551
|
Wright CW, Clem RJ. Sequence requirements for Hid binding and apoptosis regulation in the baculovirus inhibitor of apoptosis Op-IAP. Hid binds Op-IAP in a manner similar to Smac binding of XIAP. J Biol Chem 2002; 277:2454-62. [PMID: 11717313 DOI: 10.1074/jbc.m110500200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that the Drosophila Hid protein interacts with the baculovirus Op-IAP protein in a manner similar to that of human Smac binding to XIAP, based largely on amino acid sequence homology. However, there is little direct experimental evidence in support of this hypothesis; indeed, evidence exists from previous studies suggesting that the mode of binding is not similar. We have now precisely mapped the interaction between Hid and Op-IAP, and we show clearly for the first time that the biochemical interactions between the amino terminus of Hid and BIR2 of Op-IAP are highly similar to those found between the processed amino terminus of Smac and BIR3 of XIAP. Also similar to Smac, the amino terminus of Hid must be processed to bind Op-IAP. In addition, our data also suggest that a second interaction between Hid and Op-IAP exists that does not involve the amino terminus of Hid, which may explain some of the earlier contradictory results. The evolutionary conservation of this mechanism of binding underscores its importance in apoptotic regulation. Nevertheless, interaction with Hid is not sufficient for Op-IAP to inhibit apoptosis induced by Hid overexpression or by treatment with actinomycin D, indicating that additional sequence elements are required for the anti-apoptotic function of Op-IAP.
Collapse
Affiliation(s)
- Casey W Wright
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | | |
Collapse
|
552
|
Christich A, Kauppila S, Chen P, Sogame N, Ho SI, Abrams JM. The damage-responsive Drosophila gene sickle encodes a novel IAP binding protein similar to but distinct from reaper, grim, and hid. Curr Biol 2002; 12:137-40. [PMID: 11818065 DOI: 10.1016/s0960-9822(01)00658-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In flies and mammals, critical regulators of cell death function by antagonizing Inhibitor of Apoptosis Proteins (IAPs), which themselves directly block caspase action. The three currently known IAP antagonists in Drosophila map to the H99 genomic interval required for all programmed cell death. Here we describe a fourth member of this genetic group, sickle (skl), which maps just outside of the H99 deletion. At its N terminus, Skl shares residues in common with other IAP antagonists in flies (Rpr, Grim, and Hid) and in mammals (Smac/DIABLO and Omi/Htra2). Like other activators of apoptosis mapping in the Reaper region, full-length skl induced apoptosis when overexpressed, and the N terminus of this protein specifically bound to the BIR2 domain of DIAP1. However, unlike the N termini of Grim, Hid, and Rpr, the N terminus of Skl did not induce apoptosis. skl transcripts accumulate in cells that are fated to die in some but not all regions of the embryo. Genotoxic stimuli induced skl expression, but skl was not responsive to all signals that trigger premature apoptosis. skl is potentially a fourth IAP antagonist in the "Reaper region" and a new candidate transducer of apoptotic damage signaling in Drosophila.
Collapse
Affiliation(s)
- Anna Christich
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | | | | | | | | | | |
Collapse
|
553
|
Wing JP, Karres JS, Ogdahl JL, Zhou L, Schwartz LM, Nambu JR. Drosophila sickle is a novel grim-reaper cell death activator. Curr Biol 2002; 12:131-5. [PMID: 11818064 DOI: 10.1016/s0960-9822(01)00664-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Drosophila genes reaper, head involution defective (hid), and grim all reside at 75C on chromosome three and encode related proteins that have crucial functions in programmed cell death (reviewed in ). In this report, we describe a novel grim-reaper gene, termed sickle, that resides adjacent to reaper. The sickle gene, like reaper and grim, encodes a small protein which contains an RHG motif and a Trp-block. In wild-type embryos, sickle expression was detected in cells of the developing central nervous system. Unlike reaper, hid, and grim, the sickle gene is not removed by Df(3L)H99, and strong ectopic sickle expression was detected in the nervous system of this cell death mutant. sickle very effectively induced cell death in cultured Spodoptera Sf-9 cells, and this death was antagonized by the caspase inhibitors p35 or DIAP1. Strikingly, unlike the other grim-reaper genes, targeted sickle expression did not induce cell death in the Drosophila eye. However, sickle strongly enhanced the eye cell death induced by expression of either an r/grim chimera or reaper.
Collapse
Affiliation(s)
- John P Wing
- Department of Biology, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
554
|
Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 2002; 277:445-54. [PMID: 11604410 DOI: 10.1074/jbc.m109891200] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibitor of apoptosis (IAP) proteins inhibit caspases, a function counteracted by IAP antagonists, insect Grim, HID, and Reaper and mammalian DIABLO/Smac. We now demonstrate that HtrA2, a mammalian homologue of the Escherichia coli heat shock-inducible protein HtrA, can bind to MIHA/XIAP, MIHB, and baculoviral OpIAP but not survivin. Although produced as a 50-kDa protein, HtrA2 is processed to yield an active serine protease with an N terminus similar to that of Grim, Reaper, HID, and DIABLO/Smac that mediates its interaction with XIAP. HtrA2 is largely membrane-associated in healthy cells, with a significant proportion observed within the mitochondria, but in response to UV irradiation, HtrA2 shifts into the cytosol, where it can interact with IAPs. HtrA2 can, like DIABLO/Smac, prevent XIAP inhibition of active caspase 3 in vitro and is able to counteract XIAP protection of mammalian NT2 cells against UV-induced cell death. The proapoptotic activity of HtrA2 in vivo involves both IAP binding and serine protease activity. Mutations of either the N-terminal alanine of mature HtrA2 essential for IAP interaction or the catalytic serine residue reduces the ability of HtrA2 to promote cell death, whereas a complete loss in proapoptotic activity is observed when both sites are mutated.
Collapse
Affiliation(s)
- Anne M Verhagen
- Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
555
|
Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C, Downward J. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 2002; 277:439-44. [PMID: 11602612 DOI: 10.1074/jbc.m109784200] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitor-of-apoptosis proteins (IAPs) play a critical role in the regulation of apoptosis by binding and inhibiting caspases. Reaper family proteins and Smac/DIABLO use a conserved amino-terminal sequence to bind to IAPs in flies and mammals, respectively, blocking their ability to inhibit caspases and thus promoting apoptosis. Here we have identified the serine protease Omi/HtrA2 as a second mammalian XIAP-binding protein with a Reaper-like motif. This protease autoprocesses to form a protein with amino-terminal homology to Smac/DIABLO and Reaper family proteins. Full-length Omi/HtrA2 is localized to mitochondria but fails to interact with XIAP. Mitochondria also contain processed Omi/HtrA2, which, following apoptotic insult, translocates to the cytosol, where it interacts with XIAP. Overexpression of Omi/HtrA2 sensitizes cells to apoptosis, and its removal by RNA interference reduces cell death. Omi/HtrA2 thus extends the set of mammalian proteins with Reaper-like function that are released from the mitochondria during apoptosis.
