701
|
Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A, Kumar S, Levine B, Maiuri MC, Martin SJ, Penninger J, Piacentini M, Rubinsztein DC, Simon HU, Simonsen A, Thorburn AM, Velasco G, Ryan KM, Kroemer G. Autophagy in malignant transformation and cancer progression. EMBO J 2015; 34:856-80. [PMID: 25712477 PMCID: PMC4388596 DOI: 10.15252/embj.201490784] [Citation(s) in RCA: 943] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/15/2022] Open
Abstract
Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Federico Pietrocola
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - Ravi K Amaravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark IRCCS Fondazione Santa Lucia and Department of Biology University of Rome Tor Vergata, Rome, Italy
| | - Patrice Codogno
- Université Paris Descartes Sorbonne Paris Cité, Paris, France Institut Necker Enfants-Malades (INEM), Paris, France INSERM U1151, Paris, France CNRS UMR8253, Paris, France
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - David A Gewirtz
- Department of Pharmacology, Toxicology and Medicine, Virginia Commonwealth University, Richmond Virginia, VA, USA
| | | | - Alec Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Chiara Maiuri
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - Seamus J Martin
- Department of Genetics, Trinity College, The Smurfit Institute, Dublin, Ireland
| | - Josef Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy National Institute for Infectious Diseases IRCCS 'Lazzaro Spallanzani', Rome, Italy
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Andrew M Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University of Madrid, Madrid, Spain Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Université Paris Descartes Sorbonne Paris Cité, Paris, France Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
702
|
de Ávila PHM, de Ávila RI, Dos Santos Filho EX, Cunha Bastos CC, Batista AC, Mendonça EF, Serpa RC, Marreto RN, da Cruz AF, Lima EM, Valadares MC. Mucoadhesive formulation of Bidens pilosa L. (Asteraceae) reduces intestinal injury from 5-fluorouracil-induced mucositis in mice. Toxicol Rep 2015; 2:563-573. [PMID: 28962391 PMCID: PMC5598237 DOI: 10.1016/j.toxrep.2015.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal mucositis induced during cancer treatment is considered a serious dose-limiting side effect of chemotherapy and/or radiotherapy. Frequently, interruption of the cancer treatment due to this pathology leads to a reduction in cure rates, increase of treatment costs and decrease life quality of the patient. Natural products such as Bidens pilosa L. (Asteraceae), represent a potential alternative for the treatment of mucositis given its anti-inflammatory properties. In this study, B. pilosa glycolic extract was formulated (BPF) with poloxamer, a mucoadhesive copolymer, was used for treatment of 5-fluorouracil (5-FU)-induced mucositis in mice. As expected, animals only treated with 5-FU (200 mg/kg) presented marked weight loss, reduction of intestinal villi, crypts and muscular layer, which was associated with severe disruption of crypts, edema, inflammatory infiltrate and vacuolization in the intestinal tissue, as compared to the control group and healthy animals only treated with BPF. On the other hand, the treatment of intestinal mucositis-bearing mice with BPF (75, 100 or 125 mg/kg) managed to mitigate clinical and pathologic changes, noticeably at 100 mg/kg. This dose led to the restoration of intestinal proliferative activity through increasing Ki-67 levels; modulated the expression of Bax, Bcl2 and p53 apoptotic markers protecting intestinal cells from cell death. Moreover, this treatment regulated lipid peroxidation and inflammatory infiltration. No acute toxic effects were observed with this formulation. This work demonstrated that BPF was safe and effective against 5-FU-induced intestinal mucositis in mice. Additional studies are already in progress to further characterize the mechanisms involved in the protective effects of this technological formulation toward the development of a new medicine for the prevention and treatment of intestinal injury in patients undergoing chemotherapy/radiotherapy.
