601
|
Kovacevic J, Palm D, Jooss D, Bublak D, Simm S, Schleiff E. Co-orthologues of ribosome biogenesis factors in A. thaliana are differentially regulated by transcription factors. PLANT CELL REPORTS 2019; 38:937-949. [PMID: 31087154 DOI: 10.1007/s00299-019-02416-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Different genes coding for one ribosome biogenesis factor are differentially expressed and are likely under the control of distinct transcription factors, which contributes to the regulatory space for ribosome maturation. Maturation of ribosomes including rRNA processing and modification, rRNA folding and ribosome protein association requires the function of many ribosome biogenesis factors (RBFs). Recent studies document plant-specific variations of the generally conserved process of ribosome biogenesis. For instance, distinct rRNA maturation pathways and intermediates have been identified, the existence of plant specific RBFs has been proposed and several RBFs are encoded by multiple genes. The latter in combination with the discussed ribosome heterogeneity points to a possible function of the different proteins representing one RBF in diversification of ribosomal compositions. Such factor-based regulation would require a differential regulation of their expression, may be even controlled by different transcription factors. We analyzed the expression profiles of genes coding for putative RBFs and transcription factors. Most of the genes coding for RBFs are expressed in a comparable manner, while different genes coding for a single RBF are often differentially expressed. Based on a selected set of genes we document a function of the transcription factors AtMYC1, AtMYC2, AtbHLH105 and AtMYB26 on the regulation of different RBFs. Moreover, on the example of the RBFs LSG1 and BRX1, both encoded by two genes, we give a first hint on a differential transcription factor dependence of expression. Consistent with this observation, the phenotypic analysis of RBF mutants suggests a relation between LSG1-1 and BRX1-1 expression and the transcription factor MYC1. In summary, we propose that the multiple genes coding for one RBF are required to enlarge the regulatory space for ribosome biogenesis.
Collapse
Affiliation(s)
- Jelena Kovacevic
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Denise Palm
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Domink Jooss
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Daniela Bublak
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany.
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
602
|
Cao S, Zhang Z, Wang C, Li X, Guo C, Yang L, Guo Y. Identification of a Novel Melon Transcription Factor CmNAC60 as a Potential Regulator of Leaf Senescence. Genes (Basel) 2019; 10:genes10080584. [PMID: 31370358 PMCID: PMC6723929 DOI: 10.3390/genes10080584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/02/2022] Open
Abstract
NAC transcription factors (TFs) play important roles in plants’ responses to abiotic stresses and developmental processes, including leaf senescence. Oriental melon (Cucumis melo var. makuwa Makino) is an important vegetable crop in China and eastern Asia countries. However, little is known about the functions of the melon NAC family members. In this study, a phylogenetic tree was constructed to show that CmNAC60 and the senescence regulator AtNAP were in the same cluster, which implied that CmNAC60 might be a NAC related to leaf senescence. The expression analysis of CmNAC60 in different melon organs showed that the expression of CmNAC60 was highest in the male flowers and lowest in the hypocotyl. In addition, the expression level of CmNAC60 in the senescing leaves was significantly higher than in the non-senescing leaves. Similarly, the expression level of CmNAC60 in the dark-treated leaves was significantly higher than in the untreated leaves. Furthermore, the subcellular localization and transcriptional activation assays indicated that CmNAC60 was a nucleus localized NAC transcription factor with a C-terminal transactivation domain. An analysis of the tissue specific expression showed that the promoter of CmNAC60 may contain cis-acting regulatory elements responsive to leaf senescence. CmNAC60 overexpressing lines of Arabidopsis showed a precocious senescence compared with the wild type (WT). Collectively, our results showed that CmNAC60 was associated with leaf senescence, and could be potentially utilized in molecular breeding to improve melon yield or to extend the postharvest shelf life by delaying leaf senescence.
Collapse
Affiliation(s)
- Songxiao Cao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhenbiao Zhang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chenghui Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoxu Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Liyu Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
603
|
He P, Yang Y, Wang Z, Zhao P, Yuan Y, Zhang L, Ma Y, Pang C, Yu J, Xiao G. Comprehensive analyses of ZFP gene family and characterization of expression profiles during plant hormone response in cotton. BMC PLANT BIOLOGY 2019; 19:329. [PMID: 31337346 PMCID: PMC6652020 DOI: 10.1186/s12870-019-1932-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/09/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Zinc finger proteins (ZFPs) containing only a single zinc finger domain play important roles in the regulation of plant growth and development, as well as in biotic and abiotic stress responses. To date, the evolutionary history and functions of the ZFP gene family have not been identified in cotton. RESULTS In this paper, we identified 29 ZFP genes in Gossypium hirsutum. This gene family was divided into seven subfamilies, 22 of which were distributed over 17 chromosomes. Bioinformatic analysis revealed that 20 GhZFP genes originated from whole genome duplications and two originated from dispersed duplication events, indicating that whole genome duplication is the main force in the expansion of the GhZFP gene family. Most GhZFP8 subfamily genes, except for GhZFP8-3, were highly expressed during fiber cell growth, and were induced by brassinosteroids in vitro. Furthermore, we found that a large number of GhZFP genes contained gibberellic acid responsive elements, auxin responsive elements, and E-box elements in their promoter regions. Exogenous application of these hormones significantly stimulated the expression of these genes. CONCLUSIONS Our findings reveal that GhZFP8 genes are involved in cotton fiber development and widely induced by auxin, gibberellin and BR, which provides a foundation for the identification of more downstream genes with potential roles in phytohormone stimuli, and a basis for breeding better cotton varieties in the future.
Collapse
Affiliation(s)
- Peng He
- College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Yan Yang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
| | - Zihua Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Peng Zhao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Yi Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Li Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Yueqin Ma
- College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000 China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| |
Collapse
|
604
|
He Z, Li Z, Lu H, Huo L, Wang Z, Wang Y, Ji X. The NAC Protein from Tamarix hispida, ThNAC7, Confers Salt and Osmotic Stress Tolerance by Increasing Reactive Oxygen Species Scavenging Capability. PLANTS 2019; 8:plants8070221. [PMID: 31336966 PMCID: PMC6681344 DOI: 10.3390/plants8070221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/02/2023]
Abstract
Plant specific NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) play important roles in response to abiotic stress. In this study, we identified and characterized a NAC protein, ThNAC7, from Tamarix hispida. ThNAC7 is a nuclear localized protein and has transcriptional activation activity. ThNAC7 expression was markedly induced by salt and osmotic stresses. Transiently transformed T. hispida seedlings overexpressing ThNAC7 (OE) or with RNA interference (RNAi) silenced ThNAC7 were generated to investigate abiotic stress tolerance via the gain- and loss- of function. Overexpressing ThNAC7 showed an increased reactive oxygen species (ROS) scavenging capabilities and proline content, which was accomplished by enhancing the activities of superoxide dismutase (SOD) and peroxidase (POD) in transiently transformed T. hispida and stably transformed Arabidopsis plants. Additionally, ThNAC7 activated these physiological changes by regulating the transcription level of P5CS, SOD and PODgenes. RNA-sequencing (RNA-seq) comparison between wild-type and ThNAC7-transformed Arabidopsis showed that more than 40 known salt tolerance genes might regulated by ThNAC7, including stress tolerance-related genes and TF genes. The results indicated that ThNAC7 induces the transcription level of genes associated with stress tolerance to enhance salt and osmotic stress tolerance via an increase in osmotic potential and enhanced ROS scavenging.
Collapse
Affiliation(s)
- Zihang He
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Ziyi Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Huijun Lu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Lin Huo
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Xiaoyu Ji
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China.
| |
Collapse
|
605
|
Pei S, Dong R, He RL, Yau SST. Large-Scale Genome Comparison Based on Cumulative Fourier Power and Phase Spectra: Central Moment and Covariance Vector. Comput Struct Biotechnol J 2019; 17:982-994. [PMID: 31384399 PMCID: PMC6661692 DOI: 10.1016/j.csbj.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023] Open
Abstract
Genome comparison is a vital research area of bioinformatics. For large-scale genome comparisons, the Multiple Sequence Alignment (MSA) methods have been impractical to use due to its algorithmic complexity. In this study, we propose a novel alignment-free method based on the one-to-one correspondence between a DNA sequence and its complete central moment vector of the cumulative Fourier power and phase spectra. In addition, the covariance between the four nucleotides in the power and phase spectra is included. We use the cumulative Fourier power and phase spectra to define a 28-dimensional vector for each DNA sequence. Euclidean distances between the vectors can measure the dissimilarity between DNA sequences. We perform testing with datasets of different sizes and types including simulated DNA sequences, exon-intron and complete genomes. The results show that our method is more accurate and efficient for performing hierarchical clustering than other alignment-free methods and MSA methods.
Collapse
Affiliation(s)
- Shaojun Pei
- Department of Mathematical Sciences, Tsinghua University, Beijing, PR China
| | - Rui Dong
- Department of Mathematical Sciences, Tsinghua University, Beijing, PR China
| | - Rong Lucy He
- Department of Biological Sciences, Chicago State University, Chicago, IL 60628, USA
| | - Stephen S.-T. Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing, PR China
| |
Collapse
|
606
|
Singh A, Singh PK, Sharma AK, Singh NK, Sonah H, Deshmukh R, Sharma TR. Understanding the Role of the WRKY Gene Family under Stress Conditions in Pigeonpea ( Cajanus Cajan L.). PLANTS 2019; 8:plants8070214. [PMID: 31295921 PMCID: PMC6681228 DOI: 10.3390/plants8070214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/26/2022]
Abstract
Pigeonpea (Cajanus cajan L.), a protein-rich legume, is a major food component of the daily diet for residents in semi-arid tropical regions of the word. Pigeonpea is also known for its high level of tolerance against biotic and abiotic stresses. In this regard, understanding the genes involved in stress tolerance has great importance. In the present study, identification, and characterization of WRKY, a large transcription factor gene family involved in numerous biological processes like seed germination, metabolism, plant growth, biotic and abiotic stress responses was performed in pigeonpea. A total of 94 WRKY genes identified in the pigeonpea genome were extensively characterized for gene-structures, localizations, phylogenetic distribution, conserved motif organizations, and functional annotation. Phylogenetic analysis revealed three major groups (I, II, and III) of pigeonpea WRKY genes. Subsequently, expression profiling of 94 CcWRKY genes across different tissues like root, nodule, stem, petiole, petal, sepal, shoot apical meristem (SAM), mature pod, and mature seed retrieved from the available RNAseq data identified tissue-specific WRKY genes with preferential expression in the vegetative and reproductive stages. Gene co-expression networks identified four WRKY genes at the center of maximum interaction which may play a key role in the entire WRKY regulations. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) expression analysis of WRKY genes in root and leaf tissue samples from plants under drought and salinity stress identified differentially expressed WRKY genes. The study will be helpful to understand the evolution, regulation, and distribution of the WRKY gene family, and additional exploration for the development of stress tolerance cultivars in pigeonpea and other legumes crops.