Collapse
Affiliation(s)
- L Miguel Martins
- Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
556
|
van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 2002; 9:20-6. [PMID: 11803371 DOI: 10.1038/sj.cdd.4400970] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2001] [Revised: 10/18/2001] [Accepted: 10/18/2001] [Indexed: 11/09/2022] Open
Abstract
Proteome analysis of supernatant of isolated mitochondria exposed to recombinant tBid, a proapoptotic Bcl-2 member, revealed the presence of the serine protease Omi, also called HtrA2. This release was prevented in mitochondria derived from Bcl-2-transgenic mice. Release of Omi under apoptotic conditions was confirmed in vivo in livers from mice injected with agonistic anti-Fas antibodies and was prevented in livers from Bcl-2 transgenic mice. Omi release also occurs in apoptotic dying but not in necrotic dying fibrosarcoma L929 cells, treated with anti-Fas antibodies and TNF, respectively. The amino acid sequence reveals the presence of an XIAP interaction motif at the N-terminus of mature Omi. We demonstrate an interaction between endogeneous Omi and recombinant XIAP. Furthermore we show that endogenous Omi is involved in enhanced activation of caspases in cytosolic extracts.
Collapse
Affiliation(s)
- G van Loo
- Flanders Interuniversity Institute for Biotechnology and Ghent University, Molecular Signalling and Cell Death Unit, Department of Molecular Biology, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
557
|
Deng Y, Lin Y, Wu X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 2002; 16:33-45. [PMID: 11782443 PMCID: PMC155309 DOI: 10.1101/gad.949602] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent reports suggest that a cross-talk exists between apoptosis pathways mediated by mitochondria and cell death receptors. In the present study, we report that mitochondrial events are required for apoptosis induced by the cell death ligand TRAIL (TNF-related apoptosis-inducing ligand) in human cancer cells. We show that the Bax null cancer cells are resistant to TRAIL-induced apoptosis. Bax deficiency has no effect on TRAIL-induced caspase-8 activation and subsequent cleavage of Bid; however, it results in an incomplete caspase-3 processing because of inhibition by XIAP. Release of Smac/DIABLO from mitochondria through the TRAIL-caspase-8-tBid-Bax cascade is required to remove the inhibitory effect of XIAP and allow apoptosis to proceed. Inhibition of caspase-9 activity has no effect on TRAIL-induced caspase-3 activation and cell death, whereas expression of the active form of Smac/DIABLO in the cytosol is sufficient to reconstitute TRAIL sensitivity in Bax-deficient cells. Our results show for the first time that Bax-dependent release of Smac/DIABLO, not cytochrome c, from mitochondria mediates the contribution of the mitochondrial pathway to death receptor-mediated apoptosis.
Collapse
Affiliation(s)
- Yibin Deng
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
558
|
Yasugi E, Uemura I, Kumagai T, Nishikawa Y, Yasugi S, Yuo A. Disruption of mitochondria is an early event during dolichyl monophosphate-induced apoptosis in U937 cells. Zoolog Sci 2002; 19:7-13. [PMID: 12025407 DOI: 10.2108/zsj.19.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dolichyl monophosphate (Dol-P) is involved in the attachment of carbohydrate chains to proteins in the formation of N-linked glycoprotein. We found that this compound induces apoptosis in human leukemia U937 cells. During this apoptotic execution, the increase of plasma membrane fluidity (5-20 min), reduction in mitochondrial transmembrane potential (delta psi m) and translocation of apoptosis-inducing factor (1-3 hr), caspase-3-like protease activation (2-4 hr), chromatin condensation and DNA ladder formation (3-4 hr) were observed successively. In this study, we examined mitochondrial morphological changes by electron microscopy and delta psi m by JC-1 from immediately after treatment of Dol-P. After 5 min of treatment, we observed clearly that mitochondrial cristae began to be disrupted ultrastructurally and almost all the cristae were disintegrated after 1 hr of treatment. The delta psi m of Dol-P treated cells was reduced to 34% as compared with that of control cells immediately after treatment and was quartered within 1 hr. The reduction in delta psi m was not inhibited by cyclosporin A, N-acetyl-L-cysteine and vitamin E. These results indicate that mitochondrial disruption is one of the first triggering events of Dol-P-induced apoptosis.
Collapse
Affiliation(s)
- Etsuko Yasugi
- Department of Hematology, Research Institute, International Medical Center of Japan, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| | | | | | | | | | | |
Collapse
|
559
|
Adrain C, Creagh EM, Martin SJ. Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 2001; 20:6627-36. [PMID: 11726499 PMCID: PMC125329 DOI: 10.1093/emboj/20.23.6627] [Citation(s) in RCA: 331] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Smac/DIABLO is a mitochondrial protein that potentiates some forms of apoptosis, possibly by neutralizing one or more members of the IAP family of apoptosis inhibitory proteins. Smac has been shown to exit mitochondria and enter the cytosol during apoptosis triggered by UV- or gamma-irradiation. Here, we report that Smac/DIABLO export from mitochondria into the cytosol is provoked by cytotoxic drugs and DNA damage, as well as by ligation of the CD95 death receptor. Mitochondrial efflux of Smac/DIABLO, in response to a variety of pro-apoptotic agents, was profoundly inhibited in Bcl-2-overexpressing cells. Thus, in addition to modulating apoptosis-associated mitochondrial cytochrome c release, Bcl-2 also regulates Smac release, suggesting that both molecules may escape via the same route. However, whereas cell stress-associated mitochondrial cytochrome c release was largely caspase independent, release of Smac/DIABLO in response to the same stimuli was blocked by a broad-spectrum caspase inhibitor. This suggests that apoptosis-associated cytochrome c and Smac/DIABLO release from mitochondria do not occur via the same mechanism. Rather, Smac/DIABLO efflux from mitochondria is a caspase-catalysed event that occurs downstream of cytochrome c release.
Collapse
Affiliation(s)
| | | | - Seamus J. Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
Corresponding author e-mail: C.Adrain and E.M.Creagh contributed equally to this work
| |
Collapse
|
560
|
Marks N, Saito M, Green M, Reilly MA, Yang AJ, Ditaranto K, Berg MJ. Opposite effects of lithium on proximal and distal caspases of immature and mature primary neurons correlate with earlier paradoxical actions on viability. Neurochem Res 2001; 26:1311-20. [PMID: 11885783 DOI: 10.1023/a:1014249517926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To provide an explanation for earlier paradoxical findings of lithium on survival of mature and immature neurons, this study monitors changes in cytosolic caspases in rat cerebellar granule cells (CGC) grown 2-7 days in vitro (DIV), or in murine E-17 cortical neurons. Data show Li+ protects mature 7-DIV CGC parallel to a decrease in proximal and distal caspases but increases levels for immature 2-DIV-CGC or E-17 cortical neurons. Caspases mirror viability based on morphological analyses (dye uptake, phase-contrast, DNA fragmentation), and suggest protection occurs by suppressing activation of a cascade resulting in distal effectors that destroy proteins essential for neuronal survival. Protection was dose-dependent with EC50 3.0 mM and extended to 64 h in K+-serum deprived apoptotic media. Neuronal extracts contain a spectrum of proximal (-2, -8, -9) and distal (-3, -6) caspases sensitive to Li+ on assay with preferred peptide substrates and by immunoblotting. The lack of direct effect on activated cytosols indicates Li+ acts upstream only on intact cells, at sites for recruitment of pivotal procaspases. Alterations of procaspase-9 p46 and membrane-bound cytochrome c (Apaf-1) point to interaction with an intrinsic Mt-mediated pathway as one of the targets. The opposite effects on caspases and viability of immature or embryological neurons point to existence of alternative pathways that alter during neurite outgrowth suggesting the use of Li+ as a probe to unravel events relevant to neurogenesis.