Collapse
Affiliation(s)
- Paulo Henrique Marcelino de Ávila
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Edvande Xavier Dos Santos Filho
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Carla Caroline Cunha Bastos
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Aline Carvalho Batista
- Departamento de Estomatologia, Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Raphael Caixeta Serpa
- Laboratório de Tecnologia Farmacêutica - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ricardo Neves Marreto
- Laboratório de Tecnologia Farmacêutica - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Andrezza Furquim da Cruz
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Eliana Martins Lima
- Laboratório de Tecnologia Farmacêutica - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
703
|
Kroemer G, Bravo-San Pedro JM, Galluzzi L. Novel function of cytoplasmic p53 at the interface between mitochondria and the endoplasmic reticulum. Cell Death Dis 2015; 6:e1698. [PMID: 25789973 PMCID: PMC4385946 DOI: 10.1038/cddis.2015.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- G Kroemer
- 1] Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [2] INSERM, U1138, Paris, France [3] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France [4] Université Pierre et Marie Curie/Paris VI, Paris, France [5] Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Paris, France [6] Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - J M Bravo-San Pedro
- 1] Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [2] INSERM, U1138, Paris, France [3] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France [4] Université Pierre et Marie Curie/Paris VI, Paris, France [5] Gustave Roussy Cancer Campus, Villejuif, France
| | - L Galluzzi
- 1] Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [2] INSERM, U1138, Paris, France [3] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France [4] Université Pierre et Marie Curie/Paris VI, Paris, France [5] Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
704
|
BIX-01294-induced autophagy regulates elongation of primary cilia. Biochem Biophys Res Commun 2015; 460:428-33. [PMID: 25796328 DOI: 10.1016/j.bbrc.2015.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023]
Abstract
Previously, we showed that BIX-01294 treatment strongly activates autophagy. Although, the interplay between autophagy and ciliogenesis has been suggested, the role of autophagy in ciliogenesis is controversial and largely unknown. In this study, we investigated the effects of autophagy induced by BIX-01294 on the formation of primary cilia in human retinal pigmented epithelial (RPE) cells. Treatment of RPE cells with BIX-01294 caused strong elongation of the primary cilium and increased the number of ciliated cells, as well as autophagy activation. The elongated cilia in serum starved cultured cells were gradually decreased by re-feeding the cells with normal growth medium. However, the disassembly of cilia was blocked in the BIX-01294-treated cells. In addition, both genetic and chemical inhibition of autophagy suppressed BIX-01294-mediated ciliogenesis in RPE cells. Taken together, these results suggest that autophagy induced by BIX-01294 positively regulates the elongation of primary cilium.
Collapse
|
705
|
Li JP, Yang YX, Liu QL, Pan ST, He ZX, Zhang X, Yang T, Chen XW, Wang D, Qiu JX, Zhou SF. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1627-52. [PMID: 25834401 PMCID: PMC4365748 DOI: 10.2147/dddt.s75378] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alisertib (ALS) is an investigational potent Aurora A kinase inhibitor currently undergoing clinical trials for the treatment of hematological and non-hematological malignancies. However, its antitumor activity has not been tested in human breast cancer. This study aimed to investigate the effect of ALS on the growth, apoptosis, and autophagy, and the underlying mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. In the current study, we identified that ALS had potent growth-inhibitory, pro-apoptotic, and pro-autophagic effects in MCF7 and MDA-MB-231 cells. ALS arrested the cells in G2/M phase in MCF7 and MDA-MB-231 cells which was accompanied by the downregulation of cyclin-dependent kinase (CDK)1/cell division cycle (CDC) 2, CDK2, and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53, suggesting that ALS induces G2/M arrest through modulation of p53/p21/CDC2/cyclin B1 pathways. ALS induced mitochondria-mediated apoptosis in MCF7 and MDA-MB-231 cells; ALS significantly decreased the expression of B-cell lymphoma 2 (Bcl-2), but increased the expression of B-cell lymphoma 2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and increased the expression of cleaved caspases 3 and 9. ALS significantly increased the expression level of membrane-bound microtubule-associated protein 1 light chain 3 (LC3)-II and beclin 1 and induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) pathways in MCF7 and MDA-MB-231 cells as indicated by their altered phosphorylation, contributing to the pro-autophagic activities of ALS. Furthermore, treatment with wortmannin markedly downregulated ALS-induced p38 MAPK activation and LC3 conversion. In addition, knockdown of the p38 MAPK gene by ribonucleic acid interference upregulated Akt activation and resulted in LC3-II accumulation. These findings indicate that ALS promotes cellular apoptosis and autophagy in breast cancer cells via modulation of p38 MAPK/Akt/mTOR pathways. Further studies are warranted to further explore the molecular targets of ALS in the treatment of breast cancer.