Collapse
Affiliation(s)
- Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 226031, India
| | | | - Ajay Kumar Sharma
- Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005, India
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India.
| |
Collapse
|
607
|
López-González C, Juárez-Colunga S, Morales-Elías NC, Tiessen A. Exploring regulatory networks in plants: transcription factors of starch metabolism. PeerJ 2019; 7:e6841. [PMID: 31328026 PMCID: PMC6625501 DOI: 10.7717/peerj.6841] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
Biological networks are complex (non-linear), redundant (cyclic) and compartmentalized at the subcellular level. Rational manipulation of plant metabolism may have failed due to inherent difficulties of a comprehensive understanding of regulatory loops. We first need to identify key factors controlling the regulatory loops of primary metabolism. The paradigms of plant networks are revised in order to highlight the differences between metabolic and transcriptional networks. Comparison between animal and plant transcription factors (TFs) reveal some important differences. Plant transcriptional networks function at a lower hierarchy compared to animal regulatory networks. Plant genomes contain more TFs than animal genomes, but plant proteins are smaller and have less domains as animal proteins which are often multifunctional. We briefly summarize mutant analysis and co-expression results pinpointing some TFs regulating starch enzymes in plants. Detailed information is provided about biochemical reactions, TFs and cis regulatory motifs involved in sucrose-starch metabolism, in both source and sink tissues. Examples about coordinated responses to hormones and environmental cues in different tissues and species are listed. Further advancements require combined data from single-cell transcriptomic and metabolomic approaches. Cell fractionation and subcellular inspection may provide valuable insights. We propose that shuffling of promoter elements might be a promising strategy to improve in the near future starch content, crop yield or food quality.
Collapse
Affiliation(s)
| | | | | | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, México.,Laboratorio Nacional PlanTECC, Irapuato, México
| |
Collapse
|
608
|
Kimotho RN, Baillo EH, Zhang Z. Transcription factors involved in abiotic stress responses in Maize ( Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ 2019; 7:e7211. [PMID: 31328030 PMCID: PMC6622165 DOI: 10.7717/peerj.7211] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in various regions around the world, and recently, this has become a constant threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activities of transcription factors (TFs), which are families of genes coding for specific TF proteins. TF target genes form a regulon that is involved in the repression/activation of genes associated with abiotic stress responses. Therefore, it is of utmost importance to have a systematic study on each TF family, the downstream target genes they regulate, and the specific TF genes involved in multiple abiotic stress responses in maize and other staple crops. METHOD In this review, the main TF families, the specific TF genes and their regulons that are involved in abiotic stress regulation will be briefly discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from different plants like rice, Arabidopsis, wheat, and barley will be used. RESULTS We have described in detail the main TF families in maize that take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning, and RNA-Seq. CONCLUSION In conclusion, it is expected that all the information provided in this review will in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
609
|
Cao B, Shu L, Li A. Functional characterization of LkERF- B2 for improved salt tolerance ability in Arabidopsis thaliana. 3 Biotech 2019; 9:263. [PMID: 31192088 PMCID: PMC6560127 DOI: 10.1007/s13205-019-1793-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
The ethylene response factors have been reported to play critical roles in developmental and environmental responses in plants. In the present study, an ERF transcription factor gene was aimed to be identified from Larix kaempferi. Molecular characteristics and function of this gene were further explored. The result showed that a 1344 bp ERF transcription factor gene containing initiation and termination codon was obtained by RT-PCR and named LkERF-B2. LkERF-B2 gene encoded 447 amino acids containing a typical AP2/ERF domain. Alignment of predicted amino acid sequence of LkERF-B2 in various plant species showed that this ERF transcription factor was highly homologous (79.0%) with that of Picea sitchensi. To elucidate the function of LkERF-B2, LkERF-B2 overexpression vector was successfully constructed and transformed to Arabidopsis thaliana via dip flower. Compared with control plant, LkERF-B2 overexpressed transgenic A. thaliana showed a significantly higher survival rate under cold, heat, NaCl and drought stresses. NaCl stress analysis revealed that control and transgenic Arabidopsis were both flowering earlier under 100 and 150 mM/L NaCl treatment. While under 200-300 mM/L NaCl treatment, the growth of control plant was significantly inhibited compared with transgenic A. thaliana. Salt injury rate and salt injury index of transgenic Arabidopsis were lower than those of the control. Further investigation showed that transgenic Arabidopsis exhibited much higher content of chloroplast pigments under different NaCl concentration. Meanwhile, the activity of SOD and POD was also enhanced in transgenic A. thaliana. These results suggested that LkERF-B2 was a key transcription factor and could lead to enhanced salt stress tolerance.
Collapse
Affiliation(s)
- Beibei Cao
- College of Horticulture and Landscape Architecture (Key Laboratory of Fruit Science), Tianjin Agricultural University, Tianjin, 300000 China
| | - Lixiang Shu
- College of Horticulture and Landscape Architecture (Key Laboratory of Fruit Science), Tianjin Agricultural University, Tianjin, 300000 China
| | - Ai Li
- College of Horticulture and Landscape Architecture (Key Laboratory of Fruit Science), Tianjin Agricultural University, Tianjin, 300000 China
| |
Collapse
|
610
|
Peng X, Wang Q, Zhao Y, Li X, Ma Q. Comparative genome analysis of the SPL gene family reveals novel evolutionary features in maize. Genet Mol Biol 2019; 42:380-394. [PMID: 31271590 PMCID: PMC6726161 DOI: 10.1590/1678-4685-gmb-2017-0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2018] [Indexed: 11/21/2022] Open
Abstract
SPLs are plant-specific transcription factors that play important regulatory roles in plant growth and development. Systematic analysis of the SPL family has been performed in numerous plants, such as Arabidopsis, rice, and Populus. However, no comparative analysis has been performed across different species to examine evolutionary features. In this study, we present a comparative analysis of SPLs in different species. The results showed that 84 SPLs of the four species can be divided into six groups according to phylogeny. We found that most of the SPL-containing regions in maize showed extensive conservation with duplicated regions of rice and sorghum. A gene duplication analysis in maize indicated that ZmSPLs showed a significant excess of segmental duplication. The Ka/Ks analysis indicated that 9 out of 18 duplicated pairs in maize experienced positive selection, while SPL gene pairs of rice and sorghum mainly evolved under purifying selection, suggesting novel evolutionary features for ZmSPLs. The 31 ZmSPLs were further analyzed by describing their gene structure, phylogenetic relationships, chromosomal location, and expression, Among the ZmSPLs, 13 were predicated to be targeted by miR156s and involved in drought stress response. These results provide the foundation for future functional analyses of ZmSPLs.
Collapse
Affiliation(s)
- Xiaojian Peng
- National Engineering Laboratory of Crop Stress Resistance, Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qianqian Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance, Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance, Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance, Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
611
|
Cao S, Guo M, Wang C, Xu W, Shi T, Tong G, Zhen C, Cheng H, Yang C, Elsheery NI, Cheng Y. Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC PLANT BIOLOGY 2019; 19:276. [PMID: 31234799 PMCID: PMC6591973 DOI: 10.1186/s12870-019-1865-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/03/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Aspartic protease (AP) is one of four large proteolytic enzyme families that are involved in plant growth and development. Little is known about the AP gene family in tree species, although it has been characterized in Arabidopsis, rice and grape. The AP genes that are involved in tree wood formation remain to be determined. RESULTS A total of 67 AP genes were identified in Populus trichocarpa (PtAP) and classified into three categories (A, B and C). Chromosome mapping analysis revealed that two-thirds of the PtAP genes were located in genome duplication blocks, indicating the expansion of the AP family by segmental duplications in Populus. The microarray data from the Populus eFP browser demonstrated that PtAP genes had diversified tissue expression patterns. Semi-qRT-PCR analysis further determined that more than 10 PtAPs were highly or preferentially expressed in the developing xylem. When the involvement of the PtAPs in wood formation became the focus, many SCW-related cis-elements were found in the promoters of these PtAPs. Based on PtAPpromoter::GUS techniques, the activities of PtAP66 promoters were observed only in fiber cells, not in the vessels of stems as the xylem and leaf veins developed in the transgenic Populus tree, and strong GUS signals were detected in interfascicular fiber cells, roots, anthers and sepals of PtAP17promoter::GUS transgenic plants. Intensive GUS activities in various secondary tissues implied that PtAP66 and PtAP17 could function in wood formation. In addition, most of the PtAP proteins were predicted to contain N- and (or) O-glycosylation sites, and the integration of PNGase F digestion and western blotting revealed that the PtAP17 and PtAP66 proteins were N-glycosylated in Populus. CONCLUSIONS Comprehensive characterization of the PtAP genes suggests their functional diversity during Populus growth and development. Our findings provide an overall understanding of the AP gene family in trees and establish a better foundation to further describe the roles of PtAPs in wood formation.
Collapse
Affiliation(s)
- Shenquan Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Tianyuan Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Cheng Zhen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | | | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| |
Collapse
|
612
|
Liu M, Wen Y, Sun W, Ma Z, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat. BMC Genomics 2019; 20:483. [PMID: 31185893 PMCID: PMC6560858 DOI: 10.1186/s12864-019-5882-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background In reported plants, the bZIP family is one of the largest transcription factor families. bZIP genes play roles in the light signal, seed maturation, flower development, cell elongation, seed accumulation protein, abiotic and biological stress and other biological processes. While, no detailed identification and genome-wide analysis of bZIP family genes in Fagopyum talaricum (tartary buckwheat) has previously been published. The recently reported genome sequence of tartary buckwheat provides theoretical basis for us to study and discuss the characteristics and expression of bZIP genes in tartary buckwheat based on the whole genome. Results In this study, 96 FtbZIP genes named from FtbZIP1 to FtbZIP96 were identified and divided into 11 subfamilies according to their genetic relationship with 70 bZIPs of A. thaliana. FtbZIP genes are not evenly distributed on the chromosomes, and we found tandem and segmental duplication events of FtbZIP genes on 8 tartary buckwheat chromosomes. According to the results of gene and motif composition, FtbZIP located in the same group contained analogous intron/exon organizations and motif composition. By qRT-PCR, we quantified the expression of FtbZIP members in stem, root, leaf, fruit, and flower and during fruit development. Exogenous ABA treatment increased the weight of tartary buckwheat fruit and changed the expressions of FtbZIP genes in group A. Conclusions Through our study, we identified 96 FtbZIP genes in tartary buckwheat and synthetically further analyzed the structure composition, evolution analysis and expression pattern of FtbZIP proteins. The expression pattern indicates that FtbZIP is important in the course of plant growth and development of tartary buckwheat. Through comprehensively analyzing fruit weight and FtbZIP genes expression after ABA treatment and endogenous ABA content of tartary buckwheat fruit, ABA may regulate downstream gene expression by regulating the expression of FtPinG0003523300.01 and FtPinG0003196200.01, thus indirectly affecting the fruit development of tartary buckwheat. This will help us to further study the function of FtbZIP genes in the tartary buckwheat growth and improve the fruit of tartary buckwheat. Electronic supplementary material The online version of this article (10.1186/s12864-019-5882-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Moyang Liu
- Sichuan Agricultural University, College of Life Science, Ya'an, China.,Shanghai Jiao Tong University, School of Agriculture and Biolog, Shanghai, China
| | - Yongdi Wen
- Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Wenjun Sun
- Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Zhaotang Ma
- Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Li Huang
- Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Qi Wu
- Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Zizhong Tang
- Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Tongliang Bu
- Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Chenglei Li
- Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Hui Chen
- Sichuan Agricultural University, College of Life Science, Ya'an, China.
| |
Collapse
|
613
|
Wang L, Jiang X, Wang L, Wang W, Fu C, Yan X, Geng X. A survey of transcriptome complexity using PacBio single-molecule real-time analysis combined with Illumina RNA sequencing for a better understanding of ricinoleic acid biosynthesis in Ricinus communis. BMC Genomics 2019; 20:456. [PMID: 31170917 PMCID: PMC6555039 DOI: 10.1186/s12864-019-5832-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Ricinus communis is a highly economically valuable oil crop plant from the spurge family, Euphorbiaceae. However, the available reference genomes are incomplete and to date studies on ricinoleic acid biosynthesis at the transcriptional level are limited. Results In this study, we combined PacBio single-molecule long read isoform and Illumina RNA sequencing to identify the alternative splicing (AS) events, novel isoforms, fusion genes, long non-coding RNAs (lncRNAs) and alternative polyadenylation (APA) sites to unveil the transcriptomic complexity of castor beans and identify critical genes related to ricinoleic acid biosynthesis. Here, we identified 11,285 AS-variants distributed in 21,448 novel genes and detected 520 fusion genes, 320 lncRNAs and 9511 (APA-sites). Furthermore, a total of 6067, 5983 and 4058 differentially expressed genes between developing beans of the R. communis lines 349 and 1115 with extremely different oil content were identified at 7, 14 and 21 days after flowering, respectively. Specifically, 14, 18 and 11 DEGs were annotated encoding key enzymes related to ricinoleic acid biosynthesis reflecting the higher castor oil content of 1115 compared than 349. Quantitative real-time RT-PCR further validated fifteen of these DEGs at three-time points. Conclusion Our results significantly improved the existed gene models of R. communis, and a putative model of key genes was built to show the differences between strains 349 and 1115, illustrating the molecular mechanism of castor oil biosynthesis. A multi-transcriptome database and candidate genes were provided to further improve the level of ricinoleic acid in transgenic crops. Electronic supplementary material The online version of this article (10.1186/s12864-019-5832-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaoling Jiang
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Lei Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Wei Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Chunling Fu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xingchu Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.
| | - Xinxin Geng
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan, China.
| |
Collapse
|
614
|
Kim J, Chun JP, Tucker ML. Transcriptional Regulation of Abscission Zones. PLANTS 2019; 8:plants8060154. [PMID: 31174352 PMCID: PMC6631628 DOI: 10.3390/plants8060154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Precise and timely regulation of organ separation from the parent plant (abscission) is consequential to improvement of crop productivity as it influences both the timing of harvest and fruit quality. Abscission is tightly associated with plant fitness as unwanted organs (petals, sepals, filaments) are shed after fertilization while seeds, fruits, and leaves are cast off as means of reproductive success or in response to abiotic/biotic stresses. Floral organ abscission in Arabidopsis has been a useful model to elucidate the molecular mechanisms that underlie the separation processes, and multiple abscission signals associated with the activation and downstream pathways have been uncovered. Concomitantly, large-scale analyses of omics studies in diverse abscission systems of various plants have added valuable insights into the abscission process. The results suggest that there are common molecular events linked to the biosynthesis of a new extracellular matrix as well as cell wall disassembly. Comparative analysis between Arabidopsis and soybean abscission systems has revealed shared and yet disparate regulatory modules that affect the separation processes. In this review, we discuss our current understanding of the transcriptional regulation of abscission in several different plants that has improved on the previously proposed four-phased model of organ separation.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong-Pil Chun
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA Bldg. 006, 10300 Baltimore Ave., Beltsville, MD 20705, USA.
| |
Collapse
|
615
|
Genome-Wide Analysis of TCP Family Genes in Zea mays L. Identified a Role for ZmTCP42 in Drought Tolerance. Int J Mol Sci 2019; 20:ijms20112762. [PMID: 31195663 PMCID: PMC6600213 DOI: 10.3390/ijms20112762] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022] Open
Abstract
The Teosinte-branched 1/Cycloidea/Proliferating (TCP) plant-specific transcription factors (TFs) have been demonstrated to play a fundamental role in plant development and organ patterning. However, it remains unknown whether or not the TCP gene family plays a role in conferring a tolerance to drought stress in maize, which is a major constraint to maize production. In this study, we identified 46 ZmTCP genes in the maize genome and systematically analyzed their phylogenetic relationships and synteny with rice, sorghum, and ArabidopsisTCP genes. Expression analysis of the 46 ZmTCP genes in different tissues and under drought conditions, suggests their involvement in maize response to drought stress. Importantly, genetic variations in ZmTCP32 and ZmTCP42 are significantly associated with drought tolerance at the seedling stage. RT-qPCR results suggest that ZmTCP32 and ZmTCP42 RNA levels are both induced by ABA, drought, and polyethylene glycol treatments. Based on the significant association between the genetic variation of ZmTCP42 and drought tolerance, and the inducible expression of ZmTCP42 by drought stress, we selected ZmTCP42, to investigate its function in drought response. We found that overexpression of ZmTCP42 in Arabidopsis led to a hypersensitivity to ABA in seed germination and enhanced drought tolerance, validating its function in drought tolerance. These results suggested that ZmTCP42 functions as an important TCP TF in maize, which plays a positive role in drought tolerance.
Collapse
|
616
|
Huang J, Fang L, Wang S, Liu X, Chen Y, Chen Y, Tian H, Lin S, Tian S, Wei H, Gu X. Molecular cloning, expression profiling, and functional analysis of a broad-complex isoform 2/3 (Br-Z2/Z3) transcription factor in the diamondback moth, Plutella xylostella (L.). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21549. [PMID: 30941822 DOI: 10.1002/arch.21549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a widespread and destructive pest of cruciferous crops. New strategies for controlling it are needed because it is rapidly developing resistance to conventional pesticides. In insects, transcription factors (TFs) including broad-complex (Br-C) are thought to be useful for insecticide development because they are able to regulate the transcription of functional genes involved in responses to external stimuli including insecticides. In the present study, we cloned and sequenced the open reading frames (ORFs) of three BTB-ZF encoding genes from the diamondback moth deposited in the National Center for Biotechnology Information (NCBI) database under accessions MG753773, MG288674, and MG753772. The lengths of these ORFs were 1,680, 1,428, and 1,647 bp, respectively. The phylogenetic analysis based on the predicted amino acid sequences of ZF domains showed that MG753773 and MG288674 belonged to Z2/Z3 and Z7 of Br-C while MG753772 belonged to Ttk types. In the agreement, the highest expression level of MG753773 occurred during the prepupal stage, MG288674 and MG753772 were expressed during all stages and peaked in the adult and egg stages, respectively. RNA interference silencing of MG753773 in the late third instar larvae significantly decreased survival and pupation of the insects. With precocene II, transcription of MG753773 increased (4×) in the fourth instar larva 24 hr later; 48 hr later the rate of prepupation and pupation was significantly higher. These findings will contribute to the development of new regulators of the growth and development for diamondback moth control.
Collapse
Affiliation(s)
- Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Ling Fang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Shuai Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Xiang Liu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Yong Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Yixin Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Houjun Tian
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Shuo Lin
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Sufen Tian
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Hui Wei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Xiaojun Gu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| |
Collapse
|
617
|
Kong XM, Zhou Q, Luo F, Wei BD, Wang YJ, Sun HJ, Zhao YB, Ji SJ. Transcriptome analysis of harvested bell peppers (Capsicum annuum L.) in response to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:314-324. [PMID: 30927694 DOI: 10.1016/j.plaphy.2019.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 03/23/2019] [Indexed: 05/22/2023]
Abstract
Bell peppers are valued for their plentiful vitamin C and nutritional content. Pepper fruits are susceptible to cold storage, which leads to chilling injury (CI); however, the crucial metabolic product and molecular basis response to cold stress have not been elucidated definitely yet. To comprehensively understand the gene regulation network and CI mechanisms in response to cold stress on a molecular level, we performed high-throughput RNA-Seq analysis to investigate genome-wide expression profiles in bell peppers at different storage temperatures (4 °C and 10 °C). A total of 61.55 Gb of clean data were produced; 3863 differentially expressed genes (DEGs) including 1669 up-regulated and 2194 down-regulated were annotated and classified between the CI group and control. Together, a total of 41 cold-induced transcription factor families comprising 250 transcription factors (TFs) were identified. Notably, numerous DEGs involved in biomembrane stability, dehydration and osmoregulation, and plant hormone signal transduction processes were discovered. The transcriptional level of 20 DEGs was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Our results present transcriptome profiles of bell peppers in response to cold stress; the data obtained may be useful for the identification of key candidate genes and elucidation of the mechanisms underlying membrane damage during chilling injury.
Collapse
Affiliation(s)
- Xi-Man Kong
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Feng Luo
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Bao-Dong Wei
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Ya-Juan Wang
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Hua-Jun Sun
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Ying-Bo Zhao
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Shu-Juan Ji
- Department of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China.
| |
Collapse
|
618
|
Zhu Z, Li G, Yan C, Liu L, Zhang Q, Han Z, Li B. DRL1, Encoding A NAC Transcription Factor, Is Involved in Leaf Senescence in Grapevine. Int J Mol Sci 2019; 20:ijms20112678. [PMID: 31151316 PMCID: PMC6600502 DOI: 10.3390/ijms20112678] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
The NAC (for NAM, ATAF1,2, and CUC2) proteins family are plant-specific transcription factors, which play important roles in leaf development and response to environmental stresses. In this study, an NAC gene, DRL1, isolated from grapevine Vitis vinifera L. "Yatomi Rose", was shown to be involved in leaf senescence. The quantity of DRL1 transcripts decreased with advancing leaf senescence in grapevine. Overexpressing the DRL1 gene in tobacco plants significantly delayed leaf senescence with respect to chlorophyll concentration, potential quantum efficiency of photosystem II (Fv/Fm), and ion leakage. Moreover, exogenous abscisic acid (ABA) markedly reduced the expression of DRL1, and the ABA and salicylic acid (SA) concentration was lower in the DRL1-overexpressing transgenic plants than in the wild-type plants. The DRL1 transgenic plants exhibited reduced sensitivity to ABA-induced senescence but no significant change in the sensitivity to jasmonic acid-, SA- or ethylene-induced senescence. Transcriptomic analysis and RNA expression studies also indicated that the transcript abundance of genes associated with ABA biosynthesis and regulation, including 9-cis-epoxycarotenoid dioxygenase (NCED1), NCED5, zeaxanthin epoxidase1 (ZEP1), ABA DEFICIENT2 (ABA2), ABA4, and ABA INSENSITIVE 2 (ABI2), was markedly reduced in the DRL1-overexpressing plants. These results suggested that DRL1 plays a role as a negative regulator of leaf senescence by regulating ABA synthesis.
