501
|
Zhang J, Zhang Z, Bao J, Yu Z, Cai M, Li X, Wu T, Xiang J, Cai D. Jia-Jian-Di-Huang-Yin-Zi decoction reduces apoptosis induced by both mitochondrial and endoplasmic reticulum caspase12 pathways in the mouse model of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:69-79. [PMID: 28163115 DOI: 10.1016/j.jep.2016.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical prescription of traditional Chinese medicine (TCM), Jia-Jian-Di-Huang-Yin-Zi decoction (JJDHYZ) has been used to treat the symptoms of neurological disorders with a long history. AIM OF THE STUDY To evaluate the effects and possible mechanisms of JJDHYZ on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of Parkinson's disease. MATERIALS AND METHODS Adult male C57BL/6 mice were randomly divided into five groups: control, MPTP, JJDHYZ low dosage (JJDHYZ-L, 8.5g/kg/day), medium dosage (JJDHYZ-M, 17g/kg/day) and high dosage (JJDHYZ-H, 34g/kg/day). Behavioral tests, immunohistochemistry, immunofluorescence, and high-performance liquid chromatography (HPLC) were conducted to evaluate the neuroprotective effects of JJDHYZ. The mechanism was further explored using TdT-mediated dUTP nick end labeling staining and transmission electron microscopy. The protein expression of Bax, Bcl-2, cytochrome c, full-length caspase9, cleaved caspase9, cleaved caspase3, caspase12 and C/EBP homologous protein was assessed. The toxicity on hepatocytes and renal cells was detected using the enzyme-linked immunosorbent assay kits. RESULTS JJDHYZ-H restored the behavior performance impaired by MPTP, and reduced the loss of tyrosine hydroxylase. Additionally, it blocked the apoptosis, activated cleaved caspase3 and protected the ultrastructural integrity of mitochondria by regulating the expression of proteins in both mitochondrial and endoplasmic reticulum (ER) caspase12 pathways. CONCLUSIONS JJDHYZ-H showed behavior recovery and dopamine neuron protection by inhibiting the apoptotic activities associated with mitochondrial and ER caspase12 pathways.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhennian Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie Bao
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhonghai Yu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ting Wu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
502
|
Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus. Blood 2017; 129:3237-3244. [PMID: 28473408 DOI: 10.1182/blood-2017-02-766253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes infections associated with extensive tissue damage and necrosis. In vitro, human neutrophils fed CA-MRSA lyse by an unknown mechanism that is inhibited by necrostatin-1, an allosteric inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK-1). RIPK-1 figures prominently in necroptosis, a specific form of programmed cell death dependent on RIPK-1, RIPK-3, and the mixed-lineage kinase-like protein (MLKL). We previously reported that necrostatin-1 inhibits lysis of human neutrophils fed CA-MRSA and attributed the process to necroptosis. We now extend our studies to examine additional components in the programmed cell death pathway to test the hypothesis that neutrophils fed CA-MRSA undergo necroptosis. Lysis of neutrophils fed CA-MRSA was independent of tumor necrosis factor α, active RIPK-1, and MLKL, but dependent on active RIPK-3. Human neutrophils fed CA-MRSA lacked phosphorylated RIPK-1, as well as phosphorylated or oligomerized MLKL. Neutrophils fed CA-MRSA possessed cytoplasmic complexes that included inactive caspase 8, RIPK-1, and RIPK-3, and the composition of the complex remained stable over time. Together, these data suggest that neutrophils fed CA-MRSA underwent a novel form of lytic programmed cell death via a mechanism that required RIPK-3 activity, but not active RIPK-1 or MLKL, and therefore was distinct from necroptosis. Targeting the molecular pathways that culminate in lysis of neutrophils during CA-MRSA infection may serve as a novel therapeutic intervention to limit the associated tissue damage.
Collapse
|
503
|
Wiman KG, Zhivotovsky B. Understanding cell cycle and cell death regulation provides novel weapons against human diseases. J Intern Med 2017; 281:483-495. [PMID: 28374555 DOI: 10.1111/joim.12609] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation.
Collapse
Affiliation(s)
- K G Wiman
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Stockholm, Sweden
| | - B Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
504
|
Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, Di Daniele N. Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med 2017; 281:471-482. [PMID: 28345303 DOI: 10.1111/joim.12605] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed.
Collapse
Affiliation(s)
- M Tesauro
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - A Mauriello
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - V Rovella
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | | | - C Cardillo
- Department of Internal Medicine, Catholic University, Rome, Italy
| | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | - N Di Daniele
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
505
|
Abstract
PURPOSE OF REVIEW To highlight recent studies that describe novel inflammatory and signaling mechanisms that regulate macrophage death in atherosclerosis. RECENT FINDINGS Macrophages contribute to all stages of atherosclerosis. The traditional dogma states that in homeostatic conditions, macrophages undergo apoptosis and are efficiently phagocytosed to be cleared by a process called efferocytosis. In advanced atherosclerosis, however, defective efferocytosis results in secondary necrosis of these uncleared apoptotic cells, which ultimately contributes to the formation of the characteristic necrotic core and the vulnerable plaque. Here, we outline the different types of lesional macrophage death: apoptosis, autophagic and the newly defined necroptosis (i.e. a type of programmed necrosis). Recent discoveries demonstrate that macrophage necroptosis directly contributes to necrotic core formation and plaque instability. Further, promoting the resolution of inflammation using preresolving mediators has been shown to enhance efferocytosis and decrease plaque vulnerability. Finally, the canonical 'don't eat me' signal CD47 has recently been described as playing an important role in atherosclerotic lesion progression by impairing efficient efferocytosis. Although we have made significant strides in improving our understanding of cell death and clearance mechanisms in atherosclerosis, there still remains unanswered questions as to how these pathways can be harnessed using therapeutics to promote lesion regression and disease stability. SUMMARY Improving our understanding of the mechanisms that regulate macrophage death in atherosclerosis, in particular apoptosis, necroptosis and efferocytosis, will provide novel therapeutic opportunities to resolve atherosclerosis and promote plaque stability.
Collapse
Affiliation(s)
| | - Katey J Rayner
- University of Ottawa Heart Institute, Ottawa, Canada
- Correspondence to: Denuja Karunakaran, PhD or Katey J Rayner, PhD, Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, K1Y 4W7. ; or
| | - Denuja Karunakaran
- University of Ottawa Heart Institute, Ottawa, Canada
- Correspondence to: Denuja Karunakaran, PhD or Katey J Rayner, PhD, Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, K1Y 4W7. ; or
| |
Collapse
|
506
|
Other bricks for the correct construction of the mitochondrial permeability transition pore complex. Cell Death Dis 2017; 8:e2698. [PMID: 28333138 PMCID: PMC5386586 DOI: 10.1038/cddis.2017.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
507
|
dos Santos AF, Terra LF, Wailemann RAM, Oliveira TC, Gomes VDM, Mineiro MF, Meotti FC, Bruni-Cardoso A, Baptista MS, Labriola L. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells. BMC Cancer 2017; 17:194. [PMID: 28298203 PMCID: PMC5353937 DOI: 10.1186/s12885-017-3179-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/08/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Breast cancer is the main cause of mortality among women. The disease presents high recurrence mainly due to incomplete efficacy of primary treatment in killing all cancer cells. Photodynamic therapy (PDT), an approach that causes tissue destruction by visible light in the presence of a photosensitizer (Ps) and oxygen, appears as a promising alternative therapy that could be used adjunct to chemotherapy and surgery for curing cancer. However, the efficacy of PDT to treat breast tumours as well as the molecular mechanisms that lead to cell death remain unclear. METHODS In this study, we assessed the cell-killing potential of PDT using methylene blue (MB-PDT) in three breast epithelial cell lines that represent non-malignant conditions and different molecular subtypes of breast tumours. Cells were incubated in the absence or presence of MB and irradiated or not at 640 nm with 4.5 J/cm2. We used a combination of imaging and biochemistry approaches to assess the involvement of classical autophagic and apoptotic pathways in mediating the cell-deletion induced by MB-PDT. The role of these pathways was investigated using specific inhibitors, activators and gene silencing. RESULTS We observed that MB-PDT differentially induces massive cell death of tumour cells. Non-malignant cells were significantly more resistant to the therapy compared to malignant cells. Morphological and biochemical analysis of dying cells pointed to alternative mechanisms rather than classical apoptosis. MB-PDT-induced autophagy modulated cell viability depending on the cell model used. However, impairment of one of these pathways did not prevent the fatal destination of MB-PDT treated cells. Additionally, when using a physiological 3D culture model that recapitulates relevant features of normal and tumorous breast tissue morphology, we found that MB-PDT differential action in killing tumour cells was even higher than what was detected in 2D cultures. CONCLUSIONS Finally, our observations underscore the potential of MB-PDT as a highly efficient strategy which could use as a powerful adjunct therapy to surgery of breast tumours, and possibly other types of tumours, to safely increase the eradication rate of microscopic residual disease and thus minimizing the chance of both local and metastatic recurrence.
