immortal cells lines exhibited hyperphosphorylated Rb. Cytogenetic analysis revealed clonal chromosome aberrations in three of the five cell lines. All of the cell lines retained a growth block response with the expression of mutant ras. When grown on organotypic raft cultures, however, the hTERT-immortalized cells exhibited a maturation delay on terminal differentiation. Our results indicate that immortalization of epithelial cells may require both activation of telomerase and other genetic and/or epigenetic alterations that abrogate normal differentiation.
Collapse
Affiliation(s)
- D G Farwell
- Department of Otolaryngology, Head-Neck Surgery, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Toimela T, Mäenpää H, Tähti H. Retinal müller cell culture. Altern Lab Anim 2000; 28:477-82. [PMID: 25419929 DOI: 10.1177/026119290002800317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A mini-review is presented of the current techniques for maintaining Müller cells in a culture. Within the retina, Müller cells are the predominant glial cells. These highly specialised cells extend over the entire neural retina. One of the most important of the various physiological functions of Müller cells is to regulate the balance of ions and neurotransmitters in the retina. Disturbance of these regulatory functions may lead to toxic effects on receptor and other neural cells in the neuroretina, and may be a common mechanism of clinical retinal neuropathy. The main excitatory neurotransmitter in the retina is glutamate. Müller cells regulate the amount of glutamate in the synaptic regions of the neural network in the retina. Accumulation of extra glutamate seems to be an important mechanism for initiating pathological changes leading to retinal damage. Many previous in vitro studies on the role of Müller cells in retinal toxicology have been based on the use of morphological and histochemical methods. In cell toxicology studies, it is important to develop culture techniques able to provide more cells for biochemical determinations.
Collapse
Affiliation(s)
- T Toimela
- University of Tampere, Medical School, 33014 University of Tampere, Finland
| | - H Mäenpää
- University of Tampere, Medical School, 33014 University of Tampere, Finland
| | - H Tähti
- University of Tampere, Medical School, 33014 University of Tampere, Finland
| |
Collapse
|
515
|
Minev B, Hipp J, Firat H, Schmidt JD, Langlade-Demoyen P, Zanetti M. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci U S A 2000; 97:4796-801. [PMID: 10759561 PMCID: PMC18312 DOI: 10.1073/pnas.070560797] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme which has been linked to malignant transformation in human cells. Telomerase activity is increased in the vast majority of human tumors, making its gene product the first molecule common to all human tumors. The generation of endogenously processed telomerase peptides bound to Class I MHC molecules could therefore target cytotoxic T lymphocytes (CTL) to tumors of different origins. This could advance vaccine therapy against cancer provided that precursor CTL recognizing telomerase peptides in normal adults and cancer patients can be expanded through immunization. We demonstrate here that the majority of normal individuals and patients with prostate cancer immunized in vitro against two HLA-A2.1 restricted peptides from telomerase reverse transcriptase (hTRT) develop hTRT-specific CTL. This suggests the existence of precursor CTL for hTRT in the repertoire of normal individuals and in cancer patients. Most importantly, the CTL of cancer patients specifically lysed a variety of HLA-A2(+) cancer cell lines, demonstrating immunological recognition of endogenously processed hTRT peptides. Moreover, in vivo immunization of HLA-A2.1 transgenic mice generated a specific CTL response against both hTRT peptides. Based on the induction of CTL responses in vitro and in vivo, and the susceptibility to lysis of tumor cells of various origins by hTRT CTL, we suggest that hTRT could serve as a universal cancer vaccine for humans.
Collapse
Affiliation(s)
- B Minev
- Departments of Medicine and Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0368, USA
| | | | | | | | | | | |
Collapse
|
516
|
Ouellette MM, Liao M, Herbert BS, Johnson M, Holt SE, Liss HS, Shay JW, Wright WE. Subsenescent telomere lengths in fibroblasts immortalized by limiting amounts of telomerase. J Biol Chem 2000; 275:10072-6. [PMID: 10744686 DOI: 10.1074/jbc.275.14.10072] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human fibroblasts expressing the catalytic component of human telomerase (hTERT) have been followed for 250-400 population doublings. As expected, telomerase activity declined in long term culture of stable transfectants. Surprisingly, however, clones with average telomere lengths several kilobases shorter than those of senescent parental cells continued to proliferate. Although the longest telomeres shortened, the size of the shortest telomeres was maintained. Cells with subsenescent telomere lengths proliferated for an additional 20 doublings after inhibiting telomerase activity with a dominant-negative hTERT mutant. These results indicate that, under conditions of limiting telomerase activity, cis-acting signals may recruit telomerase to act on the shortest telomeres, argue against the hypothesis that the mortality stage 1 mechanism of cellular senescence is regulated by telomere positional effects (in which subtelomeric loci silenced by long telomeres are expressed when telomeres become short), and suggest that catalytically active telomerase is not required to provide a protein-capping role at the end of very short telomeres.
Collapse
Affiliation(s)
- M M Ouellette
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA
| | | | | | | | | | | | | | | |
Collapse
|
517
|
Abstract
Since 1982, Ras has been the subject of intense research scrutiny, focused on determining the role of aberrant Ras function in human cancers and defining the mechanism by which Ras mediates its actions in normal and neoplastic cells. The long-term goal has been to develop antagonists of Ras as novel approaches for cancer treatment. Although impressive strides have been made in these endeavours, and our knowledge of Ras is quite extensive, it appears that we are at the beginning, rather than at the end, of fully understanding Ras function. This review highlights new issues that have further complicated our efforts to understand Ras.
