601
|
Vidal NM, Ludwig A, Loreto ELS. Evolution of Tom, 297, 17.6 and rover retrotransposons in Drosophilidae species. Mol Genet Genomics 2009; 282:351-62. [PMID: 19585148 DOI: 10.1007/s00438-009-0468-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 06/21/2009] [Indexed: 11/24/2022]
Abstract
LTR retrotransposons are the most abundant transposable elements in Drosophila and are believed to have contributed significantly to genome evolution. Different reports have shown that many LTR retrotransposon families in Drosophila melanogaster emerged from recent evolutionary episodes of transpositional activity. To contribute to the knowledge of the evolutionary history of Drosophila LTR retrotransposons and the mechanisms that control their abundance, distribution and diversity, we conducted analyses of four related families of LTR retrotransposons, 297, 17.6, rover and Tom. Our results show that these elements seem to be restricted to species from the D. melanogaster group, except for 17.6, which is also present in D. virilis and D. mojavensis. Genetic divergences and phylogenetic analyses of a 1-kb fragment region of the pol gene illustrate that the evolutionary dynamics of Tom, 297, 17.6 and rover retrotransposons are similar in several aspects, such as low codon bias, the action of purifying selection and phylogenies that are incongruent with those of the host species. We found an extremely complex association among the retrotransposon sequences, indicating that different processes shaped the evolutionary history of these elements, and we detected a very high number of possible horizontal transfer events, corroborating the importance of lateral transmission in the evolution and maintenance of LTR retrotransposons.
Collapse
Affiliation(s)
- Newton Medeiros Vidal
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | | | | |
Collapse
|
602
|
Salina EA, Sergeeva EM, Adonina IG, Shcherban AB, Afonnikov DA, Belcram H, Huneau C, Chalhoub B. Isolation and sequence analysis of the wheat B genome subtelomeric DNA. BMC Genomics 2009; 10:414. [PMID: 19732459 PMCID: PMC2756281 DOI: 10.1186/1471-2164-10-414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 09/05/2009] [Indexed: 12/17/2022] Open
Abstract
Background Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. Results The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Conclusion Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time that Spelt52 sequences were involved in the evolution of terminal regions of common wheat chromosomes. Our research provides new insights into the microcollinearity in the terminal regions of wheat chromosomes 4BL and rice chromosome 3S.
Collapse
Affiliation(s)
- Elena A Salina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, pr, Lavrentieva 10, Novosibirsk, 630090, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
603
|
Distefano G, Caruso M, La Malfa S, Gentile A, Tribulato E. Histological and molecular analysis of pollen-pistil interaction in clementine. PLANT CELL REPORTS 2009; 28:1439-51. [PMID: 19636563 DOI: 10.1007/s00299-009-0744-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/19/2009] [Accepted: 07/09/2009] [Indexed: 05/13/2023]
Abstract
In contrast to model species, the self-incompatibility reaction in citrus has been poorly studied. It is assumed to be gametophytically determined and genetically controlled by the S-locus, which in other species encodes for glycoproteins (S-RNases) showing ribonuclease activity. To investigate pollen-pistil interaction, the pollen tube growth of two clementine varieties, 'Comune' (self-incompatible) and 'Monreal' (a 'Comune' self-compatible mutation) was analysed by histological assays in self- and cross-pollination conditions. Cross-pollination assays demonstrated that the mutation leading to self-compatibility in 'Monreal' occurred in the stylar tissues. Similar rates of pollen germination were observed in both genotypes. However, 'Comune' pollen tubes showed altered morphology and arrested growth in the upper style while in 'Monreal' they grew straight toward the ovary. Moreover, to identify genes putatively involved in pollen-pistil interaction and self-incompatibility, research based on the complementary DNA-amplified fragment length polymorphism technique was carried out to compare the transcript profiles of unpollinated and self-pollinated styles and stigmas of the two cultivars. This analysis identified 96 unigenes such as receptor-like kinases, stress-induced genes, transcripts involved in the phenylpropanoid pathway, transcription factors and genes related to calcium and hormone signalling. Surprisingly, a high percentage of active long terminal repeat (LTR) and non-LTR retrotransposons were identified among the unigenes, indicating their activation in response to pollination and their possible role in the regulation of self-incompatibility genes. The quantitative reverse trascription-polymerase chain reaction analysis of selected gene tags showed transcriptional differences between the two genotypes during pollen germination and pollen tube elongation.
Collapse
Affiliation(s)
- Gaetano Distefano
- Dipartimento di OrtoFloroArboricoltura e Tecnologie Agroalimentari, University of Catania, Via Valdisavoia 5, Catania, 95123, Italy
| | | | | | | | | |
Collapse
|
604
|
Simonetti E, Veronico P, Melillo MT, Delibes A, Andrés MF, López-Braña I. Analysis of class III peroxidase genes expressed in roots of resistant and susceptible wheat lines infected by Heterodera avenae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1081-92. [PMID: 19656043 DOI: 10.1094/mpmi-22-9-1081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The response of resistant wheat-Aegilops ventricosa introgression line H-93-8 and its susceptible parent, Triticum aestivum H-10-15, to Ha71 Spanish population of Heterodera avenae was studied to determine the changes in peroxidase gene expression during incompatible and compatible wheat-nematode interactions. Twenty peroxidase genes were characterized from both 211 expressed sequence tags and 259 genomic DNA clones. Alignment of deduced amino acid sequences and phylogenetic clustering with peroxidases from other plant species showed that these enzymes fall into seven different groups (designated TaPrx108 to TaPrx114) which represent peroxidases secreted to the apoplast by a putative N-terminal peptide signal. TaPrx111, TaPrx112, and TaPrx113 were induced by nematode infection in both genotypes but with differing magnitude and timing. TaPrx112 and TaPrx113 groups increased more in resistant than in susceptible infected lines. In addition, in situ hybridization analyses of genes belonging to TaPrx111, TaPrx112, and TaPrx113 groups revealed a more intense signal in cells close to the vascular cylinder and parenchyma vascular cells of resistant than susceptible wheat when challenged by nematodes. These data seem to suggest that wheat apoplastic peroxidases, because of their different expression in quantity and timing, play different roles in the plant response to nematode infection.
Collapse
|
605
|
Ragg H, Kumar A, Köster K, Bentele C, Wang Y, Frese MA, Prib N, Krüger O. Multiple gains of spliceosomal introns in a superfamily of vertebrate protease inhibitor genes. BMC Evol Biol 2009; 9:208. [PMID: 19698129 PMCID: PMC2746811 DOI: 10.1186/1471-2148-9-208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 08/22/2009] [Indexed: 01/13/2023] Open
Abstract
Background Intron gains reportedly are very rare during evolution of vertebrates, and the mechanisms underlying their creation are largely unknown. Previous investigations have shown that, during metazoan radiation, the exon-intron patterns of serpin superfamily genes were subject to massive changes, in contrast to many other genes. Results Here we investigated intron dynamics in the serpin superfamily in lineages pre- and postdating the split of vertebrates. Multiple intron gains were detected in a group of ray-finned fishes, once the canonical groups of vertebrate serpins had been established. In two genes, co-occurrence of non-standard introns was observed, implying that intron gains in vertebrates may even happen concomitantly or in a rapidly consecutive manner. DNA breakage/repair processes associated with genome compaction are introduced as a novel factor potentially favoring intron gain, since all non-canonical introns were found in a lineage of ray-finned fishes that experienced genomic downsizing. Conclusion Multiple intron acquisitions were identified in serpin genes of a lineage of ray-finned fishes, but not in any other vertebrates, suggesting that insertion rates for introns may be episodically increased. The co-occurrence of non-standard introns within the same gene discloses the possibility that introns may be gained simultaneously. The sequences flanking the intron insertion points correspond to the proto-splice site consensus sequence MAG↑N, previously proposed to serve as intron insertion site. The association of intron gains in the serpin superfamily with a group of fishes that underwent genome compaction may indicate that DNA breakage/repair processes might foster intron birth.
Collapse
Affiliation(s)
- Hermann Ragg
- Department of Biotechnology, Faculty of Technology and Center for Biotechnology, University of Bielefeld, D-33501 Bielefeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
606
|
Hale CJ, Erhard KF, Lisch D, Hollick JB. Production and processing of siRNA precursor transcripts from the highly repetitive maize genome. PLoS Genet 2009; 5:e1000598. [PMID: 19680464 PMCID: PMC2725412 DOI: 10.1371/journal.pgen.1000598] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/14/2009] [Indexed: 11/18/2022] Open
Abstract
Mutations affecting the maintenance of heritable epigenetic states in maize identify multiple RNA–directed DNA methylation (RdDM) factors including RMR1, a novel member of a plant-specific clade of Snf2-related proteins. Here we show that RMR1 is necessary for the accumulation of a majority of 24 nt small RNAs, including those derived from Long-Terminal Repeat (LTR) retrotransposons, the most common repetitive feature in the maize genome. A genetic analysis of DNA transposon repression indicates that RMR1 acts upstream of the RNA–dependent RNA polymerase, RDR2 (MOP1). Surprisingly, we show that non-polyadenylated transcripts from a sampling of LTR retrotransposons are lost in both rmr1 and rdr2 mutants. In contrast, plants deficient for RNA Polymerase IV (Pol IV) function show an increase in polyadenylated LTR RNA transcripts. These findings support a model in which Pol IV functions independently of the small RNA accumulation facilitated by RMR1 and RDR2 and support that a loss of Pol IV leads to RNA Polymerase II–based transcription. Additionally, the lack of changes in general genome homeostasis in rmr1 mutants, despite the global loss of 24 nt small RNAs, challenges the perceived roles of siRNAs in maintaining functional heterochromatin in the genomes of outcrossing grass species. Most eukaryotic genomes are divided into two functional classes of regulation: the euchromatic and the heterochromatic. Heterochromatic regions, often composed of potentially deleterious transposons and retrotransposons, are typically viewed as “silent” or not transcribed. Paradoxically, evidence from multiple organisms indicates that heterochromatic regions must be transcribed to maintain a heterochromatic character. In plants, specialized RNA polymerase complexes are thought to specifically process repetitive regions of the genome into small RNA molecules that facilitate maintenance of a heterochromatic environment. We investigated the role of this specialized polymerase pathway in maintaining maize genome homeostasis with particular focus on RMR1, a novel protein related to a family of DNA repair proteins, whose function in modifying repetitive regions of the genome is unknown. We find most small RNA generation is dependent on RMR1, which appears to function downstream of the specialized polymerase, RNA polymerase IV. However, we provide evidence that the function of RNA polymerase IV is not disrupted by the absence of small RNA generation. Our results suggest the division of the plant genome into euchromatin and heterochromatin is maintained by template competition between the specialized plant polymerases and canonical RNA polymerase II, and not by the subsequent generation of small RNA molecules.
