601
|
Krautwald S, Dewitz C, Fändrich F, Kunzendorf U. Inhibition of regulated cell death by cell-penetrating peptides. Cell Mol Life Sci 2016; 73:2269-84. [PMID: 27048815 PMCID: PMC4887531 DOI: 10.1007/s00018-016-2200-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Development of the means to efficiently and continuously renew missing and non-functional proteins in diseased cells remains a major goal in modern molecular medicine. While gene therapy has the potential to achieve this, substantial obstacles must be overcome before clinical application can be considered. A promising alternative approach is the direct delivery of non-permeant active biomolecules, such as oligonucleotides, peptides and proteins, to the affected cells with the purpose of ameliorating an advanced disease process. In addition to receptor-mediated endocytosis, cell-penetrating peptides are widely used as vectors for rapid translocation of conjugated molecules across cell membranes into intracellular compartments and the delivery of these therapeutic molecules is generally referred to as novel prospective protein therapy. As a broad coverage of the enormous amount of published data in this field is unrewarding, this review will provide a brief, focused overview of the technology and a summary of recent studies of the most commonly used protein transduction domains and their potential as therapeutic agents for the treatment of cellular damage and the prevention of regulated cell death.
Collapse
Affiliation(s)
- Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany.
| | - Christin Dewitz
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Fred Fändrich
- Clinic for Applied Cellular Medicine, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| |
Collapse
|
602
|
Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell Mol Life Sci 2016; 73:2309-24. [PMID: 27048819 PMCID: PMC5490387 DOI: 10.1007/s00018-016-2202-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.
Collapse
Affiliation(s)
- Yuan Ying
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
603
|
Simon CR, Siviero F, Monesi N. Beyond DNA puffs: What can we learn from studying sciarids? Genesis 2016; 54:361-78. [PMID: 27178805 DOI: 10.1002/dvg.22946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/07/2022]
Abstract
Members of the Sciaridae family attracted the interest of researchers because of the demonstration that the DNA puff regions, which are formed in the salivary gland polytene chromosomes at the end of the fourth larval instar, constitute sites of developmentally regulated gene amplification. Besides contributing to a deeper understanding of the process of gene amplification, the study of sciarids has also provided important insights on other biological processes such as sex determination, programmed cell death, insect immunity, telomere maintenance, and nucleolar organizing regions (NOR) formation. Open questions in sciarids include among others, early development, the role of noncoding RNAs in gene amplification and the relationship between gene amplification and transcription in DNA puff forming regions. These and other questions can now be pursued with next generation sequencing techniques and experiments using RNAi experiments, since this latter technique has been shown to be feasible in sciarids. These new perspectives in the field of sciarid biology open the opportunity to consolidate sciarid species as important emerging models. genesis 54:361-378, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Roberto Simon
- Departamento de Biologia Estrutural, Universidade Federal do Triângulo Mineiro-UFTM, Instituto de Ciências Biológicas e Naturais, Uberaba, MG, Brazil, CEP 38025-015
| | - Fábio Siviero
- Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, SP, Brazil, CEP 05508-900
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
604
|
Galluzzi L, Bravo-San Pedro JM, Kepp O, Kroemer G. Regulated cell death and adaptive stress responses. Cell Mol Life Sci 2016; 73:2405-10. [PMID: 27048813 PMCID: PMC11108439 DOI: 10.1007/s00018-016-2209-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- U1138, INSERM, 75006, Paris, France.
- Sorbonne Paris Cité, Université Paris Descartes/Paris V, 75006, Paris, France.
- Université Pierre et Marie Curie/Paris VI, 75006, Paris, France.
- Gustave Roussy Comprehensive Cancer Institute, 94805, Villejuif, France.
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France
- U1138, INSERM, 75006, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes/Paris V, 75006, Paris, France
- Université Pierre et Marie Curie/Paris VI, 75006, Paris, France
- Gustave Roussy Comprehensive Cancer Institute, 94805, Villejuif, France
| | - Oliver Kepp
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France
- U1138, INSERM, 75006, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes/Paris V, 75006, Paris, France
- Université Pierre et Marie Curie/Paris VI, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805, Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- U1138, INSERM, 75006, Paris, France.
- Sorbonne Paris Cité, Université Paris Descartes/Paris V, 75006, Paris, France.
- Université Pierre et Marie Curie/Paris VI, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805, Villejuif, France.
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, 75015, Paris, France.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
605
|
de Silva Rodrigues JH, Stein J, Strauss M, Rivarola HW, Ueda-Nakamura T, Nakamura CV, Duszenko M. Clomipramine kills Trypanosoma brucei by apoptosis. Int J Med Microbiol 2016; 306:196-205. [DOI: 10.1016/j.ijmm.2016.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/07/2016] [Accepted: 03/28/2016] [Indexed: 12/31/2022] Open
|
606
|
Song Y, Fan Z, Bai X, Liu W, Han Y, Xu L, Wang M, Li J, Zheng Q, Zhang D, Wang H. PARP-1-modulated AIF translocation is involved in streptomycin-induced cochlear hair cell death. Acta Otolaryngol 2016; 136:545-50. [PMID: 26963167 DOI: 10.3109/00016489.2016.1143968] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Conclusion SM-induced dose- and location-dependent cochlear hair cell death in vitro. AIF might be translocated from mitochondria to nucleus and cytoplasm within SM-treated hair cells. The translocation of AIF might be modulated by PARP-1. Objective Streptomycin (SM), one of the widely used aminoglycoside nowadays, is still causing significant permanent sensorineural hearing loss owing to sensory hair cell death. This study was designed to investigate the role of apoptosis-inducing factor (AIF), an important mitochondrial cell death regulator, in SM ototoxicity within neonatal rat cochleae and HEI-OC1 cells. Methods The viability of HEI-OC1 cells was quantified by MTT assay. AIF, PARP-1, and myosin VIIa distributions were achieved by immunofluorescence. mRNA and protein expression of AIF and PARP-1 were examined by q-PCR and Western-blot. Results The hair cell loss was concomitant with the SM concentration variation, and aggravated from apical to basal turn. AIF was detected in nuclear region and AIF mRNA was up-regulated after SM incubation. Besides, AIF protein expression in mitochondria was decreased, whereas in cytosol it was increased. PARP-1 mRNA and protein were also up-regulated. 3-AB could attenuate the cell death and reverse the changes of AIF distribution by blocking PARP-1.
Collapse
Affiliation(s)
- Yongdong Song
- Department of Otolaryngology-Head and Neck Surgery, Shangdong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
- Shandong Provincial Key Laboratory of Otology, Jinan, PR China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shangdong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Xiaohui Bai
- Shandong Provincial Key Laboratory of Otology, Jinan, PR China
- Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Otology, Jinan, PR China
- Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shangdong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shangdong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Mingming Wang
- Department of Otolaryngology-Head and Neck Surgery, Shangdong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Jianfeng Li
- Shandong Provincial Key Laboratory of Otology, Jinan, PR China
- Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shangdong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shangdong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
- Shandong Provincial Key Laboratory of Otology, Jinan, PR China
- Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| |
Collapse
|
607
|
Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert PF, Hecht SS, Bucher JR, Stewart BW, Baan RA, Cogliano VJ, Straif K. Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:713-21. [PMID: 26600562 PMCID: PMC4892922 DOI: 10.1289/ehp.1509912] [Citation(s) in RCA: 431] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 11/13/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND A recent review by the International Agency for Research on Cancer (IARC) updated the assessments of the > 100 agents classified as Group 1, carcinogenic to humans (IARC Monographs Volume 100, parts A-F). This exercise was complicated by the absence of a broadly accepted, systematic method for evaluating mechanistic data to support conclusions regarding human hazard from exposure to carcinogens. OBJECTIVES AND METHODS IARC therefore convened two workshops in which an international Working Group of experts identified 10 key characteristics, one or more of which are commonly exhibited by established human carcinogens. DISCUSSION These characteristics provide the basis for an objective approach to identifying and organizing results from pertinent mechanistic studies. The 10 characteristics are the abilities of an agent to 1) act as an electrophile either directly or after metabolic activation; 2) be genotoxic; 3) alter DNA repair or cause genomic instability; 4) induce epigenetic alterations; 5) induce oxidative stress; 6) induce chronic inflammation; 7) be immunosuppressive; 8) modulate receptor-mediated effects; 9) cause immortalization; and 10) alter cell proliferation, cell death, or nutrient supply. CONCLUSION We describe the use of the 10 key characteristics to conduct a systematic literature search focused on relevant end points and construct a graphical representation of the identified mechanistic information. Next, we use benzene and polychlorinated biphenyls as examples to illustrate how this approach may work in practice. The approach described is similar in many respects to those currently being implemented by the U.S. EPA's Integrated Risk Information System Program and the U.S. National Toxicology Program. CITATION Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert P, Hecht SS, Bucher JR, Stewart BW, Baan R, Cogliano VJ, Straif K. 2016. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 124:713-721; http://dx.doi.org/10.1289/ehp.1509912.
Collapse
Affiliation(s)
- Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Catherine F. Gibbons
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA, and Research Triangle Park, North Carolina, USA
| | - Jason M. Fritz
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA, and Research Triangle Park, North Carolina, USA
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - David M. DeMarini
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA, and Research Triangle Park, North Carolina, USA
| | - Jane C. Caldwell
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA, and Research Triangle Park, North Carolina, USA
| | - Robert J. Kavlock
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA, and Research Triangle Park, North Carolina, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - John R. Bucher
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Bernard W. Stewart
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Robert A. Baan
- International Agency for Research on Cancer, Lyon, France
| | - Vincent J. Cogliano
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA, and Research Triangle Park, North Carolina, USA
| | - Kurt Straif
- International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
608
|
Affiliation(s)
- G Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris 75006, France
- INSERM U1138, Paris 75006, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris 75006, France
- Université Pierre et Marie Curie/Paris VI, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif 94805, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm 17176, Sweden
| |
Collapse
|
609
|
Buqué A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology 2016; 5:e1149674. [PMID: 27471617 PMCID: PMC4938376 DOI: 10.1080/2162402x.2016.1149674] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Progressing malignancies establish robust immunosuppressive networks that operate both systemically and locally. In particular, as tumors escape immunosurveillance, they recruit increasing amounts of myeloid and lymphoid cells that exert pronounced immunosuppressive effects. These cells not only prevent the natural recognition of growing neoplasms by the immune system, but also inhibit anticancer immune responses elicited by chemo-, radio- and immuno therapeutic interventions. Throughout the past decade, multiple strategies have been devised to counteract the accumulation or activation of tumor-infiltrating immunosuppressive cells for therapeutic purposes. Here, we review recent preclinical and clinical advances on the use of small molecules that target the immunological tumor microenvironment for cancer therapy. These agents include inhibitors of indoleamine 2,3-dioxigenase 1 (IDO1), prostaglandin E2, and specific cytokine receptors, as well as modulators of intratumoral purinergic signaling and arginine metabolism.
Collapse
Affiliation(s)
- Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
610
|
Naccache PH, Fernandes MJG. Challenges in the characterization of neutrophil extracellular traps: The truth is in the details. Eur J Immunol 2016; 46:52-5. [PMID: 26635275 DOI: 10.1002/eji.201546022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 10/21/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022]
Abstract
Neutrophil extracellular traps play a key role in defense against extracellular pathogens. The release of these chromatin structures, that contain a combination of cytoplasmic and granule proteins, is known as NETosis, a regulated cell death modality typical of neutrophils. NETosis is induced by pathogens as well as other stimuli such as activated platelets. Our understanding of the molecular events underlying this phenomenon remains incomplete. The currently used experimental approaches to study NETs are semi-quantitative, subjective in nature, and low throughput, rendering it difficult to compare results between laboratories. This is highlighted in two articles published in this issue of the European Journal of Immunology which present what appear to be contradicting results on NET formation. Considering the extensive research on NETosis and the importance of this phenomenon in the immune response, we find it timely to briefly review the lacunae in the most commonly used methods to investigate NETosis. The impact these technical difficulties have on the advancement of our knowledge in this field as well as potential solutions are also discussed.
Collapse
Affiliation(s)
- Paul H Naccache
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, Laval University, CHU de Quebec Research Center, Quebec, Canada
| | - Maria J G Fernandes
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, Laval University, CHU de Quebec Research Center, Quebec, Canada
| |
Collapse
|
611
|
Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis. Int J Mol Sci 2016; 17:ijms17050749. [PMID: 27213331 PMCID: PMC4881570 DOI: 10.3390/ijms17050749] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that play essential roles in modulating the gene expression in almost all biological events. In the past decade, the involvement of miRNAs in various cardiovascular disorders has been explored in numerous in vitro and in vivo studies. In this paper, studies focused upon the discovery of miRNAs, their target genes, and functionality are reviewed. The selected miRNAs discussed herein have regulatory effects on target gene expression as demonstrated by miRNA/3′ end untranslated region (3′UTR) interaction assay and/or gain/loss-of-function approaches. The listed miRNA entities are categorized according to the biological relevance of their target genes in relation to three cardiovascular pathologies, namely cardiac hypertrophy, fibrosis, and apoptosis. Furthermore, comparison across 86 studies identified several candidate miRNAs that might be of particular importance in the ontogenesis of cardiovascular diseases as they modulate the expression of clusters of target genes involved in the progression of multiple adverse cardiovascular events. This review illustrates the involvement of miRNAs in diverse biological signaling pathways and provides an overview of current understanding of, and progress of research into, of the roles of miRNAs in cardiovascular health and disease.
Collapse
|
612
|
Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L. Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties. Trends Cell Biol 2016; 26:655-667. [PMID: 27161573 DOI: 10.1016/j.tcb.2016.04.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022]
Abstract
Several insults cause the inner mitochondrial membrane to abruptly lose osmotic homeostasis, hence initiating a regulated variant of cell death known as 'mitochondrial permeability transition' (MPT)-driven necrosis. MPT provides an etiological contribution to several human disorders characterized by the acute loss of post-mitotic cells, including cardiac and cerebral ischemia. Nevertheless, the precise molecular determinants of MPT remain elusive, which considerably hampers the development of clinically implementable cardio- or neuroprotective strategies targeting this process. We summarize recent findings shedding new light on the supramolecular entity that mediates MPT, the so-called 'permeability transition pore complex' (PTPC). Moreover, we discuss hitherto unresolved controversies on MPT and analyze the major obstacles that still preclude the complete understanding and therapeutic targeting of this process.
Collapse
Affiliation(s)
- Valentina Izzo
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
| | - Valentina Sica
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Faculté de Medicine, Université Paris Sud/Paris XI, 94270 Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Lorenzo Galluzzi
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.
| |
Collapse
|
613
|
A Systematic Comparison Identifies an ATP-Based Viability Assay as Most Suitable Read-Out for Drug Screening in Glioma Stem-Like Cells. Stem Cells Int 2016; 2016:5623235. [PMID: 27274737 PMCID: PMC4871979 DOI: 10.1155/2016/5623235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
Serum-free culture methods for patient-derived primary glioma cultures, selecting for glioma stem-like cells (GSCs), are becoming the gold standard in neurooncology research. These GSCs can be implemented in drug screens to detect patient-specific responses, potentially bridging the translational gap to personalized medicine. Since numerous compounds are available, a rapid and reliable readout for drug efficacies is required. This can be done using approaches that measure viability, confluency, cytotoxicity, or apoptosis. To determine which assay is best suitable for drug screening, 10 different assays were systematically tested on established glioma cell lines and validated on a panel of GSCs. General applicability was assessed using distinct treatment modalities, being temozolomide, radiation, rapamycin, and the oncolytic adenovirus Delta24-RGD. The apoptosis and cytotoxicity assays did not unequivocally detect responses and were excluded from further testing. The NADH- and ATP-based viability assays revealed comparable readout for all treatments; however, the latter had smaller standard deviations and direct readout. Importantly, drugs that interfere with cell metabolism require alternative techniques such as confluency monitoring to accurately measure treatment effects. Taken together, our data suggest that the combination of ATP luminescence assays with confluency monitoring provides the most specific and reproducible readout for drug screening on primary GSCs.
Collapse
|
614
|
Neitemeier S, Dolga AM, Honrath B, Karuppagounder SS, Alim I, Ratan RR, Culmsee C. Inhibition of HIF-prolyl-4-hydroxylases prevents mitochondrial impairment and cell death in a model of neuronal oxytosis. Cell Death Dis 2016; 7:e2214. [PMID: 27148687 PMCID: PMC4917646 DOI: 10.1038/cddis.2016.107] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/23/2016] [Accepted: 03/22/2016] [Indexed: 12/24/2022]
Abstract
Mitochondrial impairment induced by oxidative stress is a main characteristic of intrinsic cell death pathways in neurons underlying the pathology of neurodegenerative diseases. Therefore, protection of mitochondrial integrity and function is emerging as a promising strategy to prevent neuronal damage. Here, we show that pharmacological inhibition of hypoxia-inducible factor prolyl-4-hydroxylases (HIF-PHDs) by adaptaquin inhibits lipid peroxidation and fully maintains mitochondrial function as indicated by restored mitochondrial membrane potential and ATP production, reduced formation of mitochondrial reactive oxygen species (ROS) and preserved mitochondrial respiration, thereby protecting neuronal HT-22 cells in a model of glutamate-induced oxytosis. Selective reduction of PHD1 protein using CRISPR/Cas9 technology also reduced both lipid peroxidation and mitochondrial impairment, and attenuated glutamate toxicity in the HT-22 cells. Regulation of activating transcription factor 4 (ATF4) expression levels and related target genes may mediate these beneficial effects. Overall, these results expose HIF-PHDs as promising targets to protect mitochondria and, thereby, neurons from oxidative cell death.
Collapse
Affiliation(s)
- S Neitemeier
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| | - A M Dolga
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| | - B Honrath
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| | - S S Karuppagounder
- Burke-Cornell Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY, USA
| | - I Alim
- Burke-Cornell Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY, USA
| | - R R Ratan
- Burke-Cornell Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY, USA
| | - C Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| |
Collapse
|
615
|
Ferroptosis in p53-dependent oncosuppression and organismal homeostasis. Cell Death Differ 2016; 22:1237-8. [PMID: 26143748 DOI: 10.1038/cdd.2015.54] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
616
|
Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem Biophys Res Commun 2016; 473:775-780. [DOI: 10.1016/j.bbrc.2016.03.052] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023]
|
617
|
Yu Y, Duan J, Yu Y, Li Y, Zou Y, Yang Y, Jiang L, Li Q, Sun Z. Autophagy and autophagy dysfunction contribute to apoptosis in HepG2 cells exposed to nanosilica. Toxicol Res (Camb) 2016; 5:871-882. [PMID: 30090396 PMCID: PMC6062368 DOI: 10.1039/c5tx00465a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/28/2016] [Indexed: 12/27/2022] Open
Abstract
Great concerns have led to the evaluation of the potential hazards of nanosilica to human health and the environment. However, there still exists persistent debates on the biological effects and toxic consequences induced by nanosilica. The present study investigated both autophagy and apoptosis in ICR mice and Human hepatocellular carcinoma cells (HepG2), and then explored the interactive mechanism between these two distinct cell death modalities in HepG2 cells. Mice liver injuries seen by hematoxylin and eosin (HE) staining indicated the hepatotoxic effects of nanosilica. The TUNEL assay and immunohistochemistry results confirmed that nanosilica could induce both apoptosis and autophagy in vivo. Flow cytometry analysis demonstrated apoptosis induction in vitro, while autophagic ultrastructures, LC3-II expression and immunofluorescence clarified autophagy activation by nanosilica. Apoptosis suppression by the autophagy inhibitor of 3-methyladenine (3-MA) implied that autophagy was involved in apoptotic cell death. A mechanistic study verified that nanosilica induced autophagy via negative regulation of mammalian target of rapamycin (mTOR) signaling but not the Beclin-1 associated pathway. The enhancement of p62 accumulation and mTOR down-regulation might account for the molecular mechanism in contribution of autophagy to apoptosis. As an emerging new mechanism of nanomaterial toxicity, autophagy might be a more susceptive indicator for toxicological consequence evaluation in nanoparticle toxicity. The present study provides novel evidence to elucidate the toxicity mechanisms and may be beneficial to more rational applications of nanosilica in the future.
Collapse
Affiliation(s)
- Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology , Head and Neck Surgery , Beijing Pediatric Research Institute , Beijing Children's Hospital , Capital Medical University , Beijing , P.R. China
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
| | - Junchao Duan
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Yang Yu
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Yang Li
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Yang Zou
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Yumei Yang
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Lizhen Jiang
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Qiuling Li
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| | - Zhiwei Sun
- School of Public Health , Capital Medical University , Beijing , 100069 , P.R. China . ; ; Tel: +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , 100069 , P.R. China
| |
Collapse
|
618
|
Abstract
Autophagy constitutes a prominent mechanism through which eukaryotic cells preserve homeostasis in baseline conditions and in response to perturbations of the intracellular or extracellular microenvironment. Autophagic responses can be relatively non-selective or target a specific subcellular compartment. At least in part, this depends on the balance between the availability of autophagic substrates ("offer") and the cellular need of autophagic products or functions for adaptation ("demand"). Irrespective of cargo specificity, adaptive autophagy relies on a panel of sensors that detect potentially dangerous cues and convert them into signals that are ultimately relayed to the autophagic machinery. Here, we summarize the molecular systems through which specific subcellular compartments-including the nucleus, mitochondria, plasma membrane, reticular apparatus, and cytosol-convert homeostatic perturbations into an increased offer of autophagic substrates or an accrued cellular demand for autophagic products or functions.
Collapse
|
619
|
Wang Z, Liu D, Varin A, Nicolas V, Courilleau D, Mateo P, Caubere C, Rouet P, Gomez AM, Vandecasteele G, Fischmeister R, Brenner C. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death Dis 2016; 7:e2198. [PMID: 27100892 PMCID: PMC4855650 DOI: 10.1038/cddis.2016.106] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Although cardiac cytosolic cyclic 3',5'-adenosine monophosphate (cAMP) regulates multiple processes, such as beating, contractility, metabolism and apoptosis, little is known yet on the role of this second messenger within cardiac mitochondria. Using cellular and subcellular approaches, we demonstrate here the local expression of several actors of cAMP signaling within cardiac mitochondria, namely a truncated form of soluble AC (sACt) and the exchange protein directly activated by cAMP 1 (Epac1), and show a protective role for sACt against cell death, apoptosis as well as necrosis in primary cardiomyocytes. Upon stimulation with bicarbonate (HCO3(-)) and Ca(2+), sACt produces cAMP, which in turn stimulates oxygen consumption, increases the mitochondrial membrane potential (ΔΨm) and ATP production. cAMP is rate limiting for matrix Ca(2+) entry via Epac1 and the mitochondrial calcium uniporter and, as a consequence, prevents mitochondrial permeability transition (MPT). The mitochondrial cAMP effects involve neither protein kinase A, Epac2 nor the mitochondrial Na(+)/Ca(2+) exchanger. In addition, in mitochondria isolated from failing rat hearts, stimulation of the mitochondrial cAMP pathway by HCO3(-) rescued the sensitization of mitochondria to Ca(2+)-induced MPT. Thus, our study identifies a link between mitochondrial cAMP, mitochondrial metabolism and cell death in the heart, which is independent of cytosolic cAMP signaling. Our results might have implications for therapeutic prevention of cell death in cardiac pathologies.
Collapse
Affiliation(s)
- Z Wang
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - D Liu
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - A Varin
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - V Nicolas
- UMS–IPSIT, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - D Courilleau
- UMS–IPSIT, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - P Mateo
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - C Caubere
- INSERM I2MC, UMR 1048, Université Paul Sabatier, Toulouse, France
| | - P Rouet
- INSERM I2MC, UMR 1048, Université Paul Sabatier, Toulouse, France
| | - A-M Gomez
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - G Vandecasteele
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - R Fischmeister
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
- UMS–IPSIT, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - C Brenner
- INSERM UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
- UMS–IPSIT, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
620
|
Sato A, Omi T, Yamamoto A, Satake A, Hiramoto A, Masutani M, Tanuma SI, Wataya Y, Kim HS. MicroRNA-351 Regulates Two-Types of Cell Death, Necrosis and Apoptosis, Induced by 5-fluoro-2'-deoxyuridine. PLoS One 2016; 11:e0153130. [PMID: 27071035 PMCID: PMC4829180 DOI: 10.1371/journal.pone.0153130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
Cell-death can be necrosis and apoptosis. We are investigating the mechanisms regulating the cell death that occurs on treatment of mouse cancer cell-line FM3A with antitumor 5-fluoro-2'-deoxyuridine (FUdR): necrosis occurs for the original clone F28-7, and apoptosis for its variant F28-7-A. Here we report that a microRNA (miR-351) regulates the cell death pattern. The miR-351 is expressed strongly in F28-7-A but only weakly in F28-7. Induction of a higher expression of miR-351 in F28-7 by transfecting an miRNA mimic into F28-7 resulted in a change of the death mode; necrosis to apoptosis. Furthermore, transfection of an miR-351 inhibitor into F28-7-A resulted in the morphology change, apoptosis to necrosis, in this death-by-FUdR. Possible mechanism involving lamin B1 in this miR-351's regulatory action is discussed.
Collapse
Affiliation(s)
- Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Division of Genome Stability Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Takuya Omi
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Akihiro Yamamoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Akito Satake
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Akiko Hiramoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Sei-ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Yusuke Wataya
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Hye-Sook Kim
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| |
Collapse
|
621
|
Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech Ageing Dev 2016; 156:17-24. [PMID: 27060261 DOI: 10.1016/j.mad.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 01/07/2023]
Abstract
Senescence and apoptosis constitute types of cellular responses that normally ensure homeostasis, when endogenous or exogenous signals occur. Their deregulation is often observed in various pathologies, such as age and non-age related diseases including cancer. Although epithelial cells and fibroblasts are capable to exert both functions, under a plethora of insults, the fact that they exhibit notable intrinsic differences in cell/tissue homeostasis properties, might be a crucial determinant of the mode of response to a certain stress signal. Sparse evidence in the literature reveals that in the same tissue/organ context and under the same conditions, the cell type seems to drive the differential counteraction between epithelia and fibroblasts. Based on the above notion we propose that, upon stress insults, human fibroblasts seem to predominantly respond via senescence, while epithelial cells prefer to exert apoptosis. We suggest that considering the tissue as a whole (epithelium and stroma) would benefit research into new therapeutic strategies for chronic diseases and cancer.
Collapse
|
622
|
Tagliamonte M, Petrizzo A, Tornesello ML, Ciliberto G, Buonaguro FM, Buonaguro L. Combinatorial immunotherapy strategies for hepatocellular carcinoma. Curr Opin Immunol 2016; 39:103-113. [PMID: 26851637 DOI: 10.1016/j.coi.2016.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver malignancy. The prognosis for HCC patients greatly varies according to the stage at diagnosis. Overall it is poor, with a 5-year survival rate of approximately 5-6%. Immunotherapeutic interventions represent a novel and effective therapeutic tool. However, only few immunotherapy trials for HCC have been conducted so far with contrasting results, suggesting that significant improvements are needed. Indeed, the liver is characterized by a strong intrinsic immune suppressive microenvironment which needs to be counterbalanced with immune stimulatory approaches. Therefore, the implementation of combinatorial protocols combining immune stimulatory strategies with specific immunotherapy approaches could result in a dramatic improvement of efficacy and clinical outcome in HCC patients. The present review aims at describing the state of the art in immunotherapy strategies for HCC and future perspectives.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab of Molecular Biology & Viral Oncology, Dept Experimental Oncology
| | | | | | - Gennaro Ciliberto
- Scientific Direction, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy
| | | | - Luigi Buonaguro
- Lab of Molecular Biology & Viral Oncology, Dept Experimental Oncology.
| |
Collapse
|
623
|
Ledderose C, Woehrle T, Ledderose S, Strasser K, Seist R, Bao Y, Zhang J, Junger WG. Cutting off the power: inhibition of leukemia cell growth by pausing basal ATP release and P2X receptor signaling? Purinergic Signal 2016; 12:439-51. [PMID: 27020575 DOI: 10.1007/s11302-016-9510-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/16/2016] [Indexed: 01/12/2023] Open
Abstract
T cells respond to antigen stimulation with the rapid release of cellular ATP, which stimulates an autocrine feedback mechanism that regulates calcium influx through P2X receptors. This autocrine purinergic feedback mechanism plays an essential role in the activation of T cells resulting in cell proliferation and clonal expansion. We recently reported that increases in mitochondrial ATP production drive this stimulation-induced purinergic signaling mechanism but that low-level mitochondrial ATP production fuels basal T cell functions required to maintain vigilance of unstimulated T cells. Here we studied whether defects in these purinergic signaling mechanisms are involved in the unwanted proliferation of leukemia T cells. We found that acute leukemia T cells (Jurkat) possess a larger number and more active mitochondria than their healthy counterparts. Jurkat cells have higher intracellular ATP concentrations and generat more extracellular ATP than unstimulated T cells from healthy donors. As a result, increased purinergic signaling through P2X1 and P2X7 receptors elevates baseline levels of cytosolic Ca(2+) in Jurkat cells. We found that pharmacological inhibition of this basal purinergic signaling mechanism decreases mitochondrial activity, Ca(2+) signaling, and cell proliferation. Similar results were seen in the leukemic cell lines THP-1, U-937, and HL-60. Combined treatment with inhibitors of P2X1 or P2X7 receptors and the chemotherapeutic agent 6-mercaptopurine completely blocked Jurkat cell proliferation. Our results demonstrate that increased mitochondrial metabolism promotes autocrine purinergic signaling and uncontrolled proliferation of leukemia cells. These findings suggest that deranged purinergic signaling can result in T cell malignancy and that therapeutic targeting aimed at purinergic signaling is a potential strategy to combat T cell leukemia.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Tobias Woehrle
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Stephan Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Katharina Strasser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Richard Seist
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Yi Bao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Jingping Zhang
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
- Ludwig Boltzmann Institute for Traumatology, 1200, Vienna, Austria.
| |
Collapse
|
624
|
Abstract
In this issue of Cell Reports, Cullen et al. demonstrate that the release of mature interleukin-1β relies on necrotic plasma membrane permeabilization. Thus, caspases may have evolved to modulate the inflammatory potential of cell death, not to execute it.
Collapse
|
625
|
Fast calcium wave inhibits excessive apoptosis during epithelial wound healing. Cell Tissue Res 2016; 365:343-56. [PMID: 26987821 DOI: 10.1007/s00441-016-2388-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/29/2016] [Indexed: 01/08/2023]
Abstract
Successful wound closure is mainly the result of two cellular processes: migration and proliferation. Apoptosis has also been suggested to play a role in the mechanisms of wound healing. The fast calcium wave (FCW), triggered immediately after a wound is produced, has been proposed to be involved in determining healing responses in epithelia. We have explored the effects of the reversible inhibition of FCW on the apoptotic and proliferative responses of healing bovine corneal endothelial (BCE) cells in culture. The most important findings of this study are that caspase-dependent apoptosis occurs during the healing process, that the amount of apoptosis has a linear dependence on the migrated distance, and that FCW inhibition greatly increases the apoptotic index. We have further been able to establish that FCW plays a role in the control of cell proliferation during BCE wound healing. These results indicate that one of the main roles of the wave is to inhibit an excessive apoptotic response of the healing migrating cells. This property might represent a basic mechanism to allow sufficient migration and proliferation of the healing cells to assure proper restitution of the injured tissue.
Collapse
|
626
|
Magtanong L, Ko PJ, Dixon SJ. Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ 2016; 23:1099-109. [PMID: 26967968 PMCID: PMC5399169 DOI: 10.1038/cdd.2016.25] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/12/2022] Open
Abstract
Non-apoptotic regulated cell death (RCD) is essential to maintain organismal homeostasis and may be aberrantly activated during certain pathological states. Lipids are emerging as key components of several non-apoptotic RCD pathways. For example, a direct interaction between membrane phospholipids and the pore-forming protein mixed lineage kinase domain-like (MLKL) is needed for the execution of necroptosis, while the oxidative destruction of membrane polyunsaturated fatty acids (PUFAs), following the inactivation of glutathione peroxidase 4 (GPX4), is a requisite gateway to ferroptosis. Here, we review the roles of lipids in the initiation and execution of these and other forms of non-apoptotic cell death. We also consider new technologies that are allowing for the roles of lipids and lipid metabolism in RCD to be probed in increasingly sophisticated ways. In certain cases, this new knowledge may enable the development of therapies that target lipids and lipid metabolic processes to enhance or suppress specific non-apoptotic RCD pathways.
Collapse
Affiliation(s)
- L Magtanong
- Department of Biology, Stanford University, 337 Campus Drive, Stanford, CA, USA
| | - P J Ko
- Department of Biology, Stanford University, 337 Campus Drive, Stanford, CA, USA
| | - S J Dixon
- Department of Biology, Stanford University, 337 Campus Drive, Stanford, CA, USA
| |
Collapse
|
627
|
The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis 2016; 7:e2134. [PMID: 26962684 PMCID: PMC4823948 DOI: 10.1038/cddis.2016.47] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
Abstract
LTX-315 is a cationic amphilytic peptide that preferentially permeabilizes mitochondrial membranes, thereby causing partially BAX/BAK1-regulated, caspase-independent necrosis. Based on the observation that intratumorally injected LTX-315 stimulates a strong T lymphocyte-mediated anticancer immune response, we investigated whether LTX-315 may elicit the hallmarks of immunogenic cell death (ICD), namely (i) exposure of calreticulin on the plasma membrane surface, (ii) release of ATP into the extracellular space, (iii) exodus of HMGB1 from the nucleus, and (iv) induction of a type-1 interferon response. Using a panel of biosensor cell lines and robotized fluorescence microscopy coupled to automatic image analysis, we observed that LTX-315 induces all known ICD characteristics. This conclusion was validated by several independent methods including immunofluorescence stainings (for calreticulin), bioluminescence assays (for ATP), immunoassays (for HMGB1), and RT-PCRs (for type-1 interferon induction). When injected into established cancers, LTX-315 caused a transiently hemorrhagic focal necrosis that was accompanied by massive release of HMGB1 (from close-to-all cancer cells), as well as caspase-3 activation in a fraction of the cells. LTX-315 was at least as efficient as the positive control, the anthracycline mitoxantrone (MTX), in inducing local inflammation with infiltration by myeloid cells and T lymphocytes. Collectively, these results support the idea that LTX-315 can induce ICD, hence explaining its capacity to mediate immune-dependent therapeutic effects.
Collapse
|
628
|
Sima C, Hua J, Cypert M, Miller T, Wilson-Robles HM, Trent JM, Dougherty ER, Bittner ML. Assessing Combinational Drug Efficacy in Cancer Cells by Using Image-based Dynamic Response Analysis. Cancer Inform 2016; 14:33-43. [PMID: 26997864 PMCID: PMC4786100 DOI: 10.4137/cin.s30799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023] Open
Abstract
The landscape of translational research has been shifting toward drug combination therapies. Pairing of drugs allows for more types of drug interaction with cells. In order to accurately and comprehensively assess combinational drug efficacy, analytical methods capable of recognizing these alternative reactions will be required to prioritize those drug candidates having better chances of delivering appreciable therapeutic benefits. Traditional efficacy measures are primarily based on the “extent” of drug inhibition, which is the percentage of cells being killed after drug exposure. Here, we introduce a second dimension of evaluation criterion, speed of killing, based on a live cell imaging assay. This dynamic response trajectory approach takes advantage of both “extent” and “speed” information and uncovers synergisms that would otherwise be missed, while also generating hypotheses regarding important mechanistic modes of drug action.
Collapse
Affiliation(s)
- Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, USA
| | - Jianping Hua
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, USA
| | - Milana Cypert
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, USA
| | - Tasha Miller
- College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | | | | | - Edward R Dougherty
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Michael L Bittner
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, USA.; Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
629
|
BFD-22 a new potential inhibitor of BRAF inhibits the metastasis of B16F10 melanoma cells and simultaneously increased the tumor immunogenicity. Toxicol Appl Pharmacol 2016; 295:56-67. [DOI: 10.1016/j.taap.2016.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 01/06/2023]
|
630
|
Stricker SA, Beckstrom B, Mendoza C, Stanislawski E, Wodajo T. Oocyte aging in a marine protostome worm: The roles of maturation-promoting factor and extracellular signal regulated kinase form of mitogen-activated protein kinase. Dev Growth Differ 2016; 58:250-9. [PMID: 26918273 DOI: 10.1111/dgd.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
The roles of maturation-promoting factor (MPF) and an extracellular signal regulated kinase form of mitogen-activated protein kinase (ERK MAPK) are analyzed during oocyte aging in the marine protostome worm Cerebratulus. About a day after removal from the ovary, unfertilized metaphase-I-arrested oocytes of Cerebratulus begin to flatten and swell before eventually lysing, thereby exhibiting characteristics of a necroptotic mode of regulated cell death. Based on immunoblots probed with phospho-specific antibodies, MPF and ERK are initially active in freshly mature specimens. However, as oocytes age, both kinase activities decline, with ERK deactivation occurring well before MPF downregulation. Experiments using pharmacological modulators indicate that oocyte degradation is promoted by the maturation-initiated activation of ERK as well as by the deactivation of MPF that occurs in extensively aged specimens. The potential significance of these findings is discussed relative to previously published results for apoptotic eggs and oocytes of echinoderm and vertebrate deuterostomes.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Bradley Beckstrom
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Cristina Mendoza
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Emma Stanislawski
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Tewodros Wodajo
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
631
|
Giorgi C, Bonora M, Missiroli S, Morganti C, Morciano G, Wieckowski MR, Pinton P. Alterations in Mitochondrial and Endoplasmic Reticulum Signaling by p53 Mutants. Front Oncol 2016; 6:42. [PMID: 26942128 PMCID: PMC4766755 DOI: 10.3389/fonc.2016.00042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 11/24/2022] Open
Abstract
The p53 protein is probably the most important tumor suppressor, acting as a nuclear transcription factor primarily through the modulation of cell death. However, currently, it is well accepted that p53 can also exert important transcription-independent pro-cell death actions. Indeed, cytosolic localization of endogenous wild-type or transactivation-deficient p53 is necessary and sufficient for the induction of apoptosis and autophagy. Here, we present the extra-nuclear activities of p53 associated with the mitochondria and the endoplasmic reticulum, highlighting the activities of the p53 mutants on these compartments. These two intracellular organelles play crucial roles in the regulation of cell death, and it is now well established that they also represent sites where p53 can accumulate.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Massimo Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Sonia Missiroli
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Claudia Morganti
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Giampaolo Morciano
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology , Warsaw , Poland
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| |
Collapse
|
632
|
Fight or flight: regulation of emergency hematopoiesis by pyroptosis and necroptosis. Curr Opin Hematol 2016; 22:293-301. [PMID: 26049749 DOI: 10.1097/moh.0000000000000148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW A feature of the innate immune response that is conserved across kingdoms is the induction of cell death. In this review, we discuss the direct and indirect effects of increased inflammatory cell death, including pyroptosis - a caspase-1-dependent cell death - and necroptosis - a receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein-dependent, caspase-independent cell death - on emergency hematopoiesis. RECENT FINDINGS Activation of nonapoptotic cell death pathways during infection can trigger release of cytokines and/or damage-associated molecular patterns such as interleukin (IL)-1α, IL-1β, IL-18, IL-33, high-mobility group protein B1, and mitochondrial DNA to promote emergency hematopoiesis. During systemic infection, pyroptosis and necroptosis can directly kill hematopoietic stem and progenitor cells, which results in impaired hematopoiesis, cytopenia, and immunosuppression. Although originally described as discrete entities, there now appear to be more intimate connections between the nonapoptotic and death receptor signaling pathways. SUMMARY The choice to undergo pyroptotic and necroptotic cell death constitutes a rapid response system serving to eliminate infected cells, including hematopoietic stem and progenitor cells. This system has the potential to be detrimental to emergency hematopoiesis during severe infection. We discuss the potential of pharmacological intervention for the pyroptosis and necroptosis pathways that may be beneficial during periods of infection and emergency hematopoiesis.
Collapse
|
633
|
Galluzzi L, Kepp O, Kroemer G. Mitochondrial regulation of cell death: a phylogenetically conserved control. MICROBIAL CELL 2016; 3:101-108. [PMID: 28357340 PMCID: PMC5349020 DOI: 10.15698/mic2016.03.483] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitochondria are fundamental for eukaryotic cells as they participate in critical
catabolic and anabolic pathways. Moreover, mitochondria play a key role in the
signal transduction cascades that precipitate many (but not all) regulated
variants of cellular demise. In this short review, we discuss the differential
implication of mitochondria in the major forms of regulated cell death.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris.,Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Oliver Kepp
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; 75015 Paris, France
| |
Collapse
|
634
|
Chow SH, Deo P, Naderer T. Macrophage cell death in microbial infections. Cell Microbiol 2016; 18:466-74. [PMID: 26833712 DOI: 10.1111/cmi.12573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
Abstract
Macrophages can respond to microbial infections with programmed cell death. The major cell death pathways of apoptosis, pyroptosis and necroptosis are tightly regulated to ensure adequate immune reactions to virulent and persistent invaders. Macrophage death eliminates the replicative niche of intracellular pathogens and induces immune attack. Not surprisingly, successful pathogens have evolved strategies to modulate macrophage cell death pathways to enable microbial survival and replication. Uncontrolled macrophage death can also lead to tissue damage, which may augment bacterial dissemination and pathology. In this review, we highlight how pathogens hijack macrophage cell death signals to promote microbial survival and immune evasion.
Collapse
Affiliation(s)
- Seong H Chow
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Pankaj Deo
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| |
Collapse
|
635
|
Seo J, Lee EW, Sung H, Seong D, Dondelinger Y, Shin J, Jeong M, Lee HK, Kim JH, Han SY, Lee C, Seong JK, Vandenabeele P, Song J. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat Cell Biol 2016; 18:291-302. [DOI: 10.1038/ncb3314] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022]
|
636
|
Garg AD, Romano E, Rufo N, Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ 2016; 23:938-51. [PMID: 26891691 DOI: 10.1038/cdd.2016.5] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/03/2016] [Indexed: 12/15/2022] Open
Abstract
Phagocytosis of dying cells is a major homeostatic process that represents the final stage of cell death in a tissue context. Under basal conditions, in a diseased tissue (such as cancer) or after treatment with cytotoxic therapies (such as anticancer therapies), phagocytosis has a major role in avoiding toxic accumulation of cellular corpses. Recognition and phagocytosis of dying cancer cells dictate the eventual immunological consequences (i.e., tolerogenic, inflammatory or immunogenic) depending on a series of factors, including the type of 'eat me' signals. Homeostatic clearance of dying cancer cells (i.e., tolerogenic phagocytosis) tends to facilitate pro-tumorigenic processes and actively suppress antitumour immunity. Conversely, cancer cells killed by immunogenic anticancer therapies may stimulate non-homeostatic clearance by antigen-presenting cells and drive cancer antigen-directed immunity. On the other hand, (a general) inflammatory clearance of dying cancer cells could have pro-tumorigenic or antitumorigenic consequences depending on the context. Interestingly, the immunosuppressive consequences that accompany tolerogenic phagocytosis can be reversed through immune-checkpoint therapies. In the present review, we discuss the pivotal role of phagocytosis in regulating responses to anticancer therapy. We give particular attention to the role of phagocytosis following treatment with immunogenic or immune-checkpoint therapies, the clinical prognostic and predictive significance of phagocytic signals for cancer patients and the therapeutic strategies that can be employed for direct targeting of phagocytic determinants.
Collapse
Affiliation(s)
- A D Garg
- Cell Death Research and Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - E Romano
- Cell Death Research and Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - N Rufo
- Cell Death Research and Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
637
|
Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary. Proc Natl Acad Sci U S A 2016; 113:E1246-55. [PMID: 26884181 DOI: 10.1073/pnas.1522830113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Programmed cell death (PCD) is usually considered a cell-autonomous suicide program, synonymous with apoptosis. Recent research has revealed that PCD is complex, with at least a dozen cell death modalities. Here, we demonstrate that the large-scale nonapoptotic developmental PCD in the Drosophila ovary occurs by an alternative cell death program where the surrounding follicle cells nonautonomously promote death of the germ line. The phagocytic machinery of the follicle cells, including Draper, cell death abnormality (Ced)-12, and c-Jun N-terminal kinase (JNK), is essential for the death and removal of germ-line-derived nurse cells during late oogenesis. Cell death events including acidification, nuclear envelope permeabilization, and DNA fragmentation of the nurse cells are impaired when phagocytosis is inhibited. Moreover, elimination of a small subset of follicle cells prevents nurse cell death and cytoplasmic dumping. Developmental PCD in the Drosophila ovary is an intriguing example of nonapoptotic, nonautonomous PCD, providing insight on the diversity of cell death mechanisms.
Collapse
|
638
|
Eid R, Boucher E, Gharib N, Khoury C, Arab NTT, Murray A, Young PG, Mandato CA, Greenwood MT. Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae. Exp Cell Res 2016; 342:52-61. [PMID: 26886577 DOI: 10.1016/j.yexcr.2016.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 02/06/2023]
Abstract
Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomyces cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nada Gharib
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
| | - Chamel Khoury
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada; Department of Biology, Queen's University, Kingston, Ontario, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Alistair Murray
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Paul G Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada.
| |
Collapse
|
639
|
Green DR. The cell's dilemma, or the story of cell death: an entertainment in three acts. FEBS J 2016; 283:2568-76. [PMID: 26787595 DOI: 10.1111/febs.13658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/13/2016] [Indexed: 12/28/2022]
Abstract
Cells. They assemble, thrive, and cooperate to compose an organism, simple or complex. And like any living thing, they die. They die by catastrophe, they become sabotaged by condition, or they remove themselves on command from within or without. Each small life is followed by a death, to the benefit or the harm of the whole. Our story, here, is not of how each quietus occurs, but instead, of our ongoing effort to understand these tiny demises, to manipulate them, and to some day control them.
Collapse
|
640
|
Stage-Specific Changes in the Water, Na+, Cl- and K+ Contents of Organelles during Apoptosis, Demonstrated by a Targeted Cryo Correlative Analytical Approach. PLoS One 2016; 11:e0148727. [PMID: 26866363 PMCID: PMC4807926 DOI: 10.1371/journal.pone.0148727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/21/2015] [Indexed: 01/05/2023] Open
Abstract
Many studies have demonstrated changes in the levels of several ions during apoptosis, but a few recent studies have reported conflicting results concerning the changes in water content in apoptotic cells. We used a correlative light and cryo-scanning transmission electron microscopy method to quantify water and ion/element contents simultaneously at a nanoscale resolution in the various compartments of cells, from the onset to the end of apoptosis. We used stably transfected HeLa cells producing H2B-GFP to identify the stages of apoptosis in cells and for a targeted elemental analysis within condensed chromatin, nucleoplasm, mitochondria and the cytosol. We found that the compartments of apoptotic cells contained, on average, 10% more water than control cells. During mitochondrial outer membrane permeabilization, we observed a strong increase in the Na+ and Cl- contents of the mitochondria and a strong decrease in mitochondrial K+ content. During the first step in apoptotic volume decrease (AVD), Na+ and Cl- levels decreased in all cell compartments, but remained higher than those in control cells. Conversely, during the second step of AVD, Na+ and Cl- levels increased considerably in the nucleus and mitochondria. During these two steps of AVD, K+ content decreased steadily in all cell compartments. We also determined in vivo ion status during caspase-3 activity and chromatin condensation. Finally, we found that actinomycin D-tolerant cells had water and K+ contents similar to those of cells entering apoptosis but lower Na+ and Cl- contents than both cells entering apoptosis and control cells.
Collapse
|
641
|
Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. J Neurochem 2016; 139 Suppl 1:179-197. [DOI: 10.1111/jnc.13425] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Abdel A. Belaidi
- The Florey Institute for Neuroscience and Mental Health; The University of Melbourne; Parkville Vic. Australia
| | - Ashley I. Bush
- The Florey Institute for Neuroscience and Mental Health; The University of Melbourne; Parkville Vic. Australia
| |
Collapse
|
642
|
Sauvat A, Wang Y, Segura F, Spaggiari S, Müller K, Zhou H, Galluzzi L, Kepp O, Kroemer G. Quantification of cellular viability by automated microscopy and flow cytometry. Oncotarget 2016; 6:9467-75. [PMID: 25816366 PMCID: PMC4496231 DOI: 10.18632/oncotarget.3266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/31/2015] [Indexed: 12/15/2022] Open
Abstract
Cellular viability is usually determined by measuring the capacity of cells to exclude vital dyes such as 4′,6-diamidino-2-phenylindole (DAPI), or by assessing nuclear morphology with chromatinophilic plasma membrane-permeant dyes, such as Hoechst 33342. However, a fraction of cells that exclude DAPI or exhibit normal nuclear morphology have already lost mitochondrial functions and/or manifest massive activation of apoptotic caspases, and hence are irremediably committed to death. Here, we developed a protocol for the simultaneous detection of plasma membrane integrity (based on DAPI) or nuclear morphology (based on Hoechst 33342), mitochondrial functions (based on the mitochondrial transmembrane potential probe DiOC6(3)) and caspase activation (based on YO-PRO®-3, which can enter cells exclusively upon the caspase-mediated activation of pannexin 1 channels). This method, which allows for the precise quantification of dead, dying and healthy cells, can be implemented on epifluorescence microscopy or flow cytometry platforms and is compatible with a robotized, high-throughput workflow.
Collapse
Affiliation(s)
- Allan Sauvat
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Yidan Wang
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Faculté de Medecine, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Florian Segura
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sabrina Spaggiari
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Kevin Müller
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Heng Zhou
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Faculté de Medecine, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculté de Medecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Faculté de Medecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| |
Collapse
|
643
|
Noce A, Canale MP, Capria A, Rovella V, Tesauro M, Splendiani G, Annicchiarico-Petruzzelli M, Manzuoli M, Simonetti G, Di Daniele N. Coronary artery calcifications predict long term cardiovascular events in non diabetic Caucasian hemodialysis patients. Aging (Albany NY) 2016; 7:269-79. [PMID: 26131456 PMCID: PMC4429091 DOI: 10.18632/aging.100740] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular calcifications are frequent in chronic renal disease and are associated to significant cardiovascular morbidity and mortality. The long term predictive value of coronary artery calcifications detected by multi-layer spiral computed tomography for major cardiovascular events was evaluated in non-diabetic Caucasian patients on maintenance hemodialysis free of clinical cardiovascular disease. Two-hundred and five patients on maintenance hemodialysis were enrolled into this observational, prospective cohort study. Patients underwent a single cardiac multi-layer spiral computed tomography. Calcium load was quantified and patients grouped according to the Agatston score: group 1 (Agatston score: 0), group 2 (Agatston score 1-400), group 3 (Agatston score 401-1000) and group 4 (Agatston score >1000). Follow-up was longer than seven years. Primary endpoint was death from a major cardiovascular event. Actuarial survival was calculated separately in the four groups with Kaplan-Meier method. Patients who died from causes other than cardiovascular disease and transplanted patients were censored. The “log rank” test was employed to compare survival curves. One-hundred two patients (49.7%) died for a major cardiovascular event during the follow-up period. Seven-year actuarial survival was more than 90% for groups 1 and 2, but failed to about 50% for group 3 and to <10% for group 4. Hence, Agatston score >400 predicts a significantly higher cardiovascular mortality compared with Agatston score <400 (p<0.0001); furthermore, serum Parathyroid hormone levels > 300 pg/l were associated to a lower survival (p < 0.05). Extended coronary artery calcifications detected by cardiac multi-layer spiral computed tomography, strongly predicted long term cardiovascular mortality in non-diabetic Caucasian patients on maintenance hemodialysis. Moreover, it was not related to conventional indices of atherosclerosis, but to other non-traditional risk factors, as serum Parathyroid hormone levels. A full cost-benefit analysis is however necessary to justify a widespread use of cardiac multi-layer spiral computed tomography in clinical practice.