Collapse
Affiliation(s)
- J M Shields
- Depts of Pharmacology and Cell Biology, and Anatomy, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
518
|
Abstract
Normal somatic cells are able to divide only a limited number of times before they become senescent. The occurrence of intratumoral cell death and the need for clonal evolution mean that many more cell divisions are required for tumorigenesis than is possible unless cells breach the senescence proliferation barrier and become immortalized. Senescence may therefore be a major tumor suppressor mechanism. During the past decade the study of senescence and immortalization has entered the mainstream of cancer research. A major reason for the current interest in this subject is the observation that most cancers have an activated telomere maintenance mechanism, a marker of immortalization. It has also been found that some of the most common genetic changes known to occur in cancer have a key role in the immortalization process.
Collapse
Affiliation(s)
- R R Reddel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia.
| |
Collapse
|
519
|
Liu JP. Telomerase: not just black and white, but shades of gray. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:129-35. [PMID: 10860859 DOI: 10.1006/mcbr.2000.0203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Telomerase, the telomeric DNA reverse transcriptase, plays a key role in the maintenance of telomeres in mammals and is required for immortalization of primary cells. Inexplicably, telomerase activation is sometimes associated with telomere shortening and inhibition leads not only to apoptosis but also increased tumorigenicity in rapidly renewing tissues of mouse and man. This article reviews the current evidence, both in vitro and in vivo, for telomerase function and the potential mechanisms, downstream of telomerase, in telomere signaling involving both the tumor-suppressor p53-dependent and independent pathways.
Collapse
Affiliation(s)
- J P Liu
- Baker Medical Research Institute, Commercial Road, Prahran, Victoria, Australia.
| |
Collapse
|
520
|
Lord RV, Salonga D, Danenberg KD, Peters JH, DeMeester TR, Park JM, Johansson J, Skinner KA, Chandrasoma P, DeMeester SR, Bremner CG, Tsai PI, Danenberg PV. Telomerase reverse transcriptase expression is increased early in the Barrett's metaplasia, dysplasia, adenocarcinoma sequence. J Gastrointest Surg 2000; 4:135-42. [PMID: 10675236 DOI: 10.1016/s1091-255x(00)80049-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Barrett's esophagus is a multistage polyclonal disease that is associated with the development of adenocarcinoma of the esophagus and esophagogastric junction. Telomerase activation is associated with cellular immortality and carcinogenesis, and increased expression of the telomerase reverse transcriptase catalytic subunit (hTERT) has been used for the early detection of malignant diseases. To identify biomarkers associated with each stage of the Barrett's process, relative mRNA expression levels of hTERT were measured using a quantitative reverse transcription-polymerase chain reaction method (ABI 7700 Sequence Detector (TaqMan system) in Barrett's intestinal metaplasia (n = 14), Barrett's dysplasia (n = 10), Barrett's adenocarcinoma (n = 14), and matching normal squamous esophagus tissues (n = 32). hTERT expression was significantly increased at all stages of Barrett's esophagus, including the intestinal metaplasia stage, compared to normal tissues from patients without cancer (intestinal metaplasia vs. normal esophagus, P <0.0001; dysplasia, P = 0.001; adenocarcinoma, P = 0.007; all Mann-Whitney U test ). hTERT expression levels were significantly higher in adenocarcinoma tissues than in intestinal metaplasia tissues (P = 0.003), and were higher in dysplasia compared with intestinal metaplasia tissues (P = 0.056). hTERT levels were also significantly higher in histologically normal squamous esophagus tissues from cancer patients than in normal esophagus tissues from patients with no cancer (P = 0.013). Very high expression levels ([hTERT x 100: beta-actin] >20) were found only in patients with cancer. These findings suggest that telomerase activation is an important early event in the development of Barrett's esophagus and esophageal adenocarcinoma, that very high telomerase levels may be a clinically useful biomarker for the detection of occult adenocarcinoma, and that a widespread cancer "field" effect is present in the esophagus of patients with Barrett's cancer.
Collapse
Affiliation(s)
- R V Lord
- Department of Surgery, University of Southern California School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
521
|
Leri A, Malhotra A, Liew CC, Kajstura J, Anversa P. Telomerase activity in rat cardiac myocytes is age and gender dependent. J Mol Cell Cardiol 2000; 32:385-90. [PMID: 10731438 DOI: 10.1006/jmcc.1999.1084] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Telomerase replaces telomeric repeat DNA lost during the cell cycle, restoring telomere length. This enzyme is present only during cell replication and its activity reflects the extent of proliferation. Whether cardiac myocytes are terminally differentiated cells is still a highly controversial issue, and the possibility of myocyte division is frequently rejected. On this basis, telomerase was measured in pure preparations of myocytes, isolated from rats throughout their lifespan. Fetal and neonatal rat myocytes were used as positive control cells. Contrary to expectation, the authors report that telomerase activity was detectable in pure preparations of young adult, fully mature adult, and senescent ventricular myocytes, defeating the dogma that this cell population is permanent and irreplaceable. Aging decreased 31% telomerase activity in male myocytes. An opposite effect occurred in female myocytes in which this enzyme increased 72%. This differential adaptation between the two genders in the rat model may be relevant to observations in humans; myocyte loss occurs in men as a function of age, whereas myocyte number is preserved in women. The greater growth potential of female myocytes may be critical for the longer lifespan and decreased incidence of heart failure in women.