Collapse
Affiliation(s)
- N Marks
- Division of Neurochemistry , New York University Medical Center, USA.
| | | | | | | | | | | | | |
Collapse
|
561
|
Affiliation(s)
- S W Fesik
- Cancer Research, Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | |
Collapse
|
562
|
Werneburg BG, Zoog SJ, Dang TT, Kehry MR, Crute JJ. Molecular characterization of CD40 signaling intermediates. J Biol Chem 2001; 276:43334-42. [PMID: 11562359 DOI: 10.1074/jbc.m104994200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transduction through the CD40 receptor is initiated by binding of its trimeric ligand and propagated by interactions of tumor necrosis factor receptor-associated factor (TRAF) proteins with the multimerized CD40 cytoplasmic domain. Using defined multimeric constructs of the CD40 cytoplasmic domain expressed as either soluble or myristoylated proteins, we have addressed the extent of receptor multimerization needed to initiate signal transduction and identified components of CD40 signaling complexes. Signal transduction in human embryonic kidney 293 cells, measured by nuclear factor kappaB activation, was observed in cells expressing soluble trimeric CD40 cytoplasmic domain and to a lesser extent in cells expressing dimeric CD40 cytoplasmic domain. Nuclear factor kappaB activation was strongest in cells expressing myristoylated trimeric CD40 cytoplasmic domain. Signal transduction through trimeric CD40 cytoplasmic domains with various point mutations in the TRAF binding sites was similar to signal transduction through analogous full-length receptors. Transiently expressed soluble trimeric CD40 cytoplasmic domain was isolated as complexes that contained TRAF2, TRAF3, TRAF5, TRAF6, and the inhibitor of apoptosis protein (c-IAP1). Association of c-IAP1 with the CD40 cytoplasmic domain complex was indirect and dependent on the presence of an intact TRAF1/2/3 binding site. These results suggest that extracellular ligation of CD40 can be bypassed and that soluble trimerized CD40 complexes can be isolated and used to identify components that link CD40 with signaling pathways.
Collapse
Affiliation(s)
- B G Werneburg
- Department of Biology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, USA
| | | | | | | | | |
Collapse
|
563
|
Cuvillier O, Levade T. Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood 2001; 98:2828-36. [PMID: 11675357 DOI: 10.1182/blood.v98.9.2828] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sphingosine 1-phosphate (S-1P) has been implicated as a second messenger preventing apoptosis by counteracting activation of executioner caspases. Here it is reported that S-1P prevents apoptosis and executioner caspase-3 activation by inhibiting the translocation of cytochrome c and Smac/DIABLO from mitochondria to the cytosol induced by anti-Fas, tumor necrosis factor-alpha (TNF-alpha), serum deprivation, and cell-permeable ceramides in the human acute leukemia Jurkat, U937, and HL-60 cell lines. Furthermore, the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate, which stimulates sphingosine kinase, the enzyme responsible for S-1P production, also inhibits cytochrome c and Smac/DIABLO release. In contrast, dimethylsphingosine (DMS), a specific inhibitor of sphingosine kinase, sensitizes cells to cytochrome c and Smac/DIABLO release triggered by anti-Fas, TNF-alpha, serum deprivation, or ceramide. DMS-induced mitochondrial apoptogenic factor leakage can likewise be overcome by S-1P cotreatment. Hence, S-1P, likely generated through a protein kinase C- mediated activation of sphingosine kinase, inhibits the apoptotic cascade upstream of the release of the mitochondrial apoptogenic factors, cytochrome c, and Smac/DIABLO in human acute leukemia cells.
Collapse
|
564
|
Szondy Z, Tóth R, Szegezdi E, Reichert U, Ancian P, Fésüs L. Cell death in HIV pathogenesis and its modulation by retinoids. Ann N Y Acad Sci 2001; 946:95-107. [PMID: 11762998 DOI: 10.1111/j.1749-6632.2001.tb03905.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patients infected with the human immunodeficiency virus exhibit a progressive decline in the CD4 T-cell number, resulting in immunodeficiency and increased susceptibility to opportunistic infections and malignancies. Although CD4 T cell production is impaired in patients infected with HIV, there is now increasing evidence that the primary basis of T cell depletion is accelerated apoptosis of CD4 and CD8 T cells. The rate of lymphocyte apoptosis in HIV infection correlates inversely with the progression of the disease: it is low in long-term progressors and in patients undergoing highly active antiretroviral therapy. Interestingly, only a minor fraction of apoptotic lymphocytes are infected by HIV, indicating that the enhanced apoptosis does not necessarily always serve to remove the HIV+ cells and results from mechanisms other than direct infection. Thus, understanding and influencing the mechanisms of HIV-associated lymphocyte apoptosis may lead to new therapies for HIV disease. In this paper the potential effects of retinoids on CD4 T cell apoptosis is discussed.
Collapse
Affiliation(s)
- Z Szondy
- Department of Biochemistry and MolecularBiology, Medical and Health Science Center, University of Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
565
|
Yoshikawa H, Nakajima Y, Tasaka K. IFN-gamma induces the apoptosis of WEHI 279 and normal pre-B cell lines by expressing direct inhibitor of apoptosis protein binding protein with low pI. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2487-95. [PMID: 11509587 DOI: 10.4049/jimmunol.167.5.2487] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interferon-gamma plays a crucial role in induction of Th1 response but is predominantly a negative regulator of B cell differentiation and Th2 response, so it is a key molecule in determining cellular or humoral immunity. In this study, we demonstrate that IFN-gamma induces apoptosis in WEHI 279 mouse B cells and IL-7-dependent mouse pre-B cells by disrupting mitochondrial membrane potential and cytochrome c release via down-regulation of Bcl-2 and Bcl-x(L). Furthermore, this apoptotic signal is promoted by the de novo synthesis of endogenous direct inhibitor of apoptosis protein binding protein with low pI (DIABLO) by IFN-gamma and its release from mitochondria into the cytosol. Inhibition of DIABLO expression by antisense oligonucleotide is sufficient to decrease caspase activities and DNA fragmentation, but not cytochrome c release from mitochondria, suggesting that DIABLO plays a critical role in promoting apoptotic signals downstream of mitochondrial events. Thus, these findings demonstrate a signaling pathway during B cell apoptosis induced by IFN-gamma and possible mechanisms by which B cell differentiation is negatively regulated by Th1-type cytokines.
Collapse
Affiliation(s)
- H Yoshikawa
- Department of Parasitology and Immunology, Yamanashi Medical University, Yamanashi, Japan
| | | | | |
Collapse
|
566
|
Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 2001; 8:613-21. [PMID: 11583623 DOI: 10.1016/s1097-2765(01)00341-0] [Citation(s) in RCA: 765] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
X chromosome-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of caspase-3, -7, and -9. Smac/DIABLO, an inhibitor of XIAP, is released from mitochondria upon receiving apoptotic stimuli and binds to the BIR2 and BIR3 domains of XIAP, thereby inhibiting its caspase-inhibitory activity. Here we report that a serine protease called HtrA2/Omi is released from mitochondria and inhibits the function of XIAP by direct binding in a similar way to Smac. Moreover, when overexpressed extramitochondrially, HtrA2 induces atypical cell death, which is neither accompanied by a significant increase in caspase activity nor inhibited by caspase inhibitors, including XIAP. A catalytically inactive mutant of HtrA2, however, does not induce cell death. In short, HtrA2 is a Smac-like inhibitor of IAP activity with a serine protease-dependent cell death-inducing activity.
Collapse
Affiliation(s)
- Y Suzuki
- Laboratory for Motor System Neurodegeneration, Brain Science Institute, Wako City, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
567
|
Alleva R, Tomasetti M, Andera L, Gellert N, Borghi B, Weber C, Murphy MP, Neuzil J. Coenzyme Q blocks biochemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection. FEBS Lett 2001; 503:46-50. [PMID: 11513852 DOI: 10.1016/s0014-5793(01)02694-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Generation of free radicals is often associated with the induction and progression of apoptosis. Therefore, antioxidants can prove anti-apoptotic, and can help to elucidate specific apoptotic pathways. Here we studied whether coenzyme Q, present in membranes in reduced (ubiquinol) or oxidised (ubiquinone) forms, can affect apoptosis induced by various stimuli. Exposure of Jurkat cells to alpha-tocopheryl succinate (alpha-TOS), hydrogen peroxide, anti-Fas IgM or TRAIL led to induction of apoptosis. Cell death due to the chemical agents was suppressed in cells enriched with the reduced form of coenzyme Q. However, coenzyme Q did not block cell death induced by the immunological agents. Ubiquinol-10 inhibited reactive oxygen species (ROS) generation in cells exposed to alpha-TOS, and a mitochondrially targeted coenzyme Q analogue also blocked apoptosis triggered by alpha-TOS or hydrogen peroxide. Therefore, it is plausible that ubiquinol-10 protects cells from chemically-induced apoptosis by acting as an antioxidant in mitochondria. Our results also indicate that generation of free radicals may not be a critical step in induction of apoptosis by immunological agents.
Collapse
Affiliation(s)
- R Alleva
- Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
568
|
Sathasivam S, Ince PG, Shaw PJ. Apoptosis in amyotrophic lateral sclerosis: a review of the evidence. Neuropathol Appl Neurobiol 2001; 27:257-74. [PMID: 11532157 DOI: 10.1046/j.0305-1846.2001.00332.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease primarily affecting the upper and lower motor neurones of the central nervous system. Recently, a lot of interest has been generated by the possibility that a mechanism of programmed cell death, termed apoptosis, is responsible for the motor neurone degeneration in this condition. Apoptosis is regulated through a variety of different pathways which interact and eventually lead to controlled cell death. Apart from genetic regulation, factors involved in the control of apoptosis include death receptors, caspases, Bcl-2 family of oncoproteins, inhibitor of apoptosis proteins (IAPs), inhibitors of IAPs, the p53 tumour suppressor protein and apoptosis-related molecules. The first part of this article will give an overview of the current knowledge of apoptosis. In the second part of this review, we will examine in detail the evidence for and against the contribution of apoptosis in motor neurone cell death in ALS, looking at cellular-, animal- and human post-mortem tissue-based models. In a chronic neurodegenerative disease such as ALS, conclusive evidence of apoptosis is likely to be difficult to detect, given the rapidity of the apoptotic cell death process in relation to the relatively slow time course of the disease. Although a complete picture of motor neurone death in ALS has not been fully elucidated, there is good and compelling evidence that a programmed cell death pathway operates in this disorder. The strongest body of evidence supporting this comes from the findings that, in ALS, changes in the levels of members of the Bcl-2 family of oncoproteins results in a predisposition towards apoptosis, there is increased expression or activation of caspases-1 and -3, and the dying motor neurones in human cases exhibit morphological features reminiscent of apoptosis. Further supporting evidence comes from the detection of apoptosis-related molecules and anti-Fas receptor antibodies in human cases of ALS. However, the role of the p53 protein in cell death in ALS is at present unclear. An understanding of the mechanism of programmed cell death in ALS may provide important clues for areas of potential therapeutic intervention for neuroprotection in this devastating condition.
Collapse
Affiliation(s)
- S Sathasivam
- Department of Neurology, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
569
|
Abstract
Genetic instability contributes to the origin of cancer as well as to the ability of cancer cells to become resistant to various therapies. Because of this, cytotoxic rather than cytostatic therapies might be most effective against this disease. Many oncogenes and tumor suppressors mediate their effects by interfering with or inducing apoptotic signaling. Thus, apoptotic pathways might be significantly altered in cancer cells relative to untransformed cells, and these differences might present a therapeutic window that can be exploited for development of cancer drugs.
Collapse
Affiliation(s)
- P Huang
- DuPont Pharmaceuticals, 500 S. Ridgeway Ave, Glenolden, PA 19036, USA.
| | | |
Collapse
|
570
|
Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J Neurosci 2001. [PMID: 11438576 DOI: 10.1523/jneurosci.21-14-05007.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The data presented here demonstrate that sympathetic neurons have the potential to activate two alternative caspase-dependent pathways either of which is capable of mediating death induced by NGF deprivation and that these neurons have the potential to switch from one pathway to the other. The presence of these two alternative pathways to trophic factor deprivation-induced death may have implications for ensuring the correct development of the nervous system. In wild-type neurons, a caspase-2-dependent pathway is required for death, and a caspase-9-dependent pathway appears to be suppressed by endogenous inhibitors of apoptosis proteins (IAPs). In contrast, for caspase-2-null neurons, death is dependent on the caspase-9 pathway. The mechanism underlying the shift is the result of a threefold compensatory elevation of caspase-9 expression and a doubling of levels of direct IAP binding protein with low pI/(DIABLO)/second mitochondria-derived activator of caspase (Smac), an IAP inhibitor, both at the mRNA and protein levels [corrected]. These findings resolve seemingly discrepant findings regarding the roles of various caspases after NGF deprivation and raise a cautionary note regarding the interpretation of findings with caspase-null animals. The choice of the death-mediating caspase pathway in the sympathetic neurons is thus dependent on the regulated relative expression of components of the pathways including those of caspases, IAPs, and IAP inhibitors.
Collapse
|
571
|
Wu JW, Cocina AE, Chai J, Hay BA, Shi Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol Cell 2001; 8:95-104. [PMID: 11511363 DOI: 10.1016/s1097-2765(01)00282-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inhibitor of apoptosis protein DIAP1 suppresses apoptosis in Drosophila, with the second BIR domain (BIR2) playing an important role. Three proteins, Hid, Grim, and Reaper, promote apoptosis, in part by binding to DIAP1 through their conserved N-terminal sequences. The crystal structures of DIAP1-BIR2 by itself and in complex with the N-terminal peptides from Hid and Grim reveal that these peptides bind a surface groove on DIAP1, with the first four amino acids mimicking the binding of the Smac tetrapeptide to XIAP. The next 3 residues also contribute to binding through hydrophobic interactions. Interestingly, peptide binding induces the formation of an additional alpha helix in DIAP1. Our study reveals the structural conservation and diversity necessary for the binding of IAPs by the Drosophila Hid/Grim/Reaper and the mammalian Smac proteins.
Collapse
Affiliation(s)
- J W Wu
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
572
|
Abstract
Defects in the regulation of apoptosis (programmed cell death) contribute to many diseases, including pathologies associated with cell loss (e.g. stroke, heart failure, neurodegeneration and AIDS), and disorders characterized by a failure to eliminate harmful cells (e.g. cancer, autoimmunity). Apoptosis is caused by activation of intracellular proteases, known as caspases, which are responsible directly or indirectly for the morphological and biochemical events that characterize the apoptotic cell. Numerous caspase regulators have been discovered, which respond to environmental stimuli and influence the decision of cell death and survival. Knowledge of the molecular details of apoptosis regulation, and the three-dimensional structures of proteins constituting the apoptosis core machinery has revealed new strategies for identifying small-molecule drugs that could one day yield more effective treatments for a wide variety of illnesses.
