851
|
Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S, Ragno R. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 2005; 25:261-309. [PMID: 15717297 DOI: 10.1002/med.20024] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reversible histone acetylation and deacetylation are epigenetic phenomena that play critical roles in the modulation of chromatin topology and the regulation of gene expression. Aberrant transcription due to altered expression or mutation of genes that encode histone acetyltransferase (HAT) or histone deacetylase (HDAC) enzymes or their binding partners, has been clearly linked to carcinogenesis. The histone deacetylase inhibitors are a new promising class of anticancer agents (some of which in clinical trials), that inhibit the proliferation of tumor cells in culture and in vivo by inducing cell-cycle arrest, terminal differentiation, and/or apoptosis. This report reviews the chemistry and the biology of HDACs and HDAC inhibitors, laying particular emphasis on agents actually in clinical trials for cancer therapy and on new potential anticancer lead compounds more selective and less toxic.
Collapse
Affiliation(s)
- Antonello Mai
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Dipartimento di Studi Farmaceutici, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
852
|
Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005; 102:10604-9. [PMID: 16009939 PMCID: PMC1174919 DOI: 10.1073/pnas.0500398102] [Citation(s) in RCA: 2217] [Impact Index Per Article: 110.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monozygous twins share a common genotype. However, most monozygotic twin pairs are not identical; several types of phenotypic discordance may be observed, such as differences in susceptibilities to disease and a wide range of anthropomorphic features. There are several possible explanations for these observations, but one is the existence of epigenetic differences. To address this issue, we examined the global and locus-specific differences in DNA methylation and histone acetylation of a large cohort of monozygotic twins. We found that, although twins are epigenetically indistinguishable during the early years of life, older monozygous twins exhibited remarkable differences in their overall content and genomic distribution of 5-methylcytosine DNA and histone acetylation, affecting their gene-expression portrait. These findings indicate how an appreciation of epigenetics is missing from our understanding of how different phenotypes can be originated from the same genotype.
Collapse
Affiliation(s)
- Mario F Fraga
- Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
853
|
Kato T, Iwamoto K, Kakiuchi C, Kuratomi G, Okazaki Y. Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Mol Psychiatry 2005; 10:622-30. [PMID: 15838537 DOI: 10.1038/sj.mp.4001662] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Classical twin research focused on differentiating genetic factors from environmental factors by comparing the concordance rate between monozygotic (MZ) and dizygotic twins. On the other hand, recent twin research tries to identify genetic or epigenetic differences between MZ twins discordant for mental disorders. There are a number of reports of MZ twins discordant for genetic disorders caused by genetic or epigenetic differences of known pathogenic genes. In the case of mental disorder research, for which the causative gene has not been established yet, we are trying to identify the 'pathogenic gene' by comprehensive analysis of genetic or epigenetic difference between discordant MZ twins. To date, no compelling evidence suggesting such difference between MZ twins has been reported. However, if the genetic or epigenetic difference responsible for the discordant phenotype is found, it will have impact on the biology of mental disorder, in which few conclusive molecular genetic evidences have been obtained.
Collapse
Affiliation(s)
- T Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan.
| | | | | | | | | |
Collapse
|
854
|
Luedi PP, Hartemink AJ, Jirtle RL. Genome-wide prediction of imprinted murine genes. Genome Res 2005; 15:875-84. [PMID: 15930497 PMCID: PMC1142478 DOI: 10.1101/gr.3303505] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 03/22/2005] [Indexed: 01/06/2023]
Abstract
Imprinted genes are epigenetically modified genes whose expression is determined according to their parent of origin. They are involved in embryonic development, and imprinting dysregulation is linked to cancer, obesity, diabetes, and behavioral disorders such as autism and bipolar disease. Herein, we train a statistical model based on DNA sequence characteristics that not only identifies potentially imprinted genes, but also predicts the parental allele from which they are expressed. Of 23,788 annotated autosomal mouse genes, our model identifies 600 (2.5%) to be potentially imprinted, 64% of which are predicted to exhibit maternal expression. These predictions allowed for the identification of putative candidate genes for complex conditions where parent-of-origin effects are involved, including Alzheimer disease, autism, bipolar disorder, diabetes, male sexual orientation, obesity, and schizophrenia. We observe that the number, type, and relative orientation of repeated elements flanking a gene are particularly important in predicting whether a gene is imprinted.
Collapse
Affiliation(s)
- Philippe P Luedi
- Center for Bioinformatics and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
855
|
Blewitt ME, Vickaryous NK, Hemley SJ, Ashe A, Bruxner TJ, Preis JI, Arkell R, Whitelaw E. An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc Natl Acad Sci U S A 2005; 102:7629-34. [PMID: 15890782 PMCID: PMC1140414 DOI: 10.1073/pnas.0409375102] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a sensitized screen to identify genes involved in gene silencing, using random N-ethyl-N-nitrosourea mutagenesis on mice carrying a variegating GFP transgene. The dominant screen has produced six mutant lines, including both suppressors and enhancers of variegation. All are semidominant and five of the six are homozygous embryonic lethal. In one case, the homozygous lethality depends on sex: homozygous females die at midgestation and display abnormal DNA methylation of the X chromosome, whereas homozygous males are viable. Linkage analysis reveals that the mutations map to unique chromosomal locations. We have studied the effect of five of the mutations on expression of an endogenous allele known to be sensitive to epigenetic state, agouti viable yellow. In all cases, there is an effect on penetrance, and in most cases, parent of origin and sex-specific effects are detected. This screen has identified genes that are involved in epigenetic reprogramming of the genome, and the behavior of the mutant lines suggests a common mechanism between X inactivation and transgene and retrotransposon silencing. Our findings raise the possibility that the presence or absence of the X chromosome in mammals affects the establishment of the epigenetic state at autosomal loci by acting as a sink for proteins involved in gene silencing. The study demonstrates the power of sensitized screens in the mouse not only for the discovery of novel genes involved in a particular process but also for the elucidation of the biology of that process.
Collapse
Affiliation(s)
- Marnie E Blewitt
- School of Molecular and Microbial Biosciences, University of Sydney, Butlin Avenue, New South Wales 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
856
|
Abstract
Closely related RNA silencing phenomena such as posttranscriptional and transcriptional gene silencing (PTGS and TGS), quelling and RNA interference (RNAi) represent different forms of a conserved ancestral process. The biological relevance of these RNA-directed mechanisms of silencing in gene regulation, genome defence and chromosomal structure is rapidly being unravelled. Here, we review the recent developments in the field of RNA silencing in relation to other epigenetic phenomena and discuss the significance of this process and its targets in the regulation of modern eukaryotic genomes.
Collapse
Affiliation(s)
- Ricardo Almeida
- Wellcome Trust Centre for Cell Biology, 6.34 Swann Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
857
|
Taruscio D, Mantovani A. Factors regulating endogenous retroviral sequences in human and mouse. Cytogenet Genome Res 2005; 105:351-62. [PMID: 15237223 DOI: 10.1159/000078208] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 12/23/2003] [Indexed: 11/19/2022] Open
Abstract
Endogenous retroviruses (ERVs) are stably integrated in the genome of vertebrates and inherited as Mendelian genes. The several human ERV (HERV) families and related elements represent up to 5-8% of the DNA of our species. ERVs may be involved in the regulation of adjacent genomic loci, especially promoting the tissue-specific expression of genes; some HERVs may have functional roles, e.g., coding for the placental fusogenic protein, syncytin. This paper reviews the growing evidence about factors that may modulate ERVs, including: cell and tissue types (with special attention to placenta and germ cells), processes related to differentiation and aging, cytokines, agents that disrupt cell functions (e.g., DNA hypomethylating agents) and steroids. Special attention is given to HERVs, due to their possible involvement in autoimmunity and reproduction, as well as altered expression in some cancer types; moreover, different HERV families may deserve specific attention, due to remarkable differences concerning, e.g., expression in tissues. A comparison with factors interacting with murine ERV-related sequences indicates that the mouse may be a useful model for studying some patterns of HERV regulation. Overall, the available evidence identifies the diverse, potential interactions with endogenous or exogenous factors as a promising field for investigating the roles of ERVs in physiology and disease.
Collapse
Affiliation(s)
- D Taruscio
- National Centre on Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
858
|
Riddle NC, Richards EJ. Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:524-32. [PMID: 15686517 DOI: 10.1111/j.1365-313x.2004.02317.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We investigated the fidelity of epigenetic inheritance in crosses between three accessions of the flowering plant Arabidopsis thaliana (Canary Islands, Cape Verde Islands, and Columbia). Specifically, we examined the cytosine methylation content of the ribosomal RNA genes at the two nucleolus organizer regions (NOR2 and NOR4) in F1 and F2 hybrid individuals derived from reciprocal crosses between the high NOR methylation strain, Columbia, and the two other accessions, both of which have less NOR methylation. In crosses between the Columbia and Cape Verde Islands strains, the cytosine methylation content segregated as an additive Mendelian trait: the high NOR methylation state was tightly associated with the inheritance of the two Columbia-derived NOR loci. First-generation hybrid individuals between the Canary Islands and Columbia strains also showed a cytosine methylation content at the NORs intermediate between the parental values, consistent with the epigenetic inheritance of parental methylation patterns. Interestingly, mapping data from F2 individuals derived from a Canary Islands x Columbia cross revealed that NOR2 accounted for nearly all of the NOR methylation variation segregating in the population. NOR4 retains a significant effect on total NOR methylation content only through a complex epistatic interaction with NOR2. Our results indicate that the inheritance of differential cytosine methylation states at NOR loci can be modified by their genetic context, opening up the possibility of genetic dissection of epigenetic inheritance.
Collapse
Affiliation(s)
- Nicole C Riddle
- Department of Biology, Washington University, One Brookings Drive, St Louis, MO 63130, USA
| | | |
Collapse
|
859
|
Wakamoto Y, Ramsden J, Yasuda K. Single-cell growth and division dynamics showing epigenetic correlations. Analyst 2005; 130:311-7. [PMID: 15724159 DOI: 10.1039/b409860a] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of variation and subsequent inheritance of the emergent characteristics in a clonal population of bacteria is considered as evidence for epigenetic processes in the cell. We report here the results of experiments in which we quantitatively examined variations in single Escherichia coli cells with an identical genetic endowment in order to establish whether certain characteristics of single cells were inherited by their descendants maintained in a uniform environment. Significantly large variations of interdivision time, initial length, and final length were observed from generation to generation. Comparing the generations shows that interdivision time had no correlation with that of the consecutive generations, whereas those of initial length and final length were positively correlated with those of neighbouring generations.
Collapse
Affiliation(s)
- Yuichi Wakamoto
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | |
Collapse
|
860
|
Ronai D, Berru M, Shulman MJ. The epigenetic stability of the locus control region-deficient IgH locus in mouse hybridoma cells is a clonally varying, heritable feature. Genetics 2005; 167:411-21. [PMID: 15166165 PMCID: PMC1470874 DOI: 10.1534/genetics.167.1.411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cis-acting elements such as enhancers and locus control regions (LCRs) prevent silencing of gene expression. We have shown previously that targeted deletion of an LCR in the immunoglobulin heavy-chain (IgH) locus creates conditions in which the immunoglobulin micro heavy chain gene can exist in either of two epigenetically inherited states, one in which micro expression is positive and one in which micro expression is negative, and that the positive and negative states are maintained by a cis-acting mechanism. As described here, the stability of these states, i.e., the propensity of a cell to switch from one state to the other, varied among subclones and was an inherited, clonal feature. A similar variation in stability was seen for IgH loci that both lacked and retained the matrix attachment regions associated with the LCR. Our analysis of cell hybrids formed by fusing cells in which the micro expression had different stabilities indicated that stability was also determined by a cis-acting feature of the IgH locus. Our results thus show that a single-copy gene in the same chromosomal location and in the presence of the same transcription factors can exist in many different states of expression.
Collapse
Affiliation(s)
- