501
|
Davey ME, Duncan MJ. Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis. J Bacteriol 2006; 188:5510-23. [PMID: 16855241 PMCID: PMC1540017 DOI: 10.1128/jb.01685-05] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is a biofilm-mediated disease. Porphyromonas gingivalis is an obligate anaerobe consistently associated with severe manifestations of this disease. As an opportunistic pathogen, the ability to proliferate within and disseminate from subgingival biofilm (plaque) is central to its virulence. Here, we report the isolation of a P. gingivalis transposon insertion mutant altered in biofilm development and the reconstruction and characterization of this mutation in three different wild-type strains. The mutation responsible for the altered biofilm phenotype was in a gene with high sequence similarity ( approximately 61%) to a glycosyltransferase gene. The gene is located in a region of the chromosome that includes up to 16 genes predicted to be involved in the synthesis and transport of capsular polysaccharide. The phenotype of the reconstructed mutation in all three wild-type backgrounds is that of enhanced biofilm formation. In addition, in strain W83, a strain that is encapsulated, the glycosyltransferase mutation resulted in a loss of capsule. Further experiments showed that the W83 mutant strain was more hydrophobic and exhibited increased auto-aggregation. Our results indicate that we have identified a gene involved in capsular-polysaccharide synthesis in P. gingivalis and that the production of capsule prevented attachment and the initiation of in vitro biofilm formation on polystyrene microtiter plates.
Collapse
Affiliation(s)
- Mary E Davey
- Department of Molecular Genetics, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA.
| | | |
Collapse
|
502
|
Ziebuhr W, Hennig S, Eckart M, Kränzler H, Batzilla C, Kozitskaya S. Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int J Antimicrob Agents 2006; 28 Suppl 1:S14-20. [PMID: 16829054 DOI: 10.1016/j.ijantimicag.2006.05.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Staphylococcus epidermidis is a commensal bacterium of the human skin. However, S. epidermidis and other coagulase-negative staphylococci (CNS) emerge also as common nosocomial pathogens infecting immunocompromized patients carrying medical devices. Antibiotic resistance and the ability of many nosocomial S. epidermidis isolates to form biofilms on inert surfaces make these infections hard to treat. Epidemiological analyses using multilocus sequence typing (MLST) and genetic studies suggest that S. epidermidis isolates in the hospital environment differ from those obtained outside of medical facilities with respect to biofilm formation, antibiotic resistance, and the presence of mobile DNA elements. Since S. epidermidis isolates exhibit high genome flexibility, they are now regarded as reservoirs for the evolution and spread of resistance traits within nosocomial bacterial communities.
Collapse
Affiliation(s)
- Wilma Ziebuhr
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
503
|
|
504
|
Katsikogianni M, Spiliopoulou I, Dowling DP, Missirlis YF. Adhesion of slime producing Staphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorinated coatings. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:679-89. [PMID: 16897160 DOI: 10.1007/s10856-006-9678-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 08/08/2005] [Indexed: 05/11/2023]
Abstract
Staphylococcus epidermidis has emerged as a pathogen associated with infections of implanted medical devices. Bacterial adhesion is a crucial step in infection on biomaterial surfaces. To quantitatively determine the relationship between poly (vinyl chloride) (PVC) surface properties and bacterial adhesion, we have compared attachment of slime-producing S. epidermidis strains on PVC and various coatings under flow conditions. Bacterial adhesion and colonization was quantified by counting the viable organisms on the adherent surface as well as by scanning electron microscopy, epifluorescence microscopy and atomic force microscopy. Fluorination of the PVC surface encourages S. epidermidis adhesion whereas; diamond-like carbon (DLC) and especially silver (Ag) coatings seem to inhibit its adhesion. In most materials, the number of adherent bacteria decreased with the increase of shear rate. These results indicate that bacterial adhesion is influenced by the chemical properties of the polymeric surfaces, the surface roughness and the associated flow conditions.
Collapse
Affiliation(s)
- M Katsikogianni
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|
505
|
Tao JH, Fan CS, Gao SE, Wang HJ, Liang GX, Zhang Q. Depression of biofilm formation and antibiotic resistance by sarA disruption in Staphylococcus epidermidis. World J Gastroenterol 2006; 12:4009-13. [PMID: 16810749 PMCID: PMC4087711 DOI: 10.3748/wjg.v12.i25.4009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of disruption of sarA gene on biofilm formation and antibiotic resistance of Staphylococcus epidermidis (S. epidermidis).
METHODS: In order to disrupt sarA gene, the double-crossover homologous recombination was applied in S. epidermidis RP62A, and tetracycline resistance gene (tet) was used as the selective marker which was amplified by PCR from the pBR322 and inserted into the locus between sarA upstream and downstream, resulting in pBT2△sarA. By electroporation, the plasmid pBT2△sarA was transformed into S. epidermidis. Gene transcription was detected by real-time reverse transcription-PCR (RT-PCR). Determination of biofilm was performed in 96-well flat-bottomed culture plates, and antibiotic resistance was analyzed with test tube culture by spectrophotometry at 570 nm respectively.
RESULTS: A sarA disrupted strain named S. epidermidis RP62A△sarA was constructed, which was completely defective in biofilm formation, while the sarA complement strain RP62A△sarA (pHPS9sarA) restored the biofilm formation phenotype. Additionally, the knockout of sarA resulted in decreased erythromycin and kanamycin resistance of S. epidermidis RP62A. Compared to the original strain, S. epidermidis RP62A△sarA had an increase of the sensitivity to erythromycin at 200-400 μg/mL and kanamycin at 200-800 μg/mL respectively.
CONCLUSION: The knockout of sarA can result in the defect in biofilm formation and the decreased erythromycin and kanamycin resistance in S. epidermidis RP62A.
Collapse
Affiliation(s)
- Ju-Hong Tao
- Department of Microbiology, School of Life Sciences, Fudan University, 220 Han Dan Road, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
506
|
Lembke C, Podbielski A, Hidalgo-Grass C, Jonas L, Hanski E, Kreikemeyer B. Characterization of biofilm formation by clinically relevant serotypes of group A streptococci. Appl Environ Microbiol 2006; 72:2864-75. [PMID: 16597993 PMCID: PMC1449035 DOI: 10.1128/aem.72.4.2864-2875.2006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]) is a frequent cause of purulent infections in humans. As potentially important aspects of its pathogenicity, GAS was recently shown to aggregate, form intratissue microcolonies, and potentially participate in multispecies biofilms. In this study, we show that GAS in fact forms monospecies biofilms in vitro, and we analyze the basic parameters of S. pyogenes in vitro biofilm formation, using Streptococcus epidermidis as a biofilm-positive control. Of nine clinically important serotype strains, M2, M6, M14, and M18 were found to significantly adhere to coated and uncoated polystyrene surfaces. Fibronectin and collagen types I and IV best supported primary adherence of serotype M2 and M18 strains, respectively, whereas serotype M6 and M14 strains strongly bound to uncoated polystyrene surfaces. Absorption measurements of safranin staining, as well as electron scanning and confocal laser scanning microscopy, documented that primary adherence led to subsequent formation of three-dimensional biofilm structures consisting of up to 46 bacterial layers. Of note, GAS isolates belonging to the same serotype were found to be very heterogeneous in their biofilm-forming behavior. Biofilm formation was equally efficient under static and continuous flow conditions and consisted of the classical three steps, including partial disintegration after long-term incubation. Activity of the SilC signaling peptide as a component of a putative quorum-sensing system was found to influence the biofilm structure and density of serotype M14 and M18 strains. Based on the presented methods and results, standardized analyses of GAS biofilms and their impact on GAS pathogenicity are now feasible.
Collapse
Affiliation(s)
- Cordula Lembke
- Department of Medical Microbiology and Hospital Hygiene, University Hospital Rostock, Schillingallee 70, D-18057 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
507
|
Ninin E, Caroff N, Espaze E, Maraillac J, Lepelletier D, Milpied N, Richet H. Assessment of ica operon carriage and biofilm production in Staphylococcus epidermidis isolates causing bacteraemia in bone marrow transplant recipients. Clin Microbiol Infect 2006; 12:446-52. [PMID: 16643521 DOI: 10.1111/j.1469-0691.2006.01382.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The clinical significance of coagulase-negative staphylococci isolated from blood culture is typically assessed on the basis of a combination of clinical and microbiological criteria. However, these criteria are difficult to apply to haematology patients who are highly immunosuppressed and from whom blood cultures are obtained most frequently through a central venous catheter. This study analysed 112 episodes of Staphylococcus epidermidis bacteraemia that occurred in 79 bone marrow transplant recipients. In 73 (65%) episodes, only one blood culture set was positive for S. epidermidis, while 39 (35%) episodes grew S. epidermidis from multiple blood cultures. Nine patients had two or more episodes of bacteraemia with the same strain, as determined by pulsed-field gel electrophoresis (PFGE). The PFGE method also showed that 34 (31%) isolates belonged to seven clusters, indicating the persistence of certain clones in the environment. Of the 109 isolates analysed, 59 (54%) produced biofilm and 91 (83.5%) carried the ica operon. Isolates that produced biofilm were observed to colonise central venous catheters faster than non-biofilm-producing isolates (18 vs. 37 days; p 0.03). No clinical features were associated with carriage of the ica operon, but the ica operon was carried more frequently by the isolates that formed clusters.
