601
|
Cucarella C, Tormo MA, Knecht E, Amorena B, Lasa I, Foster TJ, Penadés JR. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 2002; 70:3180-6. [PMID: 12011013 PMCID: PMC127991 DOI: 10.1128/iai.70.6.3180-3186.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 12/17/2001] [Accepted: 02/26/2002] [Indexed: 01/29/2023] Open
Abstract
The adherence of Staphylococcus aureus to soluble proteins and extracellular-matrix components of the host is one of the key steps in the pathogenesis of staphylococcal infections. S. aureus presents a family of adhesins called MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) that specifically recognize host matrix components. We examined the influence of biofilm-associated protein (Bap) expression on S. aureus adherence to host proteins, epithelial cell cultures, and mammary gland sections and on colonization of the mammary gland in an in vivo infection model. Bap-positive strain V329 showed lower adherence to immobilized fibrinogen and fibronectin than isogenic Bap-deficient strain m556. Bacterial adherence to histological sections of mammary gland and bacterial internalization into 293 cells were significantly lower in the Bap-positive strains. In addition, the Bap-negative strain showed significantly higher colonization in vivo of sheep mammary glands than the Bap-positive strain. Taken together, these results strongly suggest that the expression of the Bap protein interferes with functional properties of the MSCRAMM proteins, preventing initial bacterial attachment to host tissues and cellular internalization.
Collapse
Affiliation(s)
- Carme Cucarella
- Unit of Biochemistry, Department of Basic Biomedical Science, Cardenal Herrera-C. E. U. University, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
602
|
Darby C, Hsu JW, Ghori N, Falkow S. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 2002; 417:243-4. [PMID: 12015591 DOI: 10.1038/417243a] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bubonic plague is transmitted to mammals, including humans, by the bites of fleas whose digestive tracts are blocked by a mass of the bacterium Yersinia pestis. In these fleas, the plague-causing bacteria are surrounded by an extracellular matrix of unknown composition, and the blockage depends on a group of bacterial genes known as the hmsHFRS operon. Here we show that Y. pestis creates an hmsHFRS-dependent extracellular biofilm to inhibit feeding by the nematode Caenorhabditis elegans. Our results suggest that feeding obstruction in fleas is a biofilm-mediated process and that biofilms may be a bacterial defence against predation by invertebrates.
Collapse
Affiliation(s)
- Creg Darby
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
603
|
Abstract
The opportunistic human pathogen Staphylococcus epidermidis has become the most important cause of nosocomial infections in recent years. Its pathogenicity is mainly due to the ability to form biofilms on indwelling medical devices. In a biofilm, S. epidermidis is protected against attacks from the immune system and against antibiotic treatment, making S. epidermidis infections difficult to eradicate.
Collapse
Affiliation(s)
- Cuong Vuong
- Rocky Mountain Laboratories, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, 903 S 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
604
|
Abstract
The process of surface adhesion and biofilm development is a survival strategy employed by virtually all bacteria and refined over millions of years. This process is designed to anchor microorganisms in a nutritionally advantageous environment and to permit their escape to greener pastures when essential growth factors have been exhausted. Bacterial attachment to a surface can be divided into several distinct phases, including primary and reversible adhesion, secondary and irreversible adhesion, and biofilm formation. Each of these phases is ultimately controlled by the expression of one or more gene products. Ultrastructurally, the mature bacterial biofilm resembles an underwater coral reef containing pyramidal or mushroom-shaped microcolonies of organisms embedded within an extracellular glycocalyx, with channels and cavities to allow the exchange of nutrients and waste. The biofilm protects its inhabitants from predators, dehydration, biocides, and other environmental extremes while regulating population growth and diversity through primitive cell signals. From a physiological standpoint, surface-bound bacteria behave quite differently from their planktonic counterparts. Recognizing that bacteria naturally occur as surface-bound and often polymicrobic communities, the practice of performing antimicrobial susceptibility tests using pure cultures and in a planktonic growth mode should be questioned. That this model does not reflect conditions found in nature might help explain the difficulties encountered in the management and treatment of biomedical implant infections.
Collapse
Affiliation(s)
- W Michael Dunne
- Department of Pathology, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA.
| |
Collapse
|
605
|
Abstract
The genetic and molecular basis of biofilm formation in staphylococci is multifaceted. The ability to form a biofilm affords at least two properties: the adherence of cells to a surface and accumulation to form multilayered cell clusters. A trademark is the production of the slime substance PIA, a polysaccharide composed of beta-1,6-linked N-acetylglucosamines with partly deacetylated residues, in which the cells are embedded and protected against the host's immune defence and antibiotic treatment. Mutations in the corresponding biosynthesis genes (ica operon) lead to a pleiotropic phenotype; the cells are biofilm and haemagglutination negative, less virulent and less adhesive on hydrophilic surfaces. ica expression is modulated by various environmental conditions, appears to be controlled by SigB and can be turned on and off by insertion sequence (IS) elements. A number of biofilm-negative mutants have been isolated in which polysaccharide intercellular adhesin (PIA) production appears to be unaffected. Two of the characterized mutants are affected in the major autolysin (atlE) and in D-alanine esterification of teichoic acids (dltA). Proteins have been identified that are also involved in biofilm formation, such as the accumulation-associated protein (AAP), the clumping factor A (ClfA), the staphylococcal surface protein (SSP1) and the biofilm-associated protein (Bap). Concepts for the prevention of obstinate polymer-associated infections include the search for new anti-infectives active in biofilms and new biocompatible materials that complicate biofilm formation and the development of vaccines.
Collapse
Affiliation(s)
- Friedrich Götz
- Department of Microbial Genetics, Universität Tübingen, Waldhäuser Str. 70/8, D-72076 Tübingen, Germany.
| |
Collapse
|
606
|
de Silva GDI, Kantzanou M, Justice A, Massey RC, Wilkinson AR, Day NPJ, Peacock SJ. The ica operon and biofilm production in coagulase-negative Staphylococci associated with carriage and disease in a neonatal intensive care unit. J Clin Microbiol 2002; 40:382-8. [PMID: 11825946 PMCID: PMC153361 DOI: 10.1128/jcm.40.02.382-388.2002] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are a major cause of sepsis in the neonatal intensive care unit (NICU). We evaluated the hypothesis that the ica operon and biofilm production are associated with CoNS disease in this setting. CoNS associated with bacteremia or blood culture contamination and from the skin of infants with CoNS bacteremia or healthy controls were obtained during a prospective case-control study on a busy NICU. A total of 180 strains were identified, of which 122 (68%) were Staphylococcus epidermidis and the remainder were S. capitis (n = 29), S. haemolyticus (n = 11), S. hominis (n = 9), S. warneri (n = 8), and S. auricularis (n = 1). The presence of the genes icaA, icaB, icaC, and icaD was determined by PCR, and biofilm production was examined using qualitative (Congo red agar [CRA]) and quantitative (microtiter plate) techniques. There were no significant differences in the presence of the ica operon or CRA positivity among the four groups of strains. However, quantitative biofilm production was significantly greater in strains isolated from either the blood or the skin of neonates with S. epidermidis bacteremia. We conclude that the quantity of biofilm produced may be associated with the ability to cause CoNS infection. This conclusion suggests that the regulation of biofilm expression may play a central role in the disease process.
Collapse
Affiliation(s)
- G D I de Silva
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
607
|
Mack D, Sabottke A, Dobinsky S, Rohde H, Horstkotte MA, Knobloch JKM. Differential expression of methicillin resistance by different biofilm-negative Staphylococcus epidermidis transposon mutant classes. Antimicrob Agents Chemother 2002; 46:178-83. [PMID: 11751130 PMCID: PMC127015 DOI: 10.1128/aac.46.1.178-183.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation mediated by polysaccharide intercellular adhesin (PIA) is the major virulence factor of Staphylococcus epidermidis and is often associated with methicillin resistance. Transposon Tn917 insertions leading to a biofilm-negative phenotype in the biofilm-producing S. epidermidis strain 1457 (mecA-negative) were transferred into the methicillin-resistant, biofilm-producing S. epidermidis 1057 (mecA-positive) by transduction. According to their phenotypes and genotypes, the mutants could be separated into genetic classes I to IV (D. Mack, H. Rohde, S. Dobinsky, J. Riedewald, M. Nedelmann, J. K. M. Knobloch, H.-A. Elsner, and H. H. Feucht, Infect. Immun. 68:3799-3807, 2000). All transductants of S. epidermidis 1057 had phenotypes for biofilm formation similar to those of the corresponding mutants of S. epidermidis 1457. With a mecA-specific probe, identical hybridization patterns were observed for wild-type S. epidermidis 1057 and all the transductants. There were minor changes in oxacillin MICs for Class II and III transductants compared to those for wild-type S. epidermidis 1057. On population analysis, S. epidermidis 1057 displayed a heterogeneous expression type of resistance with an oxacillin MIC of > or =6 microg/ml for more than 90% of the cells. An almost identical profile was observed with biofilm-negative class I mutants, where the transposon insertions inactivate the icaADBC gene locus essential for PIA synthesis. In contrast, class III mutants were more sensitive to oxacillin with a MIC of < or =1 microg/ml for more than 90% of the cells. The class IV mutant displayed homogeneous resistance with a MIC of > or =50 microg/ml for more than 90% of the cells. On oxacillin gradient plates, the class II mutant displayed decreased resistance. Apparently, different independent mutations leading to a biofilm-negative phenotype of S. epidermidis by influencing expression of icaADBC on the level of transcription significantly influence the expression of methicillin resistance. However, transcription of mecA was not significantly altered in the different transductants compared to the wild type, independent of mecA induction with oxacillin, indicating that other mechanisms influencing phenotypic expression of methicillin resistance are involved.
Collapse
Affiliation(s)
- Dietrich Mack
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Federal Republic of Germany.
| | | | | | | | | | | |
Collapse
|
608
|
Dobinsky S, Bartscht K, Mack D. Influence of Tn917 insertion on transcription of the icaADBC operon in six biofilm-negative transposon mutants of Staphylococcus epidermidis. Plasmid 2002; 47:10-7. [PMID: 11798281 DOI: 10.1006/plas.2001.1554] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insertion of Tn917 into the icaADBC operon determines a biofilm-negative phenotype in biofilm-producing Staphylococcus epidermidis due to the inactivation of the genes responsible for the synthesis of the polysaccharide intercellular adhesin. We previously characterized six isogenic biofilm-negative transposon mutants of S. epidermidis 1457 with Tn917 insertions in either icaA or icaC. Northern blot analysis using ica- and Tn917-specific probes revealed that ica sequences located upstream and downstream of the transposon insertion site were still transcribed in five mutants in which Tn917 was inserted in the same transcriptional orientation. Outward-directed transcription initiating from within the transposon resulted in the complete expression of individual ica genes. Our results indicate that not only the inactivation of the entire operon but the isolated interruption of individual icaA and icaC genes led to a biofilm-negative phenotype in S. epidermidis. Tn917 mutagenesis may also result in the activation of genes located downstream of the insertion site.
Collapse
Affiliation(s)
- Sabine Dobinsky
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, Hamburg, D-20246, Germany.
| | | | | |
Collapse
|
609
|
Helmann JD, Wu MF, Kobel PA, Gamo FJ, Wilson M, Morshedi MM, Navre M, Paddon C. Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 2001; 183:7318-28. [PMID: 11717291 PMCID: PMC95581 DOI: 10.1128/jb.183.24.7318-7328.2001] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to heat stress, Bacillus subtilis activates the transcription of well over 100 different genes. Many of these genes are members of a general stress response regulon controlled by the secondary sigma factor, sigma(B), while others are under control of the HrcA or CtsR heat shock regulators. We have used DNA microarrays to monitor the global transcriptional response to heat shock. We find strong induction of known sigma(B)-dependent genes with a characteristic rapid induction followed by a return to near prestimulus levels. The HrcA and CtsR regulons are also induced, but with somewhat slower kinetics. Analysis of DNA sequences proximal to newly identified heat-induced genes leads us to propose ~70 additional members of the sigma(B) regulon. We have also identified numerous heat-induced genes that are not members of known heat shock regulons. Notably, we observe very strong induction of arginine biosynthesis and transport operons. Induction of several genes was confirmed by quantitative reverse transcriptase PCR. In addition, the transcriptional responses measured by microarray hybridization compare favorably with the numerous previous studies of heat shock in this organism. Since many different conditions elicit both specific and general stress responses, knowledge of the heat-induced general stress response reported here will be helpful for interpreting future microarray studies of other stress responses.
Collapse
Affiliation(s)
- J D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA.
| | | | | | | | | | | | | | | |
Collapse
|
610
|
Hussain M, Heilmann C, Peters G, Herrmann M. Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microb Pathog 2001; 31:261-70. [PMID: 11747374 DOI: 10.1006/mpat.2001.0469] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adhesion is a prerequisite for coagulase-negative staphylococci to cause invasive disease and may be mediated by adhesive host molecules adsorbed on implanted polymers. In this study, we can confirm previous observations demonstrating binding of Staphylococcus epidermidis to fibronectin (FN) adsorbed polymer surfaces. So far, the nature of FN-recognizing adhesin(s) in S. epidermidis remains elusive. Since teichoic acids (TA) have been shown to exert binding functions for extracellular matrix molecules in several Gram-positive species, we have purified wall TA of S. epidermidis laboratory strains KH11 and RP62A, as well as clinical isolate AB9. Using a polymethylmethacrylate (PMMA) coverslip adhesion assay, a microtitre plate assay and a particle agglutination assay, we found that purified TA significantly enhanced adhesion of S. epidermidis KH11 and RP62A to FN coated surfaces. Enhanced adhesion was dose-dependent and saturable. Preincubation, either of microorganisms or of FN coated surfaces, with TA promoted adhesion, while adhesion to TA-adsorbed PMMA was comparably low. This observation may suggest a potential role of cell wall carbohydrates as bridging molecules between microorganisms and immobilized FN in early steps of S. epidermidis pathogenesis.
Collapse
Affiliation(s)
- M Hussain
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany.
| | | | | | | |
Collapse
|
611
|
Kies S, Otto M, Vuong C, Götz F. Identification of the sigB operon in Staphylococcus epidermidis: construction and characterization of a sigB deletion mutant. Infect Immun 2001; 69:7933-6. [PMID: 11705980 PMCID: PMC98894 DOI: 10.1128/iai.69.12.7933-7936.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Accepted: 08/15/2001] [Indexed: 11/20/2022] Open
Abstract
The role of the alternative sigma factor sigma(B) in Staphylococcus epidermidis was investigated by the construction, complementation, and characterization of a sigB deletion mutant. Electrophoretic analyses confirmed a profound influence of sigma(B) on the expression of exoproteins and cytoplasmic proteins. Detailed investigation revealed reduced lipase and enhanced protease activity in the sigma(B) mutant. Furthermore, no significant influence of sigma(B) on heterologous biofilm formation or on the activity of the global regulator agr was detected.
Collapse
Affiliation(s)
- S Kies
- Mikrobielle Genetik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
612
|
de Silva GD, Justice A, Wilkinson AR, Buttery J, Herbert M, Day NP, Peacock SJ. Genetic population structure of coagulase-negative staphylococci associated with carriage and disease in preterm infants. Clin Infect Dis 2001; 33:1520-8. [PMID: 11568859 DOI: 10.1086/323338] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2001] [Revised: 05/14/2001] [Indexed: 11/03/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are a leading cause of sepsis in the neonatal intensive care unit (NICU) setting. To evaluate the hypothesis that isolates of CoNS associated with disease belong to hypervirulent clones, as opposed to being drawn randomly from the neonatal unit carriage flora, we conducted a prospective, case-controlled study in a busy NICU. Using pulsed-field gel electrophoresis (PFGE), we compared the population structures of CoNS isolates associated with bacteremia with isolates from the skin of healthy and infected neonates and with blood culture contaminants. Endemic clones of CoNS were identified, but there was no difference in the distribution of the 6 species or 73 PFGE types between the carriage and disease isolate groups; this suggests that hypervirulent clones with an enhanced ability to cause disease were not present in this NICU setting.
Collapse
Affiliation(s)
- G D de Silva
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
613
|
Millar MR, Linton CJ, Sherriff A. Use of a continuous culture system linked to a modified Robbins device or flow cell to study attachment of bacteria to surfaces. Methods Enzymol 2001; 337:43-62. [PMID: 11398449 DOI: 10.1016/s0076-6879(01)37005-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- M R Millar
- Department of Microbiology, Barts and The London NHS Trust, London E1 1BB, United Kingdom
| | | | | |
Collapse
|
614
|
Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva J, Penadés JR, Lasa I. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 2001; 67:4538-45. [PMID: 11571153 PMCID: PMC93200 DOI: 10.1128/aem.67.10.4538-4545.2001] [Citation(s) in RCA: 424] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalis isolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on the E. faecalis isolate, insertional mutagenesis of esp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboring esp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces.
Collapse
Affiliation(s)
- A Toledo-Arana
- Instituto de Agrobiotecnología y Recursos Naturales and Departamento de Producción Agraria, Universidad Pública de Navarra-Consejo Superior de Investigaciones Científicas, Campus de Arrosadia, 31006 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
615
|
Sihorkar V, Vyas SP. Biofilm consortia on biomedical and biological surfaces: delivery and targeting strategies. Pharm Res 2001; 18:1247-54. [PMID: 11683236 DOI: 10.1023/a:1013073508318] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microbial biofilms have been observed as congregates and attached communities on a diverse range of microecosystems of medicinal and industrial importance. Until recently, most investigations have been performed on planktonic (floating or fluid phase) microorganisms. After realization of the biofilm existence and their recalcitrance toward conventionally adopted preventive strategies and antimicrobial agents, research has been shifted toward novel therapeutics based drug delivery and targeting approaches. With the emergence of various biofilm models and methods to assess biofilm formation and physiology, it is pivotal to discuss various novel strategies that may become the therapeutic tools and clinically adaptable strategies of the future. This review explores various novel research strategies studied to date for their potential in effective biofilm eradication.
Collapse
Affiliation(s)
- V Sihorkar
- Department of Pharmaceutical Sciences, Dr. H.S. Gour Vishwavidyalaya, Sagar, MP, India
| | | |
Collapse
|
616
|
Hartford O, O'Brien L, Schofield K, Wells J, Foster TJ. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2545-2552. [PMID: 11535794 DOI: 10.1099/00221287-147-9-2545] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus epidermidis strains HB and K28 express surface proteins called Fbe or SdrG, respectively, that have sequence similarity to the clumping factors ClfA and ClfB of Staphylococcus aureus. A mutation in the fbe gene of strain HB was isolated by directed plasmid integration using the broad-host-range temperature-sensitive plasmid pG(+)Host9 (pVE6155). An internal fragment of fbe was cloned into pG(+)Host9 and the chimaeric plasmid was mobilized from S. aureus RN4220 to S. epidermidis 9142 by conjugation promoted by plasmid pGO1. The plasmid was then transferred to S. epidermidis strain HB by phage-48-mediated transduction. The plasmid integrated into the chromosomal fbe gene at a frequency of 2.8 x 10(-4). All the survivors tested had a copy of pG(+)Host9'fbe' integrated into the chromosomal fbe gene either as a single copy or as a tandem array. Western immunoblotting showed that the wall-associated Fbe protein was absent in the mutant. Wild-type S. epidermidis HB adhered to immobilized fibrinogen in a dose-dependent and saturable fashion whereas the mutant did not bind. The Fbe proteins of HB and K28 were expressed at a high level in Lactococcus lactis MG1363 using the expression vector pKS80. These strains adhered strongly to immobilized fibrinogen. These results confirm that Fbe is a fibrinogen-binding adhesin.
Collapse
Affiliation(s)
- Orla Hartford
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland1
| | - Louise O'Brien
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland1
| | - Karin Schofield
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK2
| | - Jerry Wells
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK2
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland1
| |
Collapse
|
617
|
Dobinsky S, Mack D. Efficient RNA isolation method for analysis of transcription in sessile Staphylococcus epidermidis biofilm cultures. Methods Enzymol 2001; 336:255-62. [PMID: 11398403 DOI: 10.1016/s0076-6879(01)36594-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- S Dobinsky
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | |
Collapse
|
618
|
Rupp ME, Fey PD. In vivo models to evaluate adhesion and biofilm formation by Staphylococcus epidermidis. Methods Enzymol 2001; 336:206-15. [PMID: 11398400 DOI: 10.1016/s0076-6879(01)36591-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- M E Rupp
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | |
Collapse
|
619
|
Mack D, Bartscht K, Fischer C, Rohde H, de Grahl C, Dobinsky S, Horstkotte MA, Kiel K, Knobloch JK. Genetic and biochemical analysis of Staphylococcus epidermidis biofilm accumulation. Methods Enzymol 2001; 336:215-39. [PMID: 11398401 DOI: 10.1016/s0076-6879(01)36592-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- D Mack
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
620
|
Deighton MA, Capstick J, Domalewski E, van Nguyen T. Methods for studying biofilms produced by Staphylococcus epidermidis. Methods Enzymol 2001; 336:177-95. [PMID: 11403072 DOI: 10.1016/s0076-6879(01)36589-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- M A Deighton
- Department of Biotechnology and Environmental Biology, Royal Melbourne Institute of Technology, Bundoora 3083, Victoria, Australia
| | | | | | | |
Collapse
|
621
|
Affiliation(s)
- S E Cramton
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
622
|
Ziebuhr W, Loessner I, Krimmer V, Hacker J. Methods to detect and analyze phenotypic variation in biofilm-forming Staphylococci. Methods Enzymol 2001; 336:195-205. [PMID: 11398399 DOI: 10.1016/s0076-6879(01)36590-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- W Ziebuhr
- Institut für Molekulare Infektionsbiologie, D-97070 Würzburg, Germany
| | | | | | | |
Collapse
|
623
|
Sandoe JA, Longshaw CM. Ventriculoperitoneal shunt infection caused by Staphylococcus lugdunensis. Clin Microbiol Infect 2001; 7:385-7. [PMID: 11531988 DOI: 10.1046/j.1198-743x.2001.00268.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J A Sandoe
- Division of Microbiology, School of Biochemistry & Molecular Biology, University of Leeds, Leeds, UK.
| | | |
Collapse
|
624
|
Cramton SE, Ulrich M, Götz F, Döring G. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 2001; 69:4079-85. [PMID: 11349079 PMCID: PMC98472 DOI: 10.1128/iai.69.6.4079-4085.2001] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear beta-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent in S. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression in ica- and polysaccharide-positive strains of both S. aureus and S. epidermidis. These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.
Collapse
Affiliation(s)
- S E Cramton
- Department of Microbial Genetics, Hygiene Institute, University of Tübingen, Germany
| | | | | | | |
Collapse
|
625
|
Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penadés JR. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 2001; 183:2888-96. [PMID: 11292810 PMCID: PMC99507 DOI: 10.1128/jb.183.9.2888-2896.2001] [Citation(s) in RCA: 583] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2000] [Accepted: 02/07/2001] [Indexed: 01/10/2023] Open
Abstract
Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection.
Collapse
Affiliation(s)
- C Cucarella
- Unit of Biochemistry, Department of Basic Biomedical Sciences, Cardenal Herrera-CEU University, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
626
|
Gross M, Cramton SE, Götz F, Peschel A. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 2001; 69:3423-6. [PMID: 11292767 PMCID: PMC98303 DOI: 10.1128/iai.69.5.3423-3426.2001] [Citation(s) in RCA: 378] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is responsible for a large percentage of infections associated with implanted biomedical devices. The molecular basis of primary adhesion to artificial surfaces is not yet understood. Here, we demonstrate that teichoic acids, highly charged cell wall polymers, play a key role in the first step of biofilm formation. An S. aureus mutant bearing a stronger negative surface charge due to the lack of D-alanine esters in its teichoic acids can no longer colonize polystyrene or glass. The mutation abrogates primary adhesion to plastic while production of the glucosamine-based polymer involved in later steps of biofilm formation is not affected. Our data suggest that repulsive electrostatic forces can lead to reduced staphylococcal biofilm formation, which could have considerable impact on the design of novel implanted materials.
Collapse
Affiliation(s)
- M Gross
- Microbial Genetics, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
627
|
Gelosia A, Baldassarri L, Deighton M, van Nguyen T. Phenotypic and genotypic markers of Staphylococcus epidermidis virulence. Clin Microbiol Infect 2001; 7:193-9. [PMID: 11422241 DOI: 10.1046/j.1469-0691.2001.00214.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To analyze Staphylococcus epidermidis strains, previously tested for their virulence in a mouse model of subcutaneous infection, for various phenotypic traits (biofilm density, extracellular polysaccharide, slime-associated antigen (SAA)) and for the presence of the ica gene cluster, to determine which of these phenotypic and genotypic methods best correlates with virulence in the mouse model. METHODS The quantitative biofilm assay was performed on 10 strains of S. epidermidis, comprising (1) RP62A (ATCC 35984), (2) the strongest and weakest biofilm producers in our collection, (3) a pair of phenotypic variants, and (4) a strain whose biofilm density was enhanced in iron-limited media. Biofilm density was measured after growth at 37 degrees C and at ambient temperature, in trypticase soy broth (TSB) with and without glucose supplementation and using both chemical and heat fixation. Strains were assayed for SAA using a double immunodiffusion method. Extracellular polysaccharide was detected by transmission electron microscopy (TEM). A 546-base-pair segment of the ica gene cluster was amplified by PCR. RESULTS Biofilm formation in TSB, glucose-enriched TSB, extracellular polysaccharide (observed by TEM), expression of SAA and presence of the ica gene predicted virulence of nine, nine, nine, eight and eight of 10 strains, respectively. The phenotypic expression of biofilm and related properties was medium and temperature dependent. We encountered one ica-positive strain that failed to express biofilm in standard TSB at 37 degrees C, but was virulent in a mouse model, and another strain that lacked ica, produced biofilm and was virulent in the model. CONCLUSIONS Mouse virulence in our model can be predicted by any of the phenotypic or genotypic methods examined for > or = 80% of strains. Medium and incubation conditions affect the expression of phenotypic markers by some strains. For the remaining strains, possible reasons for inconsistencies between the presence of the ica gene, phenotypic markers and mouse virulence include (1) dependence of biofilm on genes other than ica, (2) sequence differences in ica, (3) dependence of biofilm expression in vivo on strain characteristics and media used to prepare inocula for in vivo studies.
Collapse
Affiliation(s)
- A Gelosia
- Department of Applied Biology and Biotechnology, RMIT University, 124 Latrobe Street, 3000 Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
628
|
Knobloch JK, Bartscht K, Sabottke A, Rohde H, Feucht HH, Mack D. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 2001; 183:2624-33. [PMID: 11274123 PMCID: PMC95180 DOI: 10.1128/jb.183.8.2624-2633.2001] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Accepted: 01/04/2001] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is a common pathogen in medical device-associated infections. Its major pathogenetic factor is the ability to form adherent biofilms. The polysaccharide intercellular adhesin (PIA), which is synthesized by the products of the icaADBC gene cluster, is essential for biofilm accumulation. In the present study, we characterized the gene locus inactivated by Tn917 insertions of two isogenic, icaADBC-independent, biofilm-negative mutants, M15 and M19, of the biofilm-producing bacterium S. epidermidis 1457. The insertion site was the same in both of the mutants and was located in the first gene, rsbU, of an operon highly homologous to the sigB operons of Staphylococcus aureus and Bacillus subtilis. Supplementation of Trypticase soy broth with NaCl (TSB(NaCl)) or ethanol (TSB(EtOH)), both of which are known activators of sigB, led to increased biofilm formation and PIA synthesis by S. epidermidis 1457. Insertion of Tn917 into rsbU, a positive regulator of alternative sigma factor sigma(B), led to a biofilm-negative phenotype and almost undetectable PIA production. Interestingly, in TSB(EtOH), the mutants were enabled to form a biofilm again with phenotypes similar to those of the wild type. In TSB(NaCl), the mutants still displayed a biofilm-negative phenotype. No difference in primary attachment between the mutants and the wild type was observed. Similar phenotypic changes were observed after transfer of the Tn917 insertion of mutant M15 to the independent and biofilm-producing strain S. epidermidis 8400. In 11 clinical S. epidermidis strains, a restriction fragment length polymorphism of the sigB operon was detected which was independent of the presence of the icaADBC locus and a biofilm-positive phenotype. Obviously, different mechanisms are operative in the regulation of PIA expression in stationary phase and under stress induced by salt or ethanol.
Collapse
Affiliation(s)
- J K Knobloch
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
629
|
Ziebuhr W, Lössner I, Rachid S, Dietrich K, Götz F, Hacker J. Modulation of the polysaccharide intercellular adhesin (PIA) expression in biofilm forming Staphylococcus epidermidis. Analysis of genetic mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 485:151-7. [PMID: 11109101 DOI: 10.1007/0-306-46840-9_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- W Ziebuhr
- Institut für Molekulare Infektionsbiologie, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
630
|
Hacker J. Urinary tract infection: from basic science to clinical application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 485:1-8. [PMID: 11109081 DOI: 10.1007/0-306-46840-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J Hacker
- Institut für Molekulare Infektionsbiologie, Universität Würzburg
| |
Collapse
|
631
|
Götz F, Heilmann C, Cramton SE. Molecular basis of catheter associated infections by staphylococci. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 485:103-11. [PMID: 11109093 DOI: 10.1007/0-306-46840-9_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- F Götz
- Institut für Medizinische Mikrobiologie, Münster, Germany
| | | | | |
Collapse
|
632
|
Rachid S, Cho S, Ohlsen K, Hacker J, Ziebuhr W. Induction of Staphylococcus epidermidis biofilm formation by environmental factors: the possible involvement of the alternative transcription factor sigB. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 485:159-66. [PMID: 11109102 DOI: 10.1007/0-306-46840-9_22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- S Rachid
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Germany
| | | | | | | | | |
Collapse
|
633
|
Abstract
Biofilms can be defined as communities of microorganisms attached to a surface. It is clear that microorganisms undergo profound changes during their transition from planktonic (free-swimming) organisms to cells that are part of a complex, surface-attached community. These changes are reflected in the new phenotypic characteristics developed by biofilm bacteria and occur in response to a variety of environmental signals. Recent genetic and molecular approaches used to study bacterial and fungal biofilms have identified genes and regulatory circuits important for initial cell-surface interactions, biofilm maturation, and the return of biofilm microorganisms to a planktonic mode of growth. Studies to date suggest that the planktonic-biofilm transition is a complex and highly regulated process. The results reviewed in this article indicate that the formation of biofilms serves as a new model system for the study of microbial development.
Collapse
Affiliation(s)
- G O'Toole
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | |
Collapse
|
634
|
Allignet J, Aubert S, Dyke KG, El Solh N. Staphylococcus caprae strains carry determinants known to be involved in pathogenicity: a gene encoding an autolysin-binding fibronectin and the ica operon involved in biofilm formation. Infect Immun 2001; 69:712-8. [PMID: 11159959 PMCID: PMC97943 DOI: 10.1128/iai.69.2.712-718.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The atlC gene (1,485 bp), encoding an autolysin which binds fibronectin, and the ica operon, involved in biofilm formation, were isolated from the chromosome of an infectious isolate of Staphylococcus caprae and sequenced. AtlC (155 kDa) is similar to the staphylococcal autolysins Atl, AtlE, Aas (48 to 72% amino acid identity) and contains a putative signal peptide of 29 amino acids and two enzymatic centers (N-acetylmuramoyl-L-alanine amidase and endo-beta-N-acetylglucosaminidase) interconnected by three imperfect fibronectin-binding repeats. The glycine-tryptophan (GW) motif found in the central and end part of each repeat may serve for cell surface anchoring of AtlC as they do in Listeria monocytogenes. The S. caprae ica operon contains four genes closely related to S. epidermidis and S. aureus icaA, icaB, icaC, and icaD genes (> or = 68% similarity) and is preceded by a gene similar to icaR (> or =70% similarity). The polypeptides deduced from the S. caprae ica genes exhibit 67 to 88% amino acid identity to those of S. epidermidis and S. aureus ica genes. The ica operon and icaR gene were analyzed in 14 S. caprae strains from human specimens or goats' milk. Some of the strains produced biofilm, and others did not. All strains carry the ica operon and icaR of the same sizes and in the same relative positions, suggesting that the absence of biofilm formation is not related to the insertion of a mobile element such as an insertion sequence or a transposon.
Collapse
Affiliation(s)
- J Allignet
- Unité des Staphylocoques, Centre National de Référence des Staphylocoques, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
635
|
Aguilar B, Amorena B, Iturralde M. Effect of slime on adherence of Staphylococcus aureus isolated from bovine and ovine mastitis. Vet Microbiol 2001; 78:183-91. [PMID: 11163708 DOI: 10.1016/s0378-1135(00)00287-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interactions between slime, Staphylococcus aureus and ovine mammary gland epithelial cells (MGEC) were studied in vitro. Suspensions of radiolabelled bacteria incubated with slime significantly increased the ability of S. aureus strains to adhere to a filter. When suspensions of radiolabelled bacteria were incubated with MGEC treated with trypsin, the ability of slime to improve S. aureus adherence was also shown, indicating that it was not dependent on cell membrane proteins. The interaction of radiolabelled bacteria with slime prior to the adherence test with MGEC demonstrated that the adherence process requires the interaction between slime and bacteria. This interaction is inhibited by anti-slime antibodies. This study provides evidence that a specific interaction between bacteria coated with slime and MGEC could be a critical part of mammary gland infection.
Collapse
Affiliation(s)
- B Aguilar
- Servicio de Investigación Agraria, Departamento de Sanidad Animal, Apdo. 727, 50080, Zaragoza, Spain
| | | | | |
Collapse
|
636
|
Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 2000; 44:3357-63. [PMID: 11083640 PMCID: PMC90205 DOI: 10.1128/aac.44.12.3357-3363.2000] [Citation(s) in RCA: 268] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm production is an important step in the pathogenesis of Staphylococcus epidermidis polymer-associated infections and depends on the expression of the icaADBC operon leading to the synthesis of a polysaccharide intercellular adhesin. A chromosomally encoded reporter gene fusion between the ica promoter and the beta-galactosidase gene lacZ from Escherichia coli was constructed and used to investigate the influence of both environmental factors and subinhibitory concentrations of different antibiotics on ica expression in S. epidermidis. It was shown that S. epidermidis biofilm formation is induced by external stress (i.e., high temperature and osmolarity). Subinhibitory concentrations of tetracycline and the semisynthetic streptogramin antibiotic quinupristin-dalfopristin were found to enhance ica expression 9- to 11-fold, whereas penicillin, oxacillin, chloramphenicol, clindamycin, gentamicin, ofloxacin, vancomycin, and teicoplanin had no effect on ica expression. A weak (i.e., 2.5-fold) induction of ica expression was observed for subinhibitory concentrations of erythromycin. The results were confirmed by Northern blot analyses of ica transcription and quantitative analyses of biofilm formation in a colorimetric assay.
Collapse
Affiliation(s)
- S Rachid
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
637
|
Abstract
Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development.
Collapse
Affiliation(s)
- M E Davey
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
638
|
Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W. Alternative transcription factor sigma(B) is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J Bacteriol 2000; 182:6824-6. [PMID: 11073930 PMCID: PMC111428 DOI: 10.1128/jb.182.23.6824-6826.2000] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2000] [Accepted: 09/12/2000] [Indexed: 11/20/2022] Open
Abstract
Osmotic stress was found to induce biofilm formation in a Staphylococcus aureus mucosal isolate. Inactivation of a global regulator of the bacterial stress response, the alternative transcription factor sigma(B), resulted in a biofilm-negative phenotype and loss of salt-induced biofilm production. Complementation of the mutant strain with an expression plasmid encoding sigma(B) completely restored the wild-type phenotype. The combined data suggest a critical role of sigma(B) in S. aureus biofilm regulation under environmental stress conditions.
Collapse
Affiliation(s)
- S Rachid
- Institut für Molekulare Infektionsbiologie, D-97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
639
|
Abstract
To date, the nucleotide sequences of nine different lipase genes from six Staphylococcus species, three from S. epidermidis, two from S. aureus, and one each from S. haemolyticus, S. hyicus, S. warneri, and S. xylosus, have been determined. All deduced lipase proteins are similarly organized as pre-pro-proteins, with pre-regions corresponding to a signal peptide of 35 to 38 amino acids, a pro-peptide of 207 to 321 amino acids with an overall hydrophilic character, and a mature peptide comprising 383 to 396 amino acids. The lipases are secreted in the pro-form and are afterwards processed to the mature form by specific proteases. The pro-peptide of the S. hyicus lipase is necessary for efficient translocation and for protection against proteolytic degradation. Despite being very similar in their primary structures the staphylococcal lipases show significant differences in their biochemical and catalytic properties, such as substrate selectivity, pH optimum and interfacial activation. The lipase from S. hyicus is unique among the staphylococcal and bacterial lipases in that it has not only lipase activity, but also a high phospho-lipase activity. All staphylococcal lipases are dependent on Ca(2+), which is thought to have a function in stabilizing the tertiary structure of the lipases. Evidence exists that staphylococcal lipases like other bacterial lipases, possess a lid-like domain that might be involved in the interfacial activation of these enzymes.
Collapse
Affiliation(s)
- R Rosenstein
- Mikrobielle Genetik, Universität Tübingen, Waldhäuser Str. 70/8, 72076, Tübingen, Germany
| | | |
Collapse
|
640
|
Abstract
Thrombosis and infection are two well-recognized risks with prosthetic devices that contact blood. Many of the currently used biomaterials may present an attractive surface for thrombus development as well as bacterial adhesion and colonization. Clinical experience with vegetative endocarditis patients has suggested that thrombosis may lead to enhanced risk of infection, and the possibility that adherent bacteria may enhance the risk of thrombosis has been noted by several investigators. To investigate the correlation between thrombosis and infection, a series of tests were conducted to assess the affinity of pathogen with surfaces in the absence and presence of blood components. Coronary stents were used as a model device to attract thrombi in a recirculating loop in vitro. Fresh heparinized blood was used to investigate thrombus development and bacterial interaction. (111)Indium-labeled Staphylococcus epidermidis and (111)Indium-labeled platelets were utilized to quantify bacterial interaction with thrombi under various test conditions. Anticoagulants, antiplatelet agents, and antibiotics were utilized in attempts to selectively influence bacteria, platelets, or thrombosis. The results suggest that under appropriate conditions, bacteria may preferentially adhere to platelet rich thrombus. These observations also suggest that by reducing the risk of thrombosis, the risk of device-associated infection may also be reduced.
Collapse
Affiliation(s)
- S F Mohammad
- Utah Artificial Heart Institute, Salt Lake City 84103, USA
| |
Collapse
|
641
|
McCrea KW, Hartford O, Davis S, Eidhin DN, Lina G, Speziale P, Foster TJ, Höök M. The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 7):1535-1546. [PMID: 10878118 DOI: 10.1099/00221287-146-7-1535] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus epidermidis can express three different cell-surface-associated proteins, designated SdrF, SdrG and SdrH, that contain serine-aspartate dipeptide repeats. Proteins SdrF and SdrG are similar in sequence and structural organization to the Sdr proteins of Staphylococcus aureus and comprise unique 625- and 548-residue A regions at their N termini, respectively, followed by 110-119-residue B-repeat regions and SD-repeat regions. The C termini contain LPXTG motifs and hydrophobic amino acid segments characteristic of surface proteins covalently anchored to peptidoglycan. In contrast, SdrH has a short 60-residue A region at its N terminus followed by a SD-repeat region, a unique 277-residue C region and a C-terminal hydrophobic segment. SdrH lacks a LPXTG motif. Recombinant proteins representing the A regions of SdrF, SdrG and SdrH were expressed and purified from Escherichia coli. Antisera specific to these proteins were raised in rabbits and used to identify Sdr proteins expressed by S. epidermidis. Only SdrF was released from lysostaphin-generated protoplasts of cells grown to late-exponential phase. SdrG and SdrH remained associated with the protoplast fraction and thus appear to be ineffectively sorted along the conventional pathway used for cell-wall-anchored proteins. In Southern hybridization analyses, the sdrG and sdrH genes were present in all 16 strains tested, whilst sdrF was present in 12 strains. Antisera from 16 patients who had recovered from S. epidermidis infections contained antibodies that reacted with recombinant A regions of SdrG and SdrH, suggesting that these proteins can be expressed during infection.
Collapse
Affiliation(s)
- Kirk W McCrea
- Institute of Biosciences and Technology, Texas Medical Center, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA1
| | - Orla Hartford
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland2
| | - Stacey Davis
- Institute of Biosciences and Technology, Texas Medical Center, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA1
| | - Deirdre Nı Eidhin
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland2
| | - Gerard Lina
- EA1655, Faculté Laennec, 69372 Lyon Cedex 08, France3
| | - Pietro Speziale
- Department of Biochemistry, University of Pavia, 27100 Pavia, Italy4
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland2
| | - Magnus Höök
- Institute of Biosciences and Technology, Texas Medical Center, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA1
| |
Collapse
|
642
|
Abstract
Staphylococcus aureus is the most prominent musculoskeletal pathogen of man and animals. The persistent emergence of antibiotic-resistant strains has prompted renewed efforts to develop alternative protocols for the treatment and prevention of staphylococcal disease. These efforts have included attempts to develop an effective staphylococcal vaccine. Among the potential vaccine candidates are a group of surface proteins that act as adhesins by virtue of their ability to bind host proteins present in plasma and in the extracellular matrix. Because of our interest in the treatment and prevention of musculoskeletal infection, we have focused on adhesins that contribute to the colonization of bone and cartilage. Based on reports suggesting that colonization is a conserved characteristic of S. aureus strains that cause osteomyelitis and septic arthritis, we have paid particular attention to the factors that contribute to the ability to bind collagen. To date, only one collagen-binding adhesin (Cna) has been identified, and the gene encoding this adhesin (cna) is not present in most S. aureus strains. The possibility that a rare phenotype is conserved among isolates that cause a particular form of infection suggests a cause-and-effect relationship in which the phenotype contributes to the pathogenesis of the disease. To further evaluate that hypothesis, we attempted to determine whether Cna is the only collagen-binding adhesin produced by S. aureus and whether strains that encode cna share additional characteristics that distinguish them from other S. aureus strains. We also studied whether immunization with Cna induces a protective immune response. Our results confirm that Cna is the primary and probably the only collagen-binding adhesin and that the genetic element encoding cna does not encode any additional virulence factors. These results strongly suggest that the only consistent difference between cna-positive and cna-negative strains is the ability to bind collagen. We also demonstrated that vaccination with a recombinant fragment of Cna can protect animals against septic death and limit the ability to colonize bone.
Collapse
Affiliation(s)
- M S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock 77205, USA.
| | | |
Collapse
|
643
|
Mack D, Rohde H, Dobinsky S, Riedewald J, Nedelmann M, Knobloch JK, Elsner HA, Feucht HH. Identification of three essential regulatory gene loci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. Infect Immun 2000; 68:3799-807. [PMID: 10858187 PMCID: PMC101651 DOI: 10.1128/iai.68.7.3799-3807.2000] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2000] [Accepted: 03/10/2000] [Indexed: 01/01/2023] Open
Abstract
The formation of adherent multilayered biofilms embedded into a glycocalyx represents an essential factor in the pathogenesis of Staphylococcus epidermidis biomaterial-related infections. Using biofilm-producing S. epidermidis 1457 and transposon Tn917 carried on plasmid pTV1ts, we isolated nine isogenic biofilm-negative transposon mutants. Transduction by S. epidermidis phage 71 was used to prove the genetic linkage of transposon insertions and altered phenotypes. Mapping of the different transposon insertions by Southern hybridization and pulsed-field gel electrophoresis indicated that these were inserted in four unlinked genetic loci. According to their phenotypes, including quantitative differences in biofilm production in different growth media, in the amount of the polysaccharide intercellular adhesin (PIA) produced, in the hemagglutination titers, and in the altered colony morphology, the mutants could be separated into four phenotypic classes corresponding with the genetic classes. Synthesis of PIA was not detectable with class I and II mutants, whereas the amount of PIA produced reflected the residual degree of biofilm production of class III and IV mutants in different growth media. Chromosomal DNA flanking the transposon insertions of five class I mutants was cloned and sequenced, and the insertions were mapped to different locations of icaADBC, representing the synthetic genes for PIA. Expression of icaADBC from a xylose-dependent promoter in the different isogenic mutant classes reconstituted biofilm production in all mutants. In a Northern blot analysis no icaADBC-specific transcripts were observed in RNA isolated from mutants of classes II, III, and IV. Apparently, in addition to icaADBC, three other gene loci have a direct or indirect regulatory influence on expression of the synthetic genes for PIA on the level of transcription.
Collapse
Affiliation(s)
- D Mack
- Institut für Medizinische Mikrobiologie und Immunologie, Universitäts-Krankenhaus Eppendorf, D-20246 Hamburg, Federal Republic of Germany.
| | | | | | | | | | | | | | | |
Collapse
|
644
|
Morschhäuser J, Köhler G, Ziebuhr W, Blum-Oehler G, Dobrindt U, Hacker J. Evolution of microbial pathogens. Philos Trans R Soc Lond B Biol Sci 2000; 355:695-704. [PMID: 10874741 PMCID: PMC1692774 DOI: 10.1098/rstb.2000.0609] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Various genetic mechanisms including point mutations, genetic rearrangements and lateral gene transfer processes contribute to the evolution of microbes. Long-term processes leading to the development of new species or subspecies are termed macroevolution, and short-term developments, which occur during days or weeks, are considered as microevolution. Both processes, macro- and microevolution need horizontal gene transfer, which is particularly important for the development of pathogenic microorganisms. Plasmids, bacteriophages and so-called pathogenicity islands (PAIs) play a crucial role in the evolution of pathogens. During microevolution, genome variability of pathogenic microbes leads to new phenotypes, which play an important role in the acute development of an infectious disease. Infections due to Staphylococcus epidermidis, Candida albicans and Escherichia coli will be described with special emphasis on processes of microevolution. In contrast, the development of PAIs is a process involved in macroevolution. PAIs are especially important in processes leading to new pathotypes or even species. In this review, particular attention will be given to the fact that the evolution of pathogenic microbes can be considered as a specific example for microbial evolution in general.
Collapse
Affiliation(s)
- J Morschhäuser
- Zentrum für Infektionsforschung, Universität Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
645
|
Francois P, Letourneur D, Lew DP, Jozefonwicz J, Vaudaux P. Inhibition by heparin and derivatized dextrans of Staphylococcus epidermidis adhesion to in vitro fibronectin-coated or explanted polymer surfaces. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2000; 10:1207-21. [PMID: 10673017 DOI: 10.1163/156856299x00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of Staphylococcus aureus to recognize several extracellular matrix or plasma proteins (e.g., fibrinogen, fibronectin, and collagen) promotes bacterial attachment to artificial surfaces. Whereas most S. aureus clinical isolates elaborate a wide repertoire of bacterial surface receptors' called adhesins, exhibiting specific binding of individual host proteins, S. epidermidis is lacking most of such protein adhesins. To document the interactions between S. epidermidis and various surface-adsorbed proteins, we first compared promotion of bacterial attachment by seven purified human proteins immobilized onto poly(methyl methacrylate) (PMMA) coverslips. Only two of them, namely fibronectin and fibrinogen, exhibited adhesion-promoting activities. In the presence of native heparin or two functionalized dextrans (CMDBS for Carboxy Methyl, Benzylamide sulfonate/sulfate), a dose-dependent inhibition of S. epidermidis adhesion to fibronectin-coated, but not to fibrinogen-coated surfaces was observed. The inhibitory effects of each CMDBS were much stronger than that of native heparin. In contrast, a control highly negatively charged, dextran exclusively substituted with carboxy methyl groups exerted no inhibition on S. epidermidis adhesion. To evaluate how CMDBS could interfere with S. epidermidis attachment to coverslips coated in vivo with extracellular matrix components, we also tested PMMA surfaces retrieved from tissue cages subcutaneously implanted in guinea pigs. Each CMDBS, but not heparin, strongly inhibited S. epidermidis adhesion to explanted coverslips, even in the presence of tissue cage fluid. In conclusion, fibronectin plays an important role in promoting S. epidermidis attachment to implanted biomaterials. Furthermore, S. epidermidis adhesion to fibronectin-coated or implanted biomaterials can be efficiently blocked in vitro by CMDBS.
Collapse
Affiliation(s)
- P Francois
- Department of Medicine, University Hospital, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
646
|
Cochran WL, Suh SJ, McFeters GA, Stewart PS. Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine. J Appl Microbiol 2000; 88:546-53. [PMID: 10747236 DOI: 10.1046/j.1365-2672.2000.00995.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of two sigma factors, AlgT and RpoS, in mediating Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine was investigated. Two knock out mutant strains, SS24 (rpoS-) and PAO6852 (algT-), were compared with a wild type, PAO1, in their susceptibility to monochloramine and hydrogen peroxide. When grown as biofilms on alginate gel beads (mean untreated areal cell density 3.7 +/- 0.27 log cfu cm-2) or on glass slides (mean untreated areal cell density 7.6 +/- 0.9 log cfu cm-2), wild type bacteria exhibited reduced susceptibility to both antimicrobial agents in comparison with suspended cells. On alginate gel beads, all strains were equally resistant to monochloramine. rpoS- and algT- gel bead biofilms of 24-hour-old were more susceptible to hydrogen peroxide disinfection than were biofilms formed by PAO1. Biofilm disinfection rate coefficients for the two mutant strains were statistically indistinguishable from planktonic disinfection rate coefficients, indicating complete loss of biofilm resistance. While 48-hour-old algT- biofilm cells became resistant to hydrogen peroxide, 48-hour-old rpoS- biofilm cells remained highly susceptible. With the thicker biofilms formed on glass coupons, all strains were equally resistant to both hydrogen peroxide and monochloramine. It is concluded that while RpoS and AlgT may play a transient role in protecting thin biofilms from hydrogen peroxide, these sigma factors do not mediate resistance to monochloramine and do not contribute significantly to the hydrogen peroxide resistance of thick biofilms.
Collapse
Affiliation(s)
- W L Cochran
- Center for Biofilm Engineering, Department of Microbiology, Montana State University, Bozeman 59717, USA
| | | | | | | |
Collapse
|
647
|
Ziebuhr W, Dietrich K, Trautmann M, Wilhelm M. Chromosomal rearrangements affecting biofilm production and antibiotic resistance in a Staphylococcus epidermidis strain causing shunt-associated ventriculitis. Int J Med Microbiol 2000; 290:115-20. [PMID: 11043988 DOI: 10.1016/s1438-4221(00)80115-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
During two clinical courses of shunt-associated meningitis in a 3-month-old child, five multiresistant S. epidermidis isolates were obtained and analyzed with regard to biofilm production and antibiotic susceptibility. Three S. epidermidis strains, which were initially isolated from the cerebrospinal fluid, produced biofilms on polystyrene tissue culture plates. Following antibiotic treatment and subsequent exchange of the shunt system, sterilization of the CSF was achieved. However, after three weeks a relapse of the infection occurred. The two S. epidermidis isolates obtained now were biofilm negative, but showed an identical resistance pattern as those from the previous infection, except that resistance to rifampicin and increased mininal inhibitory concentrations of aminoglycoside antibiotics had emerged. DNA fingerprinting by PFGE indicated the clonal origin of all isolates. However, some DNA rearrangements and differences in the IS256-specific hybridization patterns could be identified in the isolates from the second infection period that led to altered biofilm formation and increased expression of aminoglycoside resistance traits. The data evidence that variation of biofilm expression occurs in vivo during an infection and highlight the extraordinary genome flexibility of pathogenic S. epidermidis.
Collapse
Affiliation(s)
- W Ziebuhr
- Institut für Molekulare Infektionsbiologie, Würzburg, Germany.
| | | | | | | |
Collapse
|
648
|
Frebourg NB, Lefebvre S, Baert S, Lemeland JF. PCR-Based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J Clin Microbiol 2000; 38:877-80. [PMID: 10655405 PMCID: PMC86232 DOI: 10.1128/jcm.38.2.877-880.2000] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The discrimination between Staphylococcus epidermidis strains that contaminate and infect blood cultures is a daily challenge for clinical laboratories. The results of PCR detection of putative virulence genes were compared for contaminating strains, sepsis-related strains, catheter strains, and saprophytic strains. Multiplex PCR was used to explore the atlE gene, which is involved in initial adherence, the intercellular adhesion gene cluster (ica), which mediates the formation of the biofilm, and the agrA, sarA, and mecA genes, which might contribute to the pathogenicity of S. epidermidis. Whereas the atlE, agrA, and sarA genes were almost ubiquitously amplified, the ica and mecA genes were detected significantly more in infecting strains than in contaminating strains (P </= 0.02) and thus appeared to be related to the potential virulence of S. epidermidis.
Collapse
Affiliation(s)
- N B Frebourg
- Groupe de Recherche sur les Antimicrobiens et Microorganismes, C.H.U. de Rouen, Hôpital Charles Nicolle, 76031 Rouen Cedex, France.
| | | | | | | |
Collapse
|
649
|
Keyhani NO, Roseman S. Physiological aspects of chitin catabolism in marine bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:108-22. [PMID: 10580132 DOI: 10.1016/s0304-4165(99)00172-5] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chitin, a carbohydrate polymer composed of alternating beta-1, 4-linked N-acetylglucosamine residues is the second most abundant organic compound in nature. In the aquatic biosphere alone, it is estimated that more than 10(11) metric tons of chitin are produced annually. If this enormous quantity of insoluble carbon and nitrogen was not converted to biologically useful material, the oceans would be depleted of these elements in a matter of decades. In fact, marine sediments contain only traces of chitin, and the turnover of the polysaccharide is attributed primarily to marine bacteria, but the overall process involves many steps, most of which remain to be elucidated. Marine bacteria possess complex signal transduction systems for: (1) finding chitin, (2) adhering to chitinaceous substrata, (3) degrading the chitin to oligosaccharides, (4) transporting the oligosaccharides to the cytoplasm, and (5) catabolizing the transport products to fructose-6-P, acetate and NH(3). The proteins and enzymes are located extracellularly, in the cell envelope, the periplasmic space, the inner membrane and the cytoplasm. In addition to these levels of complexity, the various components of these systems appear to be carefully coordinated by intricate regulatory mechanisms.
Collapse
Affiliation(s)
- N O Keyhani
- Department of Biology and the McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
650
|
Abstract
Bacterial biofilms are generally described as surface-associated bacterial communities comprising exopolysaccharide-surrounded microcolonies. Interspersed between these microcolonies are water-filled channels that may serve as primitive circulatory systems. Over the past few years, much progress has been made in our understanding of the development of bacterial biofilms. This progress is largely due to the recent focus on analyzing biofilms using genetic and molecular biological approaches. Specifically, researchers have begun to identify the genetic components required for the formation of single-species bacterial biofilms. These findings are leading us to an understanding of the steps involved in initiating biofilm formation and the cellular components required to accomplish these steps.
Collapse
Affiliation(s)
- L A Pratt
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|