Collapse
Affiliation(s)
- A Leri
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
522
|
Remes K, Norrback KF, Rosenquist R, Mehle C, Lindh J, Roos G. Telomere length and telomerase activity in malignant lymphomas at diagnosis and relapse. Br J Cancer 2000; 82:601-7. [PMID: 10682672 PMCID: PMC2363336 DOI: 10.1054/bjoc.1999.0970] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Telomere length maintenance, in the vast majority of cases executed by telomerase, is a prerequisite for long-term proliferation. Most malignant tumours, including lymphomas, are telomerase-positive and this activity is a potential target for future therapeutic interventions since inhibition of telomerase has been shown to result in telomere shortening and cell death in vitro. One prerequisite for the suitability of anti-telomerase drugs in treating cancer is that tumours exhibit shortened telomeres compared to telomerase-positive stem cells. A scenario is envisioned where the tumour burden is reduced using conventional therapy whereafter remaining tumour cells are treated with telomerase inhibitors. In evaluating the realism of such an approach it is essential to know the effects on telomere status by traditional therapeutic regimens. We have studied the telomere lengths in 47 diagnostic lymphomas and a significant telomere shortening was observed compared to benign lymphoid tissues. In addition, telomere length and telomerase activity were studied in consecutive samples from patients with relapsing non-Hodgkin's lymphomas. Shortened, unchanged and elongated telomere lengths were observed in the relapse samples. The telomere length alterations found in the relapsing lymphomas appeared to be independent of telomerase and rather represented clonal selection random at the telomere length level. These data indicate that anti-telomerase therapy would be suitable in only a fraction of malignant lymphomas.
Collapse
Affiliation(s)
- K Remes
- Department of Pathology, University of Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
523
|
Artandi SE, DePinho RA. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 2000; 10:39-46. [PMID: 10679392 DOI: 10.1016/s0959-437x(99)00047-7] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Progressive telomere shortening occurs with the division of primary human cells and activates tumor suppressor pathways, triggering senescence and inhibiting tumorigenesis. Loss of p53 function, however, allows continued cell division despite increasing telomere dysfunction and entry into telomere crisis. Recent data suggest that the severe chromosomal instability of telomere crisis promotes secondary genetic changes that facilitate carcinogenesis. Reactivation of telomerase stabilizes telomere ends and allows continued tumor growth.
Collapse
Affiliation(s)
- S E Artandi
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
524
|
Abstract
Reduction of germinal center reactivity is a landmark of immunosenescence and contributes to immunological dysfunction in the elderly. Germinal centers (GC) are characterized by extensive clonal expansion and selection of B lymphocytes to generate the pool of memory B cells. Telomere maintenance by telomerase has been proposed to allow the extensive proliferation undergone by B lymphocytes in the GC during the immune response. We show here that late generation mTR(-/-) mice, which lack the mouse telomerase RNA (mTR) and have short telomeres, present a dramatic reduction in GC number following antigen immunization. Upon immunization with an antigen, wild-type splenocyte telomeres are elongated and this is accompanied by a high expression of the telomerase catalytic subunit in the spleen GC. In contrast, telomerase-deficient mTR(-/-) splenocytes show telomere shortening after immunization, presumably due to cell proliferation in the absence of telomerase. All together, these results demonstrate the importance of telomere maintenance for antibody-mediated immune responses and support the notion that telomere elongation detected in wild-type spleens following immunization is mediated by telomerase.
Collapse
Affiliation(s)
- E Herrera
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-CSIC, Campus Cantoblanco, E-28049, Madrid, Spain
| | | | | |
Collapse
|
525
|
Abstract
Normal human somatic cells have a finite life span in vivo as well as in vitro and retire into senescence after a predictable time. Cellular senescence is triggered by the activation of two interdependent mechanisms. One induces irreversible cell cycle exit involving activation of two tumorsuppressor genes, p53 and pRb, and the proper time point is indicated by a critical shortening of chromosomal ends due to the end-replication problem of DNA synthesis. The development of a malignant cancer cell is only possible when both mechanisms are circumvented. The majority of human cancers and tumor cell lines produce telomerase, a ribonucleoprotein with two components required for core enzyme activity: telomerase RNA (TR) and a telomerase reverse transcriptase protein (TERT). Telomerase adds hexameric DNA repeats (TTAGGG) to telomeric ends and thus compensates the progressive loss of telomeric sequences inherent to DNA replication. While TR of telomerase is present in almost all human cells, human TERT (hTERT) was found rate limiting for telomerase activity. Ectopic expression of hTERT in otherwise mortal human cells induced efficient elongation of telomeres and permanent cell growth. While hTERT-mediated immortalization seems to have no effect on growth potential and cell cycle check points, it bestows an increased susceptibility to experimental transformation. One oncogene that might activate TERT in the natural context is c-myc. Myc genes are frequently deregulated in human tumors and myc overexpression may cause telomerase reactivation and telomere stabilization which, in turn, would allow permanent proliferation. Is this a general strategy of incipient cancer cells to escape senescence? Several recent observations indicate that other scenarios may be conceived as well.