Collapse
Affiliation(s)
- Ziguo Zhu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Guirong Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Chaohui Yan
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Li Liu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Qingtian Zhang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Zhen Han
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Bo Li
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| |
Collapse
|
619
|
Liu X, Liu Z, Hao Z, Chen G, Qi K, Zhang H, Jiao H, Wu X, Zhang S, Wu J, Wang P. Characterization of Dof family in Pyrus bretschneideri and role of PbDof9.2 in flowering time regulation. Genomics 2019; 112:712-720. [PMID: 31078718 DOI: 10.1016/j.ygeno.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022]
Abstract
DNA binding with One Finger (Dof) proteins are plant-specific transcription factors with highly conserved Dof domain, including C2-C2 type zinc finger motifs. In this study, we identified 45 PbDofs in pear (Pyrusbretschneideri). PbDofs were classified into eight subfamilies by phylogenetic analysis. Conserved motifs of PbDof proteins were analyzed by MEME. PbDofs in subfamily D1 werehomologous to CDFs in Arabidopsis. In this study, we showed that PbDof9.2 was regulated by both the circadian clock and photoperiod. PbDof9.2-GFP proteinwas localized in the nucleus. Overexpression of PbDof9.2 in Arabidopsis caused delayed flowering time. PbDof9.2 suppressed the flowering time regulator FT and could repress flowering time by promoting activity of PbTFL1a and PbTFL1b promoter. These results suggest that Doftranscription factors have conserved functions in plant development.
Collapse
Affiliation(s)
- Xueying Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziwei Hao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guodong Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijun Jiao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
620
|
Li T, Wang YH, Liu JX, Feng K, Xu ZS, Xiong AS. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Crit Rev Biotechnol 2019; 39:680-692. [DOI: 10.1080/07388551.2019.1608153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
621
|
Sukumari Nath V, Kumar Mishra A, Kumar A, Matoušek J, Jakše J. Revisiting the Role of Transcription Factors in Coordinating the Defense Response Against Citrus Bark Cracking Viroid Infection in Commercial Hop ( Humulus Lupulus L.). Viruses 2019; 11:v11050419. [PMID: 31060295 PMCID: PMC6563305 DOI: 10.3390/v11050419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 01/13/2023] Open
Abstract
Transcription factors (TFs) play a major role in controlling gene expression by intricately regulating diverse biological processes such as growth and development, the response to external stimuli and the activation of defense responses. The systematic identification and classification of TF genes are essential to gain insight into their evolutionary history, biological roles, and regulatory networks. In this study, we performed a global mining and characterization of hop TFs and their involvement in Citrus bark cracking viroid CBCVd infection by employing a digital gene expression analysis. Our systematic analysis resulted in the identification of a total of 3,818 putative hop TFs that were classified into 99 families based on their conserved domains. A phylogenetic analysis classified the hop TFs into several subgroups based on a phylogenetic comparison with reference TF proteins from Arabidopsis thaliana providing glimpses of their evolutionary history. Members of the same subfamily and subgroup shared conserved motif compositions. The putative functions of the CBCVd-responsive hop TFs were predicted using their orthologous counterparts in A. thaliana. The analysis of the expression profiling of the CBCVd-responsive hop TFs revealed a massive differential modulation, and the expression of the selected TFs was validated using qRT-PCR. Together, the comprehensive integrated analysis in this study provides better insights into the TF regulatory networks associated with CBCVd infections in the hop, and also offers candidate TF genes for improving the resistance in hop against viroids.
Collapse
Affiliation(s)
- Vishnu Sukumari Nath
- Department of Molecular Genetics, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Ajay Kumar Mishra
- Department of Molecular Genetics, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Atul Kumar
- Department of Molecular Genetics, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Jaroslav Matoušek
- Department of Molecular Genetics, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
622
|
Guo C, Saren Q, Hao J, Guan X, Niu Y, Hasi A. In silico and Expression Profile Analyses of the ERF Subfamily in Melon. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
623
|
Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, Bubb KL, Trapnell C, Fields S, Queitsch C, Cuperus JT. Dynamics of Gene Expression in Single Root Cells of Arabidopsis thaliana. THE PLANT CELL 2019. [PMID: 30923229 DOI: 10.1101/448514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Single cell RNA sequencing can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type-specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.
Collapse
Affiliation(s)
- Ken Jean-Baptiste
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | | | - Cristina M Alexandre
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Lauren Saunders
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Department of Medicine, University of Washington, Seattle, Washington 98195
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
624
|
Gong X, Zhao L, Song X, Lin Z, Gu B, Yan J, Zhang S, Tao S, Huang X. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2019; 19:161. [PMID: 31023218 PMCID: PMC6485137 DOI: 10.1186/s12870-019-1760-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 04/05/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Although the genome of Chinese white pear ('Dangshansuli') has been released, little is known about the functions, evolutionary history and expression patterns of NAC families in this species to date. RESULTS In this study, we identified a total of 183 NAC transcription factors (TFs) in the pear genome, among which 146 pear NAC (PbNAC) members were mapped onto 16 chromosomes, and 37 PbNAC genes were located on scaffold contigs. No PbNAC genes were mapped to chromosome 2. Based on gene structure, protein motif analysis, and topology of the phylogenetic tree, the pear PbNAC family was classified into 33 groups. By comparing and analyzing the unique NAC subgroups in Rosaceae, we identified 19 NAC subgroups specific to pear. We also found that whole-genome duplication (WGD)/segmental duplication played critical roles in the expansion of the NAC family in pear, such as the 83 PbNAC duplicated gene pairs dated back to the two WGD events. Further, we found that purifying selection was the primary force driving the evolution of PbNAC family genes. Next, we used transcriptomic data to study responses to drought and cold stresses in pear, and we found that genes in groups C2f, C72b, and C100a were related to drought and cold stress response. CONCLUSIONS Through the phylogenetic, evolutionary, and expression analyses of the NAC gene family in Chinese white pear, we indentified 11 PbNAC TFs associated with abiotic stress in pear.
Collapse
Affiliation(s)
- Xin Gong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liangyi Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaofei Song
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zekun Lin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bingjie Gu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinxuan Yan
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shutian Tao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
625
|
Li Y, Zhang S, Zhang N, Zhang W, Li M, Liu B, Shi Z. MYB-CC transcription factor, TaMYBsm3, cloned from wheat is involved in drought tolerance. BMC PLANT BIOLOGY 2019; 19:143. [PMID: 30987595 PMCID: PMC6466810 DOI: 10.1186/s12870-019-1751-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/31/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND MYB-CC transcription factors (TFs) genes have been demonstrated to be involved in the response to inorganic phosphate (Pi) starvation and regulate some Pi-starvation-inducible genes. However, their role in drought stress has not been investigated in bread wheat. In this study, the TaMYBsm3 genes, including TaMYBsm3-A, TaMYBsm3-B, and TaMYBsm3-D, encoding MYB-CC TF proteins in bread wheat, were isolated to investigate the possible molecular mechanisms related to drought-tolerance in plants. RESULTS TaMYBsm3-A, TaMYBsm3-B, and TaMYBsm3-D were mapped on chromosomes 6A, 6B, and 6D in wheat, respectively. TaMYBsm3 genes belonged to MYB-CC TFs, containing a conserved MYB DNA-binding domain and a conserved coiled-coil domain. TaMYBsm3-D was localized in the nucleus, and the N-terminal region was a transcriptional activation domain. TaMYBsm3 genes were ubiquitously expressed in different tissues of wheat, and especially highly expressed in the stamen and pistil. Under drought stress, transgenic plants exhibited milder wilting symptoms, higher germination rates, higher proline content, and lower MDA content comparing with the wild type plants. P5CS1, DREB2A, and RD29A had significantly higher expression in transgenic plants than in wild type plants. CONCLUSION TaMYBsm3-A, TaMYBsm3-B, and TaMYBsm3-D were associated with enhanced drought tolerance in bread wheat. Overexpression of TaMYBsm3-D increases the drought tolerance of transgenic Arabidopsis through up-regulating P5CS1, DREB2A, and RD29A.
Collapse
Affiliation(s)
- Yaqing Li
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No.479 Shengli North Street, Chang’an district, Shijiazhuang, 050041 Hebei Province China
| | - Shichang Zhang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No.479 Shengli North Street, Chang’an district, Shijiazhuang, 050041 Hebei Province China
| | - Nan Zhang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No.479 Shengli North Street, Chang’an district, Shijiazhuang, 050041 Hebei Province China
| | - Wenying Zhang
- Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000 China
| | - Mengjun Li
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No.479 Shengli North Street, Chang’an district, Shijiazhuang, 050041 Hebei Province China
| | - Binhui Liu
- Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000 China
| | - Zhanliang Shi
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No.479 Shengli North Street, Chang’an district, Shijiazhuang, 050041 Hebei Province China
| |
Collapse
|
626
|
Xiao J, Hu R, Gu T, Han J, Qiu D, Su P, Feng J, Chang J, Yang G, He G. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat. BMC Genomics 2019; 20:287. [PMID: 30975075 PMCID: PMC6460849 DOI: 10.1186/s12864-019-5632-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The trihelix gene family is a plant-specific transcription factor family that plays important roles in plant growth, development, and responses to abiotic stresses. However, to date, no systemic characterization of the trihelix genes has yet been conducted in wheat and its close relatives. RESULTS We identified a total of 94 trihelix genes in wheat, as well as 22 trihelix genes in Triticum urartu, 29 in Aegilops tauschii, and 31 in Brachypodium distachyon. We analyzed the chromosomal locations and orthology relations of the identified trihelix genes, and no trihelix gene was found to be located on chromosome 7A, 7B, or 7D of wheat, thereby reflecting the uneven distributions of wheat trihelix genes. Phylogenetic analysis indicated that the 186 identified trihelix proteins in wheat, rice, B. distachyon, and Arabidopsis were clustered into five major clades. The trihelix genes belonging to the same clades usually shared similar motif compositions and exon/intron structural patterns. Five pairs of tandem duplication genes and three pairs of segmental duplication genes were identified in the wheat trihelix gene family, thereby validating the supposition that more intrachromosomal gene duplication events occur in the genome of wheat than in that of other grass species. The tissue-specific expression and differential expression profiling of the identified genes under cold and drought stresses were analyzed by using RNA-seq data. qRT-PCR was also used to confirm the expression profiles of ten selected wheat trihelix genes under multiple abiotic stresses, and we found that these genes mainly responded to salt and cold stresses. CONCLUSIONS In this study, we identified trihelix genes in wheat and its close relatives and found that gene duplication events are the main driving force for trihelix gene evolution in wheat. Our expression profiling analysis demonstrated that wheat trihelix genes responded to multiple abiotic stresses, especially salt and cold stresses. The results of our study built a basis for further investigation of the functions of wheat trihelix genes and provided candidate genes for stress-resistant wheat breeding programs.
