551
|
Tamaskar I, Zhou M. Clinical implications of caveolins in malignancy and their potential as therapeutic targets. Curr Oncol Rep 2008; 10:101-6. [DOI: 10.1007/s11912-008-0017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
552
|
Hattermann K, Mehdorn HM, Mentlein R, Schultka S, Held-Feindt J. A methylation-specific and SYBR-green-based quantitative polymerase chain reaction technique for O6-methylguanine DNA methyltransferase promoter methylation analysis. Anal Biochem 2008; 377:62-71. [PMID: 18384736 DOI: 10.1016/j.ab.2008.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/05/2008] [Accepted: 03/07/2008] [Indexed: 01/28/2023]
Abstract
The O(6)-methylguanine DNA methyltransferase (MGMT) gene encodes a DNA repair enzyme whose activity is a major mechanism of resistance to alkylating drugs in glioblastoma treatment. Hypermethylation of the MGMT promoter is associated with chemosensitivity because it reduces MGMT activity. Here we present a method combining methylation-specific and SYBR-green-based quantitative PCR (MSQP) for MGMT promoter methylation analysis. This highly specific, sensitive, and reproducible method allows the quantification of fully methylated and fully unmethylated MGMT DNA species in terms of percentage. Values are related to standard curves, corrected for DNA input by an internal standard, and calculated in relation to methylated and unmethylated control DNAs as a percentage share. Finally, values are defined relative to the sum of fully methylated and unmethylated MGMT DNA sample amount to obtain percentage of methylated reference and percentage of unmethylated reference results. We have used this technique to investigate MGMT promoter methylation in relation to MGMT mRNA expression in nine tumor cell lines and 15 primary glioblastoma patients. Presented data confirm that this assay is suitable for detection of low amounts of methylated and unmethylated MGMT promoter DNA. Carefully validated quantitative MSQP assays will be useful in both research and clinical molecular diagnosis.
Collapse
Affiliation(s)
- Kirsten Hattermann
- Department of Anatomy, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
553
|
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Laboratory, Spanish National Cancer Research Center, Madrid, Spain.
| |
Collapse
|
554
|
Naqvi RA, Hussain A, Deo SSV, Kukreti H, Chauhan M, Sarin R, Saxena A, Asim M, Shukla NK, Husain SA, Pasha ST, Basir SF. Hypermethylation analysis of mismatch repair genes (hmlh1 and hmsh2) in locally advanced breast cancers in Indian women. Hum Pathol 2008; 39:672-80. [PMID: 18329696 DOI: 10.1016/j.humpath.2007.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 09/11/2007] [Accepted: 09/14/2007] [Indexed: 12/31/2022]
Abstract
Alterations in protooncogenes and tumor-suppressor genes at the DNA and/or protein level, which indicate the biological properties of individual breast cancers, led us to design a study encompassing the dilemma of "epigenetic silencing-driven genomic instabilities." In this study, we analyzed the promoter methylation of potent mismatch repair genes (hmlh1 and hmsh2) for the first time in 232 Indian patients with primary breast cancer (using methylation-specific polymerase chain reaction and expressional analysis). The study evaluates the gamut of epigenetic aberrations as well as genomic instabilities (microsatellite instabilities and loss of heterozygosity) and includes analysis of BAT-25, BAT-26, D2S123, D5S346, and D17S250. We observed hypermethylation of the hmlh1 gene in 43.5% of patients with primary breast cancer, of whom 66.9% had locally advanced breast cancer (stage IIIA, IIIB, and IIIC) (P < .0001). Similarly, we also found hypermethylation of the hmsh 2 gene in 16% of primary breast cancer cases. Of these patients, 21.3% had locally advanced breast cancer (P = . 01). To determine the effect of methylation, we also performed expressional studies using reverse transcriptase polymerase chain reaction and Northern blotting, but we were unable to get any significant expression in the presence of hypermethylation of either gene (hmlh1 and hmsh2). Interestingly, statistical analysis revealed that hypermethylation of the hmlh1 gene is one of the peculiar attributes of locally advanced breast cancer. In addition, this study indicates that for more sensitive stage-specific diagnosis or prognosis, both methylation of promoter and expression studies must be considered in the analyses in a reproducible manner. Therefore, pinpointing the methylation fingerprints (5'CpG island methylation) of potent DNA repairing genes not only shows the specific attributes of locally advanced breast cancer but also provides important insight into the mode of therapy to be used by clinical oncologists.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
555
|
Nagase H, Ghosh S. Epigenetics: differential DNA methylation in mammalian somatic tissues. FEBS J 2008; 275:1617-23. [PMID: 18331347 DOI: 10.1111/j.1742-4658.2008.06330.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epigenetics refers to heritable phenotypic alterations in the absence of DNA sequence changes, and DNA methylation is one of the extensively studied epigenetic alterations. DNA methylation is an evolutionally conserved mechanism to regulate gene expression in mammals. Because DNA methylation is preserved during DNA replication it can be inherited. Thus, DNA methylation could be a major mechanism by which to produce semi-stable changes in gene expression in somatic tissues. Although it remains controversial whether germ-line DNA methylation in mammalian genomes is stably heritable, frequent tissue-specific and disease-specific de novo methylation events are observed during somatic cell development/differentiation. In this minireview, we discuss the use of restriction landmark genomic scanning, together with in silico analysis, to identify differentially methylated regions in the mammalian genome. We then present a rough overview of quantitative DNA methylation patterns at 4600 NotI sites and more than 150 differentially methylated regions in several C57BL/6J mouse tissues. Comparative analysis between mice and humans suggests that some, but not all, tissue-specific differentially methylated regions are conserved. A deeper understanding of cell-type-specific differences in DNA methylation might lead to a better illustration of the mechanisms behind tissue-specific differentiation in mammals.
Collapse
Affiliation(s)
- Hiroki Nagase
- Advanced Research Institute for the Sciences and Humanities, Nihon University, 12-5 Goban-cho, Chiyoda-ku, Tokyo, Japan.
| | | |
Collapse
|
556
|
Koike K, Matsuyama T, Ebisuzaki T. Epigenetics: application of virtual image restriction landmark genomic scanning (Vi-RLGS). FEBS J 2008; 275:1608-16. [PMID: 18331348 DOI: 10.1111/j.1742-4658.2008.06329.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Restriction landmark genomic scanning (RLGS) is a powerful method for the systematic detection of genetic mutations in DNA length and epigenetic alteration due to DNA methylation. However, the identification of polymorphic spots is difficult because the resulting RLGS spots contain very little target DNA and many non-labeled DNA fragments. To overcome this, we developed a virtual image restriction landmark genomic scanning (Vi-RLGS) system to compare actual RLGS patterns with computer-simulated RLGS patterns (virtual RLGS patterns). Here, we demonstrate in detail the contents of the simulation program (rlgssim), based on the linear relationship between the reciprocal of mobility plotted against DNA fragment length and Vi-RLGS profiling of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kuniaki Koike
- Computational Astrophysics Laboratory, Discovery Research Institute, RIKEN, Saitama, Japan
| | | | | |
Collapse
|
557
|
The methylome: approaches for global DNA methylation profiling. Trends Genet 2008; 24:231-7. [PMID: 18325624 DOI: 10.1016/j.tig.2008.01.006] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 12/27/2022]
Abstract
DNA methylation plays a critical role in genome function both in health and disease. Almost 60 years after the discovery of 5-methyl cytosine and approximately 25 years since the discovery that altered DNA methylation plays a role in disease, the first high-resolution DNA methylation profile (or methylome) of any genome--Arabidopsis thaliana--was determined. Although only approximately 20% of the typical size of mammalian genomes, this milestone demonstrated that the methylomes of the human and similarly large genomes are now within reach. Here, we review current and emerging technologies that hold promise to deliver the first mammalian methylome and to facilitate comprehensive profiling of essentially any cell type in the context of development, disease and the environment.
Collapse
|
558
|
Tshuikina M, Nilsson K, Öberg F. Positive histone marks are associated with active transcription from a methylated ICSBP/IRF8 gene. Gene 2008; 410:259-67. [DOI: 10.1016/j.gene.2007.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 12/04/2007] [Accepted: 12/13/2007] [Indexed: 12/20/2022]
|
559
|
Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 2008; 44:35, 37, 39 passim. [PMID: 18254377 DOI: 10.2144/000112708] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
One of the most challenging projects in the field of epigenetics is the generation of detailed functional maps of DNA methylation in different cell and tissue types in normal and disease-associated conditions. This information will help us not only understand the role of DNA methylation but also identify targets for therapeutic treatment. The completion of the various epigenome projects depends on the design of novel strategies to survey and generate detailed cartograms of the DNA methylome. Methyl-DNA immunoprecipitation (MeDIP) assays, in combination with hybridization on high-resolution microarrays or high-throughput sequencing (HTS) techniques, are excellent methods for identifying methylated CpG-rich sequences. We provide a critical overview of different genome-wide techniques for DNA methylation analysis and propose that MeDIP assays may constitute a key method for elucidating the hypermethylome of cancer cells.