Collapse
|
644
|
Galluzzi L, López-Soto A, Kumar S, Kroemer G. Caspases Connect Cell-Death Signaling to Organismal Homeostasis. Immunity 2016; 44:221-31. [DOI: 10.1016/j.immuni.2016.01.020] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 01/01/2023]
|
645
|
Marchi S, Trapani E, Corricelli M, Goitre L, Pinton P, Retta SF. Beyond multiple mechanisms and a unique drug: Defective autophagy as pivotal player in cerebral cavernous malformation pathogenesis and implications for targeted therapies. Rare Dis 2016; 4:e1142640. [PMID: 27141412 PMCID: PMC4838318 DOI: 10.1080/21675511.2016.1142640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/11/2016] [Indexed: 12/22/2022] Open
Abstract
Cerebral Cavernous Malformation (CCM) is a major cerebrovascular disease of proven genetic origin affecting 0.3-0.5% of the general population. It is characterized by abnormally enlarged and leaky capillaries, which predispose to seizures, focal neurological deficits and intracerebral hemorrhage. Causative loss-of-function mutations have been identified in 3 genes, KRIT1 (CCM1), CCM2 and PDCD10 (CCM3). While providing new options for the development of pharmacological therapies, recent advances in knowledge of the functions of these genes have clearly indicated that they exert pleiotropic effects on several biological pathways. Recently, we found that defective autophagy is a common feature of loss-of-function mutations of the 3 known CCM genes, and underlies major phenotypic signatures of CCM disease, including endothelial-to-mesenchymal transition and enhanced ROS production, suggesting a unifying pathogenetic mechanism and reconciling the distinct therapeutic approaches proposed so far. In this invited review, we discuss autophagy as a possible unifying mechanism in CCM disease pathogenesis, and new perspectives and avenues of research for disease prevention and treatment, including novel potential drug repurposing and combination strategies, and identification of genetic risk factors as basis for development of personalized medicine approaches.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy; CCM Italia Research Network; Italy
| | - Eliana Trapani
- CCM Italia Research Network; Italy; Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Mariangela Corricelli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy; CCM Italia Research Network; Italy
| | - Luca Goitre
- CCM Italia Research Network; Italy; Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy; CCM Italia Research Network; Italy
| | - Saverio Francesco Retta
- CCM Italia Research Network; Italy; Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
646
|
Velletri T, Xie N, Wang Y, Huang Y, Yang Q, Chen X, Chen Q, Shou P, Gan Y, Cao G, Melino G, Shi Y. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death Dis 2016; 7:e2015. [PMID: 26775693 PMCID: PMC4816167 DOI: 10.1038/cddis.2015.367] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS.
Collapse
Affiliation(s)
- T Velletri
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - N Xie
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, Rome 00133, Italy
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Y Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Q Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - X Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Q Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - P Shou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Y Gan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - G Cao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - G Melino
- Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Y Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Soochow Institutes for Translational Medicine, Soochow University, Suzhou, China
| |
Collapse
|
647
|
Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade. Proc Natl Acad Sci U S A 2016; 113:1417-22. [PMID: 26787898 DOI: 10.1073/pnas.1524860113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cocaine exerts its behavioral stimulant effects by facilitating synaptic actions of neurotransmitters such as dopamine and serotonin. It is also neurotoxic and broadly cytotoxic, leading to overdose deaths. We demonstrate that the cytotoxic actions of cocaine reflect selective enhancement of autophagy, a process that physiologically degrades metabolites and cellular organelles, and that uncontrolled autophagy can also lead to cell death. In brain cultures, cocaine markedly increases levels of LC3-II and depletes p62, both actions characteristic of autophagy. By contrast, cocaine fails to stimulate cell death processes reflecting parthanatos, monitored by cleavage of poly(ADP ribose)polymerase-1 (PARP-1), or necroptosis, assessed by levels of phosphorylated mixed lineage kinase domain-like protein. Pharmacologic inhibition of autophagy protects neurons against cocaine-induced cell death. On the other hand, inhibition of parthanatos, necroptosis, or apoptosis did not change cocaine cytotoxicity. Depletion of ATG5 or beclin-1, major mediators of autophagy, prevents cocaine-induced cell death. By contrast, depleting caspase-3, whose cleavage reflects apoptosis, fails to alter cocaine cytotoxicity, and cocaine does not alter caspase-3 cleavage. Moreover, depleting PARP-1 or RIPK1, key mediators of parthanatos and necroptosis, respectively, did not prevent cocaine-induced cell death. Autophagic actions of cocaine are mediated by the nitric oxide-glyceraldehyde-3-phosphate dehydrogenase signaling pathway. Thus, cocaine-associated autophagy is abolished by depleting GAPDH via shRNA; by the drug CGP3466B, which prevents GAPDH nitrosylation; and by mutating cysteine-150 of GAPDH, its site of nitrosylation. Treatments that selectively influence cocaine-associated autophagy may afford therapeutic benefit.
Collapse
|
648
|
Gregory CD, Ford CA, Voss JJLP. Microenvironmental Effects of Cell Death in Malignant Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:51-88. [PMID: 27558817 DOI: 10.1007/978-3-319-39406-0_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although apoptosis is well recognized as a cell death program with clear anticancer roles, accumulating evidence linking apoptosis with tissue repair and regeneration indicates that its relationship with malignant disease is more complex than previously thought. Here we review how the responses of neighboring cells in the microenvironment of apoptotic tumor cells may contribute to the cell birth/cell death disequilibrium that provides the basis for cancerous tissue emergence and growth. We describe the bioactive properties of apoptotic cells and consider, in particular, how apoptosis of tumor cells can engender a range of responses including pro-oncogenic signals having proliferative, angiogenic, reparatory, and immunosuppressive features. Drawing on the parallels between wound healing, tissue regeneration and cancer, we propose the concept of the "onco-regenerative niche," a cell death-driven generic network of tissue repair and regenerative mechanisms that are hijacked in cancer. Finally, we consider how the responses to cell death in tumors can be targeted to provide more effective and long-lasting therapies.
Collapse
Affiliation(s)
- Christopher D Gregory
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK.
| | - Catriona A Ford
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Jorine J L P Voss
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
649
|
Sica V, Manic G, Kroemer G, Vitale I, Galluzzi L. Cytofluorometric Quantification of Cell Death Elicited by NLR Proteins. Methods Mol Biol 2016; 1417:231-245. [PMID: 27221495 DOI: 10.1007/978-1-4939-3566-6_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nucleotide-binding domain and leucine-rich repeat containing (NLR) proteins, also known as NOD-like receptors, are critical components of the molecular machinery that senses intracellular danger signals to initiate an innate immune response against invading pathogens or endogenous sources of hazard. The best characterized effect of NLR signaling is the secretion of various cytokines with immunostimulatory effects, including interleukin (IL)-1β and IL-18. Moreover, at least under specific circumstances, NLRs can promote regulated variants of cell death. Here, we detail two protocols for the cytofluorometric quantification of cell death-associated parameters that can be conveniently employed to assess the lethal activity of specific NLRs or their ligands.
Collapse
Affiliation(s)
- Valentina Sica
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1138, Paris, France
- Equipe 11, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, Paris, 75005, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | | | - Guido Kroemer
- INSERM, U1138, Paris, France
- Equipe 11, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, Paris, 75005, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 12 Rue de E'cole de Medecine, 75006, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus, Villejuif, France.
- INSERM, U1138, Paris, France.
- Equipe 11, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, Paris, 75005, France.
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 12 Rue de E'cole de Medecine, 75006, Paris, France.
- Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|
650
|
Maiuri MC, De Stefano D. Pathophysiologic Role of Autophagy in Human Airways. AUTOPHAGY NETWORKS IN INFLAMMATION 2016. [PMCID: PMC7123327 DOI: 10.1007/978-3-319-30079-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lung diseases are among the most common and widespread disorders worldwide. They refer to many different pathological conditions affecting the pulmonary system in acute or chronic forms, such as asthma, chronic obstructive pulmonary disease, infections, cystic fibrosis, lung cancer and many other breath complications. Environmental, epigenetic and genetic co-factors are responsible for these pathologies that can lead to respiratory failure, and, even, ultimately death. Increasing evidences have highlighted the implication of the autophagic pathways in the pathogenesis of lung diseases and, in some cases, the deregulated molecular mechanisms underlying autophagy may be considered as potential new therapeutic targets. This chapter summarizes recent advances in understanding the pathophysiological functions of autophagy and its possible roles in the causation and/or prevention of human lung diseases.
Collapse
|