Collapse
Affiliation(s)
- Ancély F. dos Santos
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Letícia F. Terra
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Rosangela A. M. Wailemann
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Talita C. Oliveira
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Vinícius de Morais Gomes
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Marcela Franco Mineiro
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Flávia Carla Meotti
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Alexandre Bruni-Cardoso
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Maurício S. Baptista
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| | - Leticia Labriola
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, 05508-000 SP Brazil
| |
Collapse
|
508
|
Ugidos IF, Santos-Galdiano M, Pérez-Rodríguez D, Anuncibay-Soto B, Font-Belmonte E, López DJ, Ibarguren M, Busquets X, Fernández-López A. Neuroprotective effect of 2-hydroxy arachidonic acid in a rat model of transient middle cerebral artery occlusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1648-1656. [PMID: 28315303 DOI: 10.1016/j.bbamem.2017.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 01/03/2023]
Abstract
Stroke modifies the composition of cell membranes by eliciting the breakdown of membrane phospholipids whose products, such as arachidonic acid (AA), are released in the cytosol. The action of enzymes such as cyclooxygenases on AA leads to inflammatory stimuli and increases the cell oxidative stress. We report here the neuroprotective effect of 2-hydroxyarachidonic acid (2OAA), a cyclooxygenase inhibitor derived from AA, as a promising neuroprotective therapy against stroke. The effect of a single dose of 2OAA, administered intragastrically 1h after the ischaemic insult, in a rat model of transient middle cerebral artery occlusion (tMCAO) was tested after 24h of reperfusion. Infarct volume was measured by TTC method to evaluate the neuroprotective effect. Levels of phospholipids and neutral lipids were measured by thin-layer chromatography. The expression of cPLA2 and sPLA2 phospholipases responsible for the cleavage of membrane phospholipids, as well as the expression of antioxidant enzymes, was measured by qPCR. Lipid peroxidation was measured as the concentration of malondialdehyde and 4-hydroxynonenal. The treatment with 2OAA reduced the infarct volume and prevented ischaemia-induced increases in transcription levels of free fatty acid (FFAs), as well as in both phospholipases A2 (cPLA2 and sPLA2). The lipid peroxidation and the transcription levels of antioxidant enzymes induced by ischaemia were also decreased by this treatment. We conclude that 2OAA treatment results in a strong neuroprotective effect that seems to rely on a decrease in PLA2 transcriptional activity. This would reduce their action on the membrane phospholipids reducing reactive oxygen and nitrogen species generated by FFAs. Based on the transcriptional activity of the antioxidant enzymes, we conclude that the treatment prevents oxidative stress rather than promoting the antioxidant response. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- I F Ugidos
- Cell Biology, Institute of Biomedicine, University of León, León, Spain.
| | - M Santos-Galdiano
- Cell Biology, Institute of Biomedicine, University of León, León, Spain.
| | - D Pérez-Rodríguez
- Cell Biology, Institute of Biomedicine, University of León, León, Spain.
| | - B Anuncibay-Soto
- Cell Biology, Institute of Biomedicine, University of León, León, Spain.
| | - E Font-Belmonte
- Cell Biology, Institute of Biomedicine, University of León, León, Spain.
| | - D J López
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain.
| | - M Ibarguren
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain.
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain.
| | - A Fernández-López
- Cell Biology, Institute of Biomedicine, University of León, León, Spain.
| |
Collapse
|
509
|
Role of Gasotransmitters in Oxidative Stresses, Neuroinflammation, and Neuronal Repair. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1689341. [PMID: 28386548 PMCID: PMC5366188 DOI: 10.1155/2017/1689341] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
Abstract
To date, three main gasotransmitters, that is, hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), have been discovered to play major bodily physiological roles. These gasotransmitters have multiple functional roles in the body including physiologic and pathologic functions with respect to the cellular or tissue quantities of these gases. Gasotransmitters were originally known to have only detrimental and noxious effects in the body but that notion has much changed with years; vast studies demonstrated that these gasotransmitters are precisely involved in the normal physiological functioning of the body. From neuromodulation, oxidative stress subjugation, and cardiovascular tone regulation to immunomodulation, these gases perform critical roles, which, should they deviate from the norm, can trigger the genesis of a number of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The purpose of this review is to discuss at great length physical and chemical properties and physiological actions of H2S, NO, and CO as well as shedding light on recently researched molecular targets. We particularly put emphasis on the roles in neuronal inflammation and neurodegeneration and neuronal repair.
Collapse
|
510
|
Xie YZ, Ma WL, Meng JM, Ren XQ. Knockdown of ZFPL1 results in increased autophagy and autophagy‑related cell death in NCI‑N87 and BGC‑823 human gastric carcinoma cell lines. Mol Med Rep 2017; 15:2633-2642. [PMID: 28447717 DOI: 10.3892/mmr.2017.6300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 09/28/2016] [Indexed: 11/06/2022] Open
Abstract
Macroautophagy, which will hereafter be referred to as autophagy, is an evolutionarily conserved process, during which cells recycle and remove damaged organelles and proteins in response to cellular stress. However, the mechanisms underlying the regulation of autophagy remain to be fully elucidated. The present study demonstrated that knockdown of zinc finger protein like 1 (ZFPL1) induces autophagy and increases autophagic cell death in NCI‑N87 and BGC‑823 human gastric carcinoma cell lines. To examine the role of ZFPL1 in gastric carcinoma cells, ZFPL1 expression was downregulated by lentiviral infection. Zinc finger domain‑FLAG was used to compete with ZFPL1 for golgin A2/GM130 binding. Autophagy was analyzed by red fluorescent protein‑microtubule‑associated protein 1A/1B‑light chain 3 (LC3) puncta, LC3I to LC3II conversion, and p62 expression. The results demonstrated that knockdown of ZFPL1 was able to significantly increase cell death rate. However, ZFPL1 knockdown exerted almost no effect on the expression of apoptosis‑associated markers, including B cell lymphoma 2 (Bcl‑2), Bcl‑x, Bcl‑2‑associated X protein, BH3 interacting domain death agonist, p53, and the classical caspase family members, caspase‑3, caspase‑8 and caspase‑9. An endogenous ZFPL1‑GM130 association was identified in NCI‑N87 cells and BGC‑823 cells by co‑immunoprecipitation. Furthermore, cell death was restricted following treatment of ZFPL1 knockdown cells with an autophagy inhibitor. Therefore, knockdown of ZFPL1 expression may induce cell death via autophagy, rather than apoptosis. These results suggest that ZFPL1 may serve an important role in regulating autophagy in NCI‑N87 and BGC‑823 cells.
Collapse
Affiliation(s)
- Yong-Zheng Xie
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Wan-Li Ma
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Ji-Ming Meng
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Xue-Qun Ren
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
511
|
Plaza-Zabala A, Sierra-Torre V, Sierra A. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging. Int J Mol Sci 2017; 18:E598. [PMID: 28282924 PMCID: PMC5372614 DOI: 10.3390/ijms18030598] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer's, Parkinson's, and Huntington's diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence.
Collapse
Affiliation(s)
| | | | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, 48170 Zamudio, Spain.
- Department of Neurosciences, University of the Basque Country EHU/UPV, 48940 Leioa, Spain.
- Ikerbasque Foundation, 48013 Bilbao, Spain.
| |
Collapse
|
512
|
O'Brien M, Moehring D, Muñoz-Planillo R, Núñez G, Callaway J, Ting J, Scurria M, Ugo T, Bernad L, Cali J, Lazar D. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells. J Immunol Methods 2017; 447:1-13. [PMID: 28268194 DOI: 10.1016/j.jim.2017.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/13/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
Abstract
Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1-/- mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1β release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective assessment of inflammasome activation as well as enable high-throughput screening for inflammasome modulators.
Collapse
Affiliation(s)
- Martha O'Brien
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI 53711, USA.
| | | | - Raúl Muñoz-Planillo
- Dept. of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Dept. of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin Callaway
- Dept. of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jenny Ting
- Dept. of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mike Scurria
- Promega Biosciences LLC, 277 Granada Dr, San Luis Obispo, CA 93401, USA
| | - Tim Ugo
- Promega Biosciences LLC, 277 Granada Dr, San Luis Obispo, CA 93401, USA
| | - Laurent Bernad
- Promega Biosciences LLC, 277 Granada Dr, San Luis Obispo, CA 93401, USA
| | - James Cali
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI 53711, USA
| | - Dan Lazar
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI 53711, USA
| |
Collapse
|
513
|
Fischer H, Fumicz J, Rossiter H, Napirei M, Buchberger M, Tschachler E, Eckhart L. Holocrine Secretion of Sebum Is a Unique DNase2-Dependent Mode of Programmed Cell Death. J Invest Dermatol 2017; 137:587-594. [PMID: 27771328 DOI: 10.1016/j.jid.2016.10.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Sebaceous glands produce sebum via holocrine secretion, a largely uncharacterized mode of programmed cell death that contributes to the homeostasis and barrier function of the skin. To determine the mechanism of DNA degradation during sebocyte cell death, we have inactivated candidate DNA-degrading enzymes by targeted gene deletions in mice. DNase1 and DNase1-like 2 were dispensable for nuclear DNA degradation in sebocytes. By contrast, epithelial cell-specific deletion of lysosomal DNase2 blocked DNA degradation in these cells. DNA breakdown during sebocyte differentiation coincided with the loss of LAMP1 and was accelerated by the abrogation of autophagy, the central cellular program of lysosome-dependent catabolism. Suppression of DNA degradation by the deletion of DNase2 resulted in aberrantly increased concentrations of residual DNA and decreased amounts of the DNA metabolite uric acid in secreted sebum. These results define holocrine secretion as a DNase2-mediated form of programmed cell death and suggest that autophagy-dependent metabolism, DNA degradation, and the molecular composition of sebum are mechanistically linked.