Collapse
Affiliation(s)
- Christopher J. Hale
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Karl F. Erhard
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Damon Lisch
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Jay B. Hollick
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
607
|
Damert A, Raiz J, Horn AV, Löwer J, Wang H, Xing J, Batzer MA, Löwer R, Schumann GG. 5'-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res 2009; 19:1992-2008. [PMID: 19652014 DOI: 10.1101/gr.093435.109] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SVA elements represent the youngest family of hominid non-LTR retrotransposons, which alter the human genome continuously. They stand out due to their organization as composite repetitive elements. To draw conclusions on the assembly process that led to the current organization of SVA elements and on their transcriptional regulation, we initiated our study by assessing differences in structures of the 116 SVA elements located on human chromosome 19. We classified SVA elements into seven structural variants, including novel variants like 3'-truncated elements and elements with 5'-flanking sequence transductions. We established a genome-wide inventory of 5'-transduced SVA elements encompassing approximately 8% of all human SVA elements. The diversity of 5' transduction events found indicates transcriptional control of their SVA source elements by a multitude of external cellular promoters in germ cells in the course of their evolution and suggests that SVA elements might be capable of acquiring 5' promoter sequences. Our data indicate that SVA-mediated 5' transduction events involve alternative RNA splicing at cryptic splice sites. We analyzed one remarkably successful human-specific SVA 5' transduction group in detail because it includes at least 32% of all SVA subfamily F members. An ancient retrotransposition event brought an SVA insertion under transcriptional control of the MAST2 gene promoter, giving rise to the primal source element of this group. Members of this group are currently transcribed. Here we show that SVA-mediated 5' transduction events lead to structural diversity of SVA elements and represent a novel source of genomic rearrangements contributing to genomic diversity.
Collapse
Affiliation(s)
- Annette Damert
- Fachgebiet PR2/Retroelemente, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
608
|
Hancks DC, Ewing AD, Chen JE, Tokunaga K, Kazazian HH. Exon-trapping mediated by the human retrotransposon SVA. Genome Res 2009; 19:1983-91. [PMID: 19635844 DOI: 10.1101/gr.093153.109] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although most human retrotransposons are inactive, both inactive and active retrotransposons drive genome evolution and may influence transcription through various mechanisms. In humans, three retrotransposon families are still active, but one of these, SVA, remains mysterious. Here we report the identification of a new subfamily of SVA, which apparently formed after an alternative splicing event where the first exon of the MAST2 gene spliced into an intronic SVA and subsequently retrotransposed. Additional examples of SVA retrotransposing upstream exons due to splicing into SVA were also identified in other primate genomes. After molecular and computational experiments, we found a number of functional 3' splice sites within many different transcribed SVAs across the human and chimpanzee genomes. Using a minigene splicing construct containing an SVA, we observed splicing in cell culture, along with SVA exonization events that introduced premature termination codons (PTCs). These data imply that an SVA residing within an intron in the same orientation as the gene may alter normal gene transcription either by gene-trapping or by introducing PTCs through exonization, possibly creating differences within and across species.
Collapse
Affiliation(s)
- Dustin C Hancks
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
609
|
Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty. BMC Genomics 2009; 10:334. [PMID: 19630942 PMCID: PMC2736999 DOI: 10.1186/1471-2164-10-334] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 07/24/2009] [Indexed: 11/30/2022] Open
Abstract
Background Large-scale genome rearrangements brought about by chromosome breaks underlie numerous inherited diseases, initiate or promote many cancers and are also associated with karyotype diversification during species evolution. Recent research has shown that these breakpoints are nonrandomly distributed throughout the mammalian genome and many, termed "evolutionary breakpoints" (EB), are specific genomic locations that are "reused" during karyotypic evolution. When the phylogenetic trajectory of orthologous chromosome segments is considered, many of these EB are coincident with ancient centromere activity as well as new centromere formation. While EB have been characterized as repeat-rich regions, it has not been determined whether specific sequences have been retained during evolution that would indicate previous centromere activity or a propensity for new centromere formation. Likewise, the conservation of specific sequence motifs or classes at EBs among divergent mammalian taxa has not been determined. Results To define conserved sequence features of EBs associated with centromere evolution, we performed comparative sequence analysis of more than 4.8 Mb within the tammar wallaby, Macropus eugenii, derived from centromeric regions (CEN), euchromatic regions (EU), and an evolutionary breakpoint (EB) that has undergone convergent breakpoint reuse and past centromere activity in marsupials. We found a dramatic enrichment for long interspersed nucleotide elements (LINE1s) and endogenous retroviruses (ERVs) and a depletion of short interspersed nucleotide elements (SINEs) shared between CEN and EBs. We analyzed the orthologous human EB (14q32.33), known to be associated with translocations in many cancers including multiple myelomas and plasma cell leukemias, and found a conserved distribution of similar repetitive elements. Conclusion Our data indicate that EBs tracked within the class Mammalia harbor sequence features retained since the divergence of marsupials and eutherians that may have predisposed these genomic regions to large-scale chromosomal instability.
Collapse
|
610
|
Wang J, Bowen NJ, Mariño-Ramírez L, Jordan IK. A c-Myc regulatory subnetwork from human transposable element sequences. MOLECULAR BIOSYSTEMS 2009; 5:1831-9. [PMID: 19763338 DOI: 10.1039/b908494k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transposable elements (TEs) can donate regulatory sequences that help to control the expression of human genes. The oncogene c-Myc is a promiscuous transcription factor that is thought to regulate the expression of hundreds of genes. We evaluated the contribution of TEs to the c-Myc regulatory network by searching for c-Myc binding sites derived from TEs and by analyzing the expression and function of target genes with nearby TE-derived c-Myc binding sites. There are thousands of TE sequences in the human genome that are bound by c-Myc. A conservative analysis indicated that 816-4564 of these TEs contain canonical c-Myc binding site motifs. c-Myc binding sites are over-represented among sequences derived from the ancient TE families L2 and MIR, consistent with their preservation by purifying selection. Genes associated with TE-derived c-Myc binding sites are co-expressed with each other and with c-Myc. A number of these putative TE-derived c-Myc target genes are differentially expressed between Burkitt's lymphoma cells versus normal B cells and encode proteins with cancer-related functions. Despite several lines of evidence pointing to their regulation by c-Myc and relevance to cancer, the set of genes identified as TE-derived c-Myc targets does not significantly overlap with two previously characterized c-Myc target gene sets. These data point to a substantial contribution of TEs to the regulation of human genes by c-Myc. Genes that are regulated by TE-derived c-Myc binding sites appear to form a distinct c-Myc regulatory subnetwork.
Collapse
Affiliation(s)
- Jianrong Wang
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
611
|
Schröder C, Bleidorn C, Hartmann S, Tiedemann R. Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives. Gene 2009; 448:221-6. [PMID: 19563867 DOI: 10.1016/j.gene.2009.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/18/2009] [Accepted: 06/18/2009] [Indexed: 02/07/2023]
Abstract
Investigating the dog genome we found 178965 introns with a moderate length of 200-1000 bp. A screening of these sequences against 23 different repeat libraries to find insertions of short interspersed elements (SINEs) detected 45276 SINEs. Virtually all of these SINEs (98%) belong to the tRNA-derived Can-SINE family. Can-SINEs arose about 55 million years ago before Carnivora split into two basal groups, the Caniformia (dog-like carnivores) and the Feliformia (cat-like carnivores). Genome comparisons of dog and cat recovered 506 putatively informative SINE loci for caniformian phylogeny. In this study we show how to use such genome information of model organisms to research the phylogeny of related non-model species of interest. Investigating a dataset including representatives of all major caniformian lineages, we analysed 24 randomly chosen loci for 22 taxa. All loci were amplifiable and revealed 17 parsimony-informative SINE insertions. The screening for informative SINE insertions yields a large amount of sequence information, in particular of introns, which contain reliable phylogenetic information as well. A phylogenetic analysis of intron- and SINE sequence data provided a statistically robust phylogeny which is congruent with the absence/presence pattern of our SINE markers. This phylogeny strongly supports a sistergroup relationship of Musteloidea and Pinnipedia. Within Pinnipedia, we see strong support from bootstrapping and the presence of a SINE insertion for a sistergroup relationship of the walrus with the Otariidae.