Collapse
Affiliation(s)
- Jin-Ping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Qi-Lun Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Shu-Ting Pan
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Xiao-Wu Chen
- Department of General Surgery, The First People's Hospital of Shunde, Southern Medical University, Shunde, Foshan, Guangdong, People's Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
706
|
Bankaitis VA. Unsaturated fatty acid-induced non-canonical autophagy: unusual? Or unappreciated? EMBO J 2015; 34:978-80. [PMID: 25762589 DOI: 10.15252/embj.201591392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The breakdown of cellular components via autophagy is crucial for cellular homeostasis.In this issue of The EMBO Journal,Niso-Santano et al (2015) report the important observation that feeding cells with saturated or unsaturated fatty acids triggers mechanistically distinct autophagic responses. Feeding cells saturated fatty acid induced the canonical, BECN1/PI3K dependent autophagy pathway. Conversely,the unsaturated fatty acid oleate triggered autophagic responses that were independent of the BECN1/PI3K complex, but that required a functional Golgi system.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- E.L. Wehner-Welch Laboratory, Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| |
Collapse
|
707
|
Kepp O, Semeraro M, Bravo-San Pedro JM, Bloy N, Buqué A, Huang X, Zhou H, Senovilla L, Kroemer G, Galluzzi L. eIF2α phosphorylation as a biomarker of immunogenic cell death. Semin Cancer Biol 2015; 33:86-92. [PMID: 25749194 DOI: 10.1016/j.semcancer.2015.02.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 12/20/2022]
Abstract
Cancer cells exposed to some forms of chemotherapy and radiotherapy die while eliciting an adaptive immune response. Such a functionally peculiar variant of apoptosis has been dubbed immunogenic cell death (ICD). One of the central events in the course of ICD is the activation of an endoplasmic reticulum (ER) stress response. This is instrumental for cells undergoing ICD to emit all the signals that are required for their demise to be perceived as immunogenic by the host, and culminates with the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). In particular, eIF2α phosphorylation is required for the pre-apoptotic exposure of the ER chaperone calreticulin (CALR) on the cell surface, which is a central determinant of ICD. Importantly, phosphorylated eIF2α can be quantified in both preclinical and clinical samples by immunoblotting or immunohistochemistry using phosphoneoepitope-specific monoclonal antibodies. Of note, the phosphorylation of eIF2α and CALR exposure do not necessarily correlate with each other, and neither of these parameters is sufficient for cell death to be perceived as immunogenic. Nonetheless, accumulating data indicate that assessing the degree of phosphorylation of eIF2α provides a convenient parameter to monitor ICD. Here, we discuss the role of the ER stress response in ICD and the potential value of eIF2α phosphorylation as a biomarker for this clinically relevant variant of apoptosis.
Collapse
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Michaela Semeraro
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, Paris, France
| | - José Manuel Bravo-San Pedro
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Xing Huang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Heng Zhou
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Laura Senovilla
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|
708
|
Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology 2015; 4:e1008866. [PMID: 26137404 DOI: 10.1080/2162402x.2015.1008866] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/06/2023] Open
Abstract
The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.
Collapse
Key Words
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- CML, chronic myeloid leukemia
- DAMP, damage-associated molecular pattern
- EGFR, epidermal growth factor receptor
- EOX, epirubicin plus oxaliplatin plus capecitabine
- ER, endoplasmic reticulum
- FDA, Food and Drug Administration
- FOLFIRINOX, folinic acid plus 5-fluorouracil plus irinotecan plus oxaliplatin
- FOLFOX, folinic acid plus 5-fluorouracil plus oxaliplatin
- GEMOX, gemcitabine plus oxaliplatin
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HCC, hepatocellular carcinoma
- ICD, immunogenic cell death
- MM, multiple myeloma
- NHL, non-Hodgkin's lymphoma
- NSCLC, non-small cell lung carcinoma
- TACE, transcatheter arterial chemoembolization
- XELOX, capecitabine plus oxaliplatin
- antigen-presenting cell
- autophagy
- damage-associated molecular pattern
- dendritic cell
- endoplasmic reticulum stress
- mAb, monoclonal antibody
- type I interferon
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; INSERM , U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
709
|
Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, Wang H, Cao L, Tang D. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 2015; 34:5617-25. [PMID: 25728673 PMCID: PMC4640181 DOI: 10.1038/onc.2015.32] [Citation(s) in RCA: 494] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/24/2015] [Accepted: 01/24/2015] [Indexed: 12/12/2022]
Abstract
Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1-HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy.
Collapse
Affiliation(s)
- X Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Z Ou
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - M Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - R Kang
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - X Niu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - H Wang
- Department of Emergency Medicine, North Shore University Hospital, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - L Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - D Tang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
710
|
Teng X, Hardwick JM. Cell death in genome evolution. Semin Cell Dev Biol 2015; 39:3-11. [PMID: 25725369 PMCID: PMC4410082 DOI: 10.1016/j.semcdb.2015.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
Abstract
Inappropriate survival of abnormal cells underlies tumorigenesis. Most discoveries about programmed cell death have come from studying model organisms. Revisiting the experimental contexts that inspired these discoveries helps explain confounding biases that inevitably accompany such discoveries. Amending early biases has added a newcomer to the collection of cell death models. Analysis of gene-dependent death in yeast revealed the surprising influence of single gene mutations on subsequent eukaryotic genome evolution. Similar events may influence the selection for mutations during early tumorigenesis. The possibility that any early random mutation might drive the selection for a cancer driver mutation is conceivable but difficult to demonstrate. This was tested in yeast, revealing that mutation of almost any gene appears to specify the selection for a new second mutation. Some human tumors contain pairs of mutant genes homologous to co-occurring mutant genes in yeast. Here we consider how yeast again provide novel insights into tumorigenesis.
Collapse
Affiliation(s)
- Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, PR China; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
711
|
Lalaoui N, Lindqvist LM, Sandow JJ, Ekert PG. The molecular relationships between apoptosis, autophagy and necroptosis. Semin Cell Dev Biol 2015; 39:63-9. [PMID: 25736836 DOI: 10.1016/j.semcdb.2015.02.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 02/08/2023]
Abstract
Cells are constantly subjected to a vast range of potentially lethal insults, which may activate specific molecular pathways that have evolved to kill the cell. Cell death pathways are defined partly by their morphology, and more specifically by the molecules that regulate and enact them. As these pathways become more thoroughly characterized, interesting molecular links between them have emerged, some still controversial and others hinting at the physiological and pathophysiological roles these death pathways play. We describe specific molecular programs controlling cell death, with a focus on some of the distinct features of the pathways and the molecular links between them.
Collapse
Affiliation(s)
- Najoua Lalaoui
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Lisa M Lindqvist
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Jarrod J Sandow
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Paul G Ekert
- Division of Cell Signalling and Cell Death, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia; Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia.
| |
Collapse
|
712
|
Rello-Varona S, Herrero-Martín D, López-Alemany R, Muñoz-Pinedo C, Tirado OM. “(Not) All (Dead) Things Share the Same Breath”: Identification of Cell Death Mechanisms in Anticancer Therapy. Cancer Res 2015; 75:913-7. [DOI: 10.1158/0008-5472.can-14-3494] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
713
|
Li JP, Yang YX, Liu QL, Zhou ZW, Pan ST, He ZX, Zhang X, Yang T, Pan SY, Duan W, He SM, Chen XW, Qiu JX, Zhou SF. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1027-62. [PMID: 25733818 PMCID: PMC4338784 DOI: 10.2147/dddt.s74412] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E-cadherin and zona occludens protein 1 (ZO-1) but downregulated N-cadherin, zinc finger E-box-binding homeobox 1 (TCF8/ZEB1), snail, slug, vimentin, and β-catenin. Notably, Danu showed lower cytotoxicity toward normal breast epithelial MCF10A cells. These findings indicate that Danu promotes cellular apoptosis and autophagy but inhibits EMT in human breast cancer cells via modulation of p38 MAPK/Erk1/2/Akt/mTOR signaling pathways. Danu may represent a promising anticancer agent for breast cancer treatment. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and safety of Danu in breast cancer therapy.
Collapse
Affiliation(s)
- Jin-Ping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Qi-Lun Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shu-Ting Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Si-Yuan Pan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Shu-Ming He
- Department of Obstetrics and Gynecology, Xiaolan People's Hospital affiliated to Southern Medical University, Zhongshan, Guangdong, People's Republic of China
| | - Xiao-Wu Chen
- Department of General Surgery, The First People's Hospital of Shunde affiliated to Southern Medical University, Shunde, Foshan, Guangdong, People's Republic of China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
714
|
Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic control of autophagy. Cell 2015; 159:1263-76. [PMID: 25480292 DOI: 10.1016/j.cell.2014.11.006] [Citation(s) in RCA: 674] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 12/16/2022]
Abstract
Macroautophagy (herein referred to as autophagy) is an evolutionarily conserved mechanism of adaptation to adverse microenvironmental conditions, including limited nutrient supplies. Several sensors interacting with the autophagic machinery have evolved to detect fluctuations in key metabolic parameters. The signal transduction cascades operating downstream of these sensors are highly interconnected to control a spatially and chronologically coordinated autophagic response that maintains the health and function of individual cells while preserving organismal homeostasis. Here, we discuss the physiological regulation of autophagy by metabolic circuitries, as well as alterations of such control in disease.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France; Université Pierre et Marie Curie, 75005 Paris, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Federico Pietrocola
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France; Université Pierre et Marie Curie, 75005 Paris, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; Université Paris Sud, 94805 Villejuif, France
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75690, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France; Université Pierre et Marie Curie, 75005 Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France.
| |
Collapse
|
715
|
Candéias SM, Testard I. The many interactions between the innate immune system and the response to radiation. Cancer Lett 2015; 368:173-8. [PMID: 25681669 DOI: 10.1016/j.canlet.2015.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 11/15/2022]
Abstract
The role of the immune system in the protection of the organism against biological aggressions is long established and well-studied. A new role emerged more recently in the protection from - and the response to - physical trauma such as exposure to ionizing radiation. A pre-existing inflammation, induced by administration of an inflammatory cytokine or of a Toll-like receptor agonist, is indeed able to mitigate the toxic effects of acute radiation exposure. Conversely, it appears that the innate immune system can be activated during the course of the cellular response to radiation. Activation of different sensors and pattern recognition receptors by intra-cellular molecules such as HMGB1 or DNA released in the extra-cellular milieu or in the cytosol by irradiated cells induces the production of inflammatory and anti-viral cytokines. In addition, in human monocytes and macrophages, the expression of inflammatory cytokine genes can be directly induced by p53- and ATM-dependent mechanisms. This last finding establishes a direct link between radiation-induced DNA damage response and radiation-induced inflammation.
Collapse
Affiliation(s)
- Serge M Candéias
- iRTSV-LCBM, CEA, Grenoble F-38000, France; IRTSV-LCBM, CNRS, Grenoble F-38000, France; iRTSV-LCBM, Univ. Grenoble Alpes, Grenoble F-38000, France.
| | - Isabelle Testard
- iRTSV-LCBM, CEA, Grenoble F-38000, France; IRTSV-LCBM, CNRS, Grenoble F-38000, France; iRTSV-LCBM, Univ. Grenoble Alpes, Grenoble F-38000, France
| |
Collapse
|
716
|
Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene 2015; 34:5105-13. [PMID: 25619832 DOI: 10.1038/onc.2014.458] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/16/2022]
Abstract
Autophagy is a tightly-regulated catabolic process of cellular self-digestion by which cellular components are targeted to lysosomes for their degradation. Key functions of autophagy are to provide energy and metabolic precursors under conditions of starvation and to alleviate stress by removal of damaged proteins and organelles, which are deleterious for cell survival. Therefore, autophagy appears to serve as a pro-survival stress response in most settings. However, the role of autophagy in modulating cell death is highly dependent on the cellular context and its extent. There is an increasing evidence for cell death by autophagy, in particular in developmental cell death in lower organisms and in autophagic cancer cell death induced by novel cancer drugs. The death-promoting and -executing mechanisms involved in the different paradigms of autophagic cell death (ACD) are very diverse and complex, but a draft scenario of the key molecular targets involved in ACD is beginning to emerge. This review provides an up-to-date and comprehensive report on the molecular mechanisms of drug-induced autophagy-dependent cell death and highlights recent key findings in this exciting field of research.
Collapse
|
717
|
USP11-dependent selective cIAP2 deubiquitylation and stabilization determine sensitivity to Smac mimetics. Cell Death Differ 2015; 22:1463-76. [PMID: 25613375 DOI: 10.1038/cdd.2014.234] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022] Open
Abstract
Given their crucial role in apoptosis suppression, inhibitor of apoptosis proteins (IAPs) have recently become attractive targets for cancer therapy. Here, we report that cellular IAP2 (cIAP2) is specifically stabilized in several cancer cell lines, leading to resistance to Smac mimetics, such as BV6 and birinapant. In particular, our results showed that cIAP2 depletion, but not cIAP1 depletion, sensitized cancer cells to Smac mimetic-induced apoptosis. Ubiquitin-specific protease 11 (USP11) is a deubiquitylase that directly stabilizes cIAP2. USP11 overexpression is frequently found in colorectal cancer and melanoma and is correlated with poor survival. In our study, cancer cell lines expressing high levels of USP11 exhibited strong resistance to Smac mimetic-induced cIAP2 degradation. Furthermore, USP11 downregulation sensitized these cells to apoptosis induced by TRAIL and BV6 and suppressed tumor growth in a xenograft model. Finally, the TNFα/JNK pathway induced USP11 expression and maintained cIAP2 stability, suggesting an alternative TNFα-dependent cell survival pathway. Collectively, our data suggest that USP11-stabilized cIAP2 may serve as a barrier against IAP-targeted clinical approaches.