Collapse
Affiliation(s)
- E Ninin
- Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière, CHU Nantes, 9 Quai Moncouso, 44093 Nantes Cedex 01, France.
| | | | | | | | | | | | | |
Collapse
|
508
|
Wei W, Cao Z, Zhu YL, Wang X, Ding G, Xu H, Jia P, Qu D, Danchin A, Li Y. Conserved genes in a path from commensalism to pathogenicity: comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228. BMC Genomics 2006; 7:112. [PMID: 16684363 PMCID: PMC1482698 DOI: 10.1186/1471-2164-7-112] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 05/10/2006] [Indexed: 11/16/2022] Open
Abstract
Background Staphylococcus epidermidis, long regarded as an innocuous commensal bacterium of the human skin, is the most frequent cause of nosocomial infections associated with implanted medical devices. This conditional pathogen provides a model of choice to study genome landmarks correlated with the transition between commensalism and pathogenicity. Traditional investigations stress differences in gene content. We focused on conserved genes that have accumulated small mutation differences during the transition. Results A comparison of strain ATCC12228, a non-biofilm forming, non-infection associated strain and strain RP62A, a methicillin-resistant biofilm clinical isolate, revealed consistent variation, mostly single-nucleotide polymorphisms (SNPs), in orthologous genes in addition to the previously investigated global changes in gene clusters. This polymorphism, scattered throughout the genome, may reveal genes that contribute to adaptation of the bacteria to different environmental stimuli, allowing them to shift from commensalism to pathogenicity. SNPs were detected in 931 pairs of orthologs with identical gene length, accounting for approximately 45% of the total pairs of orthologs. Assuming that non-synonymous mutations would mark recent evolution, and hence be associated to the onset of the pathogenic process, analysis of ratios of non-synonymous SNPs vs synonymous SNPs suggested hypotheses about possible pathogenicity determinants. The N/S ratios for virulence factors and surface proteins differed significantly from that of average SNPs. Of those gene pairs, 40 showed a disproportionate distribution of dN vs dS. Among those, the presence of the gene encoding methionine sulfoxide reductase suggested a possible involvement of reactive oxygen species. This led us to uncover that the infection associated strain was significantly more resistant to hydrogen peroxide and paraquat than the environmental strain. Some 16 genes of the list were of unknown function. We could suggest however that they were likely to belong to surface proteins or considered in priority as important for pathogenicity. Conclusion Our study proposed a novel approach to identify genes involved in pathogenic processes and provided some insight about the molecular mechanisms leading a commensal inhabitant to become an invasive pathogen.
Collapse
Affiliation(s)
- Wu Wei
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, 320 YueYang Road, Shanghai, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai, China
| | - ZhiWei Cao
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai, China
| | - Yu-Li Zhu
- Department of Medical Molecular Virology, Institute of Medical microbiology, Shanghai Medical School of Fudan University, 138 YiXue Yuan Road, Shanghai, China
| | - XiaoJing Wang
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, 320 YueYang Road, Shanghai, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai, China
| | - GuoHui Ding
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, 320 YueYang Road, Shanghai, China
| | - Hao Xu
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai, China
| | - PeiLin Jia
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, 320 YueYang Road, Shanghai, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai, China
| | - Di Qu
- Department of Medical Molecular Virology, Institute of Medical microbiology, Shanghai Medical School of Fudan University, 138 YiXue Yuan Road, Shanghai, China
| | - Antoine Danchin
- Genetics of Bacterial Genomes/URA 2171 CNRS, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - YiXue Li
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, 320 YueYang Road, Shanghai, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai, China
| |
Collapse
|
509
|
Abstract
Surfaces of internal fracture fixation implants are generally designed to encourage soft- and/or hard-tissue adherence, eventually leading to tissue or osseo integration. Unfortunately, this feature may also encourage bacterial adhesion. About half of the two million cases of nosocomial infections per year in the US are associated with indwelling devices. In the UK, implant-associated infections are estimated to cost pound 7-11 million per year, and with the rise in antibiotic-resistant bacteria, are an important issue. Soft-tissue infections and osteomyelitis are serious complications associated with implants, particularly open fractures, external fixation devices, and intramedullary nailing. Consequences of implant-associated infections include prolonged hospitalization with systemic antibiotic therapy, several revision procedures, possible amputation, and even death. This review discusses the issue of implant-associated infections and some of the methods used to prevent bacterial adhesion to osteosynthesis implants.
Collapse
|
510
|
Gründling A, Schneewind O. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus. J Bacteriol 2006; 188:2463-72. [PMID: 16547033 PMCID: PMC1428428 DOI: 10.1128/jb.188.7.2463-2472.2006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.
Collapse
|
511
|
Erickson DL, Jarrett CO, Wren BW, Hinnebusch BJ. Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J Bacteriol 2006; 188:1113-9. [PMID: 16428415 PMCID: PMC1347331 DOI: 10.1128/jb.188.3.1113-1119.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, the agent of plague, is usually transmitted by fleas. To produce a transmissible infection, Y. pestis colonizes the flea midgut and forms a biofilm in the proventricular valve, which blocks normal blood feeding. The enteropathogen Yersinia pseudotuberculosis, from which Y. pestis recently evolved, is not transmitted by fleas. However, both Y. pestis and Y. pseudotuberculosis form biofilms that adhere to the external mouthparts and block feeding of Caenorhabditis elegans nematodes, which has been proposed as a model of Y. pestis-flea interactions. We compared the ability of Y. pestis and Y. pseudotuberculosis to infect the rat flea Xenopsylla cheopis and to produce biofilms in the flea and in vitro. Five of 18 Y. pseudotuberculosis strains, encompassing seven serotypes, including all three serotype O3 strains tested, were unable to stably colonize the flea midgut. The other strains persisted in the flea midgut for 4 weeks but did not increase in numbers, and none of the 18 strains colonized the proventriculus or produced a biofilm in the flea. Y. pseudotuberculosis strains also varied greatly in their ability to produce biofilms in vitro, but there was no correlation between biofilm phenotype in vitro or on the surface of C. elegans and the ability to colonize or block fleas. Our results support a model in which a genetic change in the Y. pseudotuberculosis progenitor of Y. pestis extended its pre-existing ex vivo biofilm-forming ability to the flea gut environment, thus enabling proventricular blockage and efficient flea-borne transmission.
Collapse
Affiliation(s)
- David L Erickson
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, 903 South 4th St., Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
512
|
Pathogenesis of staphylococcal device-related infections: from basic science to new diagnostic, therapeutic and prophylactic approaches. ACTA ACUST UNITED AC 2006. [DOI: 10.1097/01.revmedmi.0000244134.43170.83] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
513
|
Baldassarri L, Creti R, Montanaro L, Orefici G, Arciola CR. Pathogenesis of implant infections by enterococci. Int J Artif Organs 2006; 28:1101-9. [PMID: 16353116 DOI: 10.1177/039139880502801107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterococci are commensals of human and animal intestinal tract that have emerged in the last decades as a major cause of nosocomial infections of bloodstream, urinary tract and in infected surgical sites. Enterococcus faecalis is responsible for ca. 80% of all enterococcal infections while Enterococcus faecium accounts for most of the others; among the most relevant risk factors for development of enterococcal infections is the presence of implanted devices. The pathogenesis of such infections is poorly understood, but several virulence factors have been proposed. Among them, the ability to form biofilm has recently been shown to be one of the most prominent features of this microorganism, allowing colonization of inert and biological surfaces, while protecting against antimicrobial substances, and mediating adhesion and invasion of host cells and survival within professional phagocytes. Biofilm formation has been shown to be particularly important in the development of prosthetic valve enterococcal endocarditis and stent occlusion. Enterococci are also able to express other surface factors that may support colonization of both inert and biological surfaces, and that may be involved in the invasion of, and survival within, the host cell.
Collapse
Affiliation(s)
- L Baldassarri
- Division of Bacterial, Respiratory and Systemic Disease, Department of Infectious, Parasitic and Immune-mediated Diseases, Institute of Health, Rome, Italy.
| | | | | | | | | |
Collapse
|
514
|
de Araujo GL, Coelho LR, de Carvalho CB, Maciel RM, Coronado AZ, Rozenbaum R, Ferreira-Carvalho BT, Figueiredo AMS, Teixeira LA. Commensal isolates of methicillin-resistant Staphylococcus epidermidis are also well equipped to produce biofilm on polystyrene surfaces. J Antimicrob Chemother 2006; 57:855-64. [PMID: 16551694 DOI: 10.1093/jac/dkl071] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To study biofilm production and to detect icaAD, atlE and aap genes in 137 isolates of methicillin-resistant Staphylococcus epidermidis (MRSE) obtained from healthy individuals from the community (35 isolates), from hospitalized patients at the Antônio Pedro University Hospital (25 isolates) and from individuals from a home-care system (HCS; 77 isolates). METHODS Biofilm production was determined in vitro using polystyrene inert surfaces. icaAD, atlE and aap genes were detected using PCR. Hybridization experiments were also carried out to confirm some PCR results. Antimicrobial susceptibility testing was carried out using the NCCLS methods. RESULTS Although many of the commensal MRSE isolates produced biofilms, the percentage of biofilm producers was significantly higher (P = 0.0107) among hospital isolates (76%) than among isolates from the community (60%) and from the HCS (57%). An association was observed between multiresistance and biofilm production for isolates obtained from healthy individuals from the community and from household contacts from the HCS (P < 0.0001). The concomitant presence of the ica operon and atlE and aap genes was associated with the strong biofilm-producer phenotype (P < 0.0001). CONCLUSION Because many of the commensal MRSE isolates obtained from nares produced biofilms and carried icaAD, aap and atlE genes, biofilms or such genetic elements should not be used as markers for clinical significance. The biofilm environment seems to increase genetic exchanges and hence may contribute to multiresistance phenotypes.
Collapse
|
515
|
Cerca N, Martins S, Sillankorva S, Jefferson KK, Pier GB, Oliveira R, Azeredo J. Effects of growth in the presence of subinhibitory concentrations of dicloxacillin on Staphylococcus epidermidis and Staphylococcus haemolyticus biofilms. Appl Environ Microbiol 2006; 71:8677-82. [PMID: 16332862 PMCID: PMC1317332 DOI: 10.1128/aem.71.12.8677-8682.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Low concentrations of antibiotics can inhibit microbial adherence to medical device surfaces. However, little is known about the changes that occur in the physiology of bacteria within biofilms formed in the presence of subinhibitory (sub-MIC) concentrations of antibiotics. In this study, the densities and matrix compositions of biofilms formed by two coagulase-negative Staphylococcus species in the absence and in the presence of sub-MIC concentrations of dicloxacillin were evaluated. Biofilms formed in the presence of sub-MIC concentrations of dicloxacillin contained less biomass, and there were notable changes in the composition of the biofilm matrix. Changes in the spatial structure were also verified by confocal scanning laser microscopy, indicating that biofilms grown in the presence of sub-MIC concentrations of dicloxicilln had a lower cell density. Physiological alterations in the bacteria within biofilms grown in the presence of subinhibitory concentrations of the antibiotic were also evaluated. The results showed that there were differences in bacterial surface characteristics when cultures were grown in the presence of sub-MIC concentrations of dicloxacillin, including decreased hydrophobicity and decreased expression of the exopolysaccharide poly-N-acetylglucosamine. The elemental composition of the cell surface was also analyzed, and whereas in Staphylococcus epidermidis there were decreases in the oxygen and nitrogen contents, in Staphylococcus haemolyticus there were increases in these two parameters. Additionally, increases in resistance to several antibiotics were observed for the cells within biofilms formed in the presence of dicloxacillin.
Collapse
Affiliation(s)
- Nuno Cerca
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
516
|
Xu L, Li H, Vuong C, Vadyvaloo V, Wang J, Yao Y, Otto M, Gao Q. Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun 2006; 74:488-96. [PMID: 16369005 PMCID: PMC1346618 DOI: 10.1128/iai.74.1.488-496.2006] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nosocomial infections caused by Staphylococcus epidermidis are characterized by biofilm formation on implanted medical devices. Quorum-sensing regulation plays a major role in the biofilm development of many bacterial pathogens. Here, we describe luxS, a quorum-sensing system in staphylococci that has a significant impact on biofilm development and virulence. We constructed an isogenic DeltaluxS mutant strain of a biofilm-forming clinical isolate of S. epidermidis and demonstrated that luxS signaling is functional in S. epidermidis. The mutant strain showed increased biofilm formation in vitro and enhanced virulence in a rat model of biofilm-associated infection. Genetic complementation and addition of autoinducer 2-containing culture filtrate restored the wild-type phenotype, demonstrating that luxS repressed biofilm formation through a cell-cell signaling mechanism based on autoinducer 2 secretion. Enhanced production of the biofilm exopolysaccharide polysaccharide intercellular adhesin in the mutant strain is presumably the major cause of the observed phenotype. The agr quorum-sensing system has previously been shown to impact biofilm development and biofilm-associated infection in a way similar to that of luxS, although by regulation of different factors. Our study indicates a general scheme of quorum-sensing regulation of biofilm development in staphylococci, which contrasts with that observed in many other bacterial pathogens.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
517
|
Kogan G, Sadovskaya I, Chaignon P, Chokr A, Jabbouri S. Biofilms of clinical strains ofStaphylococcusthat do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett 2006; 255:11-6. [PMID: 16436056 DOI: 10.1111/j.1574-6968.2005.00043.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus and coagulase-negative staphylococci, primarily Staphylococcus epidermidis, are recognized as a major cause of nosocomial infections associated with the use of implanted medical devices. The capacity of S. epidermidis to form biofilms, allowing it to evade host immune defence mechanisms and antibiotic therapy, is considered to be crucial in colonizing the surfaces of medical implants and dissemination of infection. It has previously been demonstrated that the biofilm of a model strain S. epidermidis RP62A comprises two carbohydrate-containing moieties, a polysaccharide having a structure of a linear poly-N-acetyl-(1-->6)-beta-D-glucosamine and teichoic acid. In the present paper we show that, unlike this model strain, certain clinical isolates of coagulase-negative staphylococci produce biofilms that do not contain detectable amounts of poly-N-acetyl-(1-->6)-beta-D-glucosamine. In contrast to that of S. epidermidis RP62A, these biofilms are not detached with metaperiodate, while proteinase K causes their partial dispersal.
Collapse
Affiliation(s)
- Grigorij Kogan
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies INSERM ERI 002, Université du Littoral-Côte d'Opale, Boulogne-sur-mer, France
| | | | | | | | | |
Collapse
|
518
|
Fitzpatrick F, Humphreys H, O'Gara JP. The genetics of staphylococcal biofilm formation--will a greater understanding of pathogenesis lead to better management of device-related infection? Clin Microbiol Infect 2006; 11:967-73. [PMID: 16307550 DOI: 10.1111/j.1469-0691.2005.01274.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are common causes of biofilm-mediated prosthetic device-related infection. The polysaccharide adhesion mechanism encoded by the ica operon is currently the best understood mediator of biofilm development, and represents an important virulence determinant. More recently, the contributions of other virulence regulators, including the global regulators agr, sarA and sigmaB, to the biofilm phenotype have also been investigated. Nevertheless, little has changed at the bedside; the clinical and laboratory diagnosis of device-related infection can be difficult, and biofilm resistance frequently results in failure of therapy. This review assesses the way in which advances in the understanding of biofilm genetics may impact on the clinical management of device-related infection.
Collapse
Affiliation(s)
- F Fitzpatrick
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Dublin, Ireland
| | | | | |
Collapse
|
519
|
|
520
|
Kropec A, Maira-Litran T, Jefferson KK, Grout M, Cramton SE, Götz F, Goldmann DA, Pier GB. Poly-N-acetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models of systemic infection. Infect Immun 2005; 73:6868-76. [PMID: 16177366 PMCID: PMC1230935 DOI: 10.1128/iai.73.10.6868-6876.2005] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contribution of the Staphylococcus aureus surface polysaccharide poly-N-acetylglucosamine (PNAG) to virulence was evaluated in three mouse models of systemic infection: bacteremia, renal abscess formation, and lethality following high-dose intraperitoneal (i.p.) infection. Deletion of the intercellular adhesin (ica) locus that encodes the biosynthetic enzymes for PNAG production in S. aureus strains Mn8, Newman, and NCTC 10833 resulted in mutant strains with significantly reduced abilities to maintain bacterial levels in blood following intravenous or i.p. injection, to spread systemically to the kidneys following i.p. injection, or to induce a moribund/lethal state following i.p. infection. In the bacteremia model, neither growth phase nor growth medium used to prepare the S. aureus inoculum affected the conclusion that PNAG production was needed for full virulence. As the SarA regulatory protein has been shown to affect ica transcription, PNAG synthesis, and biofilm formation, we also evaluated S. aureus strains Mn8 and 10833 deleted for the sarA gene in the renal infection model. A decrease in PNAG production was seen in sarA mutants using immunoblots of cell surface extracts but was insufficient to reduce the virulence of sarA-deleted strains in this model. S. aureus strains deleted for the ica genes were much more susceptible to antibody-independent opsonic killing involving human peripheral blood leukocytes and rabbit complement. Thus, PNAG confers on S. aureus resistance to killing mediated by these innate host immune mediators. Overall, PNAG production by S. aureus appears to be a critical virulence factor as assessed in murine models of systemic infection.