Collapse
Affiliation(s)
- Christiane Schröder
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Potsdam, Germany.
| | | | | | | |
Collapse
|
612
|
Estill JC, Bennetzen JL. The DAWGPAWS pipeline for the annotation of genes and transposable elements in plant genomes. PLANT METHODS 2009; 5:8. [PMID: 19545381 PMCID: PMC2705364 DOI: 10.1186/1746-4811-5-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/19/2009] [Indexed: 05/09/2023]
Abstract
BACKGROUND High quality annotation of the genes and transposable elements in complex genomes requires a human-curated integration of multiple sources of computational evidence. These evidences include results from a diversity of ab initio prediction programs as well as homology-based searches. Most of these programs operate on a single contiguous sequence at a time, and the results are generated in a diverse array of readable formats that must be translated to a standardized file format. These translated results must then be concatenated into a single source, and then presented in an integrated form for human curation. RESULTS We have designed, implemented, and assessed a Perl-based workflow named DAWGPAWS for the generation of computational results for human curation of the genes and transposable elements in plant genomes. The use of DAWGPAWS was found to accelerate annotation of 80-200 kb wheat DNA inserts in bacterial artificial chromosome (BAC) vectors by approximately twenty-fold and to also significantly improve the quality of the annotation in terms of completeness and accuracy. CONCLUSION The DAWGPAWS genome annotation pipeline fills an important need in the annotation of plant genomes by generating computational evidences in a high throughput manner, translating these results to a common file format, and facilitating the human curation of these computational results. We have verified the value of DAWGPAWS by using this pipeline to annotate the genes and transposable elements in 220 BAC insertions from the hexaploid wheat genome (Triticum aestivum L.). DAWGPAWS can be applied to annotation efforts in other plant genomes with minor modifications of program-specific configuration files, and the modular design of the workflow facilitates integration into existing pipelines.
Collapse
Affiliation(s)
- James C Estill
- Department of Plant Biology, The University of Georgia, Athens, Georgia 30602-7271, USA
| | - Jeffrey L Bennetzen
- Department of Genetics, The University of Georgia, Athens, Georgia 30602-7223, USA
| |
Collapse
|
613
|
Blomberg J, Benachenhou F, Blikstad V, Sperber G, Mayer J. Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene 2009; 448:115-23. [PMID: 19540319 DOI: 10.1016/j.gene.2009.06.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 06/09/2009] [Accepted: 06/12/2009] [Indexed: 01/27/2023]
Abstract
The genomes of many species are crowded with repetitive mobile sequences. In the case of endogenous retroviruses (ERVs) there is, for various reasons, considerable confusion regarding names assigned to families/groups of ERVs as well as individual ERV loci. Human ERVs have been studied in greater detail, and naming of HERVs in the scientific literature is somewhat confusing not just to the outsider. Without guidelines, confusion for ERVs in other species will also probably increase if those ERVs are studied in greater detail. Based on previous experience, this review highlights some of the problems when naming and classifying ERVs, and provides some guidance for detecting and characterizing ERV sequences. Because of the close relationship between ERVs and exogenous retroviruses (XRVs) it is reasonable to reconcile their classification with that of XRVs. We here argue that classification should be based on a combination of similarity, structural features, (inferred) function, and previous nomenclature. Because the RepBase system is widely employed in genome annotation, RepBase designations should be considered in further taxonomic efforts. To lay a foundation for a phylogenetically based taxonomy, further analyses of ERVs in many hosts are needed. A dedicated, permanent, international consortium would best be suited to integrate and communicate our current and future knowledge on repetitive, mobile elements in general to the scientific community.
Collapse
Affiliation(s)
- Jonas Blomberg
- Section of Virology, Department of Medical Sciences, Academic Hospital, 75185 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
614
|
The fractionated orthology of Bs2 and Rx/Gpa2 supports shared synteny of disease resistance in the Solanaceae. Genetics 2009; 182:1351-64. [PMID: 19474202 DOI: 10.1534/genetics.109.101022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative genomics provides a powerful tool for the identification of genes that encode traits shared between crop plants and model organisms. Pathogen resistance conferred by plant R genes of the nucleotide-binding-leucine-rich-repeat (NB-LRR) class is one such trait with great agricultural importance that occupies a critical position in understanding fundamental processes of pathogen detection and coevolution. The proposed rapid rearrangement of R genes in genome evolution would make comparative approaches tenuous. Here, we test the hypothesis that orthology is predictive of R-gene genomic location in the Solanaceae using the pepper R gene Bs2. Homologs of Bs2 were compared in terms of sequence and gene and protein architecture. Comparative mapping demonstrated that Bs2 shared macrosynteny with R genes that best fit criteria determined to be its orthologs. Analysis of the genomic sequence encompassing solanaceous R genes revealed the magnitude of transposon insertions and local duplications that resulted in the expansion of the Bs2 intron to 27 kb and the frequently detected duplications of the 5'-end of R genes. However, these duplications did not impact protein expression or function in transient assays. Taken together, our results support a conservation of synteny for NB-LRR genes and further show that their distribution in the genome has been consistent with global rearrangements.
Collapse
|
615
|
McWilliam H, Valentin F, Goujon M, Li W, Narayanasamy M, Martin J, Miyar T, Lopez R. Web services at the European Bioinformatics Institute-2009. Nucleic Acids Res 2009; 37:W6-10. [PMID: 19435877 PMCID: PMC2703973 DOI: 10.1093/nar/gkp302] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The European Bioinformatics Institute (EMBL-EBI) has been providing access to mainstream databases and tools in bioinformatics since 1997. In addition to the traditional web form based interfaces, APIs exist for core data resources such as EMBL-Bank, Ensembl, UniProt, InterPro, PDB and ArrayExpress. These APIs are based on Web Services (SOAP/REST) interfaces that allow users to systematically access databases and analytical tools. From the user's point of view, these Web Services provide the same functionality as the browser-based forms. However, using the APIs frees the user from web page constraints and are ideal for the analysis of large batches of data, performing text-mining tasks and the casual or systematic evaluation of mathematical models in regulatory networks. Furthermore, these services are widespread and easy to use; require no prior knowledge of the technology and no more than basic experience in programming. In the following we wish to inform of new and updated services as well as briefly describe planned developments to be made available during the course of 2009–2010.
Collapse
Affiliation(s)
- Hamish McWilliam
- European Bioinformatics Institute, EMBL Outstation, Wellcome Trust Genome Campus, Hinxton, Cambdrige CB10 1SD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
616
|
Franke G, Bausch B, Hoffmann MM, Cybulla M, Wilhelm C, Kohlhase J, Scherer G, Neumann HPH. Alu-Alurecombination underlies the vast majority of largeVHLgermline deletions: Molecular characterization and genotype-phenotype correlations in VHL patients. Hum Mutat 2009; 30:776-86. [PMID: 19280651 DOI: 10.1002/humu.20948] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gerlind Franke
- Department of Nephrology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
617
|
Das S. Evolutionary origin and genomic organization of micro-RNA genes in immunoglobulin lambda variable region gene family. Mol Biol Evol 2009; 26:1179-89. [PMID: 19246621 DOI: 10.1093/molbev/msp035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The genomic organizations and functions of many miRNA genes have been described in recent years, but the origin and evolution of miRNAs in the exons of protein-coding genes are not well understood. The overlap of miR-650 genes with the protein-coding region of immunoglobulin lambda variable (IGVL) region genes has given a unique opportunity to witness a birth of miRNA gene. Both sequence comparisons and structure predictions indicate that the miR-650 genes are present in multiple copies and overlap in the same transcription orientation with the leader exon of primate IGVL genes of a specific phylogenetic clan (clan II). By reconstructing the phylogeny of the clan II IGVL genes, the stages in which the mutations accumulated in the leader exon and gave rise to a stable hairpin structure of miR-650 could be documented. The copy number variation of miR-650 genes among different species is the result of the duplication or deletion of the IGVL genes. To my knowledge, this is the first report of a genomic association between miRNA and the protein-coding genes of a multigene family. Analysis of the upstream region of the leader exon suggests that the IGVL and the mir-650 genes use the same promoter region for their transcription. However, in contrast to the general expectation about the expression of miRNAs that overlap with other genes in the same transcriptional orientation, this analysis provides evidence that the miR-650 gene is apparently transcribed independently of the IGVL gene with which it overlaps because they are expressed in different cell types.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
618
|
Di-Poï N, Montoya-Burgos JI, Duboule D. Atypical relaxation of structural constraints in Hox gene clusters of the green anole lizard. Genome Res 2009; 19:602-10. [PMID: 19228589 DOI: 10.1101/gr.087932.108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hox genes control many aspects of embryonic development in metazoans. Previous analyses of this gene family revealed a surprising diversity in terms of gene number and organization between various animal species. In vertebrates, Hox genes are grouped into tightly organized clusters, claimed to be devoid of repetitive sequences. Here, we report the genomic organization of the four Hox loci present in the green anole lizard and show that they have massively accumulated retrotransposons, leading to gene clusters larger in size when compared to other vertebrates. In addition, similar repeats are present in many other development-related gene-containing regions, also thought to be refractory to such repetitive elements. Transposable elements are major sources of genetic variations, including alterations of gene expression, and hence this situation, so far unique among vertebrates, may have been associated with the evolution of the spectacular realm of morphological variations in the body plans of Squamata. Finally, sequence alignments highlight some divergent evolution in highly conserved DNA regions between vertebrate Hox clusters, which may coincide with the emergence of mammalian-specific features.
Collapse
Affiliation(s)
- Nicolas Di-Poï
- National Research Center "Frontiers in Genetics," Department of Zoology and Animal Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
619
|
Li Q, Li L, Dai J, Li J, Yan J. Identification and characterization of CACTA transposable elements capturing gene fragments in maize. CHINESE SCIENCE BULLETIN-CHINESE 2009. [DOI: 10.1007/s11434-009-0061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
620
|
Tanurdzic M, Vaughn MW, Jiang H, Lee TJ, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 2009; 6:2880-95. [PMID: 19071958 PMCID: PMC2596858 DOI: 10.1371/journal.pbio.0060302] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022] Open
Abstract
Plant cells grown in culture exhibit genetic and epigenetic instability. Using a combination of chromatin immunoprecipitation and DNA methylation profiling on tiling microarrays, we have mapped the location and abundance of histone and DNA modifications in a continuously proliferating, dedifferentiated cell suspension culture of Arabidopsis. We have found that euchromatin becomes hypermethylated in culture and that a small percentage of the hypermethylated genes become associated with heterochromatic marks. In contrast, the heterochromatin undergoes dramatic and very precise DNA hypomethylation with transcriptional activation of specific transposable elements (TEs) in culture. High throughput sequencing of small interfering RNA (siRNA) revealed that TEs activated in culture have increased levels of 21-nucleotide (nt) siRNA, sometimes at the expense of the 24-nt siRNA class. In contrast, TEs that remain silent, which match the predominant 24-nt siRNA class, do not change significantly in their siRNA profiles. These results implicate RNA interference and chromatin modification in epigenetic restructuring of the genome following the activation of TEs in immortalized cell culture.
Collapse
Affiliation(s)
- Milos Tanurdzic
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
621
|
Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet 2009; 54:15-39. [PMID: 19158813 DOI: 10.1038/jhg.2008.5] [Citation(s) in RCA: 520] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human leukocyte antigen (HLA) super-locus is a genomic region in the chromosomal position 6p21 that encodes the six classical transplantation HLA genes and at least 132 protein coding genes that have important roles in the regulation of the immune system as well as some other fundamental molecular and cellular processes. This small segment of the human genome has been associated with more than 100 different diseases, including common diseases, such as diabetes, rheumatoid arthritis, psoriasis, asthma and various other autoimmune disorders. The first complete and continuous HLA 3.6 Mb genomic sequence was reported in 1999 with the annotation of 224 gene loci, including coding and non-coding genes that were reviewed extensively in 2004. In this review, we present (1) an updated list of all the HLA gene symbols, gene names, expression status, Online Mendelian Inheritance in Man (OMIM) numbers, including new genes, and latest changes to gene names and symbols, (2) a regional analysis of the extended class I, class I, class III, class II and extended class II subregions, (3) a summary of the interspersed repeats (retrotransposons and transposons), (4) examples of the sequence diversity between different HLA haplotypes, (5) intra- and extra-HLA gene interactions and (6) some of the HLA gene expression profiles and HLA genes associated with autoimmune and infectious diseases. Overall, the degrees and types of HLA super-locus coordinated gene expression profiles and gene variations have yet to be fully elucidated, integrated and defined for the processes involved with normal cellular and tissue physiology, inflammatory and immune responses, and autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan.
| | | | | | | |
Collapse
|
622
|
Abstract
Eukaryotic genomes are full of repetitive DNA, transposable elements (TEs) in particular, and accordingly there are a number of computational methods that can be used to identify TEs from genomic sequences. We present here a survey of two of the most readily available and widely used bioinformatics applications for the detection, characterization, and analysis of TE sequences in eukaryotic genomes: CENSOR and RepeatMasker. For each program, information on availability, input, output, and the algorithmic methods used is provided. Specific examples of the use of CENSOR and RepeatMasker are also described. CENSOR and RepeatMasker both rely on homology-based methods for the detection of TE sequences. There are several other classes of methods available for the analysis of repetitive DNA sequences including de novo methods that compare genomic sequences against themselves, class-specific methods that use structural characteristics of specific classes of elements to aid in their identification, and pipeline methods that combine aspects of some or all of the aforementioned methods. We briefly consider the strengths and weaknesses of these different classes of methods with an emphasis on their complementary utility for the analysis of repetitive DNA in eukaryotes.
Collapse
|
623
|
Desjardins CA, Gundersen-Rindal DE, Hostetler JB, Tallon LJ, Fadrosh DW, Fuester RW, Pedroni MJ, Haas BJ, Schatz MC, Jones KM, Crabtree J, Forberger H, Nene V. Comparative genomics of mutualistic viruses of Glyptapanteles parasitic wasps. Genome Biol 2008; 9:R183. [PMID: 19116010 PMCID: PMC2646287 DOI: 10.1186/gb-2008-9-12-r183] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 12/30/2008] [Indexed: 02/04/2023] Open
Abstract
Comparative genome analysis of two endosymbiotic polydnaviruses from Glyptapanteles parasitic wasps reveals new insights into the evolutionary arms race between host and parasite. Background Polydnaviruses, double-stranded DNA viruses with segmented genomes, have evolved as obligate endosymbionts of parasitoid wasps. Virus particles are replication deficient and produced by female wasps from proviral sequences integrated into the wasp genome. These particles are co-injected with eggs into caterpillar hosts, where viral gene expression facilitates parasitoid survival and, thereby, survival of proviral DNA. Here we characterize and compare the encapsidated viral genome sequences of bracoviruses in the family Polydnaviridae associated with Glyptapanteles gypsy moth parasitoids, along with near complete proviral sequences from which both viral genomes are derived. Results The encapsidated Glyptapanteles indiensis and Glyptapanteles flavicoxis bracoviral genomes, each composed of 29 different size segments, total approximately 517 and 594 kbp, respectively. They are generated from a minimum of seven distinct loci in the wasp genome. Annotation of these sequences revealed numerous novel features for polydnaviruses, including insect-like sugar transporter genes and transposable elements. Evolutionary analyses suggest that positive selection is widespread among bracoviral genes. Conclusions The structure and organization of G. indiensis and G. flavicoxis bracovirus proviral segments as multiple loci containing one to many viral segments, flanked and separated by wasp gene-encoding DNA, is confirmed. Rapid evolution of bracovirus genes supports the hypothesis of bracovirus genes in an 'arms race' between bracovirus and caterpillar. Phylogenetic analyses of the bracoviral genes encoding sugar transporters provides the first robust evidence of a wasp origin for some polydnavirus genes. We hypothesize transposable elements, such as those described here, could facilitate transfer of genes between proviral segments and host DNA.
Collapse
|
624
|
Cavagnaro PF, Chung SM, Szklarczyk M, Grzebelus D, Senalik D, Atkins AE, Simon PW. Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Genet Genomics 2008; 281:273-88. [PMID: 19104839 DOI: 10.1007/s00438-008-0411-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/29/2008] [Indexed: 11/29/2022]
Abstract
Carrot is the most economically important member of the Apiaceae family and a major source of provitamin A carotenoids in the human diet. However, carrot molecular resources are relatively underdeveloped, hampering a number of genetic studies. Here, we report on the synthesis and characterization of a bacterial artificial chromosome (BAC) library of carrot. The library is 17.3-fold redundant and consists of 92,160 clones with an average insert size of 121 kb. To provide an overview of the composition and organization of the carrot nuclear genome we generated and analyzed 2,696 BAC-end sequences (BES) from nearly 2,000 BACs, totaling 1.74 Mb of BES. This analysis revealed that 14% of the BES consists of known repetitive elements, with transposable elements representing more than 80% of this fraction. Eleven novel carrot repetitive elements were identified, covering 8.5% of the BES. Analysis of microsatellites showed a comparably low frequency for these elements in the carrot BES. Comparisons of the translated BES with protein databases indicated that approximately 10% of the carrot genome represents coding sequences. Moreover, among eight dicot species used for comparison purposes, carrot BES had highest homology to protein-coding sequences from tomato. This deep-coverage library will aid carrot breeding and genetics.
Collapse
Affiliation(s)
- Pablo F Cavagnaro
- Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
625
|
Cho SH, Addo-Quaye C, Coruh C, Arif MA, Ma Z, Frank W, Axtell MJ. Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development. PLoS Genet 2008; 4:e1000314. [PMID: 19096705 PMCID: PMC2600652 DOI: 10.1371/journal.pgen.1000314] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022] Open
Abstract
Endogenous 24 nt short interfering RNAs (siRNAs), derived mostly from intergenic and repetitive genomic regions, constitute a major class of endogenous small RNAs in flowering plants. Accumulation of Arabidopsis thaliana 24 nt siRNAs requires the Dicer family member DCL3, and clear homologs of DCL3 exist in both flowering and non-flowering plants. However, the absence of a conspicuous 24 nt peak in the total RNA populations of several non-flowering plants has raised the question of whether this class of siRNAs might, in contrast to the ancient 21 nt microRNAs (miRNAs) and 21–22 nt trans-acting siRNAs (tasiRNAs), be an angiosperm-specific innovation. Analysis of non-miRNA, non-tasiRNA hotspots of small RNA production within the genome of the moss Physcomitrella patens revealed multiple loci that consistently produced a mixture of 21–24 nt siRNAs with a peak at 23 nt. These Pp23SR loci were significantly enriched in transposon content, depleted in overlap with annotated genes, and typified by dense concentrations of the 5-methyl cytosine (5 mC) DNA modification. Deep sequencing of small RNAs from two independent Ppdcl3 mutants showed that the P. patens DCL3 homolog is required for the accumulation of 22–24 nt siRNAs, but not 21 nt siRNAs, at Pp23SR loci. The 21 nt component of Pp23SR-derived siRNAs was also unaffected by a mutation in the RNA-dependent RNA polymerase mutant Pprdr6. Transcriptome-wide, Ppdcl3 mutants failed to accumulate 22–24 nt small RNAs from repetitive regions while transcripts from two abundant families of long terminal repeat (LTR) retrotransposon-associated reverse transcriptases were up-regulated. Ppdcl3 mutants also displayed an acceleration of leafy gametophore production, suggesting that repetitive siRNAs may play a role in the development of P. patens. We conclude that intergenic/repeat-derived siRNAs are indeed a broadly conserved, distinct class of small regulatory RNAs within land plants. Very small RNAs (between ∼21 and ∼30 single-stranded bases) are a ubiquitous component of gene regulation in nearly all eukaryotic organisms. The small RNA repertoire of angiosperms (the flowering plants) is exceptionally diverse and includes conspicuous populations of 21 nt microRNAs, as well a diverse set of 24 nt short, interfering RNAs (siRNAs). The 24 nt siRNAs have well-documented roles in enforcing the silence of parasitic regions of the genome, but are not readily apparent in the small RNA populations of several lineages of ancient, non-flowering plants. We found numerous “hotspots” of small RNA production from the genome of the moss P. patens that produced a mix of 21–24 nt siRNAs. Except for their broad mix of sizes, these hotspots were reminiscent of the 24 nt siRNA loci of angiosperms: they tended to associate with decayed transposons, to avoid annotated genes, and to be densely modified with the epigenetic mark 5-methyl cytosine. Deletion of a P. patens Dicer gene abolished production of 22–24 nt siRNAs both from these loci and transcriptome-wide, especially from repetitive regions. We conclude that both microRNAs and intergenic/repeat-associated siRNAs are ancient small RNA regulators in plants, but that the sizes of the siRNAs themselves have drifted over time.
Collapse
Affiliation(s)
- Sung Hyun Cho
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Charles Addo-Quaye
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ceyda Coruh
- Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - M. Asif Arif
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Zhaorong Ma
- Integrative Biosciences Graduate Program in Bioinformatics and Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Wolfgang Frank
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael J. Axtell
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Integrative Biosciences Graduate Program in Bioinformatics and Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
626
|
Yu L, Liu J, Luan PT, Lee H, Lee M, Min MS, Ryder OA, Chemnick L, Davis H, Zhang YP. New insights into the evolution of intronic sequences of the beta-fibrinogen gene and their application in reconstructing mustelid phylogeny. Zoolog Sci 2008; 25:662-72. [PMID: 18624576 DOI: 10.2108/zsj.25.662] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/13/2008] [Indexed: 11/17/2022]
Abstract
Mustelidae is the largest and most diverse family in the order Carnivora. The phylogenetic relationships among the subfamilies have especially long been a focus of study. Herein we are among the first to employ two new introns (4 and 7) of the nuclear beta-fibrinogen gene to clarify these enigmatic problems. In addition, two previously available nuclear (IRBP exon 1 and TTR intron 1) and one mt (ND2) data sets were also combined and analyzed simultaneously with the newly obtained sequence data in this study. Detailed characterizations of the two intronic regions not only reveal the remarkable occurrences of short interspersed element (SINE) insertion events, providing a new example supporting the attractive hypothesis that attrition of an earlier retroposition may offer a proper environment for successive retropositions by forming a "dimer-like" structure, but also demonstrate their utility in the resolution of mustelid phylogeny. All of our analyses confirm the assemblage of Mustelinae, Lutrinae, and Melinae with confidence; moreover, two clades within Mustelinae were clearly recognized, i.e., genera Mustela and Martes. Notably, genus Martes of Mustelinae was found to branch off first, followed by Melinae and then a clade containing Lutrinae and genus Mustela of Mustelinae, indicating paraphyly of Mustelinae. In addition, Mephitinae diverges before the other mustelids and the monophyletic Procyonidae in all cases, supporting its elevation to a separate family. Additional independent genetic markers are still in need to resolve the trichotomy among Mephitinae and the other two carnivoran clades, Ailuridae and Procyonidae/non-mephitine Mustelidae.
Collapse
Affiliation(s)
- Li Yu
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
627
|
Osanai-Futahashi M, Suetsugu Y, Mita K, Fujiwara H. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1046-1057. [PMID: 19280695 DOI: 10.1016/j.ibmb.2008.05.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To elucidate the contribution of transposable elements (TEs) to the silkworm genome structure and evolution, we have conducted genome-wide analysis of TEs using the newly released genome assembly. The TEs made up 35% of the genome and contributed greatly to the genome size. Non-long terminal repeat retrotransposons (non-LTRs) and short interspersed nuclear elements (SINEs) were the predominant TE classes. From characterization of the TE distribution in the genome, it was revealed that non-LTRs, especially R1 clade elements, are frequently inserted into GC-rich regions. The GC content of non-LTRs themselves was over 40%, which indicate their contribution to the GC content of the insertion region. TEs accumulated in regions with low gene density, and there were relatively strong positive correlations between TE density and chromosomal recombination rate. We also characterized the clade distribution of the non-LTRs. The silkworm non-LTRs represented 10 of the 16 previously defined clades, which had the most variety than that reported for other genomes. Two partial CRE clade elements were found, which is one of the most ancient lineages of non-LTRs, and have been only found in Trypanosoma and fungi before. This analysis suggests that Bombyx genome is influenced by numerous amounts and variety of TEs.
Collapse
Affiliation(s)
- Mizuko Osanai-Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | |
Collapse
|
628
|
Martinez HD, Jasavala RJ, Hinkson I, Fitzgerald LD, Trimmer JS, Kung HJ, Wright ME. RNA editing of androgen receptor gene transcripts in prostate cancer cells. J Biol Chem 2008; 283:29938-49. [PMID: 18708348 PMCID: PMC2662061 DOI: 10.1074/jbc.m800534200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 08/13/2008] [Indexed: 11/06/2022] Open
Abstract
Reactivation of the androgen receptor (AR) signaling pathway represents a critical step in the growth and survival of androgen-independent (AI) prostate cancer (CaP). In this study we show the DU145 and PC3 AI human CaP cell lines respond to androgens and require AR expression for optimal proliferation in vitro. Interestingly, AR gene transcripts in DU145 and PC3 cells harbored a large number of single base pair nucleotide transitions that resulted in missense mutations in selected AR codons. The most notable lesion detected in AR gene transcripts included the oncogenic codon 877T-->A gain-of-function mutation. Surprisingly, AR gene transcript nucleotide transitions were not genome-encoded substitutions, but instead the mutations co-localized to putative A-to-I, U-to-C, C-to-U, and G-to-A RNA editing sites, suggesting the lesions were mediated through RNA editing mechanisms. Higher levels of mRNA encoding the A-to-I RNA editing enzymes ADAR1 and ADARB1 were observed in DU145 and PC3 cells relative to the androgen-responsive LNCaP and 22Rv1 human CaP cell lines, which correlated with higher levels of AR gene transcript A-to-I editing detected in DU145 and PC3 cells. Our results suggest that AR gene transcripts are targeted by different RNA editing enzymes in DU145 and PC3 cells. Thus RNA editing of AR gene transcripts may contribute to the etiology of hormone-refractory phenotypes in advanced stage AI CaP.
Collapse
Affiliation(s)
- Harryl D Martinez
- University of California Davis Genome Center, Department of Pharmacology, School of Medicine, University of California, Sacramento, California 95817, USA
| | | | | | | | | | | | | |
Collapse
|
629
|
Wicker T, Narechania A, Sabot F, Stein J, Vu GTH, Graner A, Ware D, Stein N. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 2008; 9:518. [PMID: 18976483 PMCID: PMC2584661 DOI: 10.1186/1471-2164-9-518] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/31/2008] [Indexed: 11/10/2022] Open
Abstract
Background Barley has one of the largest and most complex genomes of all economically important food crops. The rise of new short read sequencing technologies such as Illumina/Solexa permits such large genomes to be effectively sampled at relatively low cost. Based on the corresponding sequence reads a Mathematically Defined Repeat (MDR) index can be generated to map repetitive regions in genomic sequences. Results We have generated 574 Mbp of Illumina/Solexa sequences from barley total genomic DNA, representing about 10% of a genome equivalent. From these sequences we generated an MDR index which was then used to identify and mark repetitive regions in the barley genome. Comparison of the MDR plots with expert repeat annotation drawing on the information already available for known repetitive elements revealed a significant correspondence between the two methods. MDR-based annotation allowed for the identification of dozens of novel repeat sequences, though, which were not recognised by hand-annotation. The MDR data was also used to identify gene-containing regions by masking of repetitive sequences in eight de-novo sequenced bacterial artificial chromosome (BAC) clones. For half of the identified candidate gene islands indeed gene sequences could be identified. MDR data were only of limited use, when mapped on genomic sequences from the closely related species Triticum monococcum as only a fraction of the repetitive sequences was recognised. Conclusion An MDR index for barley, which was obtained by whole-genome Illumina/Solexa sequencing, proved as efficient in repeat identification as manual expert annotation. Circumventing the labour-intensive step of producing a specific repeat library for expert annotation, an MDR index provides an elegant and efficient resource for the identification of repetitive and low-copy (i.e. potentially gene-containing sequences) regions in uncharacterised genomic sequences. The restriction that a particular MDR index can not be used across species is outweighed by the low costs of Illumina/Solexa sequencing which makes any chosen genome accessible for whole-genome sequence sampling.
Collapse
Affiliation(s)
- Thomas Wicker
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
630
|
Seim I, Carter SL, Herington AC, Chopin LK. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene. BMC Mol Biol 2008; 9:95. [PMID: 18954468 PMCID: PMC2621237 DOI: 10.1186/1471-2199-9-95] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/28/2008] [Indexed: 12/13/2022] Open
Abstract
Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential and tissue-restricted expression. The overlapping genomic arrangement of GHRLOS with the ghrelin gene indicates that it is likely to have interesting regulatory and functional roles in the ghrelin axis.
Collapse
Affiliation(s)
- Inge Seim
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | |
Collapse
|
631
|
Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, Macas J, Vyskot B, Kejnovsky E. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 2008; 16:961-76. [DOI: 10.1007/s10577-008-1254-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/10/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
|
632
|
Baertsch R, Diekhans M, Kent WJ, Haussler D, Brosius J. Retrocopy contributions to the evolution of the human genome. BMC Genomics 2008; 9:466. [PMID: 18842134 PMCID: PMC2584115 DOI: 10.1186/1471-2164-9-466] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 10/08/2008] [Indexed: 02/06/2023] Open
Abstract
Background Evolution via point mutations is a relatively slow process and is unlikely to completely explain the differences between primates and other mammals. By contrast, 45% of the human genome is composed of retroposed elements, many of which were inserted in the primate lineage. A subset of retroposed mRNAs (retrocopies) shows strong evidence of expression in primates, often yielding functional retrogenes. Results To identify and analyze the relatively recently evolved retrogenes, we carried out BLASTZ alignments of all human mRNAs against the human genome and scored a set of features indicative of retroposition. Of over 12,000 putative retrocopy-derived genes that arose mainly in the primate lineage, 726 with strong evidence of transcript expression were examined in detail. These mRNA retroposition events fall into three categories: I) 34 retrocopies and antisense retrocopies that added potential protein coding space and UTRs to existing genes; II) 682 complete retrocopy duplications inserted into new loci; and III) an unexpected set of 13 retrocopies that contributed out-of-frame, or antisense sequences in combination with other types of transposed elements (SINEs, LINEs, LTRs), even unannotated sequence to form potentially novel genes with no homologs outside primates. In addition to their presence in human, several of the gene candidates also had potentially viable ORFs in chimpanzee, orangutan, and rhesus macaque, underscoring their potential of function. Conclusion mRNA-derived retrocopies provide raw material for the evolution of genes in a wide variety of ways, duplicating and amending the protein coding region of existing genes as well as generating the potential for new protein coding space, or non-protein coding RNAs, by unexpected contributions out of frame, in reverse orientation, or from previously non-protein coding sequence.