Collapse
|
718
|
Niso-Santano M, Malik SA, Pietrocola F, Bravo-San Pedro JM, Mariño G, Cianfanelli V, Ben-Younès A, Troncoso R, Markaki M, Sica V, Izzo V, Chaba K, Bauvy C, Dupont N, Kepp O, Rockenfeller P, Wolinski H, Madeo F, Lavandero S, Codogno P, Harper F, Pierron G, Tavernarakis N, Cecconi F, Maiuri MC, Galluzzi L, Kroemer G. Unsaturated fatty acids induce non-canonical autophagy. EMBO J 2015; 34:1025-41. [PMID: 25586377 DOI: 10.15252/embj.201489363] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022] Open
Abstract
To obtain mechanistic insights into the cross talk between lipolysis and autophagy, two key metabolic responses to starvation, we screened the autophagy-inducing potential of a panel of fatty acids in human cancer cells. Both saturated and unsaturated fatty acids such as palmitate and oleate, respectively, triggered autophagy, but the underlying molecular mechanisms differed. Oleate, but not palmitate, stimulated an autophagic response that required an intact Golgi apparatus. Conversely, autophagy triggered by palmitate, but not oleate, required AMPK, PKR and JNK1 and involved the activation of the BECN1/PIK3C3 lipid kinase complex. Accordingly, the downregulation of BECN1 and PIK3C3 abolished palmitate-induced, but not oleate-induced, autophagy in human cancer cells. Moreover, Becn1(+/-) mice as well as yeast cells and nematodes lacking the ortholog of human BECN1 mounted an autophagic response to oleate, but not palmitate. Thus, unsaturated fatty acids induce a non-canonical, phylogenetically conserved, autophagic response that in mammalian cells relies on the Golgi apparatus.
Collapse
Affiliation(s)
- Mireia Niso-Santano
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Gustave Roussy Comprehensive Cancer Center, Villejuif, France INSERM, U1138, Paris, France
| | - Shoaib Ahmad Malik
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Gustave Roussy Comprehensive Cancer Center, Villejuif, France INSERM, U1138, Paris, France Government College University, Faisalabad, Pakistan
| | - Federico Pietrocola
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Gustave Roussy Comprehensive Cancer Center, Villejuif, France INSERM, U1138, Paris, France Université Paris Sud/Paris 11, Le Kremlin Bicêtre, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Gustave Roussy Comprehensive Cancer Center, Villejuif, France INSERM, U1138, Paris, France
| | - Guillermo Mariño
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Gustave Roussy Comprehensive Cancer Center, Villejuif, France INSERM, U1138, Paris, France
| | - Valentina Cianfanelli
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Amena Ben-Younès
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Gustave Roussy Comprehensive Cancer Center, Villejuif, France INSERM, U1138, Paris, France
| | - Rodrigo Troncoso
- Advanced Center for Chronic Disease (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences/Faculty of Medicine, University of Chile, Santiago, Chile Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile Faculty of Medicine, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Valentina Sica
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Gustave Roussy Comprehensive Cancer Center, Villejuif, France INSERM, U1138, Paris, France Université Paris Sud/Paris 11, Le Kremlin Bicêtre, France
| | - Valentina Izzo
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Gustave Roussy Comprehensive Cancer Center, Villejuif, France INSERM, U1138, Paris, France
| | - Kariman Chaba
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal Bauvy
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France INSERM, U1151, Paris, France Institut Necker Enfants-Malades, Paris, France
| | - Nicolas Dupont
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France INSERM, U1151, Paris, France Institut Necker Enfants-Malades, Paris, France
| | - Oliver Kepp
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM, U1138, Paris, France Cell Biology & Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria BioTechMed Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria BioTechMed Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria BioTechMed Graz, Graz, Austria
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences/Faculty of Medicine, University of Chile, Santiago, Chile Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile Faculty of Medicine, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patrice Codogno
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France INSERM, U1151, Paris, France Institut Necker Enfants-Malades, Paris, France
| | - Francis Harper
- Gustave Roussy Comprehensive Cancer Center, Villejuif, France CNRS, UMR8122, Villejuif, France
| | - Gérard Pierron
- Gustave Roussy Comprehensive Cancer Center, Villejuif, France CNRS, UMR8122, Villejuif, France
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Francesco Cecconi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Chiara Maiuri
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Gustave Roussy Comprehensive Cancer Center, Villejuif, France INSERM, U1138, Paris, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France Gustave Roussy Comprehensive Cancer Center, Villejuif, France INSERM, U1138, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM, U1138, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France Cell Biology & Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
719
|
Sureshbabu A, Ryter SW, Choi ME. Oxidative stress and autophagy: crucial modulators of kidney injury. Redox Biol 2015; 4:208-14. [PMID: 25613291 PMCID: PMC4803795 DOI: 10.1016/j.redox.2015.01.001] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 12/31/2014] [Accepted: 01/01/2015] [Indexed: 12/21/2022] Open
Abstract