Collapse
Affiliation(s)
- C Cerni
- Institute of Tumorbiology-Cancer Research, University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria. christa.cerni@.univie.ac.at
| |
Collapse
|
526
|
Thomas M, Yang L, Hornsby PJ. Formation of functional tissue from transplanted adrenocortical cells expressing telomerase reverse transcriptase. Nat Biotechnol 2000; 18:39-42. [PMID: 10625388 DOI: 10.1038/71894] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report the first use of human telomerase reverse transcriptase (hTERT) expression in experimental xenotransplantation. Previously, we showed that bovine adrenocortical cells can be transplanted into severe combined immunodeficient (SCID) mice, and that these cells form functional tissue that replaces the animals' own adrenal glands. We cotransfected primary bovine adrenocortical cells with plasmids encoding hTERT, SV40 T antigen, neo, and green fluorescent protein. These clones do not undergo loss of telomeric DNA and appear to be immortalized. Two clones were transplanted beneath the kidney capsule of SCID mice. Animals that received cell transplants survived indefinitely despite adrenalectomy. The mouse glucocorticoid, corticosterone, was replaced by the bovine glucocorticoid, cortisol, in the plasma of these animals. The tissue formed from the transplanted cells resembled that formed by transplantation of cells that were not genetically modified and was similar to normal bovine adrenal cortex. The proliferation rate in tissues formed from these clones was low and there were no indications of malignant transformation.
Collapse
Affiliation(s)
- M Thomas
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
527
|
|
528
|
HORIKAWA IZUMI, YAWATA TOSHIO, BARRETT JCARL. Cellular Senescence Mechanisms Independent of Telomere Shortening and Telomerase: Other Barriers to Cell Immortalization and Carcinogenesis. ACTA ACUST UNITED AC 2000. [DOI: 10.1089/rej.1.2000.3.373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
529
|
BRÜMMENDORF TIMH, LANSDORP PETERM, RUFER NATHALIE. Telomere Length Dynamics in Normal and Malignant Hematopoiesis. ACTA ACUST UNITED AC 2000. [DOI: 10.1089/rej.1.2000.3.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
530
|
Abstract
The presence of telomerase activity in most human tumors, but not in many normal somatic tissues, has raised considerable interest in telomerase as a possible anticancer therapy. Recent advances in the cloning and characterization of mammalian telomerase components have paved the way for a more detailed understanding of the role of telomerase and telomere length maintenance in cell proliferation. Here, we summarize the most recent biochemical and genetic evidence suggesting that telomere length maintenance by telomerase is critical to the proliferative ability of some immortalized mammalian cells in culture and in vivo.
Collapse
Affiliation(s)
- R Oulton
- Ontario Cancer Institute/Amgen Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
531
|
Abstract
While the technique of homologous recombination, or gene targeting, has led to the generation of transgenic mice of great value to biomedical research, similar approaches are only being developed in other species. With the exception of recent reports on the generation of gene-targeted sheep, the technology in domestic animals is still in its infancy (45). The development of techniques for generating large animals with deleted or modified genes will result in the generation of animals of great value to society. While the technical difficulties to achieve gene targeting in domestic species are significant, they are not insurmountable. Potential applications in both the bovine and porcine species are described with particular emphasis on the generation of cattle resistant to bovine spongiform encephalopathy (BSE) and pigs that can be of use in xenotransplantation.
Collapse
Affiliation(s)
- J A Piedrahita
- Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station 77843, USA
| |
Collapse
|
532
|
Vaziri H, Benchimol S. Alternative pathways for the extension of cellular life span: inactivation of p53/pRb and expression of telomerase. Oncogene 1999; 18:7676-80. [PMID: 10618707 DOI: 10.1038/sj.onc.1203016] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Telomere shortening may be one of several factors that contribute to the onset of senescence in human cells. The p53 and pRb pathways are involved in the regulation of cell cycle progression from G1 into S phase and inactivation of these pathways leads to extension of life span. Short dysfunctional telomeres may be perceived as damaged DNA and may activate these pathways, leading to prolonged arrest in G1, typical of cells in senescence. Inactivation of the p53 and pRb pathways, however, does not lead to cell immortalization. Cells that overcome senescence and have an extended life span continue to lose telomeric DNA and subsequently enter a second phase of growth arrest termed 'crisis'. Forced expression of telomerase in human cells leads to the elongation of telomeres and immortalization. The development of human cancer is frequently associated with the inactivation of the pRb and p53 pathways, attesting to the importance of senescence in restricting the tumor-forming ability of human cells. Cancer cells must also maintain telomere length and, in the majority of cases, this is associated with expression of telomerase activity.