Collapse
Affiliation(s)
- Andrea Kropec
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
521
|
Suzuki T, Kawamura Y, Uno T, Ohashi Y, Ezaki T. Prevalence of Staphylococcus epidermidis strains with biofilm-forming ability in isolates from conjunctiva and facial skin. Am J Ophthalmol 2005; 140:844-850. [PMID: 16310462 DOI: 10.1016/j.ajo.2005.05.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/28/2005] [Accepted: 05/31/2005] [Indexed: 11/16/2022]
Abstract
PURPOSE To compare the prevalence of biofilm-forming strains of Staphylococcus epidermidis in the conjunctival and facial skin microflora. DESIGN Experimental study. METHODS The prevalence of biofilm-forming ability of 10 S epidermidis strains obtained from the conjunctival sac of healthy volunteers was compared with 40 strains obtained from the facial skin of healthy volunteers. The ability to form biofilm was determined by the presence of the icaA gene, and the production of biofilm was examined by qualitative (Congo red agar [CRA]) and quantitative (microtiter plate) assays. Additionally, the prevalence of 36 S epidermidis strains obtained from the conjunctival sac of precataract patients to form biofilm was investigated. RESULTS The icaA gene was detected in 60% of the isolates from the conjunctival sac of volunteers and 15% of those from the facial skin. Fifty percent of the isolates from the conjunctiva of volunteers and 5% from the facial skin were CRA positive. Biofilm production was significantly greater in isolates from the conjunctiva of volunteers. Of the nine pairs of isolates found in the same volunteers, six conjunctival sac isolates were positive for the icaA gene with biofilm-forming ability except one strain, whereas only one of the facial skin isolates was positive for the icaA gene and none exhibited biofilm-forming phenotype. Sixty-nine percent and 44% of the isolates from the conjunctival sac of precataract patients were positive for icaA gene and CRA test, respectively. CONCLUSIONS The prevalence of biofilm-forming S epidermidis isolates is higher in the conjunctival sac than the facial skin.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Ophthalmology, Ehime University School of Medicine, Ehime, Japan.
| | | | | | | | | |
Collapse
|
522
|
Karatan E, Duncan TR, Watnick PI. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 2005; 187:7434-43. [PMID: 16237027 PMCID: PMC1273002 DOI: 10.1128/jb.187.21.7434-7443.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 08/24/2005] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is both an environmental bacterium and a human intestinal pathogen. The attachment of bacteria to surfaces in biofilms is thought to be an important feature of the survival of this bacterium both in the environment and within the human host. Biofilm formation occurs when cell-surface and cell-cell contacts are formed to make a three-dimensional structure characterized by pillars of bacteria interspersed with water channels. In monosaccharide-rich conditions, the formation of the V. cholerae biofilm requires synthesis of the VPS exopolysaccharide. MbaA (locus VC0703), an integral membrane protein containing a periplasmic domain as well as cytoplasmic GGDEF and EAL domains, has been previously identified as a repressor of V. cholerae biofilm formation. In this work, we have studied the role of the protein NspS (locus VC0704) in V. cholerae biofilm development. This protein is homologous to PotD, a periplasmic spermidine-binding protein of Escherichia coli. We show that the deletion of nspS decreases biofilm development and transcription of exopolysaccharide synthesis genes. Furthermore, we demonstrate that the polyamine norspermidine activates V. cholerae biofilm formation in an MbaA- and NspS-dependent manner. Based on these results, we propose that the interaction of the norspermidine-NspS complex with the periplasmic portion of MbaA diminishes the ability of MbaA to inhibit V. cholerae biofilm formation. Norspermidine has been detected in bacteria, archaea, plants, and bivalves. We suggest that norspermidine serves as an intercellular signaling molecule that mediates the attachment of V. cholerae to the biotic surfaces presented by one or more of these organisms.
Collapse
Affiliation(s)
- Ece Karatan
- Tufts-New England Medical Center, Department of Geographic Medicine and Infectious Diseases, 750 Washington St., Box 041, Boston, MA 02111, USA
| | | | | |
Collapse
|
523
|
Chaieb K, Mahdouani K, Bakhrouf A. Detection of icaA and icaD loci by polymerase chain reaction and biofilm formation by Staphylococcus epidermidis isolated from dialysate and needles in a dialysis unit. J Hosp Infect 2005; 61:225-30. [PMID: 16165246 DOI: 10.1016/j.jhin.2005.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 05/11/2005] [Indexed: 11/29/2022]
Abstract
Staphylococcus epidermidis, a coagulase-negative staphylococcus, is a major cause of infections associated with indwelling medical devices. Certain strains produce slime and form biofilm on polymer surfaces, where their pathogenicity is associated with biofilm formation. In this report, we investigated the presence or absence of the intercellular adhesion icaA and icaD genes by polymerase chain reaction, and phenotypic biofilm production was examined by qualitative Congo red agar (CRA) assay. A total of 32 strains of S. epidermidis were identified from dialysates and needles 4h after the initiation of dialysis. Qualitative biofilm production revealed that 16 (50%) strains produced slime on CRA plates. Among the 23 strains positive for the ica operon, 15 were biofilm positive on CRA, eight were biofilm negative, and one was icaA and icaD negative but produced slime. These results show that the ability of S. epidermidis to produce slime is not associated with the presence of icaA and icaD genes.
Collapse
Affiliation(s)
- K Chaieb
- Laboratoire de Bactériologie de l'Hôpital Ibn El Jazzar, rue Ibn Eljazzr, Kairouan 3140, Tunisia.
| | | | | |
Collapse
|
524
|
Jäger S, Mack D, Rohde H, Horstkotte MA, Knobloch JKM. Disintegration of Staphylococcus epidermidis biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor sigmaB. Appl Environ Microbiol 2005; 71:5577-81. [PMID: 16151151 PMCID: PMC1214654 DOI: 10.1128/aem.71.9.5577-5581.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the role of the polysaccharide intercellular adhesin as an energy-storage molecule, we investigated the effect of nutrient limitation on S. epidermidis biofilms. The stability of established biofilms depends on sigma(B) activity; however, the slow decay of biofilms under conditions of nutrient limitation reveal its use as an energy-storage molecule to be unlikely.
Collapse
Affiliation(s)
- Sebastian Jäger
- Universitätsklinikum Hamburg-Eppendorf, Zentrum für Klinisch-Theoretische Medizin I, Institut für Infektionsmedizin, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
525
|
Chinn R, Dembitsky W, Eaton L, Chillcott S, Stahovich M, Rasmusson B, Pagani F. Multicenter experience: prevention and management of left ventricular assist device infections. ASAIO J 2005; 51:461-70. [PMID: 16156314 DOI: 10.1097/01.mat.0000170620.65279.aa] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Implantable left ventricular assist devices (LVADs) have demonstrated clinical success in both the bridge-to-transplantation and destination-therapy patient populations; however, infection remains one of the most common causes of mortality during mechanical circulatory support. Thus, serious LVAD infections may negate the benefits of LVAD implantation, resulting in decreased quality of life, increased morbidity and mortality, and increased costs associated with implantation. Prevention of device-related infection is crucial to the cost-effective use of mechanical circulatory support devices. Therefore, adherence to evidence-based infection control and prevention guidelines, meticulous surgical technique and optimal postoperative surgical site care form the foundation for LVAD associated infection prevention.
Collapse
|
526
|
Kozitskaya S, Olson ME, Fey PD, Witte W, Ohlsen K, Ziebuhr W. Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. J Clin Microbiol 2005; 43:4751-7. [PMID: 16145137 PMCID: PMC1234069 DOI: 10.1128/jcm.43.9.4751-4757.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is part of the normal microflora of the human skin but is also a leading cause of device-associated infections in critically ill patients. Commensal and clinical S. epidermidis isolates differ in their ability to form biofilms on medical devices; the synthesis of biofilms is mediated by the icaADBC operon. Currently, the epidemiological relatedness between ica-positive and -negative isolates is not known; neither is it known whether the ica genes can spread to biofilm-negative strains through horizontal gene transfer. In this study, multilocus sequence typing (MLST) was employed for the clonal analysis of 118 S. epidermidis ica-positive and -negative strains. MLST revealed that the majority of ica-positive and -negative strains were closely related and formed a single clonal complex. Within this complex one sequence type (ST27) was identified which contained exclusively ica-positive isolates and represented the majority of clinical strains tested. ST27 and related ica-positive clones carried different SCCmec cassettes (conferring methicillin resistance) and the insertion sequence IS256. The findings suggest that the S. epidermidis infections analyzed in this report are mainly caused by a single clone (ST27) which occurs preferentially in hospitals and differs from clones in the community. It is hypothesized that the successful establishment of ST27 within nosocomial environments has been facilitated by the presence of genes encoding biofilm and resistance traits.