Collapse
Affiliation(s)
- Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Ting Gu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Jiapeng Han
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Ding Qiu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Peipei Su
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Jialu Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| |
Collapse
|
627
|
Abstract
Biotic and abiotic stimuli induce profound transcriptional reprograming in plants through sophisticated regulation of transcription factors (TFs). Recombinant proteins of TFs play an important role in unveiling their molecular functions. Cell-free protein synthesis (CFPS) system from wheat germ has been developed as one of the most efficient protein synthesis platforms. However, preparation of linear DNA templates for in vitro transcription is time-consuming and laborious. Here, we describe a versatile method for in vitro transcription and translation of the wheat germ CFPS system. Our two-step PCR method enables researchers to generate a variety of transcription templates from a single plasmid including fusion proteins of an N- or C-terminal tag and truncated proteins. Thus, this method supports a rapid and high-throughput expression of proteins for a large-scale proteomics analysis.
Collapse
Affiliation(s)
- Mika Nomoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yasuomi Tada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan. .,Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
628
|
Bhandawat A, Sharma V, Singh P, Seth R, Nag A, Kaur J, Sharma RK. Discovery and Utilization of EST-SSR Marker Resource for Genetic Diversity and Population Structure Analyses of a Subtropical Bamboo, Dendrocalamus hamiltonii. Biochem Genet 2019; 57:652-672. [DOI: 10.1007/s10528-019-09914-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/26/2019] [Indexed: 01/15/2023]
|
629
|
Fasani E, DalCorso G, Costa A, Zenoni S, Furini A. The Arabidopsis thaliana transcription factor MYB59 regulates calcium signalling during plant growth and stress response. PLANT MOLECULAR BIOLOGY 2019; 99:517-534. [PMID: 30710226 DOI: 10.1007/s11103-019-00833-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/26/2019] [Indexed: 05/04/2023]
Abstract
Transcription factor MYB59 is involved in plant growth and stress responses by acting as negative regulator of Ca signalling and homeostasis. The Arabidopsis thaliana transcription factor MYB59 is induced by cadmium (Cd) and plays a key role in the regulation of cell cycle progression and root elongation, but its mechanism of action is poorly understood. We investigated the expression of MYB59 and differences between wild-type plants, the myb59 mutant and MYB59-overexpressing lines (obtained by transformation in the mutant genotype) during plant growth and in response to various forms of stress. We also compared the transcriptomes of wild-type and myb59 mutant plants to determine putative MYB59 targets. The myb59 mutant has longer roots, smaller leaves and smaller cells than wild-type plants and responds differently to stress in germination assay. Transcriptomic analysis revealed the upregulation in the myb59 mutant of multiple genes involved in calcium (Ca) homeostasis and signalling, including those encoding calmodulin-like proteins and Ca transporters. Notably, MYB59 was strongly induced by Ca deficiency, and the myb59 mutant was characterized by higher levels of cytosolic Ca in root cells and showed a modest alteration of Ca transient frequency in guard cells, associated with the absence of Ca-induced stomatal closure. These results indicate that MYB59 negatively regulates Ca homeostasis and signalling during Ca deficiency, thus controlling plant growth and stress responses.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Alex Costa
- Department of Life Sciences, University of Milano, 20133, Milan, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
630
|
Tang T, Du C, Song H, Aziz U, Wang L, Zhao C, Zhang M. Genome-wide analysis reveals the evolution and structural features of WRINKLED1 in plants. Mol Genet Genomics 2019; 294:329-341. [PMID: 30446819 DOI: 10.1007/s00438-018-1512-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/08/2018] [Indexed: 01/05/2023]
Abstract
WRINKLED1 (WRI1), an AP2/ERE transcription factor, is one of the most important regulators of oil accumulation. It has been extensively studied in angiosperms, but its evolution and overview features in plants remain unknown. In this study, WRI1s, as well as WRI1-likes in non-WRI1 species, were investigated in 64 genome-sequenced plants. Their origin, distribution, duplication, evolution, functional domains, motifs, properties, and cis-elements were analyzed. Results suggest that WRI1 and WRI1-like may originate from Chlorophyta, and WRI1-likes in angiosperms resemble phylogenetically and structurally WRI1s from Chlorophyta and non-vascular plants. WRI1 or WRI1-like may be essential to vascular plants but not to non-vascular plants. Two YRG elements and two RAYD elements, as well as their phosphorylation sites and the 14-3-3 binding motif, are relatively conserved from Chlorophyta to angiosperm. The predicted DNA-binding domains are slightly shorter than the combination of one YRG element and one RAYD element. WRI1 gradually evolves from alkalinity to acidity. More motifs were developed in N-terminuses and C-terminuses in vascular plants. A short acidic amino-acid-enriched domain in the C-terminal region is predicted to be the putative transactivation domain. The VYL exon appears randomly in different WRI1 transcripts and it is not important for the function of WRI1. In addition, more cis-elements developed during WRI1 evolution may suggest its more complicated regulation and physiological functions. These results will assist future function studies of WRI1 and evolution studies of fatty acid biosynthesis regulation in plants.
Collapse
Affiliation(s)
- Tong Tang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chang Du
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huan Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Usman Aziz
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lili Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
631
|
Singh P, Mathew IE, Verma A, Tyagi AK, Agarwal P. Analysis of Rice Proteins with DLN Repressor Motif/S. Int J Mol Sci 2019; 20:ijms20071600. [PMID: 30935059 PMCID: PMC6479872 DOI: 10.3390/ijms20071600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation includes both activation and repression of downstream genes. In plants, a well-established class of repressors are proteins with an ERF-associated amphiphilic repression/EAR domain. They contain either DLNxxP or LxLxL as the identifying hexapeptide motif. In rice (Oryza sativa), we have identified a total of 266 DLN repressor proteins, with the former motif and its modifications thereof comprising 227 transcription factors and 39 transcriptional regulators. Apart from DLNxxP motif conservation, DLNxP and DLNxxxP motifs with variable numbers/positions of proline and those without any proline conservation have been identified. Most of the DLN repressome proteins have a single DLN motif, with higher relative percentage in the C-terminal region. We have designed a simple yeast-based experiment wherein a DLN motif can successfully cause strong repression of downstream reporter genes, when fused to a transcriptional activator of rice or yeast. The DLN hexapeptide motif is essential for repression, and at least two “DLN” residues cause maximal repression. Comparatively, rice has more DLN repressor encoding genes than Arabidopsis, and DLNSPP motif from rice is 40% stronger than the known Arabidopsis SRDX motif. The study reports a straightforward assay to analyze repressor activity, along with the identification of a strong DLN repressor from rice.
Collapse
Affiliation(s)
- Purnima Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Ankit Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, South Campus Delhi University, New Delhi-110021, India.
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
632
|
Agarwal P, Baranwal VK, Khurana P. Genome-wide Analysis of bZIP Transcription Factors in wheat and Functional Characterization of a TabZIP under Abiotic Stress. Sci Rep 2019; 9:4608. [PMID: 30872683 PMCID: PMC6418127 DOI: 10.1038/s41598-019-40659-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/20/2019] [Indexed: 11/30/2022] Open
Abstract
The basic leucine zipper (bZIP) represents one of the largest as well as most diverse transcription factor (TFs) families. They are known to play role in both stress as well as in various plant developmental processes. In the present study, a total of 191 bZIP transcription factors have been identified from Triticum aestivum. Expression analysis during various stress conditions, developmental stages, different varieties and gene ontology enrichment analysis suggest their possible roles in abiotic stress as well as in developmental responses. In the current analysis, one of the members named as TabZIP (Traes_7AL_25850F96F.1) was selected for detailed analysis to understand its role under different abiotic stress conditions. Gene expression studies revealed differential expression of TabZIP in various abiotic stress conditions like heat, salinity and dehydration suggesting the possible role of bZIP in various stress mitigation mechanism. Arabidopsis transgenics overexpressing TabZIP showed enhanced tolerance to salinity, drought, heat and oxidative stress. Thus TabZIP (Traes_7AL_25850F96F.1) can serve as a candidate gene for improving heat as well as other abiotic stress tolerance and can be helpful in enhancing the crop productivity under stress conditions.
Collapse
Affiliation(s)
- Preeti Agarwal
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Vinay Kumar Baranwal
- Department of Botany, Swami Devanand Post Graduate College, Devashram Marg, Lar, Deoria, 274502, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
633
|
Field transcriptome revealed a novel relationship between nitrate transport and flowering in Japanese beech. Sci Rep 2019; 9:4325. [PMID: 30867453 PMCID: PMC6416253 DOI: 10.1038/s41598-019-39608-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/29/2019] [Indexed: 11/09/2022] Open
Abstract
Recent advances in molecular and genetic studies about flowering time control have been increasingly available to elucidate the physiological mechanism underlying masting, the intermittent and synchronized production of a large amount of flowers and seeds in plant populations. To identify unexplored developmental and physiological processes associated with masting, genome-wide transcriptome analysis is a promising tool, but such analyses have yet to be performed. We established a field transcriptome using a typical masting species, Japanese beech (Fagus crenata Blume), over two years, and analyzed the data using a nonlinear time-series analysis called convergent cross mapping. Our field transcriptome was found to undergo numerous changes depending on the status of floral induction and season. An integrated approach of high-throughput transcriptomics and causal inference was successful at detecting novel causal regulatory relationships between nitrate transport and florigen synthesis/transport in a forest tree species. The synergistic activation of nitrate transport and floral transition could be adaptive to simultaneously satisfy floral transition at the appropriate timing and the nitrogen demand needed for flower formation.
Collapse
|
634
|
Huang X, Yan H, Zhai L, Yang Z, Yi Y. Characterization of the Rosa roxburghii Tratt transcriptome and analysis of MYB genes. PLoS One 2019; 14:e0203014. [PMID: 30860996 PMCID: PMC6414006 DOI: 10.1371/journal.pone.0203014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/16/2019] [Indexed: 01/05/2023] Open
Abstract
Rosa roxburghii Tratt (Rosaceae) has a fruit that is flavorful, economically valuable, and highly nutritious, providing numerous health benefits. Myeloblastosis (MYB) proteins play key roles in the development and fruit quality of R. roxburghii. However, there is little available genomic and transcriptomic information for R. roxburghii. Here, a normalized cDNA library was constructed from five tissues, including the stem, leaf, flower, young fruit, and mature fruit, using the Illumina HiSeq 3000 platform. De novo assembly was performed, and 470.66 million clean reads were obtained. In total, 63,727 unigenes, with an average GC content of 42.08%, were discovered, 60,406 of which were annotated. In addition, 9,354 unigenes were assigned to Gene Ontology categories, and 20,202 unigenes were assigned to 25 Eukaryotic Ortholog Groups. Additionally, 19,508 unigenes were classified into 140 pathways of the Kyoto Encyclopedia of Genes and Genomes database. Based on the transcriptome, 163 unigenes associated with MYBs were detected. Among these genes, 75 genes were significantly expressed in the various tissues, including 10 R1 MYB, 42 R2R3 MYB, one R1R2R3 MYB, three R4 MYB and 19 atypical MYB-like proteins. The expression levels of the 12 MYB genes randomly selected for quantitative real-time PCR analysis corroborated the RNA sequencing results. A total of 37,545 microsatellites were detected, with an average expressed sequence tag–simple sequence repeat frequency of 0.59 (37,545/63,727). This transcriptome data improves our understanding of the role of MYB in R. roxburghii and will be valuable for identifying genes of interest.
Collapse
Affiliation(s)
- Xiaolong Huang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China /Key Laboratory of Plant Physiology and Developmental Regulation/ School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang, China
- * E-mail: (HY); (YY)
| | - Lisheng Zhai
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China /Key Laboratory of Plant Physiology and Developmental Regulation/ School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Zhengting Yang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China /Key Laboratory of Plant Physiology and Developmental Regulation/ School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China /Key Laboratory of Plant Physiology and Developmental Regulation/ School of Life Sciences, Guizhou Normal University, Guiyang, China
- * E-mail: (HY); (YY)
| |
Collapse
|
635
|
Overexpression of RcLEC1-B, a HAP3 transcription factor of PLB from Rosa canina, increases the level of endogenous gibberellin and alters the development of cuticle and floral organs in Arabidopsis. Gene 2019; 688:119-131. [PMID: 30529094 DOI: 10.1016/j.gene.2018.11.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 11/22/2022]
Abstract
The HAP3 subfamily gene RcLEC1-B, was isolated from protocorm-like body (PLB) of Rosa canina, encodes 213 amino acid residues. It was shown that RcLEC1-B was specifically expressed in PLB of R. canina and its subcellular localization is in the nucleus. Overexpression of RcLEC1-B in Arabidopsis resulted in a decrease in endogenous ABA level, an increase in GA, IAA and CTK contents, and an increased number of branches. RcLEC1-B promotes the formation of spontaneous embryoids, suggesting that it may be a homolog of the Arabidopsis LEC1 gene. RcLEC1-B-OE changed the number and morphology of flower organs and resulted in open carpels and exposed ovules, along with a reduced percentage of fertile fruit. This is the first observation that overexpression of a homolog of LEC1 in Arabidopsis can lead to morphological changes in floral organs, cuticle defects, and adhesions between organs; this may result from the increased level of gibberellin in the transgenic plants.
Collapse
|
636
|
Guérin C, Roche J, Allard V, Ravel C, Mouzeyar S, Bouzidi MF. Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.). PLoS One 2019; 14:e0213390. [PMID: 30840709 PMCID: PMC6402696 DOI: 10.1371/journal.pone.0213390] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/19/2019] [Indexed: 02/01/2023] Open
Abstract
The NAC family is one of the largest plant-specific transcription factor families, and some of its members are known to play major roles in plant development and response to biotic and abiotic stresses. Here, we inventoried 488 NAC members in bread wheat (Triticum aestivum). Using the recent release of the wheat genome (IWGS RefSeq v1.0), we studied duplication events focusing on genomic regions from 4B-4D-5A chromosomes as an example of the family expansion and neofunctionalization of TaNAC members. Differentially expressed TaNAC genes in organs and in response to abiotic stresses were identified using publicly available RNAseq data. Expression profiling of 23 selected candidate TaNAC genes was studied in leaf and grain from two bread wheat genotypes at two developmental stages in field drought conditions and revealed insights into their specific and/or overlapping expression patterns. This study showed that, of the 23 TaNAC genes, seven have a leaf-specific expression and five have a grain-specific expression. In addition, the grain-specific genes profiles in response to drought depend on the genotype. These genes may be considered as potential candidates for further functional validation and could present an interest for crop improvement programs in response to climate change. Globally, the present study provides new insights into evolution, divergence and functional analysis of NAC gene family in bread wheat.
Collapse
Affiliation(s)
- Claire Guérin
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Jane Roche
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
- * E-mail:
| | - Vincent Allard
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Catherine Ravel
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Said Mouzeyar
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Mohamed Fouad Bouzidi
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| |
Collapse
|
637
|
Hartmann RM, Schaepe S, Nübel D, Petersen AC, Bertolini M, Vasilev J, Küster H, Hohnjec N. Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis. Sci Rep 2019; 9:3360. [PMID: 30833646 PMCID: PMC6399340 DOI: 10.1038/s41598-019-40214-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
To improve access to limiting nutrients, the vast majority of land plants forms arbuscular mycorrhizal (AM) symbioses with Glomeromycota fungi. We show here that AM-related GRAS transcription factors from different subgroups are upregulated during a time course of mycorrhization. Based on expression studies in mutants defective in arbuscule branching (ram1-1, with a deleted MtRam1 GRAS transcription factor gene) or in the formation of functional arbuscules (pt4-2, mutated in the phosphate transporter gene MtPt4), we demonstrate that the five AM-related GRAS transcription factor genes MtGras1, MtGras4, MtGras6, MtGras7, and MtRad1 can be differentiated by their dependency on MtRAM1 and MtPT4, indicating that the network of AM-related GRAS transcription factors consists of at least two regulatory modules. One module involves the MtRAM1- and MtPT4-independent transcription factor MtGRAS4 that activates MtGras7. Another module is controlled by the MtRAM1- and MtPT4-dependent transcription factor MtGRAS1. Genome-wide expression profiles of mycorrhized MtGras1 knockdown and ram1-1 roots differ substantially, indicating different targets. Although an MtGras1 knockdown reduces transcription of AM-related GRAS transcription factor genes including MtRam1 and MtGras7, MtGras1 overexpression alone is not sufficient to activate MtGras genes. MtGras1 knockdown roots display normal fungal colonization, with a trend towards the formation of smaller arbuscules.
Collapse
Affiliation(s)
- Rico M Hartmann
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Sieke Schaepe
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Daniel Nübel
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Arne C Petersen
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Martina Bertolini
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.,Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Jana Vasilev
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Helge Küster
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.
| | - Natalija Hohnjec
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| |
Collapse
|
638
|
Sanjari S, Shirzadian-Khorramabad R, Shobbar ZS, Shahbazi M. Systematic analysis of NAC transcription factors' gene family and identification of post-flowering drought stress responsive members in sorghum. PLANT CELL REPORTS 2019; 38:361-376. [PMID: 30627770 DOI: 10.1007/s00299-019-02371-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/02/2019] [Indexed: 05/25/2023]
Abstract
SbNAC genes (131) encoding 183 proteins were identified from the sorghum genome and characterized. The expression patterns of SbSNACs were evaluated at three sampling time points under post-flowering drought stress. NAC proteins are specific transcription factors in plants, playing vital roles in development and response to various environmental stresses. Despite the fact that Sorghum bicolor is well-known for its drought-tolerance, it suffers from grain yield loss due to pre and post-flowering drought stress. In the present study, 131 SbNAC genes encoding 183 proteins were identified from the sorghum genome. The phylogenetic trees were constructed based on the NAC domains of sorghum, and also based on sorghum with Arabidopsis and 8 known NAC domains of other plants, which classified the family into 15 and 19 subfamilies, respectively. Based on the obtained results, 13 SbNAC proteins joined the SNAC subfamily, and these proteins are expected to be involved in response to abiotic stresses. Promoter analysis revealed that all SbNAC genes comprise different stress-associated cis-elements in their promoters. UTRs analysis indicated that 101 SbNAC transcripts had upstream open reading frames, while 39 of the transcripts had internal ribosome entry sites in their 5'UTR. Moreover, 298 miRNA target sites were predicted to exist in the UTRs of SbNAC transcripts. The expression patterns of SbSNACs were evaluated in three genotypes at three sampling time points under post-flowering drought stress. Based on the results, it could be suggested that some gene members are involved in response to drought stress at the post-flowering stage since they act as positive or negative transcriptional regulators. Following further functional analyses, some of these genes might be perceived to be promising candidates for breeding programs to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Sepideh Sanjari
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Maryam Shahbazi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
639
|
Feng C, Song X, Tang H. Molecular cloning and expression analysis of GT-2-like genes in strawberry. 3 Biotech 2019; 9:105. [PMID: 30800616 PMCID: PMC6387661 DOI: 10.1007/s13205-019-1603-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022] Open
Abstract
GT-2 factors are the members of trihelix transcription factors (TFs) which can function in regulating plant development and responding to different abiotic stress. These proteins contain two structural domains composed by three tandem repeats helix-loop-helix-loop-helix. The strawberry (Fragaria × ananassa Duch.) is one of the most prevalent fruit crops due to its high economic and nutritional value. Nevertheless, strawberry production is limited by a range of biotic and abiotic stresses (such as drought, extreme temperature) that cause significant losses every year. Despite the potential roles of GT-2 transcription factor in plants, the functional and systematic analysis of the strawberry GT-2 subfamily has not been reported yet. In this research, we identified six GT-2 factors in 'Benihoppe' strawberry (Fragaria × ananassa) and all the FaGT-2-like proteins contain two trihelix domains. In addition, bioinformatics analysis showed that FaGT-2-like proteins might participate in transcription or transcription regulation. Compared with other reported GT-2 proteins, the similarity between FaGT-2-like and FvGT-2-like amino acid sequences was the highest, which can reach to 100%. Expression of these TFs indicated all of the FaGT-2-like genes could express in different tissues: root, stem, and leaf within distinct expression patterns. Furthermore, quantitative real-time PCR (qRT-PCR) analysis provided us with cues that all the FaGT-2-like genes were downregulated in response to various abiotic stress and hormone treatment. All the gene expressions can be inhibited by salt, drought, cold and ABA treatments, indicating that all the FaGT-2-like genes in 'Benihoppe' strawberry might act as the negative regulatory factors to respond to the abiotic stress. In summary, these results would lay a useful foundation for FaGT-2-like genes on functional study.