Collapse
Affiliation(s)
- J C Reed
- The Burnham Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
573
|
Affiliation(s)
- P G Ekert
- Walter and Eliza Hall Institute of Medical Research, Post Office, Royal Melbourne Hospital, Victoria, 3050 Australia.
| | | |
Collapse
|
574
|
Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K. The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 2001; 15:1022-32. [PMID: 11455969 DOI: 10.1038/sj.leu.2402169] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Death receptors and their ligands exert important regulatory functions in the maintenance of tissue homeostasis and the physiological regulation of programmed cell death. Currently, six different death receptors are known including tumor necrosis factor (TNF) receptor-1, CD95 (Fas/APO-1), TNF receptor-related apoptosis-mediating protein (TRAMP), TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 and -2, and death receptor-6 (DR6). The signaling pathways by which these receptors induce apoptosis are similar and rely on oligomerization of the receptor by death ligand binding, recruitment of an adapter protein through homophilic interaction of cytoplasmic domains, and subsequent activation of an inducer caspase which initiates execution of the cell death programme. The ability of these receptors and their ligands to kill malignant cells was discovered early and helped to coin the term 'tumor necrosis factor' for the first identified death ligand. This review summarizes the current and rapidly expanding knowledge about the signaling pathways triggered by death receptor/ligand systems, their potency in experimental cancer therapy, and their therapeutic limitations, especially regarding their toxicity for non-malignant cells.
Collapse
Affiliation(s)
- P T Daniel
- Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|
575
|
Abstract
Controlling the activity of caspases is essential for the appropriate execution of cell death and the regulation of cell survival. One cellular inhibitor of apoptosis, XIAP, has emerged as a crucial regulator of caspases, and is itself subject to complex negative regulation.
Collapse
Affiliation(s)
- M Holcik
- Children's Hospital of Eastern Ontario Research Institute, and AEgera Oncology Inc., 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.
| | | |
Collapse
|
576
|
Jüllig M, Eriksson S. Apoptosis induces efflux of the mitochondrial matrix enzyme deoxyguanosine kinase. J Biol Chem 2001; 276:24000-4. [PMID: 11294860 DOI: 10.1074/jbc.m100435200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deoxyguanosine kinase (dGK) initiates the salvage of purine deoxynucleosides in mitochondria and is a key enzyme in mitochondrial DNA precursor synthesis. The active form of the enzyme is a 60-kDa protein normally located in the mitochondrial matrix. Here we describe the subcellular distribution of dGK during apoptosis in human epithelial kidney 293 cells and human lymphoblast Molt-4 cells. Immunological methods were used to monitor dGK as well as other mitochondrial proteins. Surprisingly, dGK was found to relocate to the cytosolic compartment at a similar rate as cytochrome c, a mitochondrial intermembraneous enzyme known to enter the cytosol early in apoptosis. The redistribution of dGK from the mitochondria to the cytosol may be of importance for the activation of apoptotic purine nucleoside cofactors such as dATP and demonstrates that mitochondrial matrix proteins may selectively leak out during apoptosis.
Collapse
Affiliation(s)
- M Jüllig
- Department of Veterinary Medical Chemistry, University of Agricultural Sciences, The Biomedical Centre, Box 575, S-751 23 Uppsala, Sweden.
| | | |
Collapse
|
577
|
Silke J, Ekert PG, Day CL, Hawkins CJ, Baca M, Chew J, Pakusch M, Verhagen AM, Vaux DL. Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO J 2001; 20:3114-23. [PMID: 11406588 PMCID: PMC150202 DOI: 10.1093/emboj/20.12.3114] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
XIAP is a mammalian inhibitor of apoptosis protein (IAP). To determine residues within the second baculoviral IAP repeat (BIR2) required for inhibition of caspase 3, we screened a library of BIR2 mutants for loss of the ability to inhibit caspase 3 toxicity in the yeast Schizosaccharomyces pombe. Four of the mutations, not predicted to affect the structure of the BIR fold, clustered together on the N-terminal region that flanks BIR2, suggesting that this is a site of interaction with caspase 3. Introduction of these mutations into full-length XIAP reduced caspase 3 inhibitory activity up to 500-fold, but did not affect its ability to inhibit caspase 9 or interact with the IAP antagonist DIABLO. Furthermore, these mutants retained full ability to inhibit apoptosis in transfected cells, demonstrating that although XIAP is able to inhibit caspase 3, this activity is dispensable for inhibition of apoptosis by XIAP in vivo.
Collapse
Affiliation(s)
- John Silke
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, VIC 3050, Department of Haematology and Oncology, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia and Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand Corresponding author e-mail:
| | - Paul G. Ekert
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, VIC 3050, Department of Haematology and Oncology, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia and Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand Corresponding author e-mail:
| | - Catherine L. Day
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, VIC 3050, Department of Haematology and Oncology, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia and Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand Corresponding author e-mail:
| | - Christine J. Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, VIC 3050, Department of Haematology and Oncology, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia and Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand Corresponding author e-mail:
| | - Manuel Baca
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, VIC 3050, Department of Haematology and Oncology, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia and Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand Corresponding author e-mail:
| | - Joanne Chew
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, VIC 3050, Department of Haematology and Oncology, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia and Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand Corresponding author e-mail:
| | - Miha Pakusch
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, VIC 3050, Department of Haematology and Oncology, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia and Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand Corresponding author e-mail:
| | - Anne M. Verhagen
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, VIC 3050, Department of Haematology and Oncology, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia and Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand Corresponding author e-mail:
| | - David L. Vaux
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, VIC 3050, Department of Haematology and Oncology, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia and Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand Corresponding author e-mail:
| |
Collapse
|
578
|
Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 2001; 411:848-53. [PMID: 11459068 DOI: 10.1038/35081184] [Citation(s) in RCA: 546] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plant response to attempted infection by microbial pathogens is often accompanied by rapid cell death in and around the initial infection site, a reaction known as the hypersensitive response. This response is associated with restricted pathogen growth and represents a form of programmed cell death (PCD). Recent pharmacological and molecular studies have provided functional evidence for the conservation of some of the basic regulatory mechanisms underlying the response to pathogens and the activation of PCD in animal and plant systems. In animals, the mitochondrion integrates diverse cellular stress signals and initiates the death execution pathway, and studies indicate a similar involvement for mitochondria in regulating PCD in plants. But many of the cell-death regulators that have been characterized in humans, worms and flies are absent from the Arabidopsis genome, indicating that plants probably use other regulators to control this process.
Collapse
Affiliation(s)
- E Lam
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901-8520, USA.
| | | | | |
Collapse
|
579
|
Silke J, Vaux DL. Two kinds of BIR-containing protein - inhibitors of apoptosis, or required for mitosis. J Cell Sci 2001; 114:1821-7. [PMID: 11329368 DOI: 10.1242/jcs.114.10.1821] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The baculoviral IAP repeat (BIR) is a zinc-binding fold. Some BIR-containing proteins (BIRCs), including several from insect viruses, insects and vertebrates, are inhibitors of cell death and act by binding to active caspases. Their ability to do so can be antagonized by pro-apoptotic insect proteins such as Grim, HID and Reaper, or the mammalian protein Diablo/Smac. Members of one structurally distinct subgroup of BIR-containing proteins, which are present in yeasts and Caenorhabditis elegans as well as insects and vertebrates, do not act as caspase inhibitors; instead, they are required for chromosome segregation and cytokinesis, and act in concert with inner centromere protein (INCENP) homologues and aurora kinase homologues.