Collapse
|
527
|
Maira-Litrán T, Kropec A, Goldmann DA, Pier GB. Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated Staphylococcal Poly-N-acetyl-beta-(1-6)-glucosamine. Infect Immun 2005; 73:6752-62. [PMID: 16177353 PMCID: PMC1230901 DOI: 10.1128/iai.73.10.6752-6762.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 03/30/2005] [Accepted: 05/18/2005] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis both synthesize the surface polysaccharide poly-N-acetyl-beta-(1-6)-glucosamine (PNAG), which is produced in vitro with a high level (>90%) of the amino groups substituted by acetate. Here, we examined the role of the acetate substituents of PNAG in generating opsonic and protective antibodies. PNAG and a deacetylated form of the antigen (dPNAG; 15% acetylation) were conjugated to the carrier protein diphtheria toxoid (DT) and used to immunize animals. Mice responded in a dose-dependent fashion to both conjugate vaccines, with maximum antibody titers observed at the highest dose and 4 weeks after the last of three weekly immunizations. PNAG-DT and dPNAG-DT vaccines were also very immunogenic in rabbits. Antibodies raised to the conjugate vaccines in rabbits mediated the opsonic killing of various staphylococcal strains, but the specificity of the opsonic killing was primarily to dPNAG, as this antigen inhibited the killing of S. aureus strains by both PNAG- and dPNAG-specific antibodies. Passive immunization of mice with anti-dPNAG-DT rabbit sera showed significant levels of clearance of S. aureus from the blood (54 to 91%) compared to control mice immunized with normal rabbit sera, whereas PNAG-specific antibodies were ineffective at clearing S. aureus. Passive immunization of mice with a goat antiserum raised to the dPNAG-DT vaccine protected against a lethal dose of three different S. aureus strains. Overall, these data show that immunization of animals with a conjugate vaccine of dPNAG elicit antibodies that mediated opsonic killing and protected against S. aureus infection, including capsular polysaccharide types 5 and 8 and an untypable strain.
Collapse
Affiliation(s)
- Tomás Maira-Litrán
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
528
|
Toledo-Arana A, Merino N, Vergara-Irigaray M, Débarbouillé M, Penadés JR, Lasa I. Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. J Bacteriol 2005; 187:5318-29. [PMID: 16030226 PMCID: PMC1196035 DOI: 10.1128/jb.187.15.5318-5329.2005] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The biofilm formation capacity of Staphylococcus aureus clinical isolates is considered an important virulence factor for the establishment of chronic infections. Environmental conditions affect the biofilm formation capacity of S. aureus, indicating the existence of positive and negative regulators of the process. The majority of the screening procedures for identifying genes involved in biofilm development have been focused on genes whose presence is essential for the process. In this report, we have used random transposon mutagenesis and systematic disruption of all S. aureus two-component systems to identify negative regulators of S. aureus biofilm development in a chemically defined medium (Hussain-Hastings-White modified medium [HHWm]). The results of both approaches coincided in that they identified arlRS as a repressor of biofilm development under both steady-state and flow conditions. The arlRS mutant exhibited an increased initial attachment as well as increased accumulation of poly-N-acetylglucosamine (PNAG). However, the biofilm formation of the arlRS mutant was not affected when the icaADBC operon was deleted, indicating that PNAG is not an essential compound of the biofilm matrix produced in HHWm. Disruption of the major autolysin gene, atl, did not produce any effect on the biofilm phenotype of an arlRS mutant. Epistatic experiments with global regulators involved in staphylococcal-biofilm formation indicated that sarA deletion abolished, whereas agr deletion reinforced, the biofilm development promoted by the arlRS mutation.
Collapse
Affiliation(s)
- Alejandro Toledo-Arana
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología, Universidad Pública de Navarra, Pamplona-31006 Spain
| | | | | | | | | | | |
Collapse
|
529
|
Nilsdotter-Augustinsson A, Claesson C, Lindgren PE, Lundqvist-Gustafsson H, Ohman L. Adherence of Staphylococcus epidermidis to extracellular matrix proteins and effects of fibrinogen-bound bacteria on oxidase activity and apoptosis in neutrophils. APMIS 2005; 113:361-73. [PMID: 16011663 DOI: 10.1111/j.1600-0463.2005.apm_113508.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Staphylococcus epidermidis often causes foreign-body infections such as those associated with hip prostheses, but the underlying pathogenic mechanisms are not fully understood. We performed spectrophotometry to study the ability of S. epidermidis to bind to immobilised fibrinogen, fibronectin, vitronectin, and collagen. The strains were isolated from infected hip prostheses or from normal flora and the well-known protein-binding strain Staphylococcus aureus Cowan was used as positive control. We also analysed the interaction between neutrophils and a fibrinogen-bound prosthesis-derived strain of S. epidermidisby measuring chemiluminescence to determine the neutrophil oxidative response and binding of annexin V to indicate neutrophil apoptosis. We found that binding of S. epidermidis to extracellular matrix proteins varied under different growth conditions, and that prosthesis isolates adhered better to vitronectin than did strains from normal flora. The oxidative response caused by fibrinogen-bound S. epidermidis was not above the background level, which was in marked contrast to the distinct response induced by fibrinogen-associated S. aureus Cowan. Furthermore, fibrinogen-adhering S. epidermidis retarded neutrophil apoptosis. We conclude that surface-bound S. epidermidis induces only a weak inflammatory response, which in combination with the ability of the adherent bacteria to retard neutrophil apoptosis may contribute to low-grade inflammation and loosening of prostheses.
Collapse
Affiliation(s)
- Asa Nilsdotter-Augustinsson
- Divisions of Infectious Diseases, Department of Molecular and Clinical Medicine, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
530
|
Pelz A, Wieland KP, Putzbach K, Hentschel P, Albert K, Götz F. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 2005; 280:32493-8. [PMID: 16020541 DOI: 10.1074/jbc.m505070200] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most Staphylococcus aureus strains produce the orange carotenoid staphyloxanthin. The staphyloxanthin biosynthesis genes are organized in an operon, crtOPQMN, with a sigma(B)-dependent promoter upstream of crtO and a termination region downstream of crtN. The functions of the five encoded enzymes were predicted on the basis of their sequence similarity to known enzymes and by product analysis of gene deletion mutants. The first step in staphyloxanthin biosynthesis is the head-to-head condensation of two molecules of farnesyl diphosphate to form dehydrosqualene (4,4'-diapophytoene), catalyzed by the dehydrosqualene synthase CrtM. The dehydrosqualene desaturase CrtN dehydrogenates dehydrosqualene to form the yellow, main intermediate 4,4'-diaponeurosporene. CrtP, very likely a mixed function oxidase, oxidizes the terminal methyl group of 4,4'-diaponeurosporene to form 4,4'-diaponeurosporenic acid. CrtQ, a glycosyltransferase, esterifies glucose at the C(1)'' position with the carboxyl group of 4,4'-diaponeurosporenic acid to yield glycosyl 4,4'-diaponeurosporenoate; this compound was the major product in the clone expressing crtPQMN. In the final step, the acyltransferase CrtO esterifies glucose at the C(6)'' position with the carboxyl group of 12-methyltetradecanoic acid to yield staphyloxanthin. Staphyloxanthin overexpressed in Staphylococcus carnosus (pTX-crtOPQMN) and purified was analyzed by high pressure liquid chromatography-mass spectroscopy and NMR spectroscopy. Staphyloxanthin was identified as beta-D-glucopyranosyl 1-O-(4,4'-diaponeurosporen-4-oate)-6-O-(12-methyltetradecanoate).
Collapse
Affiliation(s)
- Alexandra Pelz
- Department of Microbial Genetics, University of Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
531
|
Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JKM, Heilmann C, Herrmann M, Mack D. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 2005; 55:1883-95. [PMID: 15752207 DOI: 10.1111/j.1365-2958.2005.04515.x] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Because of its biofilm forming potential Staphylococcus epidermidis has evolved as a leading cause of device-related infections. The polysaccharide intercellular adhesin (PIA) is significantly involved in biofilm accumulation. However, infections because of PIA-negative strains are not uncommon, suggesting the existence of PIA-independent biofilm accumulation mechanisms. Here we found that biofilm formation in the clinically significant S. epidermidis 5179 depended on the expression of a truncated 140 kDa isoform of the 220 kDa accumulation-associated protein Aap. As expression of the truncated Aap isoform leads to biofilm formation in aap-negative S. epidermidis 1585, this domain mediates intercellular adhesion in a polysaccharide-independent manner. In contrast, expression of full-length Aap did not lead to a biofilm-positive phenotype. Obviously, to gain adhesive function, full-length Aap has to be proteolytically processed through staphylococcal proteases as demonstrated by inhibition of biofilm formation by alpha(2)-macroglobulin. Importantly, also exogenously added granulocyte proteases activated Aap, thereby inducing biofilm formation in S. epidermidis 5179 and four additional, independent clinical S. epidermidis strains. It is therefore reasonable to assume that in vivo effector mechanisms of the innate immunity can directly induce protein-dependent S. epidermidis cell aggregation and biofilm formation, thereby enabling the pathogen to evade clearance by phagocytes.