Collapse
|
560
|
Heller G, Schmidt WM, Ziegler B, Holzer S, Müllauer L, Bilban M, Zielinski CC, Drach J, Zöchbauer-Müller S. Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Res 2008; 68:44-54. [PMID: 18172295 DOI: 10.1158/0008-5472.can-07-2531] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To identify epigenetically silenced cancer-related genes and to determine molecular effects of 5-aza-2'-deoxycytidine (Aza-dC) and/or trichostatin A (TSA) in multiple myeloma (MM), we analyzed global changes in gene expression profiles of three MM cell lines by microarray analysis. We identified up-regulation of several genes whose epigenetic silencing in MM is well known. However, much more importantly, we identified a large number of epigenetically inactivated cancer-related genes that are involved in various physiologic processes and whose epigenetic regulation in MM was unknown thus far. In addition, drug treatment of MM cell lines resulted in down-regulation of several MM proliferation-associated factors (i.e., MAF, CCND1/2, MYC, FGFR3, MMSET). Ten Aza-dC and/or TSA up-regulated genes (CPEB1, CD9, GJA1, BCL7c, GADD45G, AKAP12, TFPI2, CCNA1, SPARC, and BNIP3) were selected for methylation analysis in six MM cell lines, 24 samples from patients with monoclonal gammopathy of undetermined significance (MGUS), and 111 samples from patients with MM. Methylation frequencies of these genes ranged between 0% and 17% in MGUS samples and between 5% and 50% in MM samples. Interestingly, methylation of SPARC and BNIP3 was statistically significantly associated with a poor overall survival of MM patients (P = 0.003 and P = 0.017, respectively). Moreover, SPARC methylation was associated with loss of SPARC protein expression by immunostaining in a subset of MM patients. In conclusion, we identified new targets for aberrant methylation in monoclonal gammopathies, and our results suggest that DNA methyltransferase and histone deacetylase inhibition might play an important role in the future treatment of patients with MM.
Collapse
Affiliation(s)
- Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
561
|
Agnese V, Corsale S, Calò V, Augello C, Bruno L, Calcara D, Crosta A, Rodolico V, Rinaldi G, Cicero G, Latteri F, Agrusa A, Morello V, Adamo V, Altavilla G, Di Fede G, Fiorentino E, Grassi N, Latteri MA, Valerio MR, Tomasino RM, Colucci G, Bazan V, Russo A. Significance of P16INK4A hypermethylation gene in primary head/neck and colorectal tumors: it is a specific tissue event? Results of a 3-year GOIM (Gruppo Oncologico dell'Italia Meridionale) prospective study. Ann Oncol 2008; 17 Suppl 7:vii137-41. [PMID: 16760277 DOI: 10.1093/annonc/mdl967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Methylation of the p16 promoter is one of the most frequent mechanisms of gene inactivation; its incidence is extremely variable according to the type of tumor involved. Our purpose was to analyze the hypermethylation of the p16 promoter in laryngeal squamous cell carcinomas (LSCC), salivary gland (SG) tumors and in colorectal cancer (CRC), to detect any possible association with the clinicopathological features and to determine the prognostic significance of the p16 gene in the tumors analyzed. PATIENTS AND METHODS The hypermethylation of the p16 promoter was prospectively analyzed, by MSP, in a consecutive series of 64 locally advanced LSCC patients, in a consecutive series of 33 SG tumor patients and in a consecutive series of 66 sporadic CRC patients. RESULTS Hypermethylation was observed in 9% of the LSCC cases, in all cases of SG cancer and in 21% of the CRC cases. No significant association was observed between p16 hypermethylation and clinicopathological variables in all the tissue samples analyzed. Moreover at univariate analysis p16 mutations were not independently related at disease relapse and death in LSCC and CRC. CONCLUSIONS The results of this study suggest that the lack of p16 function could happen in advanced stage of SG tumors.
Collapse
Affiliation(s)
- V Agnese
- Section of Medical Oncology, Section of Surgical Oncology, Department of Surgical and Oncology, Section of General Surgery, Department of Human Pathology, Università di Palermo
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
562
|
DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. J Transl Med 2008; 88:161-70. [PMID: 18158559 DOI: 10.1038/labinvest.3700707] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcriptional silencing by CpG island hypermethylation is a potential mechanism for the inactivation of tumor-related genes. Virtually, all types of human cancers show CpG island hypermethylation, and gastric carcinoma (GC) is one of the tumors with a high frequency of aberrant CpG island hypermethylation. In this study, we prescreened DNA methylation of 170 CpG island loci in a training set of 8 paired GC and GC-associated non-neoplastic mucosae (GCN) using MethyLight technology and selected 27 DNA methylation markers showing higher methylation frequency or level in GC than in GCN. These markers were then analyzed in a tester set of 25 paired GC and GCN and 27 chronic gastritis (CG) from non-cancer patients to generate their DNA methylation profiles. We identified 17 novel methylation markers in GC, including SFRP4, SEZ6L, TWIST1, BCL2, KL, TERT, SCGB3A1, IGF2, GRIN2B, SFRP5, DLEC1, HOXA1, CYP1B1, SMAD9, MT1G, NR3C1, and HOXA10. Of the 27 selected CpG island loci, 23 were methylated in GC, GCN, and CG and the remainder four loci (DLEC1, CHFR, CYP1B1, and NR3C1) were only methylated in GC. We found that the number of methylated loci was significantly higher in GC than in GCN or CG and that Helicobacter pylori infection was strongly associated with aberrant CpG island hypermethylation in CG. Hypermethylation was more prevalent in Epstein-Barr virus (EBV)-positive GC than in EBV-negative GC and in diffuse-type GC than in intestinal-type GC. Through our large-scale screening of 170 CpG island loci, we found 17 new DNA methylation markers of GC, which may serve as useful markers that may identify a distinct subset of GC.
Collapse
|
563
|
DeAngelis JT, Farrington WJ, Tollefsbol TO. An overview of epigenetic assays. Mol Biotechnol 2008; 38:179-83. [PMID: 17943463 PMCID: PMC2423347 DOI: 10.1007/s12033-007-9010-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
A significant portion of ongoing epigenetic research involves the investigation of DNA methylation and chromatin modification patterns seen throughout many biological processes. Over the last few years, epigenetic research has undergone a gradual shift and recent studies have been directed toward a genome-wide assessment. DNA methylation and chromatin modifications are essential components of the regulation of gene activity. DNA methylation effectively down-regulates gene activity by addition of a methyl group to the five-carbon of a cytosine base. Less specifically, modification of the chromatin structure can be carried out by multiple mechanisms leading to either the upregulation or down-regulation of the associated gene. Of the many assays used to assess the effects of epigenetic modifications, chromatin immunoprecipitation (ChIP), which serves to monitor changes in chromatin structure, and bisulfite modification, which tracks changes in DNA methylation, are the two most commonly used techniques.
Collapse
Affiliation(s)
- J Tyson DeAngelis
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA
| | | | | |
Collapse
|
564
|
Yang N, Coukos G, Zhang L. MicroRNA epigenetic alterations in human cancer: one step forward in diagnosis and treatment. Int J Cancer 2008; 122:963-8. [PMID: 18098137 DOI: 10.1002/ijc.23325] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are approximately 22 nt non-coding RNAs, which regulate gene expression in a sequence-specific manner via translational inhibition or messenger RNA (mRNA) degradation. Since the discovery of their fundamental mechanisms of action, the field of miRNAs has opened a new era in the understanding of small noncoding RNAs. By molecular cloning and bioinformatic approaches, miRNAs have been identified in viruses, plants and animals. miRNAs are predicted to negatively target up to one-third of human mRNAs. Cancer is a complex genetic disease caused by abnormalities in gene structure and expression. Previous studies have heavily focused on protein-coding genes; however, accumulating evidence is revealing an important role of miRNAs in cancer. Epigenetics is defined as mitotically and/or meiotically heritable changes in gene expression that are not accompanied by changes in DNA sequence. Given the critical roles of miRNAs and epigenetics in cancer, characterizing the epigenetic regulation of miRNAs will provide novel opportunities for the development of cancer biomarkers and/or the identification of new therapeutic targets in the foreseeable future.