Collapse
Affiliation(s)
- Robert Baertsch
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| | | | | | | | | |
Collapse
|
633
|
Symmons O, Váradi A, Arányi T. How segmental duplications shape our genome: recent evolution of ABCC6 and PKD1 Mendelian disease genes. Mol Biol Evol 2008; 25:2601-13. [PMID: 18791038 DOI: 10.1093/molbev/msn202] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The completion of the Human Genome Project has brought the understanding that our genome contains an unexpectedly large proportion of segmental duplications. This poses the challenge of elucidating the consequences of recent duplications on physiology. We have conducted an in-depth study of a subset of segmental duplications on chromosome 16. We focused on PKD1 and ABCC6 duplications because mutations affecting these genes are responsible for the Mendelian disorders autosomal dominant polycystic kidney disease and pseudoxanthoma elasticum, respectively. We establish that duplications of PKD1 and ABCC6 are associated to low-copy repeat 16a and show that such duplications have occurred several times independently in different primate species. We demonstrate that partial duplication of PKD1 and ABCC6 has numerous consequences: the pseudogenes give rise to new transcripts and mediate gene conversion, which not only results in disease-causing mutations but also serves as a reservoir for sequence variation. The duplicated segments are also involved in submicroscopic and microscopic genomic rearrangements, contributing to structural variation in human and chromosomal break points in the gibbon. In conclusion, our data shed light on the recent and ongoing evolution of chromosome 16 mediated by segmental duplication and deepen our understanding of the history of two Mendelian disorder genes.
Collapse
Affiliation(s)
- Orsolya Symmons
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
634
|
Peters B, Dirscherl S, Dantzer J, Nowacki J, Cross S, Li X, Cornetta K, Dinauer MC, Mooney SD. Automated analysis of viral integration sites in gene therapy research using the SeqMap web resource. Gene Ther 2008; 15:1294-8. [PMID: 18580967 PMCID: PMC2766545 DOI: 10.1038/gt.2008.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 04/08/2008] [Accepted: 04/08/2008] [Indexed: 01/01/2023]
Abstract
Research in gene therapy involving genome-integrating vectors now often includes analysis of vector integration sites across the genome using methods such as ligation-mediated PCR (LM-PCR) or linear amplification-mediated PCR (LAM-PCR). To help researchers analyze these sites and the functions of nearby genes, we have developed SeqMap (http://seqmap.compbio.iupui.edu/) a secure, web-based comprehensive vector integration site management tool that automatically analyzes and annotates large numbers of vector integration sites derived from LM-PCR experiments in human and model organisms upon a common genome database. We believe the use of this resource will enable better reproducibility and understanding of this important data.
Collapse
Affiliation(s)
- Brandon Peters
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Sara Dirscherl
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Jessica Dantzer
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Jonathan Nowacki
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Scott Cross
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Xiaoman Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Division of Biostatistics, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Mary C. Dinauer
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Section of Pediatric Hematology/Oncology, Riley Hospital for Children, Indianapolis, Indiana, 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Sean D. Mooney
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| |
Collapse
|
635
|
Tempel S, Jurka M, Jurka J. VisualRepbase: an interface for the study of occurrences of transposable element families. BMC Bioinformatics 2008; 9:345. [PMID: 18710569 PMCID: PMC2527617 DOI: 10.1186/1471-2105-9-345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/18/2008] [Indexed: 12/20/2022] Open
Abstract
Background Repbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Repbase already has software for entering new sequence families and for comparing the user's sequence with the database of consensus sequences. Results We describe the software named VisualRepbase and the associated database, which allow for displaying and analyzing all occurrences of transposable element families present in an annotated genome. VisualRepbase is a Java-based interface which can download selected occurrences of transposable elements, show the distribution of given families on the chromosome, and present the localization of these occurrences with regard to gene annotations and other families of transposable elements in Repbase. In addition, it has several features for saving the graphical representation of occurrences, saving all sequences in FASTA format, and searching and saving all annotated genes that are surrounded by these occurrences. Conclusion VisualRepbase is available as a downloadable version. It can be found at .
Collapse
Affiliation(s)
- Sébastien Tempel
- Genetic Information Research Institute, 1925 Landings Dr, Mountain View, CA 94043, USA.
| | | | | |
Collapse
|
636
|
Peddigari S, Zhang W, Takechi K, Takano H, Takio S. Two different clades of copia-like retrotransposons in the red alga, Porphyra yezoensis. Gene 2008; 424:153-8. [PMID: 18708130 DOI: 10.1016/j.gene.2008.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 07/16/2008] [Accepted: 07/21/2008] [Indexed: 12/11/2022]
Abstract
A copia-like retrotransposon referred to as PyRE1G1 was isolated from the genome of the red alga Porphyra yezoensis. PyRE1G1 is 4807 bp in length, with 204 bp long terminal repeats (LTRs) at both ends. PyRE1G1 has an open reading frame of 1401 residues encoding gag, protease, integrase, reverse transcriptase (RT), and RNase H. From the order of gene arrangement of proteins, PyRE1G1 appears to be a copia-like retrotransposon. Genomic Southern blot analysis suggests that PyRE1G1 consists of a small gene family. From the phylogenetic tree of RT sequences, PyRE1G1 is grouped in the clade of usual copia elements and distinct from the previously isolated red algal copia-like gene PyRE10G in that the latter is closely related to a new clade of aquatic animal-specific copia-like retrotransposons.
Collapse
Affiliation(s)
- Suresh Peddigari
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
| | | | | | | | | |
Collapse
|
637
|
Amemiya CT, Prohaska SJ, Hill-Force A, Cook A, Wasserscheid J, Ferrier DEK, Pascual-Anaya J, Garcia-Fernàndez J, Dewar K, Stadler PF. The amphioxus Hox cluster: characterization, comparative genomics, and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:465-77. [PMID: 18351584 DOI: 10.1002/jez.b.21213] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The amphioxus Hox cluster is often viewed as "archetypal" for the chordate lineage. Here, we present a descriptive account of the 448 kb region spanning the Hox cluster of the amphioxus Branchiostoma floridae from Hox14 to Hox1. We provide complete coding sequences of all 14 previously described amphioxus sequences and give a detailed analysis of the conserved noncoding regulatory sequence elements. We find that the posterior part of the Hox cluster is so highly derived that even the complete genomic sequence is insufficient to decide whether the posterior Hox genes arose by independent duplications or whether they are true orthologs of the corresponding gnathostome paralog groups. In contrast, the anterior region is much better conserved. The amphioxus Hox cluster strongly excludes repetitive elements with the exception of two repeat islands in the posterior region. Repeat exclusion is also observed in gnathostomes, but not protostome Hox clusters. We thus hypothesize that the much shorter vertebrate Hox clusters are the result of extensive resolution of the redundancy of regulatory DNA after the genome duplications rather than the consequence of a selection pressure to remove nonfunctional sequence from the Hox cluster.
Collapse
Affiliation(s)
- Chris T Amemiya
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
638
|
Duan K, Ding X, Zhang Q, Zhu H, Pan A, Huang J. AtCopeg1, the unique gene originated from AtCopia95 retrotransposon family, is sensitive to external hormones and abiotic stresses. PLANT CELL REPORTS 2008; 27:1065-73. [PMID: 18309491 DOI: 10.1007/s00299-008-0520-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/03/2008] [Accepted: 02/17/2008] [Indexed: 05/08/2023]
Abstract
Retrotransposons, the important component of eukaryotic genome, are seeds of evolution and play great role in creating new genes. The compact Arabidopsis genome harbors over 200 Copia-like retrotransposons, but mostly silent. Here we isolated an expressed gene AtCopeg1 (Copia evolved gene 1), which shows higher than 90% identity to AtCopia95_I, the consensus sequence encoding AtCopia95 polyprotein. AtCopeg1 is the unique gene evolved from AtCopia95 family. It is an intron-containing gene with two alternative 3' ends. The transcript accumulation of AtCopeg1 is tissue-specific, also significantly affected by external hormones and abiotic stresses. The presence of regulatory elements in its promoter region (originating from AtCopia95_I and AtCopia95 long terminal repeat), is adequate for conferring its essential expression feature. Thus, AtCopeg1 is a versatile functional gene involved in many developmental and adaptive processes probably including the signaling crosstalk of hormone and nutrient stress. Our work highlighted the role of transposable elements in creating new functional genes, and will incite the enthusiasm for isolation and functional characterization of plant genes evolved from those previously considered as selfish and junk DNA.
Collapse
Affiliation(s)
- Ke Duan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Biological Technique, Shanghai Academy of Agricultural Sciences, 2901 Bei Di Road, Shanghai 201106, China.
| | | | | | | | | | | |
Collapse
|
639
|
A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res 2008; 18:1282-93. [PMID: 18493018 DOI: 10.1101/gr.072090.107] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Agouti signaling protein (ASIP) functions to regulate pigmentation in mice, while its role in many other animals and in humans has not been fully determined. In this study, we identify a 190-kb tandem duplication encompassing the ovine ASIP and AHCY coding regions and the ITCH promoter region as the genetic cause of white coat color of dominant white/tan (A(Wt)) agouti sheep. The duplication 5' breakpoint is located upstream of the ASIP coding sequence. Ubiquitous expression of a second copy of the ASIP coding sequence regulated by a duplicated copy of the nearby ITCH promoter causes the white sheep phenotype. A single copy ASIP gene with a silenced ASIP promoter occurs in recessive black sheep. In contrast, a single copy functional wild-type (A(+)) ASIP is responsible for the ancient Barbary sheep coat color phenotype. The gene duplication was facilitated by homologous recombination between two non-LTR SINE sequences flanking the duplicated segment. This is the first sheep trait attributable to gene duplication and shows nonallelic homologous recombination and gene conversion events at the ovine ASIP locus could have an important role in the evolution of sheep pigmentation.