Collapse
Affiliation(s)
- J Silke
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Australia
| | | |
Collapse
|
580
|
Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F. The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem 2001; 276:12030-4. [PMID: 11134038 DOI: 10.1074/jbc.m010604200] [Citation(s) in RCA: 372] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated the relationship between opening of the permeability transition pore (PTP), mitochondrial depolarization, cytochrome c release, and occurrence of cell death in rat hepatoma MH1C1 cells. Treatment with arachidonic acid or induces PTP opening in situ with similar kinetics, as assessed by the calcein loading-Co(2+) quenching technique (Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999) Biophys. J. 76, 725-734). Yet depolarization, as assessed from the changes of mitochondrial tetramethylrhodamine methyl ester (TMRM) fluorescence, is rapid and extensive with arachidonic acid and slow and partial with. Cyclosporin A-inhibitable release of cytochrome c and cell death correlate with the changes of TMRM fluorescence but not with those of calcein fluorescence. Since pore opening must be accompanied by depolarization, we conclude that short PTP openings are detected only by trapped calcein and may have little impact on cell viability, while changes of TMRM distribution require longer PTP openings, which cause release of cytochrome c and may result in cell death. Modulation of the open time appears to be the key element in determining the outcome of stimuli that converge on the PTP.
Collapse
Affiliation(s)
- V Petronilli
- Consiglio Nazionale delle Ricerche Unit for the Study of Biomembranes at the Departments of Biomedical Sciences and Biological Chemistry, University of Padova, Viale Giuseppe Colombo 3, I-35100 Padova, Italy.
| | | | | | | | | |
Collapse
|
581
|
Roberts DL, Merrison W, MacFarlane M, Cohen GM. The inhibitor of apoptosis protein-binding domain of Smac is not essential for its proapoptotic activity. J Cell Biol 2001; 153:221-8. [PMID: 11285287 PMCID: PMC2185525 DOI: 10.1083/jcb.153.1.221] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smac/DIABLO, a recently identified inhibitor of apoptosis protein (IAP)-binding protein, is released from the mitochondria during apoptosis and reportedly potentiates apoptosis by relieving the inhibition of IAPs on caspases. We now describe the molecular characterization of Smac beta, an alternatively spliced form of Smac, which lacks the mitochondrial-targeting sequence found in Smac and has a cortical distribution in both human embryonic kidney 293 and breast epithelial tumor MCF-7 cells. Smac beta, which binds IAPs in vitro, does not bind IAPs in intact cells due to cellular processing and removal of its NH(2)-terminal IAP-binding domain. Despite its inability to interact with IAPs in cells, processed Smac beta is proapoptotic, as demonstrated by its ability to potentiate apoptosis induced by both death receptor and chemical stimuli. Furthermore, expression of a NH(2)-terminally truncated Smac mutant (Delta75), which lacks the entire IAP-interacting domain, potentiates apoptosis to the same extent as Smac and Smac beta. Our data support the hypothesis that the main proapoptotic function of Smac and Smac beta is due to a mechanism other than IAP binding.
Collapse
Affiliation(s)
- Darren L. Roberts
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Wendy Merrison
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Gerald M. Cohen
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
582
|
|
583
|
Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, Shi Y, Dataa P. Structural basis of caspase-7 inhibition by XIAP. Cell 2001; 104:769-80. [PMID: 11257230 DOI: 10.1016/s0092-8674(01)00272-0] [Citation(s) in RCA: 422] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The inhibitor of apoptosis (IAP) proteins suppress cell death by inhibiting the catalytic activity of caspases. Here we present the crystal structure of caspase-7 in complex with a potent inhibitory fragment from XIAP at 2.45 A resolution. An 18-residue XIAP peptide binds the catalytic groove of caspase-7, making extensive contacts to the residues that are essential for its catalytic activity. Strikingly, despite a reversal of relative orientation, a subset of interactions between caspase-7 and XIAP closely resemble those between caspase-7 and its tetrapeptide inhibitor DEVD-CHO. Our biochemical and structural analyses reveal that the BIR domains are dispensable for the inhibition of caspase-3 and -7. This study provides a structural basis for the design of the next-generation caspase inhibitors.
Collapse
Affiliation(s)
- J Chai
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | |
Collapse
|
584
|
Pearson LL, Castle BE, Kehry MR. CD40-mediated signaling in monocytic cells: up-regulation of tumor necrosis factor receptor-associated factor mRNAs and activation of mitogen-activated protein kinase signaling pathways. Int Immunol 2001; 13:273-83. [PMID: 11222496 DOI: 10.1093/intimm/13.3.273] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The biochemical pathways involved in CD40 signaling have been extensively studied in B cells and B cell lines, and appear to be primarily initiated by recruitment of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) signaling proteins to the CD40 cytoplasmic domain. Signaling pathways activated through CD40 in monocytes/macrophages have not been characterized as well as in B cells. Using human monocytes and the human monocytic cell line THP1, we examined signal transduction events induced by CD40 engagement with its ligand, CD154. In human monocytes, all TRAF mRNAs were expressed constitutively and CD40 ligation resulted in a strong up-regulation of TRAF1 mRNA. In THP1 cells, CD40 ligation induced expression of TRAF1 and TRAF5 mRNAs. Engagement of CD40 in both monocytes and THP1 cells led to the rapid and transient activation of the extracellular signal-regulated kinases (ERK) 1 and 2, and to low levels of JNK activation. No CD40-dependent activation of p38 mitogen-activated protein kinase (MAPK) was found. In CD154-stimulated monocytes and THP1 cells the upstream ERK1/2 activator, MAPK kinase (MEK) 1/2, and downstream substrate, c-Myc, were activated. By blocking activation of ERK1/2 with a MEK-specific inhibitor, PD98059, CD40-dependent secretion of the pro-inflammatory cytokines, TNF-alpha, IL-6 and IL-8, was demonstrated to be linked to the ERK1/2 pathway. The ERK1/2 pathway did not appear to be involved in up-regulating TRAF1 and TRAF5 mRNAs in THP1 cells. Collectively, these results suggest distinct differences between B cells and monocytic cells in CD40-dependent activation of MAPK pathways.
Collapse
Affiliation(s)
- L L Pearson
- Department of Biology, R6-5, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road/PO Box 368, Ridgefield, CT 06877, USA
| | | | | |
Collapse
|
585
|
Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410:112-6. [PMID: 11242052 DOI: 10.1038/35065125] [Citation(s) in RCA: 731] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-linked inhibitor-of-apoptosis protein (XIAP) interacts with caspase-9 and inhibits its activity, whereas Smac (also known as DIABLO) relieves this inhibition through interaction with XIAP. Here we show that XIAP associates with the active caspase-9-Apaf-1 holoenzyme complex through binding to the amino terminus of the linker peptide on the small subunit of caspase-9, which becomes exposed after proteolytic processing of procaspase-9 at Asp315. Supporting this observation, point mutations that abrogate the proteolytic processing but not the catalytic activity of caspase-9, or deletion of the linker peptide, prevented caspase-9 association with XIAP and its concomitant inhibition. We note that the N-terminal four residues of caspase-9 linker peptide share significant homology with the N-terminal tetra-peptide in mature Smac and in the Drosophila proteins Hid/Grim/Reaper, defining a conserved class of IAP-binding motifs. Consistent with this finding, binding of the caspase-9 linker peptide and Smac to the BIR3 domain of XIAP is mutually exclusive, suggesting that Smac potentiates caspase-9 activity by disrupting the interaction of the linker peptide of caspase-9 with BIR3. Our studies reveal a mechanism in which binding to the BIR3 domain by two conserved peptides, one from Smac and the other one from caspase-9, has opposing effects on caspase activity and apoptosis.