Collapse
Affiliation(s)
- Chen Feng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Xia Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| |
Collapse
|
640
|
Xia F, Sun T, Yang S, Wang X, Chao J, Li X, Hu J, Cui M, Liu G, Wang D, Sun Y. Insight into the B3Transcription Factor Superfamily and Expression Profiling of B3 Genes in Axillary Buds after Topping in Tobacco( Nicotiana tabacum L.). Genes (Basel) 2019; 10:E164. [PMID: 30791672 PMCID: PMC6409620 DOI: 10.3390/genes10020164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the plant-specific B3 transcription factor superfamily play important roles in various growth and developmental processes in plants. Even though there are many valuable studies on B3 genes in other species, little is known about the B3 superfamily in tobacco. We identified 114 B3 proteins from tobacco using comparative genome analysis. These proteins were classified into four subfamilies based on their phylogenetic relationships, and include the ARF, RAV, LAV, and REM subfamilies. The chromosomal locations, gene structures, conserved protein motifs, and sub-cellular localizations of the tobacco B3 proteins were analyzed. The patterns of exon-intron numbers and arrangement and the protein structures of the tobacco B3 proteins were in general agreement with their phylogenetic relationships. The expression patterns of 114 B3 genes revealed that many B3 genes show tissue-specific expression. The expression levels of B3 genes in axillary buds after topping showed that the REM genes are mainly up-regulated in response to topping, while the ARF genes are down-regulated after topping.
Collapse
Affiliation(s)
- Fei Xia
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Tingting Sun
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Junhua Hu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| |
Collapse
|
641
|
Yang X, Liu J, Xu J, Duan S, Wang Q, Li G, Jin L. Transcriptome Profiling Reveals Effects of Drought Stress on Gene Expression in Diploid Potato Genotype P3-198. Int J Mol Sci 2019; 20:ijms20040852. [PMID: 30781424 PMCID: PMC6413097 DOI: 10.3390/ijms20040852] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 01/09/2023] Open
Abstract
Potato (Solanum tuberosum L.) is one of the three most important food crops worldwide; however, it is strongly affected by drought stress. The precise molecular mechanisms of drought stress response in potato are not very well understood. The diploid potato genotype P3-198 has been verified to be highly resistant to drought stress. Here, a time-course experiment was performed to identify drought resistance response genes in P3-198 under polyethylene glycol (PEG)-induced stress using RNA-sequencing. A total of 1665 differentially expressed genes (DEGs) were specifically identified, and based on gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the transcription factor activity, protein kinase activity, and the plant hormone signal transduction process were significantly enriched. Annotation revealed that these DEGs mainly encode transcription factors, protein kinases, and proteins related to redox regulation, carbohydrate metabolism, and osmotic adjustment. In particular, genes encoding abscisic acid (ABA)-dependent signaling molecules were significantly differentially expressed, which revealed the important roles of the ABA-dependent signaling pathway in the early response of P3-198 to drought stress. Quantitative real-time PCR experimental verification confirmed the differential expression of genes in the drought resistance signaling pathway. Our results provide valuable information for understanding potato drought-resistance mechanisms, and also enrich the gene resources available for drought-resistant potato breeding.
Collapse
Affiliation(s)
- Xiaohui Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences/Molecular Biology Key Laboratory of Shandong Facility Vegetable, Jinan 250100, China.
- National Vegetable Improvement Center Shandong Sub-Center/Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan 250100, China.
| | - Jie Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Jianfei Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Shaoguang Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Qianru Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Liping Jin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
642
|
Nagashima A, Higaki T, Koeduka T, Ishigami K, Hosokawa S, Watanabe H, Matsui K, Hasezawa S, Touhara K. Transcriptional regulators involved in responses to volatile organic compounds in plants. J Biol Chem 2019; 294:2256-2266. [PMID: 30593507 PMCID: PMC6378981 DOI: 10.1074/jbc.ra118.005843] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Field studies have shown that plants growing next to herbivore-infested plants acquire higher resistance to herbivore damage. This increased resistance is partly due to regulation of plant gene expression by volatile organic compounds (VOCs) released by plants that sense environmental challenges such as herbivores. The molecular basis for VOC sensing in plants, however, is poorly understood. Here, we report the identification of TOPLESS-like proteins (TPLs) that have VOC-binding activity and are involved in VOC sensing in tobacco. While screening for volatiles that induce stress-responsive gene expression in tobacco BY-2 cells and tobacco plants, we found that some sesquiterpenes induce the expression of stress-responsive genes. These results provided evidence that plants sense these VOCs and motivated us to analyze the mechanisms underlying volatile sensing using tobacco as a model system. Using a pulldown assay with caryophyllene derivative-linked beads, we identified TPLs as transcriptional co-repressors that bind volatile caryophyllene analogs. Overexpression of TPLs in cultured BY-2 cells or tobacco leaves reduced caryophyllene-induced gene expression, indicating that TPLs are involved in the responses to caryophyllene analogs in tobacco. We propose that unlike animals, which use membrane receptors for sensing odorants, a transcriptional co-repressor plays a role in sensing and mediating VOC signals in plant cells.
Collapse
Affiliation(s)
- Ayumi Nagashima
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
- the ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency (JST), and
| | - Takumi Higaki
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 277-8562, Japan
| | - Takao Koeduka
- the Department of Biological Chemistry, Faculty of Agriculture and Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan, and
| | - Ken Ishigami
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
| | - Satoko Hosokawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
| | - Hidenori Watanabe
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences
| | - Kenji Matsui
- the Department of Biological Chemistry, Faculty of Agriculture and Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan, and
| | - Seiichiro Hasezawa
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 277-8562, Japan
| | - Kazushige Touhara
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
- the ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency (JST), and
- the International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
| |
Collapse
|
643
|
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, Avilez-Montalvo J, De-la-Peña C, Loyola-Vargas VM. Signaling Overview of Plant Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2019; 10:77. [PMID: 30792725 PMCID: PMC6375091 DOI: 10.3389/fpls.2019.00077] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/17/2019] [Indexed: 05/17/2023]
Abstract
Somatic embryogenesis (SE) is a means by which plants can regenerate bipolar structures from a somatic cell. During the process of cell differentiation, the explant responds to endogenous stimuli, which trigger the induction of a signaling response and, consequently, modify the gene program of the cell. SE is probably the most studied plant regeneration model, but to date it is the least understood due to the unclear mechanisms that occur at a cellular level. In this review, the authors seek to emphasize the importance of signaling on plant SE, highlighting the interactions between the different plant growth regulators (PGR), mainly auxins, cytokinins (CKs), ethylene and abscisic acid (ABA), during the induction of SE. The role of signaling is examined from the start of cell differentiation through the early steps on the embryogenic pathway, as well as its relation to a plant's tolerance of different types of stress. Furthermore, the role of genes encoded to transcription factors (TFs) during the embryogenic process such as the LEAFY COTYLEDON (LEC), WUSCHEL (WUS), BABY BOOM (BBM) and CLAVATA (CLV) genes, Arabinogalactan-proteins (AGPs), APETALA 2 (AP2) and epigenetic factors is discussed.
Collapse
Affiliation(s)
- Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Maharshi Ledezma-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Randy N. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Yary L. Juárez-Gómez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Analesa Skeete
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Johny Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
644
|
Liu M, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum). BMC Genomics 2019; 20:113. [PMID: 30727951 PMCID: PMC6366116 DOI: 10.1186/s12864-019-5500-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/30/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The NAC (NAM, ATAF1/2, and CUC2) transcription factor family represents a group of large plant-specific transcriptional regulators, participating in plant development and response to external stress. However, there is no comprehensive study on the NAC genes of Tartary buckwheat (Fagopyrum tataricum), a large group of extensively cultivated medicinal and edible plants. The recently published Tartary buckwheat genome permits us to explore all the FtNAC genes on a genome-wide basis. RESULTS In the present study, 80 NAC (FtNAC) genes of Tartary buckwheat were obtained and named uniformly according to their distribution on chromosomes. Phylogenetic analysis of NAC proteins in both Tartary buckwheat and Arabidopsis showed that the FtNAC proteins are widely distributed in 15 subgroups with one subgroup unclassified. Gene structure analysis found that multitudinous FtNAC genes contained three exons, indicating that the structural diversity in Tartary buckwheat NAC genes is relatively low. Some duplication genes of FtNAC have a conserved structure that was different from others, indicating that these genes may have a variety of functions. By observing gene expression, we found that FtNAC genes showed abundant differences in expression levels in various tissues and at different stages of fruit development. CONCLUSIONS In this research, 80 NAC genes were identified in Tartary buckwheat, and their phylogenetic relationships, gene structures, duplication, global expression and potential roles in Tartary buckwheat development were studied. Comprehensive analysis will be useful for a follow-up study of functional characteristics of FtNAC genes and for the development of high-quality Tartary buckwheat varieties.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
645
|
Tezuka D, Kawamata A, Kato H, Saburi W, Mori H, Imai R. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:263-271. [PMID: 30590260 DOI: 10.1016/j.plaphy.2018.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 05/08/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice (Oryza sativa) worldwide. Here, we report the identification and functional characterization of a novel ethylene response factor (ERF) gene, OsERF83, which was expressed in rice leaves in response to rice blast fungus infection. OsERF83 expression was also induced by treatments with methyl jasmonate, ethephon, and salicylic acid, indicating that multiple phytohormones could be involved in the regulation of OsERF83 expression under biotic stress. Subcellular localization and transactivation analyses demonstrated that OsERF83 is a nucleus-localized transcriptional activator. A gel-shift assay using recombinant OsERF83 protein indicated that, like other ERFs, it binds to the GCC box. Transgenic rice plants overexpressing OsERF83 exhibited significantly suppressed lesion formation after rice blast infection, indicating that OsERF83 positively regulates disease resistance in rice. Genes encoding several classes of pathogenesis-related (PR) proteins, including PR1, PR2, PR3, PR5, and PR10, were upregulated in the OsERF83ox plants. Taken together, our findings show that OsERF83 is a novel ERF transcription factor that confers blast resistance by regulating the expression of defense-related genes in rice.