Collapse
Affiliation(s)
- Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Judith Fumicz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Rossiter
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Maria Buchberger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
514
|
Muratori C, Pakhomov AG, Pakhomova ON. Effect of Cooling On Cell Volume and Viability After Nanoelectroporation. J Membr Biol 2017; 250:217-224. [PMID: 28243693 DOI: 10.1007/s00232-017-9952-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/17/2017] [Indexed: 02/03/2023]
Abstract
Electric pulses of nanosecond duration (nsEP) are emerging as a new modality for tissue ablation. Plasma membrane permeabilization by nsEP may cause osmotic imbalance, water uptake, cell swelling, and eventual membrane rupture. The present study was aimed to increase the cytotoxicity of nsEP by fostering water uptake and cell swelling. This aim was accomplished by lowering temperature after nsEP application, which delayed the membrane resealing and/or suppressed the cell volume mechanisms. The cell diameter in U-937 monocytes exposed to a train of 50, 300-ns pulses (100 Hz, 7 kV/cm) at room temperature and then incubated on ice for 30 min increased by 5.6 +/- 0.7 μm (40-50%), which contrasted little or no changes (1 +/- 0.3 μm, <10%) if the incubation was at 37 °C. Neither this nsEP dose nor the 30-min cooling caused cell death when applied separately; however, their combination reduced cell survival to about 60% in 1.5-3 h. Isosmotic addition of a pore-impermeable solute (sucrose) to the extracellular medium blocked cell swelling and rescued the cells, thereby pointing to swelling as a primary cause of membrane rupture and cell death. Cooling after nsEP exposure can potentially be employed in medical practice to assist tissue and tumor ablation.
Collapse
Affiliation(s)
- Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 318, Norfolk, VA, 23508, USA.
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 318, Norfolk, VA, 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 318, Norfolk, VA, 23508, USA
| |
Collapse
|
515
|
Méry B, Guy JB, Vallard A, Espenel S, Ardail D, Rodriguez-Lafrasse C, Rancoule C, Magné N. In Vitro Cell Death Determination for Drug Discovery: A Landscape Review of Real Issues. J Cell Death 2017; 10:1179670717691251. [PMID: 28469473 PMCID: PMC5392044 DOI: 10.1177/1179670717691251] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/07/2017] [Indexed: 12/19/2022] Open
Abstract
Cell death plays a crucial role for a myriad of physiological processes, and several human diseases such as cancer are characterized by its deregulation. There are many methods available for both quantifying and qualifying the accurate process of cell death which occurs. Choosing the right assay tool is essential to generate meaningful data, provide sufficient information for clinical applications, and understand cell death processes. In vitro cell death assays are important steps in the search for new therapies against cancer as the ultimate goal remains the elaboration of drugs that interfere with specific cell death mechanisms. However, choosing a cell viability or cytotoxicity assay among the many available options is a daunting task. Indeed, cell death can be approached by several viewpoints and require a more holistic approach. This review provides an overview of cell death assays usually used in vitro for assessing cell death so as to elaborate new potential chemotherapeutics and discusses considerations for using each assay.
Collapse
Affiliation(s)
- Benoite Méry
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France
| | - Jean-Baptiste Guy
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France
| | - Alexis Vallard
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Sophie Espenel
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Dominique Ardail
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France
| | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France.,Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France.,Faculté de Médecine Lyon-Sud, Université Claude Bernard Lyon 1, Oullins, France
| | - Chloé Rancoule
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Nicolas Magné
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon (IPNL), Villeurbanne, France
| |
Collapse
|
516
|
Faccenda D, Nakamura J, Gorini G, Dhoot GK, Piacentini M, Yoshida M, Campanella M. Control of Mitochondrial Remodeling by the ATPase Inhibitory Factor 1 Unveils a Pro-survival Relay via OPA1. Cell Rep 2017; 18:1869-1883. [PMID: 28228254 DOI: 10.1016/j.celrep.2017.01.070] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
The ubiquitously expressed ATPase inhibitory factor 1 (IF1) is a mitochondrial protein that blocks the reversal of the F1Fo-ATPsynthase, preventing dissipation of cellular ATP and ischemic damage. IF1 suppresses programmed cell death, enhancing tumor invasion and chemoresistance, and is expressed in various types of human cancers. In this study, we examined its effect on mitochondrial redox balance and apoptotic cristae remodeling, finding that, by maintaining ATP levels, IF1 reduces glutathione (GSH) consumption and inactivation of peroxiredoxin 3 (Prx3) during apoptosis. This correlates with inhibition of metallopeptidase OMA1-mediated processing of the pro-fusion dynamin-related protein optic atrophy 1 (OPA1). Stabilization of OPA1 impedes cristae remodeling and completion of apoptosis. Taken together, these data suggest that IF1 acts on both mitochondrial bioenergetics and structure, is involved in mitochondrial signaling in tumor cells, and may underlie their proliferative capacity.
Collapse
Affiliation(s)
- Danilo Faccenda
- Department of Comparative Biomedical Sciences, The Royal Veterinary College London and UCL Consortium for Mitochondrial Research, Royal College Street, NW1 0TU London, UK; Department of Biology, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Junji Nakamura
- Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Giulia Gorini
- Department of Comparative Biomedical Sciences, The Royal Veterinary College London and UCL Consortium for Mitochondrial Research, Royal College Street, NW1 0TU London, UK
| | - Gurtej K Dhoot
- Department of Comparative Biomedical Sciences, The Royal Veterinary College London and UCL Consortium for Mitochondrial Research, Royal College Street, NW1 0TU London, UK
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata," 00133 Rome, Italy; National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani," Rome, Italy
| | - Masusuke Yoshida
- Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College London and UCL Consortium for Mitochondrial Research, Royal College Street, NW1 0TU London, UK; Department of Biology, University of Rome "Tor Vergata," 00133 Rome, Italy.
| |
Collapse
|
517
|
Elliott MR, Koster KM, Murphy PS. Efferocytosis Signaling in the Regulation of Macrophage Inflammatory Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1387-1394. [PMID: 28167649 PMCID: PMC5301545 DOI: 10.4049/jimmunol.1601520] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
Since the pioneering work of Elie Metchnikoff and the discovery of cellular immunity, the phagocytic clearance of cellular debris has been considered an integral component of resolving inflammation and restoring function of damaged and infected tissues. We now know that the phagocytic clearance of dying cells (efferocytosis), particularly by macrophages and other immune phagocytes, has profound consequences on innate and adaptive immune responses in inflamed tissues. These immunomodulatory effects result from an array of molecular signaling events between macrophages, dying cells, and other tissue-resident cells. In recent years, many of these molecular pathways have been identified and studied in the context of tissue inflammation, helping us better understand the relationship between efferocytosis and inflammation. We review specific types of efferocytosis-related signals that can impact macrophage immune responses and discuss their relevance to inflammation-related diseases.
Collapse
Affiliation(s)
- Michael R Elliott
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Kyle M Koster
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Patrick S Murphy
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
518
|
Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR, Cho WC. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. Int J Mol Sci 2017; 18:E367. [PMID: 28208579 PMCID: PMC5343902 DOI: 10.3390/ijms18020367] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/22/2017] [Accepted: 02/03/2017] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) constitutes 85% of all lung cancers, and is the leading cause of cancer-related death worldwide. The poor prognosis and resistance to both radiation and chemotherapy warrant further investigation into the molecular mechanisms of NSCLC and the development of new, more efficacious therapeutics. The processes of autophagy and apoptosis, which induce degradation of proteins and organelles or cell death upon cellular stress, are crucial in the pathophysiology of NSCLC. The close interplay between autophagy and apoptosis through shared signaling pathways complicates our understanding of how NSCLC pathophysiology is regulated. The apoptotic effect of autophagy is controversial as both inhibitory and stimulatory effects have been reported in NSCLC. In addition, crosstalk of proteins regulating both autophagy and apoptosis exists. Here, we review the recent advances of the relationship between autophagy and apoptosis in NSCLC, aiming to provide few insights into the discovery of novel pathogenic factors and the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fen Pei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fengqing Yang
- Department of Obstetrics and Gynecology, Dong'e No. 4 People's Hospital, Liaocheng 252200, China.
| | - Lingxiao Li
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Songnian Liu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
519
|
Sow F, Bonnot G, Ahmed BR, Diagana SM, Kebe H, Koita M, Samba BM, Al-Mukhaini SK, Al-Zadjali M, Al-Abri SS, Ali OAM, Samy AM, Hamid MMA, Ali Albsheer MM, Simon B, Bienvenu AL, Petersen E, Picot S. Genetic diversity of Plasmodium vivax metacaspase 1 and Plasmodium vivax multi-drug resistance 1 genes of field isolates from Mauritania, Sudan and Oman. Malar J 2017; 16:61. [PMID: 28153009 PMCID: PMC5288979 DOI: 10.1186/s12936-017-1687-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the second most important human malaria parasite, widely spread across the world. This parasite is associated with important issues in the process toward malaria elimination, including potential for relapse and increased resistance to chloroquine. Plasmodium vivax multi-drug resistant (pvmdr1) is suspected to be a marker of resistance although definitive evidence is lacking. Progress has been made in knowledge of biological factors affecting parasite growth, including mechanisms of regulated cell death and the suspected role of metacaspase. Plasmodium vivax metacaspase1 (PvMCA1-cd) has been described with a catalytic domain composed of histidine (H372) and cysteine (C428) residues. The aim of this study was to test for a link between the conserved histidine and cysteine residues in PvMCA1-cd, and the polymorphism of the P. vivax multi-drug resistant gene (pvmdr1). RESULTS Thirty P. vivax isolates were collected from Mauritania, Sudan, and Oman. Among the 28 P. vivax isolates successfully sequenced, only 4 samples showed the conserved His (372)-Cys (428) residues in PvMCA1-cd. Single nucleotide polymorphisms observed were H372T (46.4%), H372D (39.3%), and C428R (85.7%). A new polymorphic catalytic domain was observed at His (282)-Cys (305) residues. Sequences alignment analysis of pvmdr1 showed SNP in the three codons 958, 976 and 1076. A single SNP was identified at the codon M958Y (60%), 2 SNPs were found at the position 976: Y976F (13%) and Y976V (57%), and 3 SNPs were identified at the position 1076: F1076L (40%), F1076T (53%) and F1076I (3%). Only one isolate was wildtype in all three codons (MYF), 27% were single MYL mutants, and 10% were double MFL mutants. Three new haplotypes were also identified: the triple mutant YVT was most prevalent (53.3%) distributed in the three countries, while triple YFL and YVI mutants (3%), were only found in samples from Sudan and Mauritania. CONCLUSIONS Triple or quadruple mutants for metacaspase genes and double or triple mutants for Pvmdr1 were observed in 24/28 and 19/28 samples. There was no difference in the frequency of mutations between PvMCA1-cd and Pvmdr1 (P > 0.2). Histidine and cysteine residues in PvMCA1-cd are highly polymorphic and linkage disequilibrium with SNPs of Pvmdr1 gene may be expected from these three areas with different patterns of P. vivax transmission.
Collapse
Affiliation(s)
- Fatimata Sow
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.
| | - Guillaume Bonnot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France
| | - Bilal Rabah Ahmed
- Laboratoire de Bactériologie et Parasitologie de l'Hôpital Cheikh Zayed, BP-5720, Nouakchott, Mauritania
| | - Sidi Mohamed Diagana
- Laboratoire de Bactériologie et Parasitologie de l'Hôpital Cheikh Zayed, BP-5720, Nouakchott, Mauritania
| | - Hachim Kebe
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier National de Nouakchott, BP-612, Nouakchott, Mauritania
| | - Mohamedou Koita
- Laboratoire de Parasitologie et de Mycologie Médicale Institut National de Recherches en Santé Publique (INRSP), Avenue Jemal AbdeNasser, BP-695, Nouakchott, Mauritania
| | - Ba Malado Samba
- Laboratoire Analyse de Biologie Médicale du Centre hospitalier de Rosso Mauritanie, BP-41, Rosso, Mauritania
| | - Said K Al-Mukhaini
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Majed Al-Zadjali
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Seif S Al-Abri
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Osama A M Ali
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Abdallah M Samy
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.,Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, Medical Campus, University of Khartoum, Qassr Street, P.O. BOX 102, Khartoum, Sudan
| | - Musab M Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, Medical Campus, University of Khartoum, Qassr Street, P.O. BOX 102, Khartoum, Sudan
| | - Bruno Simon
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.,Institut of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Anne-Lise Bienvenu
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.,Institut of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Eskild Petersen
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman.,Institute of Clinical Medicine, Faculty of Health Science, University of Aarhus, Aarhus, Denmark
| | - Stéphane Picot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.,Institut of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
520
|
Escamez S, Tuominen H. Contribution of cellular autolysis to tissular functions during plant development. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:124-130. [PMID: 27936412 DOI: 10.1016/j.pbi.2016.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 05/26/2023]
Abstract
Plant development requires specific cells to be eliminated in a predictable and genetically regulated manner referred to as programmed cell death (PCD). However, the target cells do not merely die but they also undergo autolysis to degrade their cellular corpses. Recent progress in understanding developmental cell elimination suggests that distinct proteins execute PCD sensu stricto and autolysis. In addition, cell death alone and cell dismantlement can fulfill different functions. Hence, it appears biologically meaningful to distinguish between the modules of PCD and autolysis during plant development.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden.
| |
Collapse
|
521
|
Kaźmierczak A, Doniak M, Bernat P. Membrane-related hallmarks of kinetin-induced PCD of root cortex cells. PLANT CELL REPORTS 2017; 36:343-353. [PMID: 27942841 DOI: 10.1007/s00299-016-2085-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/24/2016] [Indexed: 05/09/2023]
Abstract
Changes in cellular membrane potential and their fluidisation are the hallmarks of cell death induction with kinetin in root cortex. Programmed cell death (PCD), one of the essential processes in plant development, is still poorly understood. In this paper, the scientific plant model, V. faba ssp. minor seedling roots after kinetin application which triggers off programmed death of cortex cells, was used to recognise membrane-related aspects of plant cell death. Spectrophotometric, reflectometric and microscopic studies showed that the PCD induced by kinetin is accompanied by higher potassium ions leakage from roots, loss of plasma and ER membrane potentials (expressed by their lower amounts and higher index of fatty acid unsaturation), malformation of nuclear envelope, lower total lipid amount and formation of their peroxides, lower amount of phospholipids and changes in their composition. The results showed that potassium ions leakage, expressed in percentage of their amounts, and loss of plasma and ER membrane potential, expressed in percentage of their fluorescence intensity, together with the nuclear chromatin double staining with ethidium bromide and acridine orange, might be direct and universal methods for detecting specific plant PCD hallmarks and estimation of PCD intensity (percentage of dying and dead cells).
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| | - Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental ProtectionThe University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| |
Collapse
|
522
|
Marquardt C, Fritsch-Decker S, Al-Rawi M, Diabaté S, Weiss C. Autophagy induced by silica nanoparticles protects RAW264.7 macrophages from cell death. Toxicology 2017; 379:40-47. [PMID: 28161448 DOI: 10.1016/j.tox.2017.01.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Although the technological and economic benefits of engineered nanomaterials are obvious, concerns have been raised about adverse effects if such material is inhaled, ingested, applied to the skin or even released into the environment. Here we studied the cytotoxic effects of the most abundant nanomaterial, silica nanoparticles (SiO2-NPs), in murine RAW264.7 macrophages. SiO2-NPs dose-dependently induce membrane leakage and cell death without obvious involvement of reactive oxygen species. Interestingly, at low concentrations SiO2-NPs trigger autophagy, evidenced by morphological and biochemical hallmarks such as autophagolysosomes or increased levels of LC3-II, which serves to protect cells from cytotoxicity. Hence SiO2-NPs initiate an adaptive stress response which dependent on dose serve to balance survival and death and ultimately dictates the cellular fate.
Collapse
Affiliation(s)
- Clarissa Marquardt
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| | - Susanne Fritsch-Decker
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| | - Marco Al-Rawi
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| | - Silvia Diabaté
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
523
|
Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions. Mediators Inflamm 2017; 2017:3415380. [PMID: 28250575 PMCID: PMC5303866 DOI: 10.1155/2017/3415380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC), leading to barrier dysfunction and acute respiratory distress syndrome (ARDS). Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix]) of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.