Collapse
|
640
|
Impact of endogenous intronic retroviruses on major histocompatibility complex class II diversity and stability. J Virol 2008; 82:6667-77. [PMID: 18448532 DOI: 10.1128/jvi.00097-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major histocompatibility complex (MHC) represents a multigene family that is known to display allelic and gene copy number variations. Primate species such as humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta) show DRB region configuration polymorphism at the population level, meaning that the number and content of DRB loci may vary per haplotype. Introns of primate DRB alleles differ significantly in length due to insertions of transposable elements as long endogenous retrovirus (ERV) and human ERV (HERV) sequences in the DRB2, DRB6, and DRB7 pseudogenes. Although the integration of intronic HERVs resulted sooner or later in the inactivation of the targeted genes, the fixation of these endogenous retroviral segments over long time spans seems to have provided evolutionary advantage. Intronic HERVs may have integrated in a sense or an antisense manner. On the one hand, antisense-oriented retroelements such as HERV-K14I, observed in intron 2 of the DRB7 genes in humans and chimpanzees, seem to promote stability, as configurations/alleles containing these hits have experienced strong conservative selection during primate evolution. On the other hand, the HERVK3I present in intron 1 of all DRB2 and/or DRB6 alleles tested so far integrated in a sense orientation. The data suggest that multigenic regions in particular may benefit from sense introgressions by HERVs, as these elements seem to promote and maintain the generation of diversity, whereas these types of integrations may be lethal in monogenic systems, since they are known to influence transcript regulation negatively.
Collapse
|
641
|
Wider C, Melquist S, Hauf M, Solida A, Cobb SA, Kachergus JM, Gass J, Coon KD, Baker M, Cannon A, Stephan DA, Schorderet DF, Ghika J, Burkhard PR, Kapatos G, Hutton M, Farrer MJ, Wszolek ZK, Vingerhoets FJG. Study of a Swiss dopa-responsive dystonia family with a deletion in GCH1: redefining DYT14 as DYT5. Neurology 2008; 70:1377-83. [PMID: 17804835 PMCID: PMC2330252 DOI: 10.1212/01.wnl.0000275527.35752.c5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To report the study of a multigenerational Swiss family with dopa-responsive dystonia (DRD). METHODS Clinical investigation was made of available family members, including historical and chart reviews. Subject examinations were video recorded. Genetic analysis included a genome-wide linkage study with microsatellite markers (STR), GTP cyclohydrolase I (GCH1) gene sequencing, and dosage analysis. RESULTS We evaluated 32 individuals, of whom 6 were clinically diagnosed with DRD, with childhood-onset progressive foot dystonia, later generalizing, followed by parkinsonism in the two older patients. The response to levodopa was very good. Two additional patients had late onset dopa-responsive parkinsonism. Three other subjects had DRD symptoms on historical grounds. We found suggestive linkage to the previously reported DYT14 locus, which excluded GCH1. However, further study with more stringent criteria for disease status attribution showed linkage to a larger region, which included GCH1. No mutation was found in GCH1 by gene sequencing but dosage methods identified a novel heterozygous deletion of exons 3 to 6 of GCH1. The mutation was found in seven subjects. One of the patients with dystonia represented a phenocopy. CONCLUSIONS This study rules out the previously reported DYT14 locus as a cause of disease, as a novel multiexonic deletion was identified in GCH1. This work highlights the necessity of an accurate clinical diagnosis in linkage studies as well as the need for appropriate allele frequencies, penetrance, and phenocopy estimates. Comprehensive sequencing and dosage analysis of known genes is recommended prior to genome-wide linkage analysis.
Collapse
Affiliation(s)
- C Wider
- Department of Neurology, Cannaday Building 2E, Mayo Clinic, San Pablo Road 4500, Jacksonville, FL 32246, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
642
|
Shippy TD, Ronshaugen M, Cande J, He J, Beeman RW, Levine M, Brown SJ, Denell RE. Analysis of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters. Dev Genes Evol 2008; 218:127-39. [PMID: 18392875 PMCID: PMC2292473 DOI: 10.1007/s00427-008-0213-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 02/12/2008] [Indexed: 01/28/2023]
Abstract
The remarkable conservation of Hox clusters is an accepted but little understood principle of biology. Some organizational constraints have been identified for vertebrate Hox clusters, but most of these are thought to be recent innovations that may not apply to other organisms. Ironically, many model organisms have disrupted Hox clusters and may not be well-suited for studies of structural constraints. In contrast, the red flour beetle, Tribolium castaneum, which has a long history in Hox gene research, is thought to have a more ancestral-type Hox cluster organization. Here, we demonstrate that the Tribolium homeotic complex (HOMC) is indeed intact, with the individual Hox genes in the expected colinear arrangement and transcribed from the same strand. There is no evidence that the cluster has been invaded by non-Hox protein-coding genes, although expressed sequence tag and genome tiling data suggest that noncoding transcripts are prevalent. Finally, our analysis of several mutations affecting the Tribolium HOMC suggests that intermingling of enhancer elements with neighboring transcription units may constrain the structure of at least one region of the Tribolium cluster. This work lays a foundation for future studies of the Tribolium HOMC that may provide insights into the reasons for Hox cluster conservation.
Collapse
Affiliation(s)
- Teresa D Shippy
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
643
|
Ludwig A, Valente VLDS, Loreto ELS. Multiple invasions of Errantivirus in the genus Drosophila. INSECT MOLECULAR BIOLOGY 2008; 17:113-124. [PMID: 18353101 DOI: 10.1111/j.1365-2583.2007.00787.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aiming to contribute to the knowledge of the evolutionary history of Errantivirus, a phylogenetic analysis of the env gene sequences of Errantivirus gypsy, gtwin, gypsy2, gypsy3, gypsy4 and gypsy6 was carried out in 33 Drosophilidae species. Most sequences were obtained from in silico searches in the Drosophila genomes. The complex evolutionary pattern reported by other authors for the gypsy retroelement was also observed in the present study, including vertical transmission, ancestral polymorphism, stochastic loss and horizontal transfer. Moreover, the elements gypsy2, gypsy3, gypsy4 and gypsy6 were shown to have followed an evolutionary model that is similar to gypsy. Fifteen new possible cases of horizontal transfer were suggested. The infectious potential of these elements may help elucidate the evolutionary scenario described in the present study.
Collapse
Affiliation(s)
- A Ludwig
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
644
|
Buisine N, Quesneville H, Colot V. Improved detection and annotation of transposable elements in sequenced genomes using multiple reference sequence sets. Genomics 2008; 91:467-75. [PMID: 18343092 DOI: 10.1016/j.ygeno.2008.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/10/2008] [Accepted: 01/15/2008] [Indexed: 11/30/2022]
Abstract
Transposable elements (TEs) are ubiquitous components of eukaryotic genomes that impact many aspects of genome function. TE detection in genomic sequences is typically performed using similarity searches against a set of reference sequences built from previously identified TEs. Here, we demonstrate that this process can be improved by designing reference sets that incorporate key aspects of the structure and evolution of TEs and by combining these sets with Repbase Update (RU), which is composed mainly of consensus sequences. Using the Arabidopsis genome as a test case, our approach leads to the detection of an extra 12.4% of TE sequences. These correspond to novel TE fragments as well as to the extension of TE fragments already detected by RU. Significantly, we find that TE detection could be readily optimized using only two reference sets, one containing true consensus sequences and the other mosaic sequences that capture the structural diversity of TE copies within a family.
Collapse
Affiliation(s)
- Nicolas Buisine
- Unité de Recherche en Génomique Végétale, INRA UMR1165-CNRS UMR8114-Université d'Evry Val d'Essonne, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | | |
Collapse
|
645
|
van Zelm MC, Geertsema C, Nieuwenhuis N, de Ridder D, Conley ME, Schiff C, Tezcan I, Bernatowska E, Hartwig NG, Sanders EA, Litzman J, Kondratenko I, van Dongen JJ, van der Burg M. Gross deletions involving IGHM, BTK, or Artemis: a model for genomic lesions mediated by transposable elements. Am J Hum Genet 2008; 82:320-32. [PMID: 18252213 DOI: 10.1016/j.ajhg.2007.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 01/27/2023] Open
Abstract
Most genetic disruptions underlying human disease are microlesions, whereas gross lesions are rare with gross deletions being most frequently found (6%). Similar observations have been made in primary immunodeficiency genes, such as BTK, but for unknown reasons the IGHM and DCLRE1C (Artemis) gene defects frequently represent gross deletions ( approximately 60%). We characterized the gross deletion breakpoints in IGHM-, BTK-, and Artemis-deficient patients. The IGHM deletion breakpoints did not show involvement of recombination signal sequences or immunoglobulin switch regions. Instead, five IGHM, eight BTK, and five unique Artemis breakpoints were located in or near sequences derived from transposable elements (TE). The breakpoints of four out of five disrupted Artemis alleles were located in highly homologous regions, similar to Ig subclass deficiencies and Vh deletion polymorphisms. Nevertheless, these observations suggest a role for TEs in mediating gross deletions. The identified gross deletion breakpoints were mostly located in TE subclasses that were specifically overrepresented in the involved gene as compared to the average in the human genome. This concerned both long (LINE1) and short (Alu, MIR) interspersed elements, as well as LTR retrotransposons (ERV). Furthermore, a high total TE content (>40%) was associated with an increased frequency of gross deletions. Both findings were further investigated and confirmed in a total set of 20 genes disrupted in human disease. Thus, to our knowledge for the first time, we provide evidence that a high TE content, irrespective of the type of element, results in the increased incidence of gross deletions as gene disruption underlying human disease.