Collapse
Affiliation(s)
- H Vaziri
- Stanford University School of Medicine, Department of Molecular Pharmacology, Edward's Building, 300 Pasteur Drive Stanford, California, CA 94305-5332, USA
| | | |
Collapse
|
533
|
Recent advances in the development of telomerase inhibitors for the treatment of cancer. Expert Opin Investig Drugs 1999; 8:1981-2008. [PMID: 11139836 DOI: 10.1517/13543784.8.12.1981] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Telomerase is an holoenzyme responsible for the maintenance of telomeres, the protein-nucleic acid structures which exist at the ends of eukaryotic chromosomes that serve to protect chromosomal stability and integrity. Telomerase activity is essential for the sustained proliferation of most immortal cells, including cancer cells. Since the discovery that telomerase activity is expressed in 85 - 90% of all human tumours and tumour-derived cell lines but not in most normal somatic cells, telomerase has become the focus of much attention as a novel and potentially highly-specific target for the development of new anticancer chemotherapeutics. Herein we review recent advances in the development of telomerase inhibitors for the treatment of cancer. To date, these have included antisense strategies, reverse transcriptase inhibitors and compounds capable of interacting with high-order telomeric DNA tetraplex ('G-quadruplex') structures to prevent enzyme access to the necessary linear telomere substrate. In addition, a number of telomerase-inhibitory therapies have been shown to synergistically enhance the effects of clinically-established anticancer drugs. Critical appraisal of each individual approach is provided, together with highlighted areas of likely future development. We also review recent developments in telomere and telomerase biology, of which a more detailed understanding would be essential in order to further develop the present classes of telomerase inhibitors into viable, clinically applicable therapies.
Collapse
|
534
|
Abstract
Telomerase, a specialized RNA-directed DNA polymerase that extends telomeres of eukaryotic chromosomes, is repressed in normal human somatic cells but is activated during development and upon neoplasia. Whereas activation is involved in immortalization of neoplastic cells, repression of telomerase permits consecutive shortening of telomeres in a chromosome replication-dependent fashion. This cell cycle-dependent, unidirectional catabolism of telomeres constitutes a mechanism for cells to record the extent of DNA loss and cell division number; when telomeres become critically short, the cells terminate chromosome replication and enter cellular senescence. Although neither the telomere signaling mechanisms nor the mechanisms whereby telomerase is repressed in normal cells and activated in neoplastic cells have been established, inhibition of telomerase has been shown to compromise the growth of cancer cells in culture; conversely, forced expression of the enzyme in senescent human cells extends their life span to one typical of young cells. Thus, to switch telomerase on and off has potentially important implications in anti-aging and anti-cancer therapy. There is abundant evidence that the regulation of telomerase is multifactorial in mammalian cells, involving telomerase gene expression, post-translational protein-protein interactions, and protein phosphorylation. Several proto-oncogenes and tumor suppressor genes have been implicated in the regulation of telomerase activity, both directly and indirectly; these include c-Myc, Bcl-2, p21(WAF1), Rb, p53, PKC, Akt/PKB, and protein phosphatase 2A. These findings are evidence for the complexity of telomerase control mechanisms and constitute a point of departure for piecing together an integrated picture of telomerase structure, function, and regulation in aging and tumor development-Liu, J.-P. Studies of the molecular mechanisms in the regulation of telomerase activity.
Collapse
Affiliation(s)
- J P Liu
- Molecular Signaling Laboratory, Baker Medical Research Institute, Prahran, Victoria, Australia.
| |
Collapse
|
535
|
Fuhrmann G, Rosenberger G, Grusch M, Klein N, Hofmann J, Krupitza G. The MYC dualism in growth and death. Mutat Res 1999; 437:205-17. [PMID: 10592328 DOI: 10.1016/s1383-5742(99)00084-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over-expression of the transcription factor c-Myc immortalizes primary cells and transforms in co-operation with activated ras. Therefore, c-myc is considered a proto-oncogene. Since its discovery c-Myc has been shown to render cells growth factor independent, accelerates passage through G1 of the cell cycle, inhibits differentiation and elicits apoptosis. Whereas the effects on immortalization, proliferation and inhibition of differentiation are in conceivable accordance with gain of function, as it is defined for a proto-oncogene, its pro-apoptotic activity disables a straight forward explanation of the physiological role of c-Myc and suggests a highly complex contribution during development. The recent accomplishments in c-Myc research shed some light on the difficile regulatory network which keeps check on c-Myc activity such as by binding to proteins some of which are transcription factors for non-c-Myc targets. Moreover, it was shown that genes are targeted by c-Myc depending on the sequence of flanking regions adjacent to the E-box or in dependence on the availability of binding partners which is most probably specific to the cellular context. Cdc25A and ornithine decarboxylase, both described to be c-Myc targets, have been brought forward as downstream effectors in the induction of proliferation under serum rich conditions, or in the induction of apoptosis when serum factors are limited. These genes seem to be regulated by c-Myc in a cell type-specific manner. H-ferritin, IRP2 and telomerase are the most recently discovered direct targets of c-Myc. The regulation of H-ferritin and IRP2 might explain the potential of c-Myc to promote proliferation and the regulation of telomerase could be responsible for the immortalizing properties of c-Myc. In the future, H-ferritin and telomerase have to be analyzed whether or not these genes are also Myc targets in other cell systems. Although the intense research efforts regarding the function of c-Myc last already two decades the role of this gene is still enigmatic.
Collapse
Affiliation(s)
- G Fuhrmann
- Institute of Clinical Pathology, University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
536
|
Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, Beijersbergen RL, Knoll JH, Meyerson M, Weinberg RA. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999; 5:1164-70. [PMID: 10502820 DOI: 10.1038/13495] [Citation(s) in RCA: 757] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomerase is a ribonucleoprotein enzyme that maintains the protective structures at the ends of eukaryotic chromosomes, called telomeres. In most human somatic cells, telomerase expression is repressed, and telomeres shorten progressively with each cell division. In contrast, most human tumors express telomerase, resulting in stabilized telomere length. These observations indicate that telomere maintenance is essential to the proliferation of tumor cells. We show here that expression of a mutant catalytic subunit of human telomerase results in complete inhibition of telomerase activity, reduction in telomere length and death of tumor cells. Moreover, expression of this mutant telomerase eliminated tumorigenicity in vivo. These observations demonstrate that disruption of telomere maintenance limits cellular lifespan in human cancer cells, thus validating human telomerase reverse transcriptase as an important target for the development of anti-neoplastic therapies.