Collapse
|
524
|
Paku S, Laszlo V, Dezso K, Nagy P, Hoda MA, Klepetko W, Renyi-Vamos F, Timar J, Reynolds AR, Dome B. The evidence for and against different modes of tumour cell extravasation in the lung: diapedesis, capillary destruction, necroptosis, and endothelialization. J Pathol 2017; 241:441-447. [PMID: 28026875 DOI: 10.1002/path.4855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/17/2022]
Abstract
The development of lung metastasis is a significant negative prognostic factor for cancer patients. The extravasation phase of lung metastasis involves interactions of tumour cells with the pulmonary endothelium. These interactions may have broad biological and medical significance, with potential clinical implications ranging from the discovery of lung metastasis biomarkers to the identification of targets for intervention in preventing lung metastases. Because of the potential significance, the mechanisms of tumour cell extravasation require cautious, systematic studies. Here, we discuss the literature pertaining to the proposed mechanisms of extravasation and critically compare a recently proposed mechanism (tumour cell-induced endothelial necroptosis) with the already described extravasation mechanisms in the lung. We also provide novel data that may help to explain the underlying physiological basis for endothelialization as a mechanism of tumour cell extravasation in the lung. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sándor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,Tumour Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Medical University of Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Katalin Dezso
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Peter Nagy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Austria
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, Medical University of Vienna, Austria.,Department of Thoracic Surgery, Semmelweis University-National Institute of Oncology, Budapest, Hungary
| | - Jozsef Timar
- Tumour Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary.,2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Andrew R Reynolds
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.,Department of Thoracic Surgery, Semmelweis University-National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
525
|
Li FJ, Xu ZS, Soo ADS, Lun ZR, He CY. ATP-driven and AMPK-independent autophagy in an early branching eukaryotic parasite. Autophagy 2017; 13:715-729. [PMID: 28121493 DOI: 10.1080/15548627.2017.1280218] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a catabolic cellular process required to maintain protein synthesis, energy production and other essential activities in starved cells. While the exact nutrient sensor(s) is yet to be identified, deprivation of amino acids, glucose, growth factor and other nutrients can serve as metabolic stimuli to initiate autophagy in higher eukaryotes. In the early-branching unicellular parasite Trypanosoma brucei, which can proliferate as procyclic form (PCF) in the tsetse fly or as bloodstream form (BSF) in animal hosts, autophagy is robustly triggered by amino acid deficiency but not by glucose depletion. Taking advantage of the clearly defined adenosine triphosphate (ATP) production pathways in T. brucei, we have shown that autophagic activity depends on the levels of cellular ATP production, using either glucose or proline as a carbon source. While autophagosome formation positively correlates with cellular ATP levels; perturbation of ATP production by removing carbon sources or genetic silencing of enzymes involved in ATP generation pathways, also inhibited autophagy. This obligate energy dependence and the lack of glucose starvation-induced autophagy in T. brucei may reflect an adaptation to its specialized, parasitic life style.
Collapse
Affiliation(s)
- Feng-Jun Li
- a Department of Biological Sciences , National University of Singapore , Singapore
| | - Zhi-Shen Xu
- b State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases and Control of the Ministry of Education , Zhongshan Medical School, Sun Yat-Sen University , Guangzhou , China
| | - Andy D S Soo
- a Department of Biological Sciences , National University of Singapore , Singapore
| | - Zhao-Rong Lun
- b State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases and Control of the Ministry of Education , Zhongshan Medical School, Sun Yat-Sen University , Guangzhou , China
| | - Cynthia Y He
- a Department of Biological Sciences , National University of Singapore , Singapore.,c Centre for BioImaging Sciences , National University of Singapore , Singapore
| |
Collapse
|
526
|
Soriano J, Mora-Espí I, Alea-Reyes ME, Pérez-García L, Barrios L, Ibáñez E, Nogués C. Cell Death Mechanisms in Tumoral and Non-Tumoral Human Cell Lines Triggered by Photodynamic Treatments: Apoptosis, Necrosis and Parthanatos. Sci Rep 2017; 7:41340. [PMID: 28112275 PMCID: PMC5256096 DOI: 10.1038/srep41340] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022] Open
Abstract
Cell death triggered by photodynamic therapy can occur through different mechanisms: apoptosis, necrosis or autophagy. However, recent studies have demonstrated the existence of other mechanisms with characteristics of both necrosis and apoptosis. These new cell death pathways, collectively termed regulated necrosis, include a variety of processes triggered by different stimuli. In this study, we evaluated the cell death mechanism induced by photodynamic treatments with two photosensitizers, meso-tetrakis (4-carboxyphenyl) porphyrin sodium salt (Na-H2TCPP) and its zinc derivative Na-ZnTCPP, in two human breast epithelial cell lines, a non-tumoral (MCF-10A) and a tumoral one (SKBR-3). Viability assays showed that photodynamic treatments with both photosensitizers induced a reduction in cell viability in a concentration-dependent manner and no dark toxicity was observed. The cell death mechanisms triggered were evaluated by several assays and cell line-dependent results were found. Most SKBR-3 cells died by either necrosis or apoptosis. By contrast, in MCF-10A cells, necrotic cells and another cell population with characteristics of both necrosis and apoptosis were predominant. In this latter population, cell death was PARP-dependent and translocation of AIF to the nucleus was observed in some cells. These characteristics are related with parthanatos, being the first evidence of this type of regulated necrosis in the field of photodynamic therapy.
Collapse
Affiliation(s)
- J Soriano
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Spain
| | - I Mora-Espí
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Spain
| | - M E Alea-Reyes
- Departament de Farmacologia, toxicologia i Química Terapèutica and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Spain
| | - L Pérez-García
- Departament de Farmacologia, toxicologia i Química Terapèutica and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Spain
| | - L Barrios
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Spain
| | - E Ibáñez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Spain
| | - C Nogués
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
527
|
Morciano G, Pedriali G, Sbano L, Iannitti T, Giorgi C, Pinton P. Intersection of mitochondrial fission and fusion machinery with apoptotic pathways: Role of Mcl-1. Biol Cell 2017; 108:279-293. [PMID: 27234233 DOI: 10.1111/boc.201600019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/24/2016] [Indexed: 01/10/2023]
Abstract
Mitochondria actively contribute to apoptotic cell death through mechanisms including the loss of integrity of the outer mitochondrial membrane, the release of intermembrane space proteins, such as cytochrome c, in the cytosol and the caspase cascade activation. This process is the result of careful cooperation not only among members of the Bcl-2 family but also dynamin-related proteins. These events are often accompanied by fission of the organelle, thus linking mitochondrial dynamics to apoptosis. Emerging evidences are suggesting a fine regulation of mitochondrial morphology by Bcl-2 family members and active participation of fission-fusion proteins in apoptosis. The debate whether in mitochondrial morphogenesis the role of Bcl-2 family members is functionally distinct from their role in apoptosis is still open and, above all, which morphological changes are associated with cell death sensitisation. This review will cover the findings on how the mitochondrial fission and fusion machinery may intersect apoptotic pathways focusing on recent advances on the key role played by Mcl-1.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Gaia Pedriali
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Luigi Sbano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Tommaso Iannitti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
528
|
Mercer LD, Higgins GC, Lau CL, Lawrence AJ, Beart PM. MDMA-induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology. Neurochem Int 2017; 105:80-90. [PMID: 28122248 DOI: 10.1016/j.neuint.2017.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/29/2022]
Abstract
Toxicity of 3,4-methylenedioxymethamphetamine (MDMA) towards biogenic amine neurons is well documented and in primate brain predominantly affects serotonin (5-HT) neurons. MDMA induces damage of 5-HT axons and nerve fibres and intracytoplasmic inclusions. Whilst its pathobiology involves mitochondrially-mediated oxidative stress, we hypothesised MDMA possessed the capacity to activate autophagy, a proteostatic mechanism for degradation of cellular debris. We established a culture of ventral pons from embryonic murine brain enriched in 5-HT neurons to explore mechanisms of MDMA neurotoxicity and recruitment of autophagy, and evaluated possible neuroprotective actions of the clinically approved agent rilmenidine. MDMA (100 μM-1 mM) reduced cell viability, like rapamycin (RM) and hydrogen peroxide (H2O2), in a concentration- and time-dependent manner. Immunocytochemistry revealed dieback of 5-HT arbour: MDMA-induced injury was slower than for RM and H2O2, neuritic blebbing occurred at 48 and 72 h and Hoechst labelling revealed nuclear fragmentation with 100 μM MDMA. MDMA effected concentration-dependent inhibition of [3H]5-HT uptake with 500 μM MDMA totally blocking transport. Western immunoblotting for microtubule associated protein light chain 3 (LC3) revealed autophagosome formation after treatment with MDMA. Confocal analyses and immunocytochemistry for 5-HT, Hoechst and LC3 confirmed MDMA induced autophagy with abundant LC3-positive puncta within 5-HT neurons. Rilmenidine (1 μM) protected against MDMA-induced injury and image analysis showed full preservation of 5-HT arbours. MDMA had no effect on GABA neurons, indicating specificity of action at 5-HT neurons. MDMA-induced neurotoxicity involves autophagy induction in 5-HT neurons, and rilmenidine via beneficial actions against toxic intracellular events represents a potential treatment for its pathobiology in sustained usage.