Collapse
|
646
|
Sheen CR, Jewell UR, Morris CM, Brennan SO, Férec C, George PM, Smith MP, Chen JM. Double complex mutations involving F8 and FUNDC2 caused by distinct break-induced replication. Hum Mutat 2008; 28:1198-206. [PMID: 17683067 DOI: 10.1002/humu.20591] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genomic rearrangements are a well-recognized cause of genetic disease and can be formed by a variety of mechanisms. We report a complex rearrangement causing severe hemophilia A, identified and further characterized using a range of PCR-based methods, and confirmed using array-comparative genomic hybridization (array-CGH). This rearrangement consists of a 15.5-kb deletion/16-bp insertion located 0.6 kb from a 28.1-kb deletion/263-kb insertion at Xq28 and is one of the most complex rearrangements described at a DNA sequence level. We propose that the rearrangement was generated by distinct but linked cellular responses to double strand breakage, namely break-induced replication (BIR) and a novel model of break-induced serial replication slippage (SRS). The copy number of several genes is affected by this rearrangement, with deletion of part of the Factor VIII gene (F8, causing hemophilia A) and the FUNDC2 gene, and duplication of the TMEM185A, HSFX1, MAGEA9, and MAGEA11 genes. As the patient exhibits no clinically detectable phenotype other than hemophilia A, it appears that the biological effects of the other genes involved are not dosage-dependent. This investigation has provided novel insights into processes of DNA repair including BIR and the first description of SRS during repair in a pathological context.
Collapse
Affiliation(s)
- Campbell R Sheen
- Molecular Pathology Laboratory, Canterbury Health Laboratories, Christchurch, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
647
|
Grzebelus D, Lasota S, Gambin T, Kucherov G, Gambin A. Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula. BMC Genomics 2007; 8:409. [PMID: 17996080 PMCID: PMC2213677 DOI: 10.1186/1471-2164-8-409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 11/09/2007] [Indexed: 11/25/2022] Open
Abstract
Background Transposable elements constitute a significant fraction of plant genomes. The PIF/Harbinger superfamily includes DNA transposons (class II elements) carrying terminal inverted repeats and producing a 3 bp target site duplication upon insertion. The presence of an ORF coding for the DDE/DDD transposase, required for transposition, is characteristic for the autonomous PIF/Harbinger-like elements. Based on the above features, PIF/Harbinger-like elements were identified in several plant genomes and divided into several evolutionary lineages. Availability of a significant portion of Medicago truncatula genomic sequence allowed for mining PIF/Harbinger-like elements, starting from a single previously described element MtMaster. Results Twenty two putative autonomous, i.e. carrying an ORF coding for TPase and complete terminal inverted repeats, and 67 non-autonomous PIF/Harbinger-like elements were found in the genome of M. truncatula. They were divided into five families, MtPH-A5, MtPH-A6, MtPH-D,MtPH-E, and MtPH-M, corresponding to three previously identified and two new lineages. The largest families, MtPH-A6 and MtPH-M were further divided into four and three subfamilies, respectively. Non-autonomous elements were usually direct deletion derivatives of the putative autonomous element, however other types of rearrangements, including inversions and nested insertions were also observed. An interesting structural characteristic – the presence of 60 bp tandem repeats – was observed in a group of elements of subfamily MtPH-A6-4. Some families could be related to miniature inverted repeat elements (MITEs). The presence of empty loci (RESites), paralogous to those flanking the identified transposable elements, both autonomous and non-autonomous, as well as the presence of transposon insertion related size polymorphisms, confirmed that some of the mined elements were capable for transposition. Conclusion The population of PIF/Harbinger-like elements in the genome of M. truncatula is diverse. A detailed intra-family comparison of the elements' structure proved that they proliferated in the genome generally following the model of abortive gap repair. However, the presence of tandem repeats facilitated more pronounced rearrangements of the element internal regions. The insertion polymorphism of the MtPH elements and related MITE families in different populations of M. truncatula, if further confirmed experimentally, could be used as a source of molecular markers complementary to other marker systems.
Collapse
Affiliation(s)
- Dariusz Grzebelus
- Department of Genetics, Plant Breeding and Seed Science, Agricultural University of Krakow, Al, 29 Listopada 54, 31-425 Krakow, Poland.
| | | | | | | | | |
Collapse
|
648
|
Coulibaly MB, Lobo NF, Fitzpatrick MC, Kern M, Grushko O, Thaner DV, Traoré SF, Collins FH, Besansky NJ. Segmental duplication implicated in the genesis of inversion 2Rj of Anopheles gambiae. PLoS One 2007; 2:e849. [PMID: 17786220 PMCID: PMC1952172 DOI: 10.1371/journal.pone.0000849] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/15/2007] [Indexed: 01/26/2023] Open
Abstract
The malaria vector Anopheles gambiae maintains high levels of inversion polymorphism that facilitate its exploitation of diverse ecological settings across tropical Africa. Molecular characterization of inversion breakpoints is a first step toward understanding the processes that generate and maintain inversions. Here we focused on inversion 2Rj because of its association with the assortatively mating Bamako chromosomal form of An. gambiae, whose distinctive breeding sites are rock pools beside the Niger River in Mali and Guinea. Sequence and computational analysis of 2Rj revealed the same 14.6 kb insertion between both breakpoints, which occurred near but not within predicted genes. Each insertion consists of 5.3 kb terminal inverted repeat arms separated by a 4 kb spacer. The insertions lack coding capacity, and are comprised of degraded remnants of repetitive sequences including class I and II transposable elements. Because of their large size and patchwork composition, and as no other instances of these insertions were identified in the An. gambiae genome, they do not appear to be transposable elements. The 14.6 kb modules inserted at both 2Rj breakpoint junctions represent low copy repeats (LCRs, also called segmental duplications) that are strongly implicated in the recent (∼0.4Ne generations) origin of 2Rj. The LCRs contribute to further genome instability, as demonstrated by an imprecise excision event at the proximal breakpoint of 2Rj in field isolates.
Collapse
Affiliation(s)
- Mamadou B. Coulibaly
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Neil F. Lobo
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Meagan C. Fitzpatrick
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Marcia Kern
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Olga Grushko
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Daniel V. Thaner
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sékou F. Traoré
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Frank H. Collins
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Nora J. Besansky
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
649
|
Reiss D, Zhang Y, Mager DL. Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res 2007; 35:4743-54. [PMID: 17617638 PMCID: PMC1950553 DOI: 10.1093/nar/gkm455] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
It is generally assumed that transposable elements, including endogenous retroviruses (ERVs), are silenced by DNA methylation/chromatin structure in mammalian cells. However, there have been very few experimental studies to examine the methylation status of human ERVs. In this study, we determined and compared the methylation status of the 5′ long terminal repeats (LTRs) of different copies of the human endogenous retrovirus (HERV) family HERV-E, which are inserted in various genomic contexts. We found that three HERV-E LTRs which function as alternative gene promoters in placenta are unmethylated in that tissue but heavily methylated in blood cells, where these LTRs are not active promoters. This difference is not solely due to global hypomethylation in placenta, since two general measures of methylation levels of HERV-E and HERV-K LTRs suggest only 10–15% lower overall HERV methylation in placenta compared to blood. Comparisons between methylation levels of the LTR-derived gene promoters and six random HERV-E LTRs in placenta showed that the former display significantly lower methylation levels than random LTRs. Moreover, the differences in methylation between LTRs cannot always be explained by their genomic environment, since methylation of flanking sequences can be very different from methylation of the LTR itself.
Collapse
Affiliation(s)
- Daphne Reiss
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC and Department of Medical Genetics, University of British Columbia, Canada
| | - Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC and Department of Medical Genetics, University of British Columbia, Canada
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC and Department of Medical Genetics, University of British Columbia, Canada
- *To whom correspondence should be addressed.+1-604-675-8139+1-604-877-0712
| |
Collapse
|
650
|
Thomas CP, Andrews JI, Liu KZ. Intronic polyadenylation signal sequences and alternate splicing generate human soluble Flt1 variants and regulate the abundance of soluble Flt1 in the placenta. FASEB J 2007; 21:3885-95. [PMID: 17615362 DOI: 10.1096/fj.07-8809com] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The gene FLT1 produces at least two transcripts from a common transcription start site: full-length Flt1 contains 30 exons encoding a membrane-bound VEGF receptor; soluble Flt1 (sFlt1) shares the first 13 exons but utilizes poly(A) signal sequences within intron 13 to create a transcript that lacks downstream exons. To address the mechanisms that regulate human sFlt1, we mapped the 3' end of sFlt1 mRNA and defined the full extent of its 3' untranslated region (UTR). We identified a 3.2 Kb sFlt1 transcript that is cleaved within an alternatively spliced exon downstream of exon 14 and is predicted to encode a C-terminal variant of sFlt1 with an unusual polyserine tail. sFlt1 mRNA cleavage sites within intron 13 were identified in human placenta and in vascular endothelium by ribonuclease protection assay (RPA). A proximal and two distal mRNA cleavage sites were identified by RPA downstream of consensus polyadenylation signals that create variant transcripts with a 3' UTR ranging from 30 bases to approximately 4 Kb. Northern blot analysis and 3' rapid amplification of cDNA ends (RACE) in placenta confirmed the existence of distal intronic sFlt1 cleavage sites that give rise to a sFlt1 transcript of approximately 7 Kb. The identity of the distal signal sequences were then confirmed by mutagenesis of putative signal elements in a polyadenylation reporter assay. We demonstrate the heterogeneity of human sFlt1 that arises from alternate splicing and from alternative polyadenylation directed by strong intronic poly(A) signal sequences leading to C-terminal variants and to an sFlt1 transcript with a large 3' UTR containing several AU rich elements and poly(U) regions that may regulate mRNA stability.
Collapse
Affiliation(s)
- Christie P Thomas
- Department of Internal Medicine and Graduate Program in Molecular and Cellular Biology, E300 GH, University of Iowa Carver College of Medicine, 200 Hawkins Dr., Iowa City, IA 52242-1081 USA.
| | | | | |
Collapse
|