Collapse
Affiliation(s)
- W C Hahn
- Whitehead Institute for Biomedical Research, Cambridge Center, Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
537
|
Yang J, Chang E, Cherry AM, Bangs CD, Oei Y, Bodnar A, Bronstein A, Chiu CP, Herron GS. Human endothelial cell life extension by telomerase expression. J Biol Chem 1999; 274:26141-8. [PMID: 10473565 DOI: 10.1074/jbc.274.37.26141] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Normal human endothelial cells, like other somatic cells in culture, divide a limited number of times before entering a nondividing state called replicative senescence. Expression of the catalytic component of human telomerase, human telomerase reverse transcriptase (hTERT), extends the life span of human fibroblasts and retinal pigment epithelial cells beyond senescence without causing neoplastic transformation (Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., and Wright, W. E. (1998) Science 279, 349-352; Jiang, X., Jimenez, G., Chang, E., Frolkis, M., Kusler, B., Sage, M., Beeche, M., Bodnar, A., Wahl, G., Tlsty, T., and Chiu, C.-P. (1999) Nat. Genet. 21, 111-114). Here, we show that both human large vessel and microvascular endothelial cells also bypass replicative senescence after introduction of hTERT. For the first time, we report that hTERT expression in these life-extended vascular cells does not affect their differentiated and functional phenotype and that these cells maintain their angiogenic potential in vitro. Furthermore, hTERT(+) microvascular endothelial cells have normal karyotype, and hTERT(+) endothelial cell strains do not exhibit a transformed phenotype. Relative to parental cells at senescence, hTERT-expressing endothelial cells exhibit resistance to induction of apoptosis by a variety of different conditions. Such characteristics are highly desirable for designing vascular transplantation and gene therapy delivery systems in vivo.
Collapse
Affiliation(s)
- J Yang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305-5486, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
538
|
A quantitative assay for telomerase enzyme activity predicts severity of disease in neuroblastoma. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0149-7944(99)00155-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
539
|
Abstract
Ultraviolet (UV) radiation has been used for decades with great success and at a constantly increasing rate in the management of skin diseases, becoming an essential part of modern dermatologic therapy (Krutmann et al, 1999). For phototherapy, irradiation devices emitting either predominantly middlewave UV (UVB, 290-315 nm) or longwave UV (UVA, 315-400 nm) radiation are employed. In former years, patients were treated with broad-band UVB, broad-band UVA, or combination regimens. Broad-band UV phototherapy, however, is being replaced more frequently by the use of irradiation devices that allow treatment of patients' skin with selected emission spectra. Two such modalities which have their origin in European Photodermatology are 311 nm UVB phototherapy (which uses long-wave UVB radiation above 300 nm rather than broadband UVB) and high-dose UVA1 therapy (which selective employs long-wave UVA radiation above 340 nm). In Europe, 311 nm UVB phototherapy has almost replaced classical broad-band UVB phototherapy and has significantly improved therapeutic efficacy and safety of UVB phototherapy (van Welden et al, 1988; Krutmann et al, 1999). The constantly increasing use of UVA-1 phototherapy has not only improved UVA phototherapy for established indications such as atopic dermatitis (Krutmann et al, 1992a, 1998; Krutmann, 1996), but has also provided dermatologists with the opportunity to successfully treat previously untractable skin diseases, e.g., connective tissue diseases (Stege et al, 1997; Krutmann, 1997). These clinical developments have stimulated studies about the mechanisms by which UVB and UVA phototherapy work. The knowledge obtained from this work is an indispensable prerequisite to make treatment decisions on a rationale rather than an empirical basis. Modern dermatologic phototherapy has started to profit from this knowledge, and it is very likely that this development will continue and provide dermatologists with improved phototherapeutic modalities and regimens for established and new indications. This review aims to provide an overview about current concepts of the mode of action of dermatologic phototherapy. Special emphasis will be given on studies that have identified previously unrecognized immunosuppressive/anti-inflammatory principles of UV phototherapy.
Collapse
Affiliation(s)
- J Krutmann
- Clinical and Experimental Photodermatology, Department of Dermatology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | |
Collapse
|
540
|
|
541
|
Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature 1999; 400:464-8. [PMID: 10440377 DOI: 10.1038/22780] [Citation(s) in RCA: 1658] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During malignant transformation, cancer cells acquire genetic mutations that override the normal mechanisms controlling cellular proliferation. Primary rodent cells are efficiently converted into tumorigenic cells by the coexpression of cooperating oncogenes. However, similar experiments with human cells have consistently failed to yield tumorigenic transformants, indicating a fundamental difference in the biology of human and rodent cells. The few reported successes in the creation of human tumour cells have depended on the use of chemical or physical agents to achieve immortalization, the selection of rare, spontaneously arising immortalized cells, or the use of an entire viral genome. We show here that the ectopic expression of the telomerase catalytic subunit (hTERT) in combination with two oncogenes (the simian virus 40 large-T oncoprotein and an oncogenic allele of H-ras) results in direct tumorigenic conversion of normal human epithelial and fibroblast cells. These results demonstrate that disruption of the intracellular pathways regulated by large-T, oncogenic ras and telomerase suffices to create a human tumor cell.