Collapse
Affiliation(s)
- S M Srinivasula
- Center for Apoptosis Research and the Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
586
|
|
587
|
|
588
|
Noda S, Yoshimura S, Sawada M, Naganawa T, Iwama T, Nakashima S, Sakai N. Role of ceramide during cisplatin-induced apoptosis in C6 glioma cells. J Neurooncol 2001; 52:11-21. [PMID: 11451199 DOI: 10.1023/a:1010624823158] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cisplatin is commonly used for the treatment of malignant brain tumors. However, the mechanisms of cell death by cisplatin are not fully understood. Therefore, the present study was designed to elucidate the apoptotic signaling pathway(s) activated by cisplatin in a C6 rat glioma cell line. C6 cells were treated with various concentrations of cisplatin (0.2-10 microg/ml) for 24-72 h. At 10 microg/ml cisplatin, over 90% of the cells became dead at 72 h. Apoptotic death was confirmed by condensation and fragmentation of nuclei, and DNA laddering. Even in cells treated with 1.5 microg/ml cisplatin, typical apoptotic cells were observed at 72 h. The intracellular level of ceramide, measured Escherichia coli diacylglycerol kinase markedly increased during 24-72 h after the addition of 10 microg/ml cisplatin. The activity of caspase-3(-like) proteases increased and reached a peak at 48 h. Inhibitors of caspases reduced the number of apoptotic cells. Pretreatment of C6 cells with glutathione or N-acetyl-cysteine, which are known to block the activation of neutral magnesium-dependent sphingomyelinase, inhibited ceramide formation, leading to suppression of both activation of caspase-3(-like) proteases and apoptosis by cisplatin. In contrast, pretreatment of the cells with N-oleoylethanolamine (OE), a ceramidase inhibitor, potentiated apoptosis induced by cisplatin. Furthermore, OE enhanced sensitivity of the cisplatin-resistant cells to cisplatin. These results suggest that ceramide is closely implicated in apoptosis of glioma cells by cisplatin through activation of caspase-3(-like) proteases.
Collapse
Affiliation(s)
- S Noda
- Department of Neurosurgery, Gifu University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
589
|
Levkau B, Garton KJ, Ferri N, Kloke K, Nofer JR, Baba HA, Raines EW, Breithardt G. xIAP induces cell-cycle arrest and activates nuclear factor-kappaB : new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ Res 2001; 88:282-90. [PMID: 11179195 DOI: 10.1161/01.res.88.3.282] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Survival of human vascular endothelial cells depends on their ability to activate the transcription factor nuclear factor-kappaB (NF-kappaB), a regulator of antiapoptotic genes, such as the X chromosome-linked inhibitor of apoptosis protein (xIAP). In the present study, we demonstrated expression of xIAP in the endothelial lining of normal human arteries and veins and elevated levels in highly malignant human endothelial tumors. Using retroviral infection of human endothelial cells, we identified two novel survival mechanisms mediated by xIAP in endothelial cells. First, xIAP can activate the transcription factor NF-kappaB, a known survival factor for human endothelial cells. This positive feedback loop induced by xIAP is mediated via phosphorylation and sustained degradation of inhibitor (I) kappaBalpha. Second, xIAP can inhibit cell proliferation via downregulation of cyclins A and D1 and induction of the cyclin-dependent kinase inhibitors p21(Cip1/Waf1) and p27(Kip1). Cleavage of xIAP by caspases during endothelial cell apoptosis disables both of these biological functions of xIAP. Thus, caspase-mediated cleavage of xIAP interrupts a positive regulatory cytoprotective loop between NF-kappaB and xIAP and increases the vulnerability of the cell to apoptosis by releasing it from an xIAP-mediated quiescent state.
Collapse
Affiliation(s)
- B Levkau
- Institute of Arteriosclerosis Research, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
590
|
Abstract
One of the near-to-invariant hallmarks of early apoptosis (programmed cell death) is mitochondrial membrane permeabilization (MMP). It appears that mitochondria fulfill a dual role during the apoptotic process. On the one hand, they integrate multiple different pro-apoptotic signal transducing cascades into a common pathway initiated by MMP. On the other hand, they coordinate the catabolic reactions accompanying late apoptosis by releasing soluble proteins that are normally sequestered within the intermembrane space. In a recent study, Li et al. described a nuclear transcription factor (Nur77/TR1/NGFI-B) that can translocate to mitochondrial membranes to induce MMP. Moreover, two groups identified a novel intermembrane protein (Smac/DIABLO) that specifically neutralizes the inhibitor of apoptosis (IAP) proteins, thereby facilitating the activation of caspases, a class of proteases activated during apoptosis. These findings refine our knowledge how MMP connects to the cellular suicide machinery.
Collapse
Affiliation(s)
- K F Ferri
- Centre National de la Recherche Scientifique, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
591
|
Sessler JL, Tvermoes NA, Guldi DM, Hug GL, Mody TD, Magda D. Pulse Radiolytic Studies of Metallotexaphyrins in the Presence of Oxygen: Relevance of the Equilibrium with Superoxide Anion to the Mechanism of Action of the Radiation Sensitizer Motexafin Gadolinium (Gd−Tex2+, Xcytrin). J Phys Chem B 2001. [DOI: 10.1021/jp0035131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan L. Sessler
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, and Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, California 94086
| | - Nicolai A. Tvermoes
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, and Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, California 94086
| | - Dirk M. Guldi
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, and Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, California 94086
| | - Gordon L. Hug
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, and Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, California 94086
| | - Tarak D. Mody
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, and Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, California 94086
| | - Darren Magda
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, and Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, California 94086
| |
Collapse
|
592
|
Chauhan D, Hideshima T, Rosen S, Reed JC, Kharbanda S, Anderson KC. Apaf-1/Cytochrome c-independent and Smac-dependent Induction of Apoptosis in Multiple Myeloma (MM) Cells. J Biol Chem 2001; 276:24453-6. [PMID: 11356822 DOI: 10.1074/jbc.c100074200] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smac, a second mitochondria-derived activator of caspases, promotes caspase activation in the cytochrome c (cyto-c)/Apaf-1/caspase-9 pathway. Here, we show that treatment of multiple myeloma (MM) cells with dexamethasone (Dex) triggers the release of Smac from mitochondria to cytosol and activates caspase-9 without concurrent release of cyto-c and Apaf-1 oligomerization. Smac binds to XIAP (an inhibitor of apoptosis protein) and thereby, at least in part, eliminates its inhibitory effect on caspase-9. Interleukin-6, a growth factor for MM, blocks Dex-induced apoptosis and prevents release of Smac. Taken together, these findings demonstrate that Smac plays a functional role in mediating Dex-induced caspase-9 activation and apoptosis in MM cells.
Collapse
Affiliation(s)
- D Chauhan
- Jerome Lipper Multiple Myeloma Center, Department of Adult Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
593
|
Abstract
Pro- and anti-apoptotic members of the Bcl-2 family control the permeability of the outer mitochondrial membrane. They could do this either by forming autonomous pores in the membrane or by collaborating with components of the permeability transition pore. Here we discuss why we favour the first of these possibilities.