Collapse
Affiliation(s)
- Nuo Yang
- Center for Research on Early Detection and Cure of Ovarian Cancer, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
565
|
Barton CA, Hacker NF, Clark SJ, O'Brien PM. DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment. Gynecol Oncol 2008; 109:129-39. [PMID: 18234305 DOI: 10.1016/j.ygyno.2007.12.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/07/2007] [Accepted: 12/10/2007] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To review epigenetic changes identified in ovarian cancer, focusing on their potential as clinical markers for detection, monitoring of disease progression and as markers of therapeutic response. METHODS A comprehensive review of English language scientific literature on the topics of methylation and ovarian cancer was conducted. RESULTS Genome-wide demethylation of normally methylated and silenced chromosomal regions, and hypermethylation and silencing of genes including tumor suppressors are common features of cancer cells. Epigenetic alterations, including CpG island DNA methylation, occur in ovarian cancer and the identification of specific genes that are altered by epigenetic events is an area of intense research. Aberrant DNA methylation in ovarian cancer is observed in early cancer development, can be detected in DNA circulating in the blood and hence provides the promise of a non-invasive cancer detection test. In addition, identification of ovarian cancer-specific epigenetic changes has promise in molecular classification and disease stratification. CONCLUSIONS The detection of cancer-specific DNA methylation changes heralds an exciting new era in cancer diagnosis as well as evaluation of prognosis and therapeutic responsiveness and warrants further investigation.
Collapse
Affiliation(s)
- Caroline A Barton
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | | | | | |
Collapse
|
566
|
Aleman A, Adrien L, Lopez-Serra L, Cordon-Cardo C, Esteller M, Belbin TJ, Sanchez-Carbayo M. Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays. Br J Cancer 2008; 98:466-73. [PMID: 18087279 PMCID: PMC2361432 DOI: 10.1038/sj.bjc.6604143] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 11/19/2007] [Indexed: 02/06/2023] Open
Abstract
CpG island arrays represent a high-throughput epigenomic discovery platform to identify global disease-specific promoter hypermethylation candidates along bladder cancer progression. DNA obtained from 10 pairs of invasive bladder tumours were profiled vs their respective normal urothelium using differential methylation hybridisation on custom-made CpG arrays (n=12 288 clones). Promoter hypermethylation of 84 clones was simultaneously shown in at least 70% of the tumours. SOX9 was selected for further validation by bisulphite genomic sequencing and methylation-specific polymerase chain reaction in bladder cancer cells (n=11) and primary bladder tumours (n=101). Hypermethylation was observed in bladder cancer cells and associated with lack of gene expression, being restored in vitro by a demethylating agent. In primary bladder tumours, SOX9 hypermethylation was present in 56.4% of the cases. Moreover, SOX9 hypermethylation was significantly associated with tumour grade and overall survival. Thus, this high-throughput epigenomic strategy has served to identify novel hypermethylated candidates in bladder cancer. In vitro analyses supported the role of methylation in silencing SOX9 gene. The association of SOX9 hypermethylation with tumour progression and clinical outcome suggests its relevant clinical implications at stratifying patients affected with bladder cancer.
Collapse
Affiliation(s)
- A Aleman
- Tumor Markers Group, Molecular Pathology Program, Spanish National Cancer Center, Madrid, Spain
| | - L Adrien
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - L Lopez-Serra
- Epigenetics Group, Molecular Pathology Program, Spanish National Cancer Center, Madrid, Spain
| | - C Cordon-Cardo
- Division of Molecular Pathology, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA
| | - M Esteller
- Epigenetics Group, Molecular Pathology Program, Spanish National Cancer Center, Madrid, Spain
| | - T J Belbin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M Sanchez-Carbayo
- Tumor Markers Group, Molecular Pathology Program, Spanish National Cancer Center, Madrid, Spain
| |
Collapse
|
567
|
Abstract
Gene expression is tightly regulated in normal cells, and epigenetic changes disturbing this regulation are a common mechanism in the development of cancer. Testicular germ cell tumor (TGCT) is the most common malignancy among young males and can be classified into two main histological subgroups: seminomas, which are basically devoid of DNA methylation, and nonseminomas, which in general have methylation levels comparable with other tumor tissues, as shown by restriction landmark genome scanning (RLGS). In general, DNA methylation seems to increase with differentiation, and among the nonseminomas, the pluripotent and undifferentiated embryonal carcinomas harbor the lowest levels of DNA promoter hypermethylation, whereas the well-differentiated teratomas display the highest. In this regard, TGCTs resemble the early embryogenesis. So far, only a limited number of tumor suppressor genes have been shown to be inactivated by DNA promoter hypermethylation in more than a minor percentage of TGCTs, including MGMT, SCGB3A1, RASSF1A, HIC1, and PRSS21. In addition, imprinting defects, DNA hypomethylation of testis/cancer associated genes, and the presence of unmethylated XIST are frequent in TGCTs. Aberrant DNA methylation has the potential to improve current diagnostics by noninvasive testing and might also serve as a prognostic marker for treatment response.
Collapse
Affiliation(s)
- Guro E Lind
- Department of Cancer Prevention, Rikshospitalet - Radiumhospitalet Medical Centre, Montebello and Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
568
|
Simultaneous determination of decitabine and vorinostat (Suberoylanalide hydroxamic acid, SAHA) by liquid chromatography tandem mass spectrometry for clinical studies. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 863:19-25. [PMID: 18221921 DOI: 10.1016/j.jchromb.2007.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 11/28/2007] [Accepted: 12/18/2007] [Indexed: 11/23/2022]
Abstract
A reverse-phase high-performance liquid chromatography method with electrospray ionization and detection by tandem mass spectrometry is described for the simultaneous quantitative determination of decitabine (5-aza-2'-deoxycytidine) and vorinostat (Suberoylanalide hydroxamic acid, SAHA) in human plasma. The method involves a simple acetonitrile precipitation step and centrifugation followed by injection of the supernatant onto a C18 150mmx2.1mm I.D., 3microm HPLC column at 36 degrees C. Separation of decitabine, SAHA and their respective internal standards was achieved with a gradient elution and detection was via the mass spectrometer operated in selected reaction monitoring mode. The method was within the defined validation parameters for linearity, repeatability, reproducibility and stability. The limit of detection was determined as 1.0 and 0.125ngml(-1) and lower limits of quantitation were 10 and 1ngml(-1) for decitabine and SAHA, respectively. Effects of sample preparation on stability were also evaluated in human plasma. For clinical sample handling tetrahydrouridine, an inhibitor of cytidine deaminase was found to help prevent decitabine degradation. The method is currently being used in clinical pharmacokinetic studies for the evaluation of decitabine and SAHA combination therapies.
Collapse
|
569
|
High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A 2007; 105:252-7. [PMID: 18162535 DOI: 10.1073/pnas.0710735105] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Changes in DNA methylation patterns are an important characteristic of human cancer. Tumors have reduced levels of genomic DNA methylation and contain hypermethylated CpG islands, but the full extent and sequence context of DNA hypomethylation and hypermethylation is unknown. Here, we used methylated CpG island recovery assay-assisted high-resolution genomic tiling and CpG island arrays to analyze methylation patterns in lung squamous cell carcinomas and matched normal lung tissue. Normal tissues from different individuals showed overall very similar DNA methylation patterns. Each tumor contained several hundred hypermethylated CpG islands. We identified and confirmed 11 CpG islands that were methylated in 80-100% of the SCC tumors, and many hold promise as effective biomarkers for early detection of lung cancer. In addition, we find that extensive DNA hypomethylation in tumors occurs specifically at repetitive sequences, including short and long interspersed nuclear elements and LTR elements, segmental duplications, and subtelomeric regions, but single-copy sequences rarely become demethylated. The results are consistent with a specific defect in methylation of repetitive DNA sequences in human cancer.
Collapse
|
570
|
Grote HJ, Schmiemann V, Kazimirek M, Böcking A. [Quantitative methylation-specific PCR for the diagnosis of lung cancer]. DER PATHOLOGE 2007; 28:377-83. [PMID: 17665199 DOI: 10.1007/s00292-007-0929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efficient, preferably early diagnosis of lung cancer represents a major challenge. Under this aspect the sensitivity of conventional histomorphology and cytomorphology procedures is unsatisfactory. This review highlights technical aspects, possibilities and drawbacks of the application of aberrant promoter methylation as a biomarker for lung cancer diagnostics using specimens of pulmonary exfoliative cytology.