Collapse
Affiliation(s)
- W C Hahn
- Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge 02142, USA
| | | | | | | | | | | |
Collapse
|
542
|
Ducray C, Pommier JP, Martins L, Boussin FD, Sabatier L. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process. Oncogene 1999; 18:4211-23. [PMID: 10435634 DOI: 10.1038/sj.onc.1202797] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.
Collapse
Affiliation(s)
- C Ducray
- CEA, DSV/DRR/Laboratoire de Radiobiologie et Oncologie BP6, Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
543
|
Abstract
Telomerase is a cellular reverse transcriptase that helps to provide genomic stability in highly proliferative normal, immortal, and tumor cells by maintaining the integrity of the chromosome ends, the telomeres. The activity of telomerase is associated with the majority of malignant human cancers. Telomerase or another mechanism for telomere maintenance is required for continuous tumor cell proliferation. Telomerase-positive cells that exit the cell cycle via quiescence downregulate telomerase through a transcriptional repression pathway. In the case of cell cycle exit via terminal differentiation, proteolysis of telomerase may also be involved. In response to mitogenic or growth factor signaling, telomerase-competent quiescent cells reenter the cell cycle and express telomerase activity independent of DNA synthesis. Under normal growth conditions, inhibition of telomerase activity in tumor-derived cells results in continued cell division coupled with telomere shortening, eventually followed by cellular senescence or death. Thus, repression of telomerase activity may be a novel adjuvant therapy for the treatment of human cancer and detection of telomerase activity may be important for cancer diagnostics.
Collapse
Affiliation(s)
- S E Holt
- Department of Pathology, Medical College of Virginia/Virginia Commonwealth University, Richmond, Virginia 23298-0662, USA.
| | | |
Collapse
|
544
|
Abstract
The immortalization of human diploid fibroblasts requires the circumvention of both the senescence (M1) and crisis (M2) mechanisms of growth control. Cells expressing the SV40 T antigen virtually always bypass senescence, but only rarely escape crisis. The low frequency of this latter event indicates that cellular mutations are necessary to escape crisis. Thirteen subpopulations of T antigen-expressing human fibroblasts were cultured into crisis. Colonies that appeared to resume growth were assayed for telomerase activity, telomere maintenance, and the immortal phenotype. Our results show that 33 of 35 colonies were telomerase negative and were not immortal. Two colonies were telomerase positive when assayed in the first approximately 15 population doublings after crisis. The first was strongly positive, maintained telomeres at a stable short length, and was later determined to be immortal. The second initially had a weak telomerase signal, grew extremely slowly, and when examined had greatly elongated telomeres consistent with the ALT (alternative lengthening of telomeres) mechanism of telomere maintenance. These cells eventually grew faster and were later determined to be immortal. Additionally, two subpopulations had initially weak and later strong telomerase activity and the cells never entered a defined crisis period. We observed a perfect correlation between telomere maintenance and escape from crisis, supporting the hypothesis that the lack of stable telomeres causes crisis and that the ability to maintain telomeres abrogates crisis.
Collapse
Affiliation(s)
- M C Montalto
- Department of Microbiology, Immunology and Molecular Genetics, Albany, Medical College, New York 12208, USA
| | | | | |
Collapse
|
545
|
Abstract
The catalytic subunit of telomerase has recently been identified in diverse eukaryotes and shown to be a reverse transcriptase. Ectopic expression of this protein in normal human cells leads to lengthened telomeres and an extended in vitro life span. Other proteins that modulate telomerase activity in vivo are also being identified, including a functionally conserved family of proteins with Myb-like DNA-binding domains and proteins that are involved in DNA double-strand break repair.
Collapse
Affiliation(s)
- T M Bryan
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, Campus box 215, University of Colorado, Boulder, CO 80309-0215, USA.