Collapse
Affiliation(s)
- Holger Rohde
- Institut für Infektionsmedizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
532
|
Tormo MÁ, Knecht E, Götz F, Lasa I, Penadés JR. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology (Reading) 2005; 151:2465-2475. [PMID: 16000737 DOI: 10.1099/mic.0.27865-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biofilm-associated protein (Bap) is a surface protein implicated in biofilm formation by Staphylococcus aureus isolated from chronic mastitis infections. The bap gene is carried in a putative composite transposon inserted in SaPIbov2, a mobile staphylococcal pathogenicity island. In this study, bap orthologue genes from several staphylococcal species, including Staphylococcus epidermidis, Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus simulans and Staphylococcus hyicus, were identified, cloned and sequenced. Sequence analysis comparison of the bap gene from these species revealed a very high sequence similarity, suggesting the horizontal gene transfer of SaPIbov2 amongst them. However, sequence analyses of the flanking region revealed that the bap gene of these species was not contained in the SaPIbov2 pathogenicity island. Although they did not contain the icaADBC operon, all the coagulase-negative staphylococcal isolates harbouring bap were strong biofilm producers. Disruption of the bap gene in S. epidermidis abolished its capacity to form a biofilm, whereas heterologous complementation of a biofilm-negative strain of S. aureus with the Bap protein from S. epidermidis bestowed the capacity to form a biofilm on a polystyrene surface. Altogether, these results demonstrate that Bap orthologues from coagulase-negative staphylococci induce an alternative mechanism of biofilm formation that is independent of the PIA/PNAG exopolysaccharide.
Collapse
Affiliation(s)
- M Ángeles Tormo
- Departamento de Química, Bioquímica y Biología Molecular, Universidad Cardenal Herrera-CEU, 46113 Moncada, Valencia, Spain
| | - Erwin Knecht
- Instituto de Investigaciones Citológicas, FVIB, 46010 Valencia, Spain
| | - Friedrich Götz
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | - Iñigo Lasa
- Instituto de Agrobiotecnología y Recursos Naturales, CSIC-Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain
| | - José R Penadés
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Náquera-Moncada Km 4,5, 46113 Moncada, Valencia, Spain
- Departamento de Química, Bioquímica y Biología Molecular, Universidad Cardenal Herrera-CEU, 46113 Moncada, Valencia, Spain
| |
Collapse
|
533
|
Vuong C, Kidder JB, Jacobson ER, Otto M, Proctor RA, Somerville GA. Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J Bacteriol 2005; 187:2967-73. [PMID: 15838022 PMCID: PMC1082835 DOI: 10.1128/jb.187.9.2967-2973.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production.
Collapse
Affiliation(s)
- Cuong Vuong
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Labortories, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | |
Collapse
|
534
|
Resch A, Rosenstein R, Nerz C, Götz F. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 2005; 71:2663-76. [PMID: 15870358 PMCID: PMC1087559 DOI: 10.1128/aem.71.5.2663-2676.2005] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is well known that biofilm formation by pathogenic staphylococci on implanted medical devices leads to "chronic polymer-associated infections." Bacteria in these biofilms are more resistant to antibiotics and the immune defense system than their planktonic counterparts, which suggests that the cells in a biofilm have altered metabolic activity. To determine which genes are up-regulated in Staphylococcus aureus biofilm cells, we carried out a comparative transcriptome analysis. Biofilm growth was simulated on dialysis membranes laid on agar plates. Staphylococci were cultivated planktonically in Erlenmeyer flasks with shaking. mRNA was isolated at five time points from cells grown under both conditions and used for hybridization with DNA microarrays. The gene expression patterns of several gene groups differed under the two growth conditions. In biofilm cells, the cell envelope appeared to be a very active compartment since genes encoding binding proteins, proteins involved in the synthesis of murein and glucosaminoglycan polysaccharide intercellular adhesin, and other enzymes involved in cell envelope synthesis and function were significantly up-regulated. In addition, evidence was obtained that formate fermentation, urease activity, the response to oxidative stress, and, as a consequence thereof, acid and ammonium production are up-regulated in a biofilm. These factors might contribute to survival, persistence, and growth in a biofilm environment. Interestingly, toxins and proteases were up-regulated under planktonic growth conditions. Physiological and biochemical tests for the up-regulation of urease, formate dehydrogenase, proteases, and the synthesis of staphyloxanthin confirmed the microarray data.
Collapse
Affiliation(s)
- Alexandra Resch
- Mikrobielle Genetik, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
535
|
Fitzpatrick F, Humphreys H, O'Gara JP. Evidence for low temperature regulation of biofilm formation in Staphylococcus epidermidis. J Med Microbiol 2005; 54:509-510. [PMID: 15824433 DOI: 10.1099/jmm.0.45990-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Fidelma Fitzpatrick
- Department of Clinical Microbiology, RCSI Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Hilary Humphreys
- Department of Clinical Microbiology, RCSI Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - James P O'Gara
- Department of Clinical Microbiology, RCSI Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| |
Collapse
|
536
|
Li H, Xu L, Wang J, Wen Y, Vuong C, Otto M, Gao Q. Conversion of Staphylococcus epidermidis strains from commensal to invasive by expression of the ica locus encoding production of biofilm exopolysaccharide. Infect Immun 2005; 73:3188-91. [PMID: 15845531 PMCID: PMC1087319 DOI: 10.1128/iai.73.5.3188-3191.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To test if biofilm formation in Staphylococcus epidermidis is dependent on the polysaccharide intercellular adhesin, whose biosynthesis is driven by the ica locus, a plasmid containing the ica locus was transferred to three ica-negative strains. Using in vitro biofilm assays and a rat central venous catheter infection model, we confirmed the importance of the ica locus for biofilm production and pathogenesis of S. epidermidis.
Collapse
Affiliation(s)
- Hualin Li
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
537
|
Sadovskaya I, Vinogradov E, Flahaut S, Kogan G, Jabbouri S. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun 2005; 73:3007-17. [PMID: 15845508 PMCID: PMC1087347 DOI: 10.1128/iai.73.5.3007-3017.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus and coagulase-negative staphylococci, primarily Staphylococcus epidermidis, are recognized as a major cause of nosocomial infections associated with the use of implanted medical devices. It has been established that clinical isolates often produce a biofilm, which is involved in adherence to biomaterials and provides enhanced resistance of bacteria against host defenses and antibiotic treatments. It has been thought that the staphylococcal biofilm contains two polysaccharides, one responsible for primary cell adherence to biomaterials (polysaccharide/adhesin [PS/A]) and an antigen that mediates bacterial aggregation (polysaccharide intercellular adhesin [PIA]). In the present paper we present an improved procedure for preparation of PIA that conserves its labile substituents and avoids contamination with by-products. Based on structural analysis of the polysaccharide antigens and a thorough overview of the previously published data, we concluded that PIA from S. epidermidis is structurally identical to the recently described poly-beta-(1-->6)-N-acetylglucosamine from PS/A-overproducing strain S. aureus MN8m. We also show that another carbohydrate-containing polymer, extracellular teichoic acid (EC TA), is an essential component of S. epidermidis RP62A biofilms. We demonstrate that the relative amounts of extracellular PIA and EC TA produced depend on the growth conditions. Moderate shaking or static culture in tryptic soy broth favors PIA production, while more EC TA is produced in brain heart infusion medium.