Collapse
Affiliation(s)
- Linda D Mercer
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gavin C Higgins
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chew L Lau
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
529
|
López-Soto A, Bravo-San Pedro JM, Kroemer G, Galluzzi L, Gonzalez S. Involvement of autophagy in NK cell development and function. Autophagy 2017; 13:633-636. [PMID: 28103115 DOI: 10.1080/15548627.2016.1274486] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are the prototypical members of the recently identified family of innate lymphoid cells (ILCs). Thanks to their cytotoxic and secretory functions, NK cells play a key role in the immune response to cells experiencing various forms of stress, including viral infection and malignant transformation. Autophagy is a highly conserved network of degradative pathways that participate in the maintenance of cellular and organismal homeostasis as they promote adaptation to adverse microenvironmental conditions. The relevance of autophagy in the development and functionality of cellular components of the adaptive immune system is well established. Conversely, whether autophagy also plays an important role in the biology of ILC populations such as NK cells has long remained elusive. Recent experimental evidence shows that ablating Atg5 (autophagy-related 5, an essential component of the autophagic machinery) in NK cells and other specific ILC populations results in progressive mitochondrial damage, reactive oxygen species (ROS) overgeneration, and regulated cell death, hence interrupting ILC development. Moreover, disrupting the interaction of ATG7 with phosphorylated FOXO1 (forkhead box O1) in the cytosol of immature NK cells prevents autophagic responses that are essential for NK cell maturation. These findings suggest that activating autophagy may support the maturation of NK cells and other ILCs that manifest antiviral and anticancer activity.
Collapse
Affiliation(s)
- Alejandro López-Soto
- a Departamento de Biología Funcional, Área de Inmunología , Universidad de Oviedo, IUOPA , Oviedo , Asturias , Spain.,b Hospital Universitario Central de Asturias , Oviedo , Asturias , Spain
| | - José Manuel Bravo-San Pedro
- c Equipe 11 labellisée par la Ligue contre le Cancer , Centre de Recherche des Cordeliers , Paris , France.,d INSERM, U1138 , Paris , France.,e Université Paris Descartes/Paris V, Sorbonne Paris Cité , Paris , France.,f Université Pierre et Marie Curie/Paris VI , Paris , France.,g Metabolomics and Cell Biology Platforms , Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Guido Kroemer
- c Equipe 11 labellisée par la Ligue contre le Cancer , Centre de Recherche des Cordeliers , Paris , France.,d INSERM, U1138 , Paris , France.,e Université Paris Descartes/Paris V, Sorbonne Paris Cité , Paris , France.,f Université Pierre et Marie Curie/Paris VI , Paris , France.,g Metabolomics and Cell Biology Platforms , Gustave Roussy Comprehensive Cancer Institute , Villejuif , France.,h Pôle de Biologie , Hopitâl Européen George Pompidou, AP-HP , Paris , France.,i Department of Women's and Children's Health , Karolinska University Hospital , Stockholm , Sweden
| | - Lorenzo Galluzzi
- c Equipe 11 labellisée par la Ligue contre le Cancer , Centre de Recherche des Cordeliers , Paris , France.,d INSERM, U1138 , Paris , France.,e Université Paris Descartes/Paris V, Sorbonne Paris Cité , Paris , France.,f Université Pierre et Marie Curie/Paris VI , Paris , France.,j Gustave Roussy Comprehensive Cancer Institute , Villejuif , France.,k Department of Radiation Oncology , Weill Cornell Medical College , New York , NY , USA
| | - Segundo Gonzalez
- a Departamento de Biología Funcional, Área de Inmunología , Universidad de Oviedo, IUOPA , Oviedo , Asturias , Spain
| |
Collapse
|
530
|
Schenker H, Büttner-Herold M, Fietkau R, Distel LV. Cell-in-cell structures are more potent predictors of outcome than senescence or apoptosis in head and neck squamous cell carcinomas. Radiat Oncol 2017; 12:21. [PMID: 28100275 PMCID: PMC5241920 DOI: 10.1186/s13014-016-0746-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023] Open
Abstract
Background This study sheds light on cell inactivating processes with focus on the phenomenon of cell-in-cell (CIC). Cell-in-cell describes a cell process where one cell is being engulfed by another non-professional phagocyte. We determined frequency and prognostic impact of CIC structures (CICs) as well as of senescent and apoptotic cells in head and neck squamous cell carcinomas (HNSCC). Methods These different forms of cell inactivation as well as the proportion of proliferating and tumor cells were assessed in 169 pre-radiochemotherapy biopsies and 32 post-therapy tumor resections by immunohistochemistry of tissue microarrays. Four consecutive cancer sections were stained with antibodies specific for E-cadherin for CIC detection, cleaved caspase-3 for apoptosis, H3K9Me for senescence and Ki67 as a proliferation marker. Positive events were quantified in corresponding tumor areas. Results CICs were found in 55.5%, senescent cells in 67.1% and apoptotic cells in 93.3% of samples. While no prognostic impact of apoptotic and senescent cells was observed, CICs turned out to significantly influence overall-survival (p = 0.016) with a lack of CICs being prognostically beneficial. There was no correlation between CICs and apoptosis and 98.9% of CICs were negative for cleaved caspase-3. Conclusion CIC formation is a frequent event in HNSCC and a superior predictive marker compared to senescence and apoptosis. Independence of CIC and apoptosis and the adverse prognosis associated with numerous CICs lead to the assumption that CICs might take up necrotic rather than apoptotic cells preventing an adequate antitumoral immune response that would otherwise be initiated by necrotic cells through damage-associated molecular pattern molecules. Electronic supplementary material The online version of this article (doi:10.1186/s13014-016-0746-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hannah Schenker
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany.
| |
Collapse
|
531
|
Linkermann A. Nonapoptotic cell death in acute kidney injury and transplantation. Kidney Int 2017; 89:46-57. [PMID: 26759047 DOI: 10.1016/j.kint.2015.10.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
Acute tubular necrosis causes a loss of renal function, which clinically presents as acute kidney failure (AKI). The biochemical signaling pathways that trigger necrosis have been investigated in detail over the past 5 years. It is now clear that necrosis (regulated necrosis, RN) represents a genetically driven process that contributes to the pathophysiology of AKI. RN pathways such as necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-induced regulated necrosis (MPT-RN) may be mechanistically distinct, and the relative contributions to overall organ damage during AKI in living organisms largely remain elusive. In a synchronized manner, some necrotic programs induce the breakdown of tubular segments and multicellular functional units, whereas others are limited to killing single cells in the tubular compartment. Importantly, the means by which a renal cell dies may have implications for the subsequent inflammatory response. In this review, the recent advances in the field of renal cell death in AKI and key enzymes that might serve as novel therapeutic targets will be discussed. As a consequence of the interference with RN, the immunogenicity of dying cells in AKI in renal transplants will be diminished, rendering inhibitors of RN indirect immunosuppressive agents.
Collapse
Affiliation(s)
- Andreas Linkermann
- Clinic for Nephrology and Hypertension and Georges-Köhler-Haus for Biomedical Research and Transplantation, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
532
|
Danese A, Patergnani S, Bonora M, Wieckowski MR, Previati M, Giorgi C, Pinton P. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:615-627. [PMID: 28087257 DOI: 10.1016/j.bbabio.2017.01.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/30/2016] [Accepted: 01/08/2017] [Indexed: 02/08/2023]
Abstract
Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca2+) release from the ER allows selective Ca2+ uptake by the mitochondria. The perturbation of Ca2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Alberto Danese
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | - Maurizio Previati
- Department of Morphology, Surgery and Experimental Medicine, Section of Human Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
533
|
Abstract
Mitochondria lie at the crossroads of neuronal survival and cell death. They play important roles in cellular bioenergetics, control intracellular Ca2+ homeostasis, and participate in key metabolic pathways. Mutations in genes involved in mitochondrial quality control cause a myriad of neurodegenerative diseases. Mitochondria have evolved strategies to kill cells when they are not able to continue their vital functions. This review provides an overview of the role of mitochondria in neurologic disease and the cell death pathways that are mediated through mitochondria, including their role in accidental cell death, the regulated cell death pathways of apoptosis and parthanatos, and programmed cell death. It details the current state of parthanatic cell death and discusses potential therapeutic strategies targeting initiators and effectors of mitochondrial-mediated cell death in neurologic disorders.
Collapse
Affiliation(s)
- Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana 70130
| |
Collapse
|
534
|
Abstract
Recent data demonstrate that secondary necrosis is not an accidental epiphenomenon of apoptosis, but a finely regulated process with prominent pathophysiological and therapeutic implications. The molecular machinery that controls secondary necrosis stands out as a promising target for the development of novel drugs that may increase the immunogenicity of cancer cells succumbing to treatment.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Equipe 11 Labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France.
| | - Guido Kroemer
- Equipe 11 Labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
535
|
Mechanisms of Chromatin Remodeling and Repurposing During Extracellular Translocation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:113-137. [DOI: 10.1016/bs.apcsb.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
536
|
|
537
|
Synchronization and Desynchronization of Cells by Interventions on the Spindle Assembly Checkpoint. Methods Mol Biol 2017; 1524:77-95. [PMID: 27815897 DOI: 10.1007/978-1-4939-6603-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Cell cycle checkpoints are surveillance mechanisms that sequentially and continuously monitor cell cycle progression thereby contributing to the preservation of genetic stability. Among them, the spindle assembly checkpoint (SAC) prevents the occurrence of abnormal divisions by halting the metaphase to anaphase transition following the detection of erroneous microtubules-kinetochore attachment(s). Most synchronization strategies are based on the activation of cell cycle checkpoints to enrich the population of cells in a specific phase of the cell cycle. Here, we develop a two-step protocol of sequential cell synchronization and desynchronization employing antimitotic SAC-inducing agents (i.e., nocodazole or paclitaxel) in combination with the depletion of the SAC kinase MPS1. We describe cytofluorometric and time-lapse videomicroscopy methods to detect cell cycle progression, including the assessment of cell cycle distribution, quantification of mitotic cell fraction, and analysis of single cell fate profile of living cells. We applied these methods to validate the synchronization-desynchronization protocol and to qualitatively and quantitatively determine the impact of SAC inactivation on the activity of antimitotic agents.