Collapse
Affiliation(s)
- H J Grote
- Institut für Cytopathologie, Universität Düsseldorf.
| | | | | | | |
Collapse
|
571
|
|
572
|
Belbin TJ, Bergman A, Brandwein-Gensler M, Chen Q, Childs G, Garg M, Haigentz M, Hogue-Angeletti R, Moadel R, Negassa A, Owen R, Prystowsky MB, Schiff B, Schlecht NF, Shifteh K, Smith RV, Zheng X. Head and neck cancer: reduce and integrate for optimal outcome. Cytogenet Genome Res 2007; 118:92-109. [PMID: 18000360 DOI: 10.1159/000108290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/09/2007] [Indexed: 01/14/2023] Open
Affiliation(s)
- T J Belbin
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
573
|
Dallosso AR, Hancock AL, Malik S, Salpekar A, King-Underwood L, Pritchard-Jones K, Peters J, Moorwood K, Ward A, Malik KTA, Brown KW. Alternately spliced WT1 antisense transcripts interact with WT1 sense RNA and show epigenetic and splicing defects in cancer. RNA (NEW YORK, N.Y.) 2007; 13:2287-99. [PMID: 17940140 PMCID: PMC2080606 DOI: 10.1261/rna.562907] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 08/27/2007] [Indexed: 05/08/2023]
Abstract
Many mammalian genes contain overlapping antisense RNAs, but the functions and mechanisms of action of these transcripts are mostly unknown. WT1 is a well-characterized developmental gene that is mutated in Wilms' tumor (WT) and acute myeloid leukaemia (AML) and has an antisense transcript (WT1-AS), which we have previously found to regulate WT1 protein levels. In this study, we show that WT1-AS is present in multiple spliceoforms that are usually expressed in parallel with WT1 RNA in human and mouse tissues. We demonstrate that the expression of WT1-AS correlates with methylation of the antisense regulatory region (ARR) in WT1 intron 1, displaying imprinted monoallelic expression in normal kidney and loss of imprinting in WT. However, we find no evidence for imprinting of mouse Wt1-as. WT1-AS transcripts are exported into the cytoplasm and form heteroduplexes with WT1 mRNA in the overlapping region in WT1 exon 1. In AML, there is often abnormal splicing of WT1-AS, which may play a role in the development of this malignancy. These results show that WT1 encodes conserved antisense RNAs that may have an important regulatory role in WT1 expression via RNA:RNA interactions, and which can become deregulated by a variety of mechanisms in cancer.
Collapse
Affiliation(s)
- Anthony R Dallosso
- CLIC Sargent Research Unit, Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
574
|
Restriction landmark genomic scanning (RLGS) spot identification by second generation virtual RLGS in multiple genomes with multiple enzyme combinations. BMC Genomics 2007; 8:446. [PMID: 18053125 PMCID: PMC2235865 DOI: 10.1186/1471-2164-8-446] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 11/30/2007] [Indexed: 11/18/2022] Open
Abstract
Background Restriction landmark genomic scanning (RLGS) is one of the most successfully applied methods for the identification of aberrant CpG island hypermethylation in cancer, as well as the identification of tissue specific methylation of CpG islands. However, a limitation to the utility of this method has been the ability to assign specific genomic sequences to RLGS spots, a process commonly referred to as "RLGS spot cloning." Results We report the development of a virtual RLGS method (vRLGS) that allows for RLGS spot identification in any sequenced genome and with any enzyme combination. We report significant improvements in predicting DNA fragment migration patterns by incorporating sequence information into the migration models, and demonstrate a median Euclidian distance between actual and predicted spot migration of 0.18 centimeters for the most complex human RLGS pattern. We report the confirmed identification of 795 human and 530 mouse RLGS spots for the most commonly used enzyme combinations. We also developed a method to filter the virtual spots to reduce the number of extra spots seen on a virtual profile for both the mouse and human genomes. We demonstrate use of this filter to simplify spot cloning and to assist in the identification of spots exhibiting tissue-specific methylation. Conclusion The new vRLGS system reported here is highly robust for the identification of novel RLGS spots. The migration models developed are not specific to the genome being studied or the enzyme combination being used, making this tool broadly applicable. The identification of hundreds of mouse and human RLGS spot loci confirms the strong bias of RLGS studies to focus on CpG islands and provides a valuable resource to rapidly study their methylation.
Collapse
|
575
|
Lopez-Serra L, Ballestar E, Fraga MF, Alaminos M, Setien F, Esteller M. A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res 2007; 66:8342-6. [PMID: 16951140 DOI: 10.1158/0008-5472.can-06-1932] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methyl-CpG binding domain (MBD) proteins have been shown to couple DNA methylation to transcriptional repression. This biological property suggests a role for MBD proteins in the silencing of tumor suppressor genes that are hypermethylated at their promoter CpG islands in cancer cells. Despite the demonstration of the presence of MBDs in the methylated promoter of several genes, we still ignore how general and specific is this association. Here, we investigate the profile of MBD occupancy in a large panel of tumor suppressor gene promoters and cancer cell lines. Our study shows that most hypermethylated promoters are occupied by MBD proteins, whereas unmethylated promoters are generally devoid of MBDs, with the exception of MBD1. Treatment of cancer cells with the demethylating agent 5-aza-2'-deoxycytidine results in CpG island hypomethylation, MBD release, and gene reexpression, reinforcing the notion that association of MBDs with methylated promoters is methylation-dependent. Whereas several promoters are highly specific in recruiting a particular set of MBDs, other promoters seem to be less exclusive. Our results indicate that MBDs have a great affinity in vivo for binding hypermethylated promoter CpG islands of tumor suppressor genes, with a specific profile of MBD occupancy that it is gene and tumor type specific.
Collapse
Affiliation(s)
- Lidia Lopez-Serra
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
576
|
Sakamoto H, Suzuki M, Abe T, Hosoyama T, Himeno E, Tanaka S, Greally JM, Hattori N, Yagi S, Shiota K. Cell type-specific methylation profiles occurring disproportionately in CpG-less regions that delineate developmental similarity. Genes Cells 2007; 12:1123-32. [PMID: 17903172 DOI: 10.1111/j.1365-2443.2007.01120.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our previous studies using restriction landmark genomic scanning (RLGS) defined tissue- or cell-specific DNA methylation profiles. It remains to be determined whether the DNA sequence compositions in the genomic contexts of the NotI loci tested by RLGS influence their tendency to change with differentiation. We carried out 3834 methylation measurements consisting of 213 NotI loci in the mouse genome in 18 different tissues and cell types, using quantitative real-time PCR based on a Virtual image rlgs database. Loci were categorized as CpG islands or other, and as unique or repetitive sequences, each category being associated with a variety of methylation categories. Strikingly, the tissue-dependently and differentially methylated regions (T-DMRs) were disproportionately distributed in the non-CpG island loci. These loci were located not only in 5'-upstream regions of genes but also in intronic and non-genic regions. Hierarchical clustering of the methylation profiles could be used to define developmental similarity and cellular phenotypes. The results show that distinctive tissue- and cell type-specific methylation profiles by RLGS occur mostly at NotI sites located at non-CpG island sequences, which delineate developmental similarity of different cell types. The finding indicates the power of NotI methylation profiles in evaluating the relatedness of different cell types.
Collapse
Affiliation(s)
- Hideki Sakamoto
- Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
577
|
Abstract
AIM: To screen out the differentially methylated DNA sequences between gastric primary tumor and metastatic lymph nodes, test the methylation difference of gene PTPRG between primary gastric tumor and metastatic lymph nodes, and test the regulatory function of 5-aza-2-deoxycytidine which is an agent with suppression on methylation and the level of methylation in gastric cancer cell line.
METHODS: Methylated DNA sequences in genome were enriched with methylated CpG islands amplification (MCA) to undergo representational difference analysis (RDA), with MCA production of metastatic lymph nodes as tester and that of primary tumor as driver. The obtained differentially methylated fragments were cloned and sequenced to acquire the base sequence, which was analyzed with bioinformatics. With methylation-specific PCR (MSP) and RT-PCR, methylation difference of gene PTPRG was detected between primary tumor and metastatic lymph nodes in 36 cases of gastric cancer. Methylation of gene PTPRG and its regulated expression were observed in gastric cancer cell line before and after being treated with methylation-suppressive agent.
RESULTS: Nineteen differentially methylated sequences were obtained and located at 5’ end, exons, introns and 3’ end, in which KL59 was observed to be located at 9p21 as the first exon of gene p16 and KL22 to be located at promoter region of PRPRG. KL22, as the probes, was hybridized with driver, tester and 3-round RDA products respectively with all positive signals except with the driver. Significant difference was observed in both methylation rate of gene PTPRG and PTPRG mRNA expression rate between primary tumor and metastatic lymph nodes. Demethylation of gene PTPRG, with recovered expression of PTPRG mRNA, was observed after gastric cancer cell line being treated with methylation-suppressive agent.
CONCLUSION: Difference exists in DNA methylation between primary tumor and metastatic lymph nodes of gastric cancer, with MCA-RDA as one of the good analytical methods. Significant difference exists in methylation of gene PTPRG between primary tumor and metastatic lymph nodes of gastric cancer. Methylation level in gastric cancer cell line can be decreased by 5-aza-2’-deoxycytidine, which is the methylation-suppressive agent, with PTPRG expression being recovered.
Collapse
|
578
|
Rauch T, Li H, Wu X, Pfeifer GP. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 2007; 66:7939-47. [PMID: 16912168 DOI: 10.1158/0008-5472.can-06-1888] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a straightforward and comprehensive approach for DNA methylation analysis in mammalian genomes. The methylated-CpG island recovery assay (MIRA), which is based on the high affinity of the MBD2/MBD3L1 complex for methylated DNA, has been used to detect cell type-dependent differences in DNA methylation on a microarray platform. The procedure has been verified and applied to identify a series of novel candidate lung tumor suppressor genes and potential DNA methylation markers that contain methylated CpG islands. One gene of particular interest was DLEC1, located at a commonly deleted area on chromosome 3p22-p21.3, which was frequently methylated in primary lung cancers and melanomas. Among the identified methylated genes, homeodomain-containing genes were unusually frequent (11 of the top 50 hits) and were targeted on different chromosomes. These genes included LHX2, LHX4, PAX7, HOXB13, LBX1, SIX2, HOXD3, DLX1, HOXD1, ONECUT2, and PAX9. The data show that MIRA-assisted microarray analysis has a low false-positive rate and has the capacity to catalogue methylated CpG islands on a genome-wide basis. The results support the hypothesis that cancer-associated DNA methylation events do not occur randomly throughout the genome but at least some are targeted by specific mechanisms.
Collapse
Affiliation(s)
- Tibor Rauch
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
579
|
Dahl C, Guldberg P. A ligation assay for multiplex analysis of CpG methylation using bisulfite-treated DNA. Nucleic Acids Res 2007; 35:e144. [PMID: 17998253 PMCID: PMC2175362 DOI: 10.1093/nar/gkm984] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant methylation of promoter CpG islands is causally linked with a number of inherited syndromes and most sporadic cancers, and may provide valuable diagnostic and prognostic biomarkers. In this report, we describe an approach to simultaneous analysis of multiple CpG islands, where methylation-specific oligonucleotide probes are joined by ligation and subsequently amplified by polymerase chain reaction (PCR) when hybridized in juxtaposition on bisulfite-treated DNA. Specificity of the ligation reaction is achieved by (i) using probes containing CpGpCpG (for methylated sequences) or CpApCpA (for unmethylated sequences) at the 3′ ends, (ii) including three or more probes for each target, and (iii) using a thermostable DNA ligase. The external probes carry universal tails to allow amplification of multiple ligation products using a common primer pair. As proof-of-principle applications, we established duplex assays to examine the FMR1 promoter in individuals with fragile-X syndrome and the SNRPN promoter in individuals with Prader-Willi syndrome or Angelman syndrome, and a multiplex assay to simultaneously detect hypermethylation of seven genes (ID4, APC, RASSF1A, CDH1, ESR1, HIN1 and TWIST1) in breast cancer cell lines and tissues. These data show that ligation of oligonucleotide probes hybridized to bisulfite-treated DNA is a simple and cost-effective approach to analysis of CpG methylation.
Collapse
Affiliation(s)
- Christina Dahl
- Department of Genomics and Danish Centre for Translational Breast Cancer Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | | |
Collapse
|
580
|
Abstract
Genetic and epigenetic mechanisms contribute to the development of human tumors. However, the conventional analysis of neoplasias has preferentially focused on only one of these processes. This approach has led to a biased, primarily genetic view, of human tumorigenesis. Epigenetic alterations, such as aberrant DNA methylation, are sufficient to induce tumor formation, and can modify the incidence, and determine the type of tumor which will arise in genetic models of cancer. These observations raise important questions about the degree to which genetic and epigenetic mechanisms cooperate in human tumorigenesis, the identity of the specific cooperating genes and how these genes interact functionally to determine the diverse biological and clinical paths to tumor initiation and progression. These gaps in our knowledge are, in part, due to the lack of methods for full-scale integrated genetic and epigenetic analyses. The ultimate goal to fill these gaps would include sequencing relevant regions of the 3-billion nucleotide genome, and determining the methylation status of the 28-million CpG dinucleotide methylome at single nucleotide resolution in different types of neoplasias. Here, we review the emergence and advancement of technologies to map ever larger proportions of the cancer methylome, and the unique discovery potential of integrating these with cancer genomic data. We discuss the knowledge gained from these large-scale analyses in the context of gene discovery, therapeutic application and building a more widely applicable mechanism-based model of human tumorigenesis.
Collapse
Affiliation(s)
- Romulo M Brena
- Department of Molecular Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | |
Collapse
|
581
|
Clark SJ. Action at a distance: epigenetic silencing of large chromosomal regions in carcinogenesis. Hum Mol Genet 2007; 16 Spec No 1:R88-95. [PMID: 17613553 DOI: 10.1093/hmg/ddm051] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the completion of the Human Genome Project, we are still far from understanding the molecular events underlying epigenetic change in cancer. Cancer is a disease of the DNA with both genetic and epigenetic changes contributing to changes in gene expression. Epigenetics involves the interplay between DNA methylation, histone modifications and expression of non-coding RNAs in the regulation of gene transcription. We now know that tumour suppressor genes, with CpG island-associated promoters, are commonly hypermethylated and silenced in cancer, but we do not understood what triggers this process or when it occurs during carcinogenesis. Epigenetic gene silencing has always been envisaged as a local event silencing discrete genes, but recent data now indicates that large regions of chromosomes can be co-coordinately suppressed; a process termed long range epigenetic silencing (LRES). LRES can span megabases of DNA and involves broad heterochromatin formation accompanied by hypermethylation of clusters of contiguous CpG islands within the region. It is not clear if LRES is initiated by one critical gene target that spreads and conscripts innocent bystanders, analogous to large genetic deletions or if coordinate silencing of multiple genes is important in carcinogenesis? Over the next decade with the exciting new genomic approaches to epigenome analysis and the initiation of a Human Epigenome Project, we will understand more about the interplay between DNA methylation and chromatin modifications and the expression of non-coding RNAs, promising a new range of molecular diagnostic cancer markers and molecular targets for cancer epigenetic therapy.
Collapse
Affiliation(s)
- Susan J Clark
- Cancer Program, Garvan Institute of Medical Research, Darlinghurst Sydney, 2010 NSW, Australia.
| |
Collapse
|
582
|
Abstract
Restriction landmark genomic scanning (RLGS) is a method to detect large numbers of restriction landmarks in a single experiment. It is based on the concept that restriction enzyme sites can serve as landmarks throughout a genome. RLGS uses direct end-labeling of the genomic DNA digested with a rare-cutting restriction enzyme and high-resolution two-dimensional electrophoresis. Compared with the conventional gene-detection technologies, such as Southern blot analysis and PCR, RLGS has the following advantages even though it needs specially designed instruments: high-efficiency scanning capacity, scanning extensibility by using alternate restriction enzyme combinations, applicability to any organism, a spot intensity that reflects the copy number of restriction landmarks, and the ability, by using a methylation-sensitive enzyme, to screen the methylated state of genomic DNA. The RLGS protocol can be accomplished in 5 days to 2 weeks.
Collapse
Affiliation(s)
- Yoshinari Ando
- Functional RNA Research Program, Frontier Research System, and Genome Exploration Research Group, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | | |
Collapse
|
583
|
NIELÄNDER INGA, BUG STEFANIE, RICHTER JULIA, GIEFING MACIEJ, IGNACIO MARTÍN-SUBERO JOSÉ, SIEBERT REINER. Combining array-based approaches for the identification of candidate tumor suppressor loci in mature lymphoid neoplasms. APMIS 2007; 115:1107-34. [DOI: 10.1111/j.1600-0463.2007.apm_883.xml.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
584
|
Moskalyov EA, Eprintsev AT, Hoheisel JD. DNA methylation profiling in cancer: From single nucleotides towards the methylome. Mol Biol 2007. [DOI: 10.1134/s0026893307050068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
585
|
Zheng W, Wang Y, Luo J, Zhang F, Chen B, Lu Z. Microarray-based method to analyze methylation status of E-cadherin gene in leukemia. Clin Chim Acta 2007; 387:97-104. [PMID: 17964562 DOI: 10.1016/j.cca.2007.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 09/14/2007] [Accepted: 09/14/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Aberrant DNA methylation of the CpG sites of the tumor suppressor gene is closely associated with carcinogenesis. Recently, several studies have indicated the aberrant methylation of E-cadherin gene could be a potential marker for leukemic patients. METHOD We used bisulfite-modified DNA as a template for PCR amplification, resulting in conversion of unmethylated, but not methylated, cytosine into thymine within CpG islands of interest. The amplified product containing a pool of DNA fragments with altered nucleotide sequences was then hybridized with an oligonucleotide-based microarray. Five sets of oligonucleotide probes were designed to detect the methylation patterns of E-cadherin gene CpG islands in leukemia samples. The results were further validated by methylation-specific PCR (MSP). RESULTS We found that all leukemia samples were methylated at different levels within the target sequences. The specific regions (the CpG sites #16-19 and #20-22) were revealed as hotspots for methylation in leukemic patients. These results showed that the microarray assay could successfully detect methylation changes of E-cadherin gene in leukemia quantitatively. CONCLUSION The oligonucleotide-based microarray can be a quick and reliable tool to map methylation status in CpG islands. This established microarray could be potentially useful for clinical researches and diagnosis.
Collapse
Affiliation(s)
- Wenli Zheng
- State Key Laboratory of Bioelectronics, Department of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | | | | | | | | | | |
Collapse
|
586
|
Roman-Gomez J, Jimenez-Velasco A, Barrios M, Prosper F, Heiniger A, Torres A, Agirre X. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma 2007; 48:1269-82. [PMID: 17613754 DOI: 10.1080/10428190701344899] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The hallmark of acute lymphoblastic leukemia (ALL) is a progressive appearance of malignant cell behavior that is triggered by the evolution of altered gene function. ALL has traditionally been viewed as a genetic disease; however, epigenetic defects also play an important role. DNA promoter methylation has gained increasing recognition as an important mechanism for transcriptional silencing of tumor-suppressor genes. Hypermethylation may contribute to the pathogenesis of leukemias providing an alternative route to gene mutation. We have reported that gene methylation in ALL cells is the most important way to inactivate cancer-related genes in this disease. In fact, this epigenetic event can help to inactivate tumor-suppressive apoptotic or growth-arresting responses and has prognostic impact in B- and T-ALL. The presence in individual tumors of multiple genes simultaneously methylated is an independent factor of poor prognosis in both childhood and adult ALL in terms of disease-free survival and overall survival. Moreover, methylation status is able to redefine the prognosis of selected ALL groups with well-established prognostic features.
Collapse
|
587
|
Stains CI, Furman JL, Segal DJ, Ghosh I. Site-specific detection of DNA methylation utilizing mCpG-SEER. J Am Chem Soc 2007; 128:9761-5. [PMID: 16866532 DOI: 10.1021/ja060681j] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently there are no direct methods for the sequence-specific detection of DNA-methylation at CpG dinucleotides, which provide a possible diagnostic marker for cancer. Toward this goal, we present a methodology termed mCpG-SEquence Enabled Reassembly (mCpG-SEER) of proteins utilizing a split green fluorescent protein (GFP) tethered to specific DNA recognition elements. Our system, mCpG-SEER, employs a zinc-finger attached to one-half of GFP to target a specific sequence of dsDNA, while a methyl-CpG binding domain protein attached to the complementary half of GFP targets an adjacent methylated CpG dinucleotide site. We demonstrate that the presence of both DNA sites is necessary for the reassembly and concomitant fluorescence of the reassembled GFP. We further show that the GFP-dependent fluorescence reaches a maximum when the methyl-CpG and zinc-finger sites are separated by two base pairs and the fluorescence signal is linear to 5 pmol of methylated target DNA. Finally, the specificity of this reporter system, mCpG-SEER, was found to be >40-fold between a methylated versus a nonmethylated CpG target site.
Collapse
Affiliation(s)
- Cliff I Stains
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
588
|
Yee KWL, Jabbour E, Kantarjian HM, Giles FJ. Clinical experience with decitabine in North American patients with myelodysplastic syndrome. Ann Hematol 2007; 84 Suppl 1:18-24. [PMID: 16273408 DOI: 10.1007/s00277-005-0019-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent evidence demonstrates that epigenetic silencing of genes is associated with myelodysplasia and that a worse prognosis may be correlated with hypermethylation of certain genes, such as the cyclin-dependent kinase inhibitor p15. 5-Aza-2'-deoxycytidine (decitabine, DAC) is a nucleoside analog, which, at low doses, acts as a hypomethylating agent and is fivefold to tenfold more active than 5-azacytidine (azacitidine, Vidaza)--currently the only approved drug for treatment of myelodysplastic syndrome (MDS). Clinical studies have demonstrated that decitabine has activity in patients with MDS. Preliminary results of a phase III multicenter North American trial comparing low-dose decitabine to supportive care verified that therapy with decitabine resulted in higher response rates, improved quality of life, and prolonged time to leukemic transformation and/or death. However, further elucidation of its mechanism of action is required, as clinical response to decitabine does not correlate with demethylation of the p15 gene promoter or the repetitive DNA element LINE. Decitabine appears to upregulate both hypermethylated and nonmethylated genes. Ongoing studies aim to determine the optimal dose, schedule, and route of administration of decitabine, and to evaluate whether efficacy can be improved by using it in combination with other agents, such as histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Karen W L Yee
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
589
|
Al-Romaih K, Somers GR, Bayani J, Hughes S, Prasad M, Cutz JC, Xue H, Zielenska M, Wang Y, Squire JA. Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: identification of apoptotic genes as targets for demethylation. Cancer Cell Int 2007; 7:14. [PMID: 17845729 PMCID: PMC2034371 DOI: 10.1186/1475-2867-7-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 09/10/2007] [Indexed: 11/30/2022] Open
Abstract
Background Methylation-mediated silencing of genes is one epigenetic mechanism implicated in cancer. Studies regarding the role of modulation of gene expression utilizing inhibitors of DNA methylation, such as decitabine, in osteosarcoma (OS) have been limited. A biological understanding of the overall effects of decitabine in OS is important because this particular agent is currently undergoing clinical trials. The objective of this study was to measure the response of the OS cell line, U2OS, to decitabine treatment both in vitro and in vivo. Results Microarray expression profiling was used to distinguish decitabine-dependent changes in gene expression in U2OS cells, and to identify responsive loci with demethylated CpG promoter regions. U2OS xenografts were established under the sub-renal capsule of immune-deficient mice to study the effect of decitabine in vivo on tumor growth and differentiation. Reduced nuclear methylation levels could be detected in xenografts derived from treated mice by immunohistochemistry utilizing a 5-methylcytidine antibody. Decitabine treatment reduced tumor xenograft size significantly (p < 0.05). Histological analysis of treated U2OS xenograft sections revealed a lower mitotic activity (p < 0.0001), increased bone matrix production (p < 0.0001), and a higher number of apoptotic cells (p = 0.0329). Microarray expression profiling of U2OS cultured cells showed that decitabine treatment caused a significant induction (p < 0.0025) in the expression of 88 genes. Thirteen had a ≥2-fold change, 11 of which had CpG-island-associated promoters. Interestingly, 6 of these 11 were pro-apoptotic genes and decitabine resulted in a significant induction of cell death in U2OS cells in vitro (p < 0.05). The 6 pro-apoptotic genes (GADD45A, HSPA9B, PAWR, PDCD5, NFKBIA, and TNFAIP3) were also induced to ≥2-fold in vivo. Quantitative methylation pyrosequencing confirmed that the tested pro-apoptotic genes had CpG-island DNA demethylationas a result of U2OS decitabine treatment both in vitro and in xenografts Conclusion These data provide new insights regarding the use of epigenetic modifiers in OS, and have important implications for therapeutic trials involving demethylation drugs. Collectively, these data have provided biological evidence that one mode of action of decitabine may be the induction of apoptosis utilizing promoter-CpG demethylation of specific effectors in cell death pathways in OS.
Collapse
Affiliation(s)
- Khaldoun Al-Romaih
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
| | - Gino R Somers
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada. M5G 1X8
| | - Jane Bayani
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
| | - Simon Hughes
- Division of Tumor Biology, Institute of Cancer and Cancer Research, UK Clinical Centre, Barts and the London School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London, United Kingdom, EC1M 6BQ
| | - Mona Prasad
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
| | - Jean-Claude Cutz
- Departments of Pathology & Molecular Medicine, and Laboratory Medicine, McMaster University, St. Joseph's Healthcare – Hamilton Regional Laboratory Medicine Program, Hamilton, Canada L8N 4A6
| | - Hui Xue
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, Canada. V5Z 1L3
| | - Maria Zielenska
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada. M5G 1X8
| | - Yuzhuo Wang
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, Canada. V5Z 1L3
- The Prostate Centre, Vancouver General Hospital, Vancouver, Canada, V6H 3Z6
| | - Jeremy A Squire
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. M5G 1L5
- The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada. M5G 2M9
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, Canada. V5Z 1L3
| |
Collapse
|
590
|
Estécio MRH, Yan PS, Ibrahim AEK, Tellez CS, Shen L, Huang THM, Issa JPJ. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res 2007; 17:1529-36. [PMID: 17785535 PMCID: PMC1987348 DOI: 10.1101/gr.6417007] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An abnormal pattern of DNA methylation occurs at specific genes in almost all neoplasms. The lack of high-throughput methods with high specificity and sensitivity to detect changes in DNA methylation has limited its application for clinical profiling. Here we overcome this limitation and present an improved method to identify methylated genes genome-wide by hybridizing a CpG island microarray with amplicons obtained by the methylated CpG island amplification technique (MCAM). We validated this method in three cancer cell lines and 15 primary colorectal tumors, resulting in the discovery of hundreds of new methylated genes in cancer. The sensitivity and specificity of the method to detect hypermethylated loci were 88% and 96%, respectively, according to validation by bisulfite-PCR. Unsupervised hierarchical clustering segregated the tumors into the expected subgroups based on CpG island methylator phenotype classification. In summary, MCAM is a suitable technique to discover methylated genes and to profile methylation changes in clinical samples in a high-throughput fashion.
Collapse
Affiliation(s)
- Marcos R H Estécio
- Department of Leukemia, UT M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
591
|
Abstract
PURPOSE OF REVIEW To provide guidance for investigators who are new to the field of DNA methylation analysis. RECENT FINDINGS Epigenetics is the study of mitotically heritable alterations in gene expression potential that are not mediated by changes in DNA sequence. Recently, it has become clear that nutrition can affect epigenetic mechanisms, causing long-term changes in gene expression. This review focuses on methods for studying the epigenetic mechanism DNA methylation. Recent advances include improvement in high-throughput methods to obtain quantitative data on locus-specific DNA methylation and development of various approaches to study DNA methylation on a genome-wide scale. SUMMARY No single method of DNA methylation analysis will be appropriate for every application. By understanding the type of information provided by, and the inherent potential for bias and artifact associated with, each method, investigators can select the method most appropriate for their specific research needs.
Collapse
Affiliation(s)
- Lanlan Shen
- Department of Leukemia, University of Texas MD Anderson Cancer Center, USA
| | | |
Collapse
|
592
|
Porter JR, Stains CI, Segal DJ, Ghosh I. Split β-Lactamase Sensor for the Sequence-Specific Detection of DNA Methylation. Anal Chem 2007; 79:6702-8. [PMID: 17685552 DOI: 10.1021/ac071163+] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The methylation pattern of genes at CpG dinucleotide sites is an emerging area in epigenetics. Furthermore, the hypermethylation profiles of tumor suppressor genes are linked to specific tumor types. Thus, new molecular approaches for the rapid determination of the methylation status of these genes could provide a powerful method for early cancer diagnosis as well as insight into mechanisms of epigenetic regulation of genetic information. Toward this end, we have recently reported the first design of a split-protein sensor for the site-specific detection of DNA methylation. In this approach a split green fluorescent protein reporter provided a sequence-specific readout of CpG methylation. In the present work, we describe a sensitive second-generation methylation detection system that utilizes the split enzymatic reporter, TEM-1 beta-lactamase, attached to specific DNA binding elements. This system, termed mCpG-SEER-beta-Lac, shows a greater than 40-fold specificity for methylated versus nonmethylated CpG target sites. Importantly, the resulting signal enhancement afforded by the catalytic activity of split-beta-lactamase allowed for the sensitive detection of 2.5 fmol of methylated target dsDNA in 5 min. Thus, this new sensor geometry represents a 250-fold enhancement in assay time and a 2000-fold enhancement in sensitivity over our first-generation system for the detection of specific sites of DNA methylation.
Collapse
Affiliation(s)
- Jason R Porter
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
593
|
Pfeifer GP, Wang Z, Riggs AD, Rauch TA. Methylated-CpG island recovery assay-assisted microarrays for cancer diagnosis. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2007; 1:99-108. [PMID: 23489272 DOI: 10.1517/17530059.1.1.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Alterations in DNA methylation patterns occur in every type of human cancer and are considered a hallmark of malignant transformation. Most notable is the cancer-associated hypermethylation of CpG-rich sequences, the so-called CpG islands, which are often found near the 5' ends and promoters of genes. This CpG island methylation represents a positive signal that can be used to distinguish malignant tissue from normal tissue. Thus, characterization of CpG island hypermethylation has become a valuable tool for cancer detection and diagnosis. There are several methods used for detection of gene-specific DNA methylation. However, besides looking at individual genes, an even greater potential lies in the characterization of genome-wide changes of DNA methylation patterns in tumors. The authors propose that tumor type- and tumor subtype-specific DNA methylation patterns exist and can be exploited for the classification of cancers, their response to therapy and their metastatic potential, and thus may have predictive value. Various methods for genome-wide analysis of DNA methylation have been developed. These methods are described briefly and the methylated-CpG island recovery assay will be reviewed. This assay has been used in combination with microarray analysis to map CpG island methylation across cancer genomes.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Beckman Research Institute of the City of Hope, Division of Biology, Duarte, CA 91010, USA +1 626 301 8853 ; +1 626 358 7703 ;
| | | | | | | |
Collapse
|
594
|
Opavsky R, Wang SH, Trikha P, Raval A, Huang Y, Wu YZ, Rodriguez B, Keller B, Liyanarachchi S, Wei G, Davuluri RV, Weinstein M, Felsher D, Ostrowski M, Leone G, Plass C. CpG island methylation in a mouse model of lymphoma is driven by the genetic configuration of tumor cells. PLoS Genet 2007; 3:1757-69. [PMID: 17907813 PMCID: PMC1994712 DOI: 10.1371/journal.pgen.0030167] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 08/16/2007] [Indexed: 12/31/2022] Open
Abstract
Hypermethylation of CpG islands is a common epigenetic alteration associated with cancer. Global patterns of hypermethylation are tumor-type specific and nonrandom. The biological significance and the underlying mechanisms of tumor-specific aberrant promoter methylation remain unclear, but some evidence suggests that this specificity involves differential sequence susceptibilities, the targeting of DNA methylation activity to specific promoter sequences, or the selection of rare DNA methylation events during disease progression. Using restriction landmark genomic scanning on samples derived from tissue culture and in vivo models of T cell lymphomas, we found that MYC overexpression gave rise to a specific signature of CpG island hypermethylation. This signature reflected gene transcription profiles and was detected only in advanced stages of disease. The further inactivation of the Pten, p53, and E2f2 tumor suppressors in MYC-induced lymphomas resulted in distinct and diagnostic CpG island methylation signatures. Our data suggest that tumor-specific DNA methylation in lymphomas arises as a result of the selection of rare DNA methylation events during the course of tumor development. This selection appears to be driven by the genetic configuration of tumor cells, providing experimental evidence for a causal role of DNA hypermethylation in tumor progression and an explanation for the tremendous epigenetic heterogeneity observed in the evolution of human cancers. The ability to predict genome-wide epigenetic silencing based on relatively few genetic alterations will allow for a more complete classification of tumors and understanding of tumor cell biology. Genetic and epigenetic alterations of the genome are common features of cancers. The relationship between these two types of alterations, however, remains unclear. One type of epigenetic modification—DNA methylation in promoter sequences of genes—is of particular interest, since tumor cells have different patterns of promoter methylation than normal cells. Previous studies on human tumor samples have suggested a link between genetic alterations and the induction of aberrant DNA methylation; however, this link has been difficult to rigorously assess because of the incredible genetic heterogeneity found in human cancer. In this study, a mouse model of T cell lymphoma was used to explore the relationship between genetic and epigenetic modifications experienced by tumor cells. By introducing defined genetic changes into preneoplastic T cells of mice, such as the overexpression of the MYC oncogene and the ablation of tumor suppressor genes, we could carefully evaluate how these genetic changes impacted promoter methylation profiles during development of lymphomas in vivo. We found that the introduction of different genetic insults resulted in unique and diagnostic profiles of promoter methylation. Understanding how these methylation signatures contribute to tumor progression could eventually have diagnostic, prognostic, and therapeutic value for human cancers.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- CpG Islands/genetics
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/isolation & purification
- DNA, Neoplasm/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Epigenesis, Genetic
- Fibroblasts/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, Tumor Suppressor
- Humans
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Mice
- Mice, Nude
- Mice, Transgenic
- Neoplasm Transplantation
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-myc/genetics
- Transgenes
Collapse
Affiliation(s)
- Rene Opavsky
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Shu-Huei Wang
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Prashant Trikha
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Aparna Raval
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuan Huang
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Yue-Zhong Wu
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Benjamin Rodriguez
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Benjamin Keller
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Sandya Liyanarachchi
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Guo Wei
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Ramana V Davuluri
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael Weinstein
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Dean Felsher
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Michael Ostrowski
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Gustavo Leone
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- To whom correspondence should be addressed. E-mail: (GL); (CP)
| | - Christoph Plass
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
- To whom correspondence should be addressed. E-mail: (GL); (CP)
| |
Collapse
|
595
|
Dejeux E, Audard V, Cavard C, Gut IG, Terris B, Tost J. Rapid identification of promoter hypermethylation in hepatocellular carcinoma by pyrosequencing of etiologically homogeneous sample pools. J Mol Diagn 2007; 9:510-20. [PMID: 17690210 PMCID: PMC1975099 DOI: 10.2353/jmoldx.2007.060209] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant DNA methylation patterns have been identified in a variety of human diseases, particularly cancer. Pyrosequencing has evolved in recent years as a sensitive and accurate method for the analysis and quantification of the degree of DNA methylation in specific target regions. However, the number of candidate genes that can be analyzed in clinical specimens is often restricted by the limited amount of sample available. Here, we present a novel screening approach that enables the rapid identification of differentially methylated regions such as promoters by pyrosequencing of etiologically homogeneous sample pools after bisulfite treatment. We exemplify its use by the analysis of five genes (CDKN2A, GSTP1, MLH1, IGF2, and CTNNB1) involved in the pathogenesis of human hepatocellular carcinoma using pools stratified for different parameters of clinical importance. Results were confirmed by the individual analysis of the samples. The screening identified all genes displaying differential methylation successfully, and no false positives occurred. Quantitative comparison of the pools and the samples in the pool analyzed individually showed a deviation of approximately 1.5%, making the method ideally suited for the identification of diagnostic markers based on DNA methylation while saving precious DNA material.