Collapse
Affiliation(s)
- Irina Sadovskaya
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies, Université du Littoral-Côte d'Opale, Quai Masset, Bassin Napoléon, BP 120, 62327 Boulogne-sur-mer Cedex, France
| | | | | | | | | |
Collapse
|
538
|
von Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs 2005; 65:179-214. [PMID: 15631541 DOI: 10.2165/00003495-200565020-00003] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The insertion or implantation of foreign bodies has become an indispensable part in almost all fields of medicine. However, medical devices are associated with a definitive risk of bacterial and fungal infections. Foreign body-related infections (FBRIs), particularly catheter-related infections, significantly contribute to the increasing problem of nosocomial infections. While a variety of micro-organisms may be involved as pathogens, staphylococci account for the majority of FBRIs. Their ability to adhere to materials and to promote formation of a biofilm is the most important feature of their pathogenicity. This biofilm on the surface of colonised foreign bodies is regarded as the biological correlative for the clinical experience with FBRI, that is, that the host defence mechanisms often seem to be unable to handle the infection and, in particular, to eliminate the micro-organisms from the infected device. Since antibacterial chemotherapy is also frequently not able to cure these infections despite the use of antibacterials with proven in vitro activity, removal of implanted devices is often inevitable and has been standard clinical practice. However, in specific circumstances, such as infections of implanted medical devices with coagulase-negative staphylococci, a trial of salvage of the device may be justified. All FBRIs should be treated with antibacterials to which the pathogens have been shown to be susceptible. In addition to systemic antibacterial therapy, an intraluminal application of antibacterial agents, referred to as the 'antibiotic-lock' technique, should be considered to circumvent the need for removal, especially in patients with implanted long-term catheters. To reduce the incidence of intravascular catheter-related bloodstream infections, specific guidelines comprising both technological and nontechnological strategies for prevention have been established. Quality assurance, continuing education, choice of the catheter insertion site, hand hygiene and aseptic techniques are aspects of particular interest. Furthermore, all steps in the pathogenesis of biofilm formation may represent targets against which prevention strategies may be directed. Alteration of the foreign body material surface may lead to a change in specific and nonspecific interactions with micro-organisms and, thus, to a reduced microbial adherence. Medical devices made out of a material that would be antiadhesive or at least colonisation resistant would be the most suitable candidates to avoid colonisation and subsequent infection. Another concept for the prevention of FBRIs involves the impregnation of devices with various substances such as antibacterials, antiseptics and/or metals. Finally, further studies are needed to translate the knowledge on the mechanisms of biofilm formation into applicable therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Christof von Eiff
- Institute of Medical Microbiology, University of Münster Hospital and Clinics, Domagkstrasse 10, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
539
|
Tormo MA, Martí M, Valle J, Manna AC, Cheung AL, Lasa I, Penadés JR. SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol 2005; 187:2348-56. [PMID: 15774878 PMCID: PMC1065223 DOI: 10.1128/jb.187.7.2348-2356.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis biofilm formation is associated with the production of the polysaccharide intercellular adhesin (PIA)--poly-N-acetylglucosamine polysaccharide (PNAG) by the products of the icaADBC operon. Recent evidence indicates that SarA, a central regulatory element that controls the production of Staphylococcus aureus virulence factors, is essential for the synthesis of PIA/PNAG and the ensuing biofilm development in this species. Based on the presence of a sarA homolog, we hypothesized that SarA could also be involved in the regulation of the biofilm formation process in S. epidermidis. To investigate this, we constructed nonpolar sarA deletions in two genetically unrelated S. epidermidis clinical strains, O-47 and CH845. The SarA mutants were completely defective in biofilm formation, both in the steady-state conditions of a microtiter dish assay and in the flow conditions of microfermentors. Reverse transcription-PCR experiments showed that the mutation in the sarA gene resulted in downregulation of the icaADBC operon transcription in an IcaR-independent manner. Purified SarA protein showed high-affinity binding to the icaA promoter region by electrophoretic mobility shift assays. Consequently, mutation in sarA provoked a significant decrease in the amount of PIA/PNAG on the cell surface. Furthermore, heterologous complementation of S. aureus sarA mutants with the sarA gene of S. epidermidis completely restored biofilm formation. In summary, SarA appeared to be a positive regulator of transcription of the ica locus, and in its absence, PIA/PNAG production and biofilm formation were diminished. Additionally, we present experimental evidence showing that SarA may be an important regulatory element that controls S. epidermidis virulence factors other than biofilm formation.
Collapse
Affiliation(s)
- María Angeles Tormo
- Departamento de Química, Bioquímica y Biología Molecular, Universidad Cardenal Herrera-CEU, Carretera Náquera-Moncada, Km 4,5. 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
540
|
Ramasubbu N, Thomas LM, Ragunath C, Kaplan JB. Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. J Mol Biol 2005; 349:475-86. [PMID: 15878175 DOI: 10.1016/j.jmb.2005.03.082] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/23/2005] [Accepted: 03/29/2005] [Indexed: 11/16/2022]
Abstract
Bacteria in a biofilm are enmeshed in a self-synthesized extracellular polysaccharide matrix that holds the bacteria together in a mass and firmly attaches the bacterial mass to the underlying surface. A major component of the extracellular polysaccharide matrix in several phylogenetically diverse bacteria is PGA, a linear polymer of N-acetylglucosamine residues in beta(1,6)-linkage. PGA is produced by the Gram-negative periodontopathogen Actinobacillus actinomycetemcomitans as well as by the Gram-positive device-associated pathogen Staphylococcus epidermidis. We recently reported that A.actinomycetemcomitans produces a soluble glycoside hydrolase named dispersin B, which degrades PGA. Here, we present the crystal structure of dispersin B at 2.0A in complex with a glycerol and an acetate ion at the active site. The enzyme crystallizes in the orthorhombic space group C222(1) with cell dimensions a=41.02A, b=86.13A, c=185.77A. The core of the enzyme consists a (beta/alpha)(8) barrel topology similar to other beta-hexosaminidases but significant differences exist in the arrangement of loops hovering in the vicinity of the active site. The location and interactions of the glycerol and acetate moieties in conjunction with the sequence analysis suggest that dispersin B cleaves beta(1,6)-linked N-acetylglucosamine polymer using a catalytic machinery similar to other family 20 hexosaminidases which cleave beta(1,4)-linked N-acetylglucosamine residues.
Collapse
Affiliation(s)
- N Ramasubbu
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
541
|
Yao Y, Sturdevant DE, Villaruz A, Xu L, Gao Q, Otto M. Factors characterizing Staphylococcus epidermidis invasiveness determined by comparative genomics. Infect Immun 2005; 73:1856-60. [PMID: 15731088 PMCID: PMC1064939 DOI: 10.1128/iai.73.3.1856-1860.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Virulence mechanisms of the leading nosocomial pathogen Staphylococcus epidermidis are poorly understood. We used microarray-based genome-wide comparison of clinical and commensal S. epidermidis strains to identify putative virulence determinants. Our study revealed high genetic variability of the S. epidermidis genome, new markers for invasiveness of S. epidermidis, and potential targets for drug development against S. epidermidis infections.
Collapse
Affiliation(s)
- Yufeng Yao
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | |
Collapse
|
542
|
Fluckiger U, Ulrich M, Steinhuber A, Döring G, Mack D, Landmann R, Goerke C, Wolz C. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect Immun 2005; 73:1811-9. [PMID: 15731082 PMCID: PMC1064907 DOI: 10.1128/iai.73.3.1811-1819.2005] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Biofilm formation of Staphylococcus epidermidis and S. aureus is mediated by the polysaccharide intercellular adhesin (PIA) encoded by the ica operon. We used a device-related animal model to investigate biofilm formation, PIA expression (immunofluorescence), and ica transcription (quantitative transcript analysis) throughout the course of infection by using two prototypic S. aureus strains and one S. epidermidis strain as well as corresponding ica mutants. During infection, the ica mutants were growth attenuated when inoculated in competition with the corresponding wild-type strains but not when grown singly. A typical biofilm was observed at the late course of infection. Only in S. aureus RN6390, not in S. aureus Newman, were PIA and ica-specific transcripts detectable after anaerobic growth in vitro. However, both S. aureus strains were PIA positive in vivo by day 8 of infection. ica transcription preceded PIA expression and biofilm formation in vivo. In S. epidermidis, both PIA and ica expression levels were elevated compared to those in the S. aureus strains in vitro as well as in vivo and were detectable throughout the course of infection. In conclusion, in S. aureus, PIA expression is dependent on the genetic background of the strain as well as on strong inducing conditions, such as those dominating in vivo. In S. epidermidis, PIA expression is elevated and less vulnerable to environmental conditions.
Collapse
Affiliation(s)
- Ursula Fluckiger
- Division of Infectious Diseases and Department of Research, University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
543
|
Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol 2005; 156:506-14. [PMID: 15862449 PMCID: PMC1356821 DOI: 10.1016/j.resmic.2005.01.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 10/21/2004] [Accepted: 01/11/2005] [Indexed: 11/29/2022]
Abstract
Staphylococcus epidermidis is now well established as a major nosocomial pathogen associated with infections of indwelling medical devices. The major virulence factor of these organisms is their ability to adhere to devices and form biofilms. However, it has not been established that adherence and biofilm formation are closely linked phenotypes for clinical isolates. In this study, the initial adhesion to different materials (acrylic and glass) of 9 clinical isolates of S. epidermidis, along with biofilm-positive and biofilm-negative control strains, was assayed using physico-chemical interactions to analyze the basis for bacterial adherence to the substratum. X-ray photo electron spectroscopy (XPS) analysis of the cell surface elemental composition was also performed in an attempt to find a relationship between chemical composition and adhesion capabilities. Biofilm formation on the two surfaces was evaluated by dry weight measurements. Human erythrocytes were used to evaluate the ability of S. epidermidis strains to cause hemagglutination, an indicator of the production of a poly-N-acetyl glucosamine cell surface polysaccharide also involved in biofilm formation. The clinical isolates exhibited different cell wall physico-chemical properties, resulting in differing abilities to adhere to surfaces. Adhesion to hydrophobic substrata for all strains occurred to a greater extent than that to hydrophilic surfaces. Bacterial cell hydrophobicity seemed to have little or no influence on adhesion. X-ray photoelectron spectroscopy analysis showed a high ratio of oxygen/carbon for all strains, which is a common characteristic of S. epidermidis species. No relevant relationship was found between XPS data and adhesion values. All strains forming biofilms were able to agglutinate erythrocytes. However, no direct relationship was found between the amount of biofilm formed and the initial adhesion extent. These results indicate that high levels of initial adherence do not necessarily lead to thick biofilm formation. These two aspects of the pathogenesis of medical device related-infection may need to be evaluated independently to ascertain the contribution of each to the virulence of S. epidermidis causing device-related infections.