Collapse
|
538
|
Karaji N, Sattentau QJ. Efferocytosis of Pathogen-Infected Cells. Front Immunol 2017; 8:1863. [PMID: 29312342 PMCID: PMC5743670 DOI: 10.3389/fimmu.2017.01863] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
The prompt and efficient clearance of unwanted and abnormal cells by phagocytes is termed efferocytosis and is crucial for organism development, maintenance of tissue homeostasis, and regulation of the immune system. Dying cells are recognized by phagocytes through pathways initiated via "find me" signals, recognition via "eat me" signals and down-modulation of regulatory "don't eat me" signals. Pathogen infection may trigger cell death that drives phagocytic clearance in an immunologically silent, or pro-inflammatory manner, depending on the mode of cell death. In many cases, efferocytosis is a mechanism for eliminating pathogens and pathogen-infected cells; however, some pathogens have subverted this process and use efferocytic mechanisms to avoid innate immune detection and assist phagocyte infection. In parallel, phagocytes can integrate signals received from infected dying cells to elicit the most appropriate effector response against the infecting pathogen. This review focuses on pathogen-induced cell death signals that drive infected cell recognition and uptake by phagocytes, and the outcomes for the infected target cell, the phagocyte, the pathogen and the host.
Collapse
Affiliation(s)
- Niloofar Karaji
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
539
|
Svensson F, Norinder U, Bender A. Modelling compound cytotoxicity using conformal prediction and PubChem HTS data. Toxicol Res (Camb) 2017; 6:73-80. [PMID: 30090478 PMCID: PMC6061930 DOI: 10.1039/c6tx00252h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/28/2016] [Indexed: 12/28/2022] Open
Abstract
The assessment of compound cytotoxicity is an important part of the drug discovery process. Accurate predictions of cytotoxicity have the potential to expedite decision making and save considerable time and effort. In this work we apply class conditional conformal prediction to model the cytotoxicity of compounds based on 16 high throughput cytotoxicity assays from PubChem. The data span 16 cell lines and comprise more than 440 000 unique compounds. The data sets are heavily imbalanced with only 0.8% of the tested compounds being cytotoxic. We trained one classification model for each cell line and validated the performance with respect to validity and accuracy. The generated models deliver high quality predictions for both toxic and non-toxic compounds despite the imbalance between the two classes. On external data collected from the same assay provider as one of the investigated cell lines the model had a sensitivity of 74% and a specificity of 65% at the 80% confidence level among the compounds assigned to a single class. Compared to previous approaches for large scale cytotoxicity modelling, this represents a balanced performance in the prediction of the toxic and non-toxic classes. The conformal prediction framework also allows the modeller to control the error frequency of the predictions, allowing predictions of cytotoxicity outcomes with confidence.
Collapse
Affiliation(s)
- Fredrik Svensson
- Centre for Molecular Informatics , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Ulf Norinder
- Swedish Toxicology Sciences Research Center , SE-151 36 Södertälje , Sweden
- Dept. Computer and Systems Sciences , Stockholm Univ. , Box 7003 , SE-164 07 Kista , Sweden
| | - Andreas Bender
- Centre for Molecular Informatics , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
540
|
|
541
|
Zhang L, Wei J, Ren L, Zhang J, Yang M, Jing L, Wang J, Sun Z, Zhou X. Endosulfan inducing apoptosis and necroptosis through activation RIPK signaling pathway in human umbilical vascular endothelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:215-225. [PMID: 27709431 DOI: 10.1007/s11356-016-7652-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Endosulfan, an organochlorine pesticide, was found in human blood, and its possible cardiovascular toxicity has been suggested. However, the mechanism about endothelial cell injuries induced by endosulfan has remained unknown. In the present study, human umbilical vein endothelial cells (HUVECs) were chosen to explore the toxicity mechanism and were treated with 0, 1, 6, and 12 μg/mL-1 endosulfan for 24 h, respectively. The results showed that exposure to endosulfan could inhibit the cell viability, increase the release of lactate dehydrogenase (LDH), damage the ultrastructure, and lead to apoptosis and necroptosis in HUVECs. Furthermore, endosulfan upregulated the expressions of receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), mixed lineage kinase domain-like (MLKL), caspase 8, and caspase 3, which means the activation of RIPK1 pathways. In addition, endosulfan promoted the increases of ROS, IL-1α, and IL-33 levels while antioxidant N-acetyl-L-cysteine (NAC) effectively attenuated the cytotoxicity from endosulfan. Taken together, these results have demonstrated that endosulfan induces the apoptosis and necroptosis of HUVECs, where the RIPK pathway plays a pro-necroptotic role and NAC plays an anti-necroptotic role. Our results may contribute to understanding cellular mechanisms for endosulfan-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Histology and Embryology, Bin Zhou Medical College, Yan Tai, 264003, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Man Yang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
542
|
Vujicic S, Feng L, Antoni A, Rauch J, Levine JS. Identification of Intracellular Signaling Events Induced in Viable Cells by Interaction with Neighboring Cells Undergoing Apoptotic Cell Death. J Vis Exp 2016. [PMID: 28060335 DOI: 10.3791/54980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cells dying by apoptosis, also referred to as regulated cell death, acquire multiple new activities that enable them to influence the function of adjacent live cells. Vital activities, such as survival, proliferation, growth, and differentiation, are among the many cellular functions modulated by apoptotic cells. The ability to recognize and respond to apoptotic cells appears to be a universal feature of all cells, regardless of lineage or organ of origination. However, the diversity and complexity of the response to apoptotic cells mandates that great care be taken in dissecting the signaling events and pathways responsible for any particular outcome. In particular, one must distinguish among the multiple mechanisms by which apoptotic cells can influence intracellular signaling pathways within viable responder cells, including: receptor-mediated recognition of the apoptotic cell, release of soluble mediators by the apoptotic cell, and/or engagement of the phagocytic machinery. Here, we provide a protocol for identifying intracellular signaling events that are induced in viable responder cells following their exposure to apoptotic cells. A major advantage of the protocol lies in the attention it pays to dissection of the mechanism by which apoptotic cells modulate signaling events within responding cells. While the protocol is specific for a conditionally immortalized mouse kidney proximal tubular cell line (BU.MPT cells), it is easily adapted to cell lines that are non-epithelial in origin and/or derived from organs other than the kidney. The use of dead cells as a stimulus introduces several unique factors that can hinder the detection of intracellular signaling events. These problems, as well as strategies to minimize or circumvent them, are discussed within the protocol. Application of this protocol should aid our expanding knowledge of the broad influence that dead or dying cells exert on their live neighbors, both in health and in disease.
Collapse
Affiliation(s)
- Snezana Vujicic
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago; Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center
| | - Lanfei Feng
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago; Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center
| | | | - Joyce Rauch
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre
| | - Jerrold S Levine
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago; Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center; Department of Microbiology & Immunology, University of Illinois at Chicago;
| |
Collapse
|
543
|
Signaling Pathways in Cardiac Myocyte Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9583268. [PMID: 28101515 PMCID: PMC5215135 DOI: 10.1155/2016/9583268] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation.
Collapse
|
544
|
Papp D, Kovács T, Billes V, Varga M, Tarnóci A, Hackler L, Puskás LG, Liliom H, Tárnok K, Schlett K, Borsy A, Pádár Z, Kovács AL, Hegedűs K, Juhász G, Komlós M, Erdős A, Gulyás B, Vellai T. AUTEN-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects. Autophagy 2016; 12:273-86. [PMID: 26312549 DOI: 10.1080/15548627.2015.1082023] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a major molecular mechanism that eliminates cellular damage in eukaryotic organisms. Basal levels of autophagy are required for maintaining cellular homeostasis and functioning. Defects in the autophagic process are implicated in the development of various age-dependent pathologies including cancer and neurodegenerative diseases, as well as in accelerated aging. Genetic activation of autophagy has been shown to retard the accumulation of damaged cytoplasmic constituents, delay the incidence of age-dependent diseases, and extend life span in genetic models. This implies that autophagy serves as a therapeutic target in treating such pathologies. Although several autophagy-inducing chemical agents have been identified, the majority of them operate upstream of the core autophagic process, thereby exerting undesired side effects. Here, we screened a small-molecule library for specific inhibitors of MTMR14, a myotubularin-related phosphatase antagonizing the formation of autophagic membrane structures, and isolated AUTEN-67 (autophagy enhancer-67) that significantly increases autophagic flux in cell lines and in vivo models. AUTEN-67 promotes longevity and protects neurons from undergoing stress-induced cell death. It also restores nesting behavior in a murine model of Alzheimer disease, without apparent side effects. Thus, AUTEN-67 is a potent drug candidate for treating autophagy-related diseases.