Collapse
Affiliation(s)
- Emelyne Dejeux
- Laboratory for Epigenetics, Centre National de Génotypage, Bâtiment G2, 2 rue Gaston Crémieux, CP 5721, 91057 Evry Cedex, France
| | | | | | | | | | | |
Collapse
|
596
|
Smith LT, Otterson GA, Plass C. Unraveling the epigenetic code of cancer for therapy. Trends Genet 2007; 23:449-56. [PMID: 17681396 DOI: 10.1016/j.tig.2007.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 06/06/2007] [Accepted: 07/24/2007] [Indexed: 01/03/2023]
Abstract
Alterations in the genome and the epigenome are common in most cancers. Changes in epigenetic signatures, including aberrant DNA methylation and histone deacetylation, are among the most prevalent modifications in cancer and lead to dramatic changes in gene expression patterns. Because DNA methylation and histone deacetylation are reversible processes, they have become attractive as targets for cancer epigenetic therapy, both as single agents and as 'enhancing' agents for other treatment strategies. In this review we discuss our current view of the mammalian epigenome, this view has changed over the years because of the availability of novel technologies. We further demonstrate how the profound understanding of epigenetic alterations in cancer will help develop novel strategies for epigenetic therapies.
Collapse
Affiliation(s)
- Laura T Smith
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, OH, USA
| | | | | |
Collapse
|
597
|
Abstract
DNA methylation is the best known and most thoroughly studied epigenetic mechanism. Hypermethylation of CpG islands associated with silencing of tumour suppressor genes or tumour-related genes is a common hallmark of human cancer. The list of tumour-related genes with aberrant hypermethylation in their CpG islands has been increasing. There is also the potential for using DNA methylation profile data as markers for various types of human cancer. In this paper, we review the methylation profile of testicular germ cell tumours (TGCTs). We show that TGCTs have distinctive DNA methylation profiles that differ from those of somatic tissue-derived cancers or somatic tissues. We also discuss the methylation profile of TGCTs in terms of the DNA reprogramming that occurs in primordial germ cells or pre-implantation embryos. Finally, we describe the potential clinical utility of this unique methylation phenotype in TGCTs with regard to developing a novel tumour marker. These data suggest that unmethylated DNA fragments in TGCTs may have diagnostic implications. Further elucidation of epigenetic profiles in TGCTs is expected to provide a new insight into the biology of this disease.
Collapse
Affiliation(s)
- Keisei Okamoto
- Department of Urology, Shiga University of Medical Science, Shiga, Japan.
| | | |
Collapse
|
598
|
Schuebel KE, Chen W, Cope L, Glöckner SC, Suzuki H, Yi JM, Chan TA, Neste LV, Criekinge WV, van den Bosch S, van Engeland M, Ting AH, Jair K, Yu W, Toyota M, Imai K, Ahuja N, Herman JG, Baylin SB. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 2007; 3:1709-23. [PMID: 17892325 PMCID: PMC1988850 DOI: 10.1371/journal.pgen.0030157] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/31/2007] [Indexed: 11/18/2022] Open
Abstract
We have developed a transcriptome-wide approach to identify genes affected by promoter CpG island DNA hypermethylation and transcriptional silencing in colorectal cancer. By screening cell lines and validating tumor-specific hypermethylation in a panel of primary human colorectal cancer samples, we estimate that nearly 5% or more of all known genes may be promoter methylated in an individual tumor. When directly compared to gene mutations, we find larger numbers of genes hypermethylated in individual tumors, and a higher frequency of hypermethylation within individual genes harboring either genetic or epigenetic changes. Thus, to enumerate the full spectrum of alterations in the human cancer genome, and to facilitate the most efficacious grouping of tumors to identify cancer biomarkers and tailor therapeutic approaches, both genetic and epigenetic screens should be undertaken. Loss of gene expression in association with aberrant accumulation of 5-methylcytosine in gene promoter CpG islands is a common feature of human cancer. Here, we describe a method to discover these genes that permits identification of hundreds of novel candidate cancer genes in any cancer cell line. We now estimate that as much as 5% of colon cancer genes may harbor aberrant gene hypermethylation and we term these the cancer “promoter CpG island DNA hypermethylome.” Multiple mutated genes recently identified via cancer resequencing efforts are shown to be within this hypermethylome and to be more likely to undergo epigenetic inactivation than genetic alteration. Our approach allows derivation of new potential tumor biomarkers and potential pathways for therapeutic intervention. Importantly, our findings illustrate that efforts aimed at complete identification of the human cancer genome should include analyses of epigenetic, as well as genetic, changes.
Collapse
Affiliation(s)
- Kornel E Schuebel
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (KES); (SBB)
| | - Wei Chen
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- Predoctoral Training Program in Human Genetics, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Leslie Cope
- Biometry and Clinical Trials Division, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Sabine C Glöckner
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hiromu Suzuki
- First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | - Joo-Mi Yi
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Timothy A Chan
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Leander Van Neste
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | - Manon van Engeland
- Department of Pathology, University of Maastricht, Maastricht, The Netherlands
| | - Angela H Ting
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Kamwing Jair
- Bionumerik Pharmaceuticals Inc., San Antonio, Texas, United States of America
| | - Wayne Yu
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Minoru Toyota
- First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kohzoh Imai
- First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | - Nita Ahuja
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - James G Herman
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Stephen B Baylin
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- Predoctoral Training Program in Human Genetics, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (KES); (SBB)
| |
Collapse
|
599
|
Abstract
DNA methylation is a common mechanism of inactivation of tumour-suppressor and other cancer genes in neoplastic cells. The advantages of gene methylation as a target for the detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as urine or blood has led to many studies of application in genitourinary cancer. Here, we consider the background, promise and status, challenges and future directions of gene methylation and its clinical utility for the early detection of genitourinary cancer. The challenges of, and strategies for, advancing gene-methylation-based detection are relevant to all types of cancer.
Collapse
Affiliation(s)
- Paul Cairns
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
600
|
Lohrum M, Stunnenberg HG, Logie C. The new frontier in cancer research: Deciphering cancer epigenetics. Int J Biochem Cell Biol 2007; 39:1450-61. [PMID: 17442611 DOI: 10.1016/j.biocel.2007.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 12/13/2022]
Abstract
Cancer has long been known to be a disease caused by alterations in the genetic blueprint of cells. In the past decade it has become apparent that epigenetic alterations also underlie the etiology of cancer. Since epigenetic changes may be more facile to reverse than genetic lesions, much research has been invested in their characterization. Success has indeed been booked in the clinic with drugs that erase DNA methylation imprints or that target histone post-translational modifications such as lysine acetylation. However, the actual consequences of current epigenetic pharmacological intervention protocols are still poorly characterized and may be rather pleiotropic in nature. The challenge we face is therefore to define the cellular enzymes responsible for epigenetic modifications at given genes under specific conditions, so as to develop pharmacological agents that target tumorigenic epigenetic lesions while eliciting minimal unwanted side effects. Application of genome-wide analytical tools has begun to provide spatio-temporally resolved data that will be crucial to achieve this goal. Finally, the molecular mode of action of epigenetic drugs may be more intricate than initially thought, involving more than DNA and histones, since it has been reported that transcription (co)factors are themselves also targeted by histone modifying enzymes.
Collapse
Affiliation(s)
- Marion Lohrum
- Molecular Biology Department, Nijmegen Centre for Molecular Life Sciences, Radboud University, The Netherlands
| | | | | |
Collapse
|