Collapse
Affiliation(s)
- Nuno Cerca
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Gerald B. Pier
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Manuel Vilanova
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Rosário Oliveira
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joana Azeredo
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Corresponding author. E-mail address: (J. Azeredo)
| |
Collapse
|
544
|
Rohde H, Kalitzky M, Kröger N, Scherpe S, Horstkotte MA, Knobloch JKM, Zander AR, Mack D. Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J Clin Microbiol 2005; 42:5614-9. [PMID: 15583290 PMCID: PMC535265 DOI: 10.1128/jcm.42.12.5614-5619.2004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Because of their biofilm-forming capacity, invasive Staphylococcus epidermidis isolates, which cause the majority of nosocomial catheter-related bloodstream infections (BSIs), are thought to be selected at the time of catheter insertion from a population of less virulent commensal strains. This fact allows the prediction that invasive and contaminating strains can be differentiated via detection of virulence-associated genes. However, the hospital environment may pave the way for catheter-related infections by promoting a shift in the commensal bacterial population toward strains with enhanced virulence. The distribution of virulence-associated genes (icaADBC, aap, atlE, bhp, fbe, embp, mecA, IS256, and IS257), polysaccharide intercellular adhesin synthesis, and biofilm formation were investigated in S. epidermidis strains from independent episodes of catheter-related BSIs in individuals who have received bone marrow transplantation (BMT). The results were compared with those obtained for commensal S. epidermidis isolates from hospitalized patients after BMT and from healthy individuals, respectively. The clonal relationships of the strains were investigated by pulsed-field gel electrophoresis. icaADBC, mecA, and IS256 were significantly more prevalent in BSI isolates than in commensal isolates from healthy individuals. However, the prevalence of any of the genes in clonally independent, endogenous commensal strains from BMT patients did not differ from that in invasive BSI strains. icaADBC and methicillin resistance, factors important for the establishment of catheter-related infections, already ensure survival of the organisms in their physiological habitat in the hospital environment, resulting in a higher probability of contamination of indwelling medical devices with virulent S. epidermidis strains. The dynamics of S. epidermidis populations reveal that detection of icaADBC and mecA is not suitable for discriminating invasive from contaminating S. epidermidis strains.
Collapse
Affiliation(s)
- Holger Rohde
- Institut für Infektionsmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
545
|
Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JKM, Ramasubbu N. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 2005; 186:8213-20. [PMID: 15576769 PMCID: PMC532409 DOI: 10.1128/jb.186.24.8213-8220.2004] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are composed of bacterial cells embedded in an extracellular polysaccharide matrix. A major component of the Escherichia coli biofilm matrix is PGA, a linear polymer of N-acetyl-D-glucosamine residues in beta(1,6) linkage. PGA mediates intercellular adhesion and attachment of cells to abiotic surfaces. In this report, we present genetic and biochemical evidence that PGA is also a major matrix component of biofilms produced by the human periodontopathogen Actinobacillus actinomycetemcomitans and the porcine respiratory pathogen Actinobacillus pleuropneumoniae. We also show that PGA is a substrate for dispersin B, a biofilm-releasing glycosyl hydrolase produced by A. actinomycetemcomitans, and that an orthologous dispersin B enzyme is produced by A. pleuropneumoniae. We further show that A. actinomycetemcomitans PGA cross-reacts with antiserum raised against polysaccharide intercellular adhesin, a staphylococcal biofilm matrix polysaccharide that is genetically and structurally related to PGA. Our findings confirm that PGA functions as a biofilm matrix polysaccharide in phylogenetically diverse bacterial species and suggest that PGA may play a role in intercellular adhesion and cellular detachment and dispersal in A. actinomycetemcomitans and A. pleuropneumoniae biofilms.
Collapse
Affiliation(s)
- Jeffrey B Kaplan
- Medical Science Building, Room C-636, 185 S. Orange Ave., Newark, NJ 07103, USA.
| | | | | | | | | | | | | |
Collapse
|
546
|
Itoh Y, Wang X, Hinnebusch BJ, Preston JF, Romeo T. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 2005; 187:382-7. [PMID: 15601723 PMCID: PMC538831 DOI: 10.1128/jb.187.1.382-387.2005] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymeric beta-1,6-N-acetyl-D-glucosamine (poly-beta-1,6-GlcNAc) has been implicated as an Escherichia coli and Staphylococcus epidermidis biofilm adhesin, the formation of which requires the pgaABCD and icaABCD loci, respectively. Enzymatic hydrolysis of poly-beta-1,6-GlcNAc, demonstrated for the first time by chromatography and mass spectrometry, disrupts biofilm formation by these species and by Yersinia pestis and Pseudomonas fluorescens, which possess pgaABCD homologues.
Collapse
Affiliation(s)
- Yoshikane Itoh
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd. N.E., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
547
|
Kierek-Pearson K, Karatan E. Biofilm Development in Bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2005; 57:79-111. [PMID: 16002010 DOI: 10.1016/s0065-2164(05)57003-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Katharine Kierek-Pearson
- Tufts-New England Medical Center, Department of Geographic Medicine and Infectious Diseases, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
548
|
Yongsunthon R, Lower SK. Force Measurements Between a Bacterium and Another Surface In Situ. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:97-124. [PMID: 16543031 DOI: 10.1016/s0065-2164(05)58003-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
549
|
Arciola CR, Gamberini S, Campoccia D, Visai L, Speziale P, Baldassarri L, Montanaro L. A multiplex PCR method for the detection of all five individual genes ofica locus inStaphylococcus epidermidis. A survey on 400 clinical isolates from prosthesis-associated infections. J Biomed Mater Res A 2005; 75:408-13. [PMID: 16088896 DOI: 10.1002/jbm.a.30445] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In Staphylococcus epidermidis, ica locus encodes for the synthesis of a polysaccharide intercellular adhesin (slime or biofilm). A multiplex polymerase chain reaction (PCR) for the detection of the five individual genes of ica locus was developed, with the aim to probe the set of genes in a large collection of Staphylococcus epidermidis clinical isolates. Single representative fragments for icaR, icaA, icaD, icaB, and icaC genes were selected. Multiplex PCR was applied to two reference Staphylococcus epidermidis strains [the non-biofilm-forming ATCC 12228 and the biofilm-forming ATCC 35984 (RP62A)] and to 400 clinical isolates of Staphylococcus epidermidis from orthopedic prosthesis associated infections. The gene profile was compared with the phenotypic biofilm-forming ability, evaluated by means of an optimized Congo red agar (CRA) plate test. Among the clinical isolates, 228 (57%) turned out completely ica positive and were biofilm producing. Among the 172 non-biofilm-forming strains (43%), 164 (41%) were completely ica negative and 8 strains (2%) harbored all five ica genes. The ica locus thus proves to be a cluster of strictly linked genes, without any evidence of single gene deletion.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Via di Barbiano, 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
550
|
Frank KL, Hanssen AD, Patel R. icaA is not a useful diagnostic marker for prosthetic joint infection. J Clin Microbiol 2004; 42:4846-9. [PMID: 15472359 PMCID: PMC522308 DOI: 10.1128/jcm.42.10.4846-4849.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A collection of 99 staphylococcal isolates associated with prosthetic joint infection and 23 coagulase-negative staphylococci isolated from noninfected arthroplasty-associated specimens were screened in order to determine whether the presence of icaA could be used to distinguish between pathogens and nonpathogens. All Staphylococcus aureus prosthetic joint infection isolates (n = 55) were icaA positive. A total of 46% (20 out of 44) of coagulase-negative staphylococcal prosthetic joint infection isolates were icaA positive, and 30% (7 out of 23) of arthroplasty-associated non-prosthetic joint infection-associated coagulase-negative staphylococcal isolates were icaA positive (P = 0.23). Certain coagulase-negative Staphylococcus species appeared more likely to be isolated as either arthroplasty-associated non-prosthetic joint infection-associated isolates (e.g., Staphylococcus warneri and Staphylococcus hominis) or pathogens (e.g., Staphylococcus lugdunensis). The presence of icaA in a coagulase-negative staphylococcal isolate associated with an arthroplasty is not a useful diagnostic indicator of pathogenicity.
Collapse
Affiliation(s)
- Kristi L Frank
- Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|