Collapse
Affiliation(s)
- Diána Papp
- a Velgene Biotechnology Research Ltd. , Szeged , Hungary
| | - Tibor Kovács
- a Velgene Biotechnology Research Ltd. , Szeged , Hungary.,b Department of Genetics , Eötvös Loránd University , Budapest , Hungary
| | - Viktor Billes
- a Velgene Biotechnology Research Ltd. , Szeged , Hungary.,b Department of Genetics , Eötvös Loránd University , Budapest , Hungary
| | - Máté Varga
- b Department of Genetics , Eötvös Loránd University , Budapest , Hungary
| | - Anna Tarnóci
- a Velgene Biotechnology Research Ltd. , Szeged , Hungary.,b Department of Genetics , Eötvös Loránd University , Budapest , Hungary
| | | | - László G Puskás
- c Avidin Ltd. , Szeged , Hungary.,d Laboratory of Functional Genomics, Institute of Genetics, Biological Research Center , Szeged , Hungary
| | - Hanna Liliom
- e Department of Physiology and Neurobiology , Eötvös Loránd University , Budapest , Hungary
| | - Krisztián Tárnok
- e Department of Physiology and Neurobiology , Eötvös Loránd University , Budapest , Hungary
| | - Katalin Schlett
- e Department of Physiology and Neurobiology , Eötvös Loránd University , Budapest , Hungary.,f MTA-ELTE NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University , Budapest , Hungary
| | - Adrienn Borsy
- g Institute of Enzymology, Research Center for Natural Sciences , Budapest , Hungary
| | - Zsolt Pádár
- a Velgene Biotechnology Research Ltd. , Szeged , Hungary
| | - Attila L Kovács
- h Department of Anatomy , Cell and Developmental Biology, Eötvös Loránd University , Budapest , Hungary
| | - Krisztina Hegedűs
- h Department of Anatomy , Cell and Developmental Biology, Eötvös Loránd University , Budapest , Hungary
| | - Gábor Juhász
- h Department of Anatomy , Cell and Developmental Biology, Eötvös Loránd University , Budapest , Hungary
| | - Marcell Komlós
- a Velgene Biotechnology Research Ltd. , Szeged , Hungary
| | - Attila Erdős
- a Velgene Biotechnology Research Ltd. , Szeged , Hungary
| | - Balázs Gulyás
- i Karolinska Institute , Department of Clinical Neuroscience , Stockholm , Sweden.,j Imperial College-NTU, Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore.,k Imperial College London , Department of Medicine, Division of Brain Sciences , London , UK
| | - Tibor Vellai
- a Velgene Biotechnology Research Ltd. , Szeged , Hungary.,b Department of Genetics , Eötvös Loránd University , Budapest , Hungary
| |
Collapse
|
545
|
Abstract
As the heart is an energy-demanding organ, impaired cardiac energy metabolism and mitochondrial function have been inexorably linked to cardiac dysfunction. There is a growing recognition that mitochondrial dysfunction contributes to impaired myocardial energetics and increased oxidative stress in cardiomyopathies, cardiac ischemic damage and heart failure (HF), and mitochondrial permeability transition pore opening has been reported a critical trigger of myocyte death and myocardial remodeling. It is well established that mitochondria play pivotal roles in intracellular signaling in both cell death as well as in cardioprotective pathways. Moreover, recent studies have shown that defects in mitochondrial dynamics affecting biogenesis and turnover are linked to cardiac senescence and HF. Accordingly, there has been an increasing interest in targeting mitochondria for HF therapy. This article reviews the background and recent evidence of mitochondrial involvement in several types of cell death (apoptosis, necrosis and autophagy) occurring in HF. In addition, potential strategies for targeting mitochondria are examined, and their utility in HF therapy considered.
Collapse
|
546
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
547
|
Galluzzi L, Kepp O, Chan FKM, Kroemer G. Necroptosis: Mechanisms and Relevance to Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:103-130. [PMID: 27959630 DOI: 10.1146/annurev-pathol-052016-100247] [Citation(s) in RCA: 518] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Necroptosis is a form of regulated cell death that critically depends on receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) and generally manifests with morphological features of necrosis. The molecular mechanisms that underlie distinct instances of necroptosis have just begun to emerge. Nonetheless, it has already been shown that necroptosis contributes to cellular demise in various pathophysiological conditions, including viral infection, acute kidney injury, and cardiac ischemia/reperfusion. Moreover, human tumors appear to obtain an advantage from the downregulation of key components of the molecular machinery for necroptosis. Although such an advantage may stem from an increased resistance to adverse microenvironmental conditions, accumulating evidence indicates that necroptosis-deficient cancer cells are poorly immunogenic and hence escape natural and therapy-elicited immunosurveillance. Here, we discuss the molecular mechanisms and relevance to disease of necroptosis.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065; .,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Oliver Kepp
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France;
| | | | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; .,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden.,Pôle de Biologie, Hôpital Européen George Pompidou, AP-HP, 75015 Paris, France
| |
Collapse
|
548
|
Klöditz K, Chen YZ, Xue D, Fadeel B. Programmed cell clearance: From nematodes to humans. Biochem Biophys Res Commun 2016; 482:491-497. [PMID: 27919685 DOI: 10.1016/j.bbrc.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 11/30/2022]
Abstract
Programmed cell clearance is a highly regulated physiological process of elimination of dying cells that occurs rapidly and efficiently in healthy organisms. It thus ensures proper development as well as homeostasis. Recent studies have disclosed a considerable degree of conservation of cell clearance pathways between nematodes and higher organisms. The externalization of the anionic phospholipid phosphatidylserine (PS) has emerged as an important "eat-me" signal for phagocytes and its exposition on apoptotic cells is controlled by phospholipid translocases and scramblases. However, there is mounting evidence that PS exposure occurs not only in apoptosis, but may also be actively expressed on the surface of cells undergoing other forms of cell death including necrosis; PS is also expressed on the surface of engulfing cells. Additionally, PS may act as a "save-me" signal during axonal regeneration. Here we discuss mechanisms of PS exposure and its recognition by phagocytes as well as the consequences of PS signaling in nematodes and in mammals.
Collapse
Affiliation(s)
- Katharina Klöditz
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Yu-Zen Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
549
|
Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and Damage-Associated Molecular Patterns (DAMPs). Am J Transplant 2016; 16:3338-3361. [PMID: 27421829 DOI: 10.1111/ajt.13963] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Abstract
Upon solid organ transplantation and during cancer immunotherapy, cellular stress responses result in the release of damage-associated molecular patterns (DAMPs). The various cellular stresses have been characterized in detail over the last decades, but a unifying classification based on clinically important aspects is lacking. Here, we provide an in-depth review of the most recent literature along with a unifying concept of the danger/injury model, suggest a classification of DAMPs, and review the recently elaborated mechanisms that result in the emission of such factors. We further point out the differences in DAMP responses including the release following a heat shock pattern, endoplasmic reticulum stress, DNA damage-mediated DAMP release, and discuss the diverse pathways of regulated necrosis in this respect. The understanding of various forms of DAMPs and the consequences of their different release patterns are prerequisite to associate serum markers of cellular stresses with clinical outcomes.
Collapse
Affiliation(s)
- W G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabexTRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - S Gasser
- Immunology Programme and Department of Microbiology and Immunology, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - A D Garg
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - A Linkermann
- Cluster of Excellence EXC306, Inflammation at Interfaces, Schleswig-Holstein, Germany.,Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
550
|
Silke J, Johnstone RW. In the Midst of Life-Cell Death: What Is It, What Is It Good for, and How to Study It. Cold Spring Harb Protoc 2016; 2016:2016/12/pdb.top070508. [PMID: 27934692 DOI: 10.1101/pdb.top070508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell death, one of the most fundamental biological processes, has not made it into the public consciousness in the same way that genetic inheritance, cell division, or DNA replication has. Everyone knows they get their genes from their parents, but few would be aware that even before they were born a lot of essential cell death has shaped their development. The greater population, for the most part, is blissfully unaware that every day millions of their own cells die in a programmed way and that this is essential for normal human physiology-their well-being, in fact. Nowhere is the burial liturgy, "In the midst of life we are in death," more apt. Despite this public underappreciation, cell death research is a major industry. A search in PubMed for "apoptosis," a special form of cell death that is caused by caspases, returns approximately 280,000 hits. The intense research interest arises from the realization that abnormal cell death responses play an important role in two of the biggest killers in the western world: cancer and cardio/cerebrovascular disease. Furthermore, the manner in which cells die can also influence the development of autoimmune and autoinflammatory diseases. It is therefore of paramount importance to ensure that experiments accurately quantitate and correctly identify cell death in all its guises. That is the goal of this protocol collection.
Collapse
Affiliation(s)
- John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Victoria 3050, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3052, Australia
| |
Collapse
|