Collapse
Affiliation(s)
- Daisuke Tezuka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai, Tsukuba, 305-8602, Japan; Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Aya Kawamata
- School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Hideki Kato
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka, Sapporo, 062-8555, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Ryozo Imai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai, Tsukuba, 305-8602, Japan.
| |
Collapse
|
646
|
Riester L, Köster-Hofmann S, Doll J, Berendzen KW, Zentgraf U. Impact of Alternatively Polyadenylated Isoforms of ETHYLENE RESPONSE FACTOR4 with Activator and Repressor Function on Senescence in Arabidopsis thaliana L. Genes (Basel) 2019; 10:genes10020091. [PMID: 30696119 PMCID: PMC6409740 DOI: 10.3390/genes10020091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
Leaf senescence is highly regulated by transcriptional reprogramming, implying an important role for transcriptional regulators. ETHYLENE RESPONSE FACTOR4 (ERF4) was shown to be involved in senescence regulation and to exist in two different isoforms due to alternative polyadenylation of its pre-mRNA. One of these isoforms, ERF4-R, contains an ERF-associated amphiphilic repression (EAR) motif and acts as repressor, whereas the other form, ERF4-A, is lacking this motif and acts as activator. Here, we analyzed the impact of these isoforms on senescence. Both isoforms were able to complement the delayed senescence phenotype of the erf4 mutant with a tendency of ERF4-A for a slightly better complementation. However, overexpression led to accelerated senescence of 35S:ERF4-R plants but not of 35S:ERF4-A plants. We identified CATALASE3 (CAT3) as direct target gene of ERF4 in a yeast-one-hybrid screen. Both isoforms directly bind to the CAT3 promoter but have antagonistic effects on gene expression. The ratio of ERF4-A to ERF4-R mRNA changed during development, leading to a complex age-dependent regulation of CAT3 activity. The RNA-binding protein FPA shifted the R/A-ratio and fpa mutants are pointing towards a role of alternative polyadenylation regulators in senescence.
Collapse
Affiliation(s)
- Lena Riester
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany.
| | - Siliya Köster-Hofmann
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany.
| | - Jasmin Doll
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany.
| | - Kenneth W Berendzen
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany.
| | - Ulrike Zentgraf
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
647
|
Qing J, Dawei W, Jun Z, Yulan X, Bingqi S, Fan Z. Genome-wide characterization and expression analyses of the MYB superfamily genes during developmental stages in Chinese jujube. PeerJ 2019; 7:e6353. [PMID: 30697496 PMCID: PMC6348095 DOI: 10.7717/peerj.6353] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
The MYB transcription factor (TF) superfamily, one of the largest gene superfamilies, regulates a variety of physiological processes in plants. Although many MYB superfamily genes have been identified in plants, the MYB TFs in Chinese jujube (Ziziphus jujuba Mill.) have not been fully identified and characterized. Additionally, the functions of these genes remain unclear. In total, we identified 171 MYB superfamily genes in jujube and divided them into five subfamilies containing 99 genes of the R2R3-MYB subfamily, 58 genes of the MYB-related subfamily, four genes of the R1R2R3-MYB subfamily, one gene of the 4R-MYB subfamily, and nine genes of the atypical MYB subfamily. The 99 R2R3-MYB genes of jujube were divided into 35 groups, C1–C35, and the 58 MYB-related genes were divided into the following groups: the R-R-type, CCA1-like, I-box-binding-like, TBP-like, CPC-like, and Chinese jujube-specific groups. ZjMYB genes in jujube were well supported by additional highly conserved motifs and exon/intron structures. Most R1 repeats of MYB-related proteins comprised the R2 repeat and had highly conserved EED and EEE residue groups in jujube. Three tandem duplicated gene pairs were found on 12 chromosomes in jujube. According to an expression analysis of 126 ZjMYB genes, MYB-related genes played important roles in jujube development and fruit-related biological processes. The total flavonoid content of jujube fruit decreased as ripening progressed. A total of 93 expressed genes were identified in the RNA-sequencing data from jujube fruit, and 56 ZjMYB members presented significant correlations with total flavonoid contents by correlation analysis. Five pairs of paralogous MYB genes within jujube were composed of nine jujube MYB genes. A total of 14 ZjMYB genes had the same homology to the MYB genes of Arabidopsis and peach, indicating that these 14 MYB genes and their orthologs probably existed before the ancestral divergence of the MYB superfamily. We used a synteny analysis of MYB genes between jujube and Arabidopsis to predict that the functions of the ZjMYBs involve flavonoid/phenylpropanoid metabolism, the light signaling pathway, auxin signal transduction, and responses to various abiotic stresses (cold, drought, and salt stresses). Additionally, we speculate that ZjMYB108 is an important TF involved in the flavonoid metabolic pathway. This comprehensive analysis of MYB superfamily genes in jujube lay a solid foundation for future comprehensive analyses of ZjMYB gene functions.
Collapse
Affiliation(s)
- Ji Qing
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, Yunnan, China
| | - Wang Dawei
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, Yunnan, China
| | - Zhou Jun
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, Yunnan, China.,North Minzu University, College of Life Science and Engineering, Yinchuan, China
| | - Xu Yulan
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, Yunnan, China
| | - Shen Bingqi
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, Yunnan, China
| | - Zhou Fan
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Kunming, Yunnan, China
| |
Collapse
|
648
|
Li J, Zhang M, Sun J, Mao X, Wang J, Wang J, Liu H, Zheng H, Zhen Z, Zhao H, Zou D. Genome-Wide Characterization and Identification of Trihelix Transcription Factor and Expression Profiling in Response to Abiotic Stresses in Rice ( Oryza sativa L.). Int J Mol Sci 2019; 20:ijms20020251. [PMID: 30634597 PMCID: PMC6358761 DOI: 10.3390/ijms20020251] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022] Open
Abstract
Trihelix transcription factors play a role in plant growth, development and various stress responses. Here, we identified 41 trihelix family genes in the rice genome. These OsMSLs (Myb/SANT-LIKE) were located on twelve chromosomes. Synteny analysis indicated only six duplicated gene pairs in the rice trihelix family. Phylogenetic analysis of these OsMSLs and the trihelix genes from other species divided them into five clusters. OsMSLs from different groups significantly diverged in terms of gene structure and conserved functional domains. However, all OsMSLs contained the same five cis-elements. Some of these were responsive to light and dehydration stress. All OsMSLs expressed in four tissues and six developmental stages of rice but with different expression patterns. Quantitative real-time PCR analysis revealed that the OsMSLs responded to abiotic stresses including drought and high salt stress and stress signal molecule including ABA (abscisic acid), hydrogen peroxide. OsMSL39 were simultaneously expressed under all treatments, while OsMSL28 showed high expression under hydrogen peroxide, drought, and high salt treatments. Moreover, OsMSL16/27/33 displayed significant expression under ABA and drought treatments. Nevertheless, their responses were regulated by light. The expression levels of the 12 chosen OsMSLs differed between light and dark conditions. In conclusion, our results helped elucidate the biological functions of rice trihelix genes and provided a theoretical basis for further characterizing their biological roles in responding to abiotic stresses.
Collapse
Affiliation(s)
- Jiaming Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Minghui Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jian Sun
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Xinrui Mao
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Jing Wang
- Agriculture Technology and Popularization Center, Jixi 158100, China.
| | - Jingguo Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Hualong Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Hongliang Zheng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Zhen Zhen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hongwei Zhao
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
649
|
Zhu Y, Shao J, Zhou Z, Davis RE. Genotype-specific suppression of multiple defense pathways in apple root during infection by Pythium ultimum. HORTICULTURE RESEARCH 2019; 6:10. [PMID: 30603095 PMCID: PMC6312547 DOI: 10.1038/s41438-018-0087-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 05/21/2023]
Abstract
The genotype-specific defense activation in the roots of perennial tree crops to soilborne necrotrophic pathogens remains largely unknown. A recent phenotyping study indicated that the apple rootstock genotypes B.9 and G.935 have contrasting resistance responses to infection by Pythium ultimum. In the current study, a comparative transcriptome analysis by Illumina Solexa HiSeq 3000 platform was carried out to identify the global transcriptional regulation networks between the susceptible B.9 and the resistant G.935 to P. ultimum infection. Thirty-six libraries were sequenced to cover three timepoints after pathogen inoculation, with three biological replicates for each sample. The transcriptomes in the roots of the susceptible genotype B.9 were reflected by overrepresented differentially expressed genes (DEGs) with downregulated patterns and systematic suppression of cellular processes at 48 h post inoculation (hpi). In contrast, DEGs with annotated functions, such as kinase receptors, MAPK signaling, JA biosynthesis enzymes, transcription factors, and transporters, were readily induced at 24 hpi and continued up-regulation at 48 hpi in G.935 roots. The earlier and stronger defense activation is likely associated with an effective inhibition of necrosis progression in G.935 roots. Lack of effector-triggered immunity or existence of a susceptibility gene could contribute to the severely disturbed transcriptome and susceptibility in B.9 roots. The identified DEGs constitute a valuable resource for hypothesis-driven studies to elucidate the resistance/tolerance mechanisms in apple roots and validating their potential association with resistance traits.
Collapse
Affiliation(s)
- Yanmin Zhu
- USDA-ARS, Tree Fruit Research Laboratory, Wenatchee, WA 98801 USA
| | - Jonathan Shao
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD 20705 USA
| | - Zhe Zhou
- Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng, Liaoning 125100 P. R. China
| | - Robert E. Davis
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD 20705 USA
| |
Collapse
|
650
|
Zhou Y, Zhu H, He S, Zhai H, Zhao N, Xing S, Wei Z, Liu Q. A Novel Sweetpotato Transcription Factor Gene IbMYB116 Enhances Drought Tolerance in Transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1025. [PMID: 31475022 PMCID: PMC6704235 DOI: 10.3389/fpls.2019.01025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Several members of the MYB transcription factor family have been found to regulate growth, developmental processes, metabolism, and biotic and abiotic stress responses in plants. However, the role of MYB116 in plants is still unclear. In this study, a MYB transcription factor gene IbMYB116 was cloned and characterized from the sweetpotato [Ipomoea batatas (L.) Lam.] line Xushu55-2, a line that is considered to be drought resistant. We show here that IbMYB116 is a nuclear protein and that it possesses a transactivation domain at the C terminus. This gene exhibited a high expression level in the leaf tissues of Xushu55-2 and was strongly induced by PEG6000 and methyl-jasmonate (MeJA). The IbMYB116-overexpressing Arabidopsis plants showed significantly enhanced drought tolerance, increased MeJA content, and a decreased H2O2 level under drought stress. The overexpression of IbMYB116 in Arabidopsis systematically upregulated jasmonic acid (JA) biosynthesis genes and activated the JA signaling pathway as well as reactive oxygen species (ROS)-scavenging system genes under drought stress conditions. The overall results suggest that the IbMYB116 gene might enhance drought tolerance by activating a ROS-scavenging system through the JA signaling pathway in transgenic Arabidopsis. These findings reveal, for the first time, the crucial role of IbMYB116 in the drought tolerance of plants.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shihan Xing
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Qingchang Liu,
| |
Collapse
|