Collapse
Affiliation(s)
- J C Martinou
- Departement de Biologie Cellulaire, Sciences III, 30 quai Ernest Ansermet, 1211 Genève 4, Switzerland.
| | | |
Collapse
|
594
|
Abstract
SUMMARY Apoptosis is a physiological cell death process important for development, homeostasis and the immune defence of multicellular animals. The key effectors of apoptosis are caspases, cysteine proteases that cleave after aspartate residues. The inhibitor of apoptosis (IAP) family of proteins prevent cell death by binding to and inhibiting active caspases and are negatively regulated by IAP-binding proteins, such as the mammalian protein DIABLO/Smac. IAPs are characterized by the presence of one to three domains known as baculoviral IAP repeat (BIR) domains and many also have a RING-finger domain at their carboxyl terminus. More recently, a second group of BIR-domain-containing proteins (BIRPs) have been identified that includes the mammalian proteins Bruce and Survivin as well as BIR-containing proteins in yeasts and Caenorhabditis elegans. These Survivin-like BIRPs regulate cytokinesis and mitotic spindle formation. In this review, we describe the IAPs and other BIRPs, their evolutionary relationships and their subcellular and tissue localizations.
Collapse
Affiliation(s)
- A M Verhagen
- The Walter and Eliza Hall Institute of Medical Research, Post Office, Royal Melbourne Hospital, Victoria 3050, Australia.
| | | | | |
Collapse
|
595
|
Abstract
Recent studies have indicated a role for apoptosis in a variety of human diseases. Suppression of apoptosis contributes to carcinogenesis by several mechanisms, including facilitating the accumulation of gene mutations, permitting growth-factor-independent cell survival, promoting resistance to immune-based cytotoxicity, and allowing bypassing of cell-cycle checkpoints, which would normally induce apoptosis. Defects in apoptotic mechanisms also play an important part in resistance to chemotherapy and radiation. The core machinery of the cell death pathway can be reduced to a few critical types of proteins, which are well conserved across animal evolution. This review gives an update on the key players involved in apoptosis as well as an overview of the involvement of apoptosis in disease, and novel diagnostic and therapeutic options derived from the extensive basic research on this topic carried out over the last decade.
Collapse
Affiliation(s)
- I Tamm
- Medizinische Klinik mit Schwerpunkt Hamatologie, Onkologie, und Tumorimmunologie, Charité, Berlin, Germany.
| | | | | |
Collapse
|
596
|
Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 2000; 408:1004-8. [PMID: 11140637 DOI: 10.1038/35050006] [Citation(s) in RCA: 477] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inhibitor-of-apoptosis proteins (IAPs) regulate programmed cell death by inhibiting members of the caspase family of enzymes. Recently, a mammalian protein called Smac (also named DIABLO) was identified that binds to the IAPs and promotes caspase activation. Although undefined in the X-ray structure, the amino-terminal residues of Smac are critical for its function. To understand the structural basis for molecular recognition between Smac and the IAPs, we determined the solution structure of the BIR3 domain of X-linked IAP (XIAP) complexed with a functionally active nine-residue peptide derived from the N terminus of Smac. The peptide binds across the third beta-strand of the BIR3 domain in an extended conformation with only the first four residues contacting the protein. The complex is stabilized by four intermolecular hydrogen bonds, an electrostatic interaction involving the N terminus of the peptide, and several hydrophobic interactions. This structural information, along with the binding data from BIR3 and Smac peptide mutants reported here, should aid in the design of small molecules that may be used for the treatment of cancers that overexpress IAPs.
Collapse
Affiliation(s)
- Z Liu
- Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
597
|
Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000; 408:1008-12. [PMID: 11140638 DOI: 10.1038/35050012] [Citation(s) in RCA: 617] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Apoptosis is an essential process in the development and homeostasis of all metazoans. The inhibitor-of-apoptosis (IAP) proteins suppress cell death by inhibiting the activity of caspases; this inhibition is performed by the zinc-binding BIR domains of the IAP proteins. The mitochondrial protein Smac/DIABLO promotes apoptosis by eliminating the inhibitory effect of IAPs through physical interactions. Amino-terminal sequences in Smac/DIABLO are required for this function, as mutation of the very first amino acid leads to loss of interaction with IAPs and concomitant loss of Smac/DIABLO function. Here we report the high-resolution crystal structure of Smac/DIABLO complexed with the third BIR domain (BIR3) of XIAP. Our results show that the N-terminal four residues (Ala-Val-Pro-Ile) in Smac/DIABLO recognize a surface groove on BIR3, with the first residue Ala binding a hydrophobic pocket and making five hydrogen bonds to neighbouring residues on BIR3. These observations provide a structural explanation for the roles of the Smac N terminus as well as the conserved N-terminal sequences in the Drosophila proteins Hid/Grim/Reaper. In conjunction with other observations, our results reveal how Smac may relieve IAP inhibition of caspase-9 activity. In addition to explaining a number of biological observations, our structural analysis identifies potential targets for drug screening.
Collapse
Affiliation(s)
- G Wu
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | | | | | | | | | | | |
Collapse
|
598
|
Abstract
Caspases are a large family of evolutionarily conserved proteases found from Caenorhabditis elegans to humans. Although the first caspase was identified as a processing enzyme for interleukin-1beta, genetic and biochemical data have converged to reveal that many caspases are key mediators of apoptosis, the intrinsic cell suicide program essential for development and tissue homeostasis. Each caspase is a cysteine aspartase; it employs a nucleophilic cysteine in its active site to cleave aspartic acid peptide bonds within proteins. Caspases are synthesized as inactive precursors termed procaspases; proteolytic processing of procaspase generates the tetrameric active caspase enzyme, composed of two repeating heterotypic subunits. Based on kinetic data, substrate specificity, and procaspase structure, caspases have been conceptually divided into initiators and effectors. Initiator caspases activate effector caspases in response to specific cell death signals, and effector caspases cleave various cellular proteins to trigger apoptosis. Adapter protein-mediated oligomerization of procaspases is now recognized as a universal mechanism of initiator caspase activation and underlies the control of both cell surface death receptor and mitochondrial cytochrome c-Apaf-1 apoptosis pathways. Caspase substrates have bene identified that induce each of the classic features of apoptosis, including membrane blebbing, cell body shrinkage, and DNA fragmentation. Mice deficient for caspase genes have highlighted tissue- and signal-specific pathways for apoptosis and demonstrated an independent function for caspase-1 and -11 in cytokine processing. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits.
Collapse
Affiliation(s)
- H Y Chang
- Harvard-MIT Division of Health Science and Technology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
599
|
Silke J, Verhagen AM, Ekert PG, Vaux DL. Sequence as well as functional similarity for DIABLO/Smac and Grim, Reaper and Hid? Cell Death Differ 2000; 7:1275. [PMID: 11270364 DOI: 10.1038/sj.cdd.4400790] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
600
|
Abstract
Cell suicide is a normal process that participates in a wide variety of physiological processes, including tissue homeostasis, immune regulation, and fertility. Physiological cell death typically occurs by apoptosis, as opposed to necrosis. Defects in apoptotic cell-death regulation contribute to many diseases, including disorders associated with cell accumulation (e.g. cancer, autoimmunity, inflammation and restenosis) or where cell loss occurs (e.g. stroke, heart failure, neurodegeneration, AIDS and osteoporosis). At the center of the apoptosis machinery is a family of intracellular proteases, known as 'caspases', that are responsible directly or indirectly for the morphological and biochemical events that characterize apoptosis. Multiple positive and negative regulators of these cell-death proteases have been discovered in the genomes of mammals, amphibians, insects, nematodes, and other animal species, as well as a variety of animal viruses. Inputs from signal-transduction pathways into the core of the cell-death machinery have also been identified, demonstrating ways of linking environmental stimuli to cell-death responses or cell-survival maintenance. Knowledge of the molecular mechanisms of apoptosis has provided important insights into the causes of multiple diseases where aberrant cell-death regulation occurs and has revealed new approaches for identifying small-molecule drugs for more effectively treating these illnesses.
Collapse
Affiliation(s)
- J C Reed
- The Burnham Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|