| | | |
Collapse
|
546
|
Yi X, Tesmer VM, Savre-Train I, Shay JW, Wright WE. Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. Mol Cell Biol 1999; 19:3989-97. [PMID: 10330139 PMCID: PMC104358 DOI: 10.1128/mcb.19.6.3989] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1998] [Accepted: 02/22/1999] [Indexed: 11/20/2022] Open
Abstract
The human telomerase RNA component (hTR) is present in normal somatic cells at lower levels than in cancer-derived cell lines. To understand the mechanisms regulating hTR levels in different cell types, we have compared the steady-state hTR levels in three groups of cells: (i) normal telomerase-negative human diploid cells; (ii) normal cells transfected with the human telomerase catalytic subunit, hTERT; and (iii) cells immortalized in vitro and cancer cells expressing their own endogenous hTERT. To account for the differences in steady-state hTR levels observed in these cell types, we compared the transcription rate and half-life of hTR in a subset of these cells. The half-life of hTR in telomerase-negative cells is about 5 days and is increased 1.6-fold in the presence of hTERT. The transcription rate of hTR is essentially unchanged in cells expressing exogenous hTERT, and the increased steady-state hTR level appears to be due to the increased half-life. However, the transcription rate of hTR is greatly increased in cells expressing endogenous hTERT, suggesting some overlap in transcriptional regulatory control. We conclude that the higher hTR level in cells expressing an endogenous telomerase can be a result of both increased transcription and a longer half-life and that the longer half-life might be partially a result of protection or stabilization by the telomerase catalytic subunit. The 4-week half-life of hTR in H1299 tumor cells is the longest half-life yet reported for any RNA.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cell Nucleus/metabolism
- Cell Transformation, Neoplastic
- Chromatography, Agarose
- DNA-Binding Proteins
- Epithelial Cells/metabolism
- Fibroblasts/metabolism
- Half-Life
- Humans
- Lung/metabolism
- Mice
- Models, Genetic
- RNA/physiology
- RNA Processing, Post-Transcriptional/physiology
- RNA, Long Noncoding
- RNA, Messenger/metabolism
- RNA, Untranslated
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- Telomerase/genetics
- Telomerase/physiology
- Templates, Genetic
- Time Factors
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- X Yi
- Department of Cell Biology and Neuroscience, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9039, USA
| | | | | | | | | |
Collapse
|
547
|
Herrera E, Samper E, Martín-Caballero J, Flores JM, Lee HW, Blasco MA. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 1999; 18:2950-60. [PMID: 10357808 PMCID: PMC1171377 DOI: 10.1093/emboj/18.11.2950] [Citation(s) in RCA: 366] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mice deficient for the mouse telomerase RNA (mTR-/-) and lacking telomerase activity can only be bred for approximately six generations due to decreased male and female fertility and to an increased embryonic lethality associated with a neural tube closure defect. Although late generation mTR-/- mice show defects in the hematopoietic system, they are viable to adulthood, only showing a decrease in viability in old age. To assess the contribution of genetic background to the effect of telomerase deficiency on viability, we generated mTR-/- mutants on a C57BL6 background, which showed shorter telomeres than the original mixed genetic background C57BL6/129Sv. Interestingly, these mice could be bred for only four generations and the survival of late generation mTR-/- mice decreased dramatically with age as compared with their wild-type counterparts. Fifty percent of the generation 4 mice die at only 5 months of age. This decreased viability with age in the late generation mice is coincident with telomere shortening, sterility, splenic atrophy, reduced proliferative capacity of B and T cells, abnormal hematology and atrophy of the small intestine. These results indicate that telomere shortening in mTR-/- mice leads to progressive loss of organismal viability.
Collapse
Affiliation(s)
- E Herrera
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-CSIC, Campus Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
548
|
Piedrahita JA, Dunne P, Lee CK, Moore K, Rucker E, Vazquez JC. Use of Embryonic and Somatic Cells for Production of Transgenic Domestic Animals. ACTA ACUST UNITED AC 1999; 1:73-87. [PMID: 16218833 DOI: 10.1089/15204559950019960] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In contrast to the highly developed genetic modification systems available for manipulating the mouse genome, at this time only simple gain of function modifications can be undertaken in domestic species. Clearly, the greatest barrier to gene targeting in domestic species has been the unavailability of cell lines that can be modified in vitro and still be used to generate a living organism. In the mouse, the embryonic stem (ES) cells and embryonic germ (EG) cells have fulfilled that role. While the nuclear transfer procedures have solved this problem in sheep and cattle, in swine ES and EG cells are still needed. In addition, targeting in domestic species is affected by the need to develop targeting constructs containing isogenic DNA regions. As a result, it is necessary to isolate the gene of interest, sequence required regions, and develop isogenic targeting constructs by technologies such as long-range PCR. On the positive side, enrichment protocols developed in the mouse can be applied to domestic species, thus facilitating the identification of correctly modified cell lines. Hence, progress in mammalian cloning, the development of EG cell lines, and advances in gene targeting presently allows the introduction of precise genetic modifications into the domestic animal genome.
Collapse
Affiliation(s)
- J A Piedrahita
- Department of Veterinary Anatomy and Public Health, Department of Animal Sciences, and Center for Animal Biotechnology and Comparative Genomics, Texas A&M University, College Station, Texas
| | | | | | | | | | | |
Collapse
|
549
|
Abstract
The past year has seen the ectopic expression of human telomerase and the consequent increased replicative lifespan of cells, whereas mice lacking telomerase have lived and reproduced for six generations. Core telomerase activity from various organisms was reconstituted in vitro, yet how its action is regulated remains largely unknown. Telomerase activation preceded oncogenic transformation in some human cell types, yet was lacking in other transformed cells. These advances highlight the potentials of telomerase-based therapeutics and warn of their pitfalls.
Collapse
Affiliation(s)
- J C Prescott
- University of California San Francisco Deptartment of Microbiology and Immunology San Francisco, California 94143-0414, USA.
| | | |
Collapse
|
550
|
Kipling D, Wynford-Thomas D, Jones CJ, Akbar A, Aspinall R, Bacchetti S, Blasco MA, Broccoli D, DePinho RA, Edwards DR, Effros RB, Harley CB, Lansdorp PM, Linskens MH, Prowse KR, Newbold RF, Olovnikov AM, Parkinson EK, Pawelec G, Pontén J, Shall S, Zijlmans M, Faragher RG. Telomere-dependent senescence. Nat Biotechnol 1999; 17:313-4. [PMID: 10207859 DOI: 10.1038/7827] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|