Both acute kidney injury (AKI) and chronic kidney disease (CKD) that lead to diminished kidney function are interdependent risk factors for increased mortality. If untreated over time, end stage renal disease (ESRD) is an inevitable outcome. Acute and chronic kidney diseases occur partly due to imbalance between the molecular mechanisms that govern oxidative stress, inflammation, autophagy and cell death. Oxidative stress refers to the cumulative effects of highly reactive oxidizing molecules that cause cellular damage. Autophagy removes damaged organelles, protein aggregates and pathogens by recruiting these substrates into double membrane vesicles called autophagosomes which subsequently fuse with lysosomes. Mounting evidence suggests that both oxidative stress and autophagy are significantly involved in kidney health and disease. However, very little is known about the signaling processes that link them. This review is focused on understanding the role of oxidative stress and autophagy in kidney diseases. In this review, we also discuss the potential relationships between oxidative stress and autophagy that may enable the development of better therapeutic intervention to halt the progression of kidney disease and promote its repair and resolution. The molecular mechanisms underlying the regulation of oxidative stress responses and autophagy may exhibit considerable cross-talk. The autophagy pathway may be regulated in the context of kidney diseases. Failure or disruption of the autophagy pathway may contribute to the pathogenesis of kidney diseases. Targeting the autophagy pathway may show considerable therapeutic potential in the treatment and management of kidney disorders.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Mary E Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
720
|
Aouacheria A. [From dualism to multiplicity: seeing BCL-2 family proteins and cell death with new eyes]. Biol Aujourdhui 2015; 209:331-55. [PMID: 27021052 DOI: 10.1051/jbio/2016003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Indexed: 11/15/2022]
Abstract
The concept of cell death has many links to the concept of death itself, defined as the opposite of life. Achievements obtained through research on apoptosis have apparently allowed us to transcend this Manichean view. Death is no longer outside, but rather inside living systems, as a constitutive force at work within the living matter. Whereas the death of cells can be positive and breed "creation" (e.g. during morphogenesis), its dysregulation can also cause or contribute to fatal diseases including cancer. It is tempting to apply this biological discourse to illuminate the relations between life and death, taken in general terms, but does this generalization actually hold? Is this discourse not essentially a metaphor? If cell death is considered as a vital aspect of various biological processes, then are we not faced with some vitalistic conception of death? Are there one or more meanings to the word "death"? Does the power to self-destruct act in opposition to other key features of living entities, or rather in juxtaposition to them? In this article, we first describe how the field of cell death has been developed on the basis of perceived and built dichotomies, mirroring the original opposition between life and death. We detail the limitations of the current paradigm of apoptosis regulation by BCL-2 family proteins, which nicely illustrate the problem of binary thinking in biology. Last, we try to show a way out of this dualistic matrix, by drawing on the notions of multiplicity, complexity, diversity, evolution and contingency.
Collapse
Affiliation(s)
- Abdel Aouacheria
- LBMC - Laboratoire de Biologie Moléculaire de la Cellule, École Normale Supérieure de Lyon, UMR 5239, CNRS, Université Lyon 1, HCL, 46 Allée d'Italie, 69364 Lyon Cedex 07, France - ISEM - Institut des Sciences de l'Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
721
|
Laloi C, Havaux M. Key players of singlet oxygen-induced cell death in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:39. [PMID: 25699067 PMCID: PMC4316694 DOI: 10.3389/fpls.2015.00039] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/15/2015] [Indexed: 05/03/2023]
Abstract
The production of reactive oxygen species (ROS) is an unavoidable consequence of oxygenic photosynthesis. Singlet oxygen ((1)O2) is a highly reactive species to which has been attributed a major destructive role during the execution of ROS-induced cell death in photosynthetic tissues exposed to excess light. The study of the specific biological activity of (1)O2 in plants has been hindered by its high reactivity and short lifetime, the concurrent production of other ROS under photooxidative stress, and limited in vivo detection methods. However, during the last 15 years, the isolation and characterization of two (1)O2-overproducing mutants in Arabidopsis thaliana, flu and ch1, has allowed the identification of genetically controlled (1)O2 cell death pathways and a (1)O2 acclimation pathway that are triggered at sub-cytotoxic concentrations of (1)O2. The study of flu has revealed the control of cell death by the plastid proteins EXECUTER (EX)1 and EX2. In ch1, oxidized derivatives of β-carotene, such as β-cyclocitral and dihydroactinidiolide, have been identified as important upstream messengers in the (1)O2 signaling pathway that leads to stress acclimation. In both the flu and ch1 mutants, phytohormones act as important promoters or inhibitors of cell death. In particular, jasmonate has emerged as a key player in the decision between acclimation and cell death in response to (1)O2. Although the flu and ch1 mutants show many similarities, especially regarding their gene expression profiles, key differences, such as EXECUTER-independent cell death in ch1, have also been observed and will need further investigation to be fully understood.
Collapse
Affiliation(s)
- Christophe Laloi
- Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies AlternativesMarseille, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseille, France
- Aix Marseille UniversitéMarseille, France
- *Correspondence: Christophe Laloi, Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux nergies Alternatives, F -13009 Marseille, France e-mail: ; Michel Havaux, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, F-13108 Saint-Paul-lez-Durance, France e-mail:
| | - Michel Havaux
- CNRS, UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseille, France
- Aix Marseille UniversitéMarseille, France
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies AlternativesSaint-Paul-lez-Durance, France
- *Correspondence: Christophe Laloi, Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux nergies Alternatives, F -13009 Marseille, France e-mail: ; Michel Havaux, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, F-13108 Saint-Paul-lez-Durance, France e-mail:
| |
Collapse
|
722
|
|
723
|
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fučíková J, Galon J, Tartour E, Spisek R, Dhodapkar MV, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424. [PMID: 25941593 DOI: 10.4161/21624011.2014.963424] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics.
Collapse
Key Words
- DC, dendritic cell
- DC-based vaccination
- FDA, Food and Drug Administration
- IFN, interferon
- MRC1, mannose receptor, C type 1
- MUC1, mucin 1
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- Toll-like receptor agonists
- Treg, regulatory T cell
- WT1, Wilms tumor 1
- antigen cross-presentation
- autophagy
- iDC, immature DC
- immunogenic cell death
- mDC, mature DC
- pDC, plasmacytoid DC
- regulatory T cells
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris-Sud/Paris XI ; Orsay, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | | | - Isabelle Cremer
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Wolf Hervé Fridman
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Jitka Fučíková
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM , U1138; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; INSERM , U970; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France
| | - Radek Spisek
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Madhav V Dhodapkar
- Department of Medicine; Immunobiology and Yale Cancer Center; Yale University ; New Haven, CT USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015, CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| |
Collapse
|
724
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 933] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
725
|
Singer P, Cohen J. Nutrition in the ICU: proof of the pudding is in the tasting. Intensive Care Med 2014; 41:154-6. [PMID: 25432421 DOI: 10.1007/s00134-014-3537-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Pierre Singer
- Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, 49100, Petah Tikva, Israel,
| | | |
Collapse
|
726
|
Pflaum J, Schlosser S, Müller M. p53 Family and Cellular Stress Responses in Cancer. Front Oncol 2014; 4:285. [PMID: 25374842 PMCID: PMC4204435 DOI: 10.3389/fonc.2014.00285] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022] Open
Abstract
p53 is an important tumor suppressor gene, which is stimulated by cellular stress like ionizing radiation, hypoxia, carcinogens, and oxidative stress. Upon activation, p53 leads to cell-cycle arrest and promotes DNA repair or induces apoptosis via several pathways. p63 and p73 are structural homologs of p53 that can act similarly to the protein and also hold functions distinct from p53. Today more than 40 different isoforms of the p53 family members are known. They result from transcription via different promoters and alternative splicing. Some isoforms have carcinogenic properties and mediate resistance to chemotherapy. Therefore, expression patterns of the p53 family genes can offer prognostic information in several malignant tumors. Furthermore, the p53 family constitutes a potential target for cancer therapy. Small molecules (e.g., Nutlins, RITA, PRIMA-1, and MIRA-1 among others) have been objects of intense research interest in recent years. They restore pro-apoptotic wild-type p53 function and were shown to break chemotherapeutic resistance. Due to p53 family interactions small molecules also influence p63 and p73 activity. Thus, the members of the p53 family are key players in the cellular stress response in cancer and are expected to grow in importance as therapeutic targets.
Collapse
Affiliation(s)
- Johanna Pflaum
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| | - Sophie Schlosser
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
727
|
Autophagy as a pro-death pathway. Immunol Cell Biol 2014; 93:35-42. [PMID: 25331550 DOI: 10.1038/icb.2014.85] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022]
Abstract
The evolutionarily conserved catabolic process of autophagy involves the degradation of cytoplasmic components through lysosomal enzymes. Basal levels of autophagy maintain cellular homeostasis and under stress conditions high levels of autophagy are induced. It is often under such stress conditions that high levels of autophagy and cell death have been observed, leading to the idea that autophagy may act as an executioner of cell death. However the notion of autophagy as a cell death mechanism has been controversial and remains mechanistically undefined. There is now growing evidence that in specific contexts autophagy can indeed facilitate cell death. The pro-death role of autophagy is however complicated due to the extensive cross-talk between different signalling pathways. This review summarises the examples of where autophagy acts as a means of cell death and discusses the association of autophagy with the different cell death pathways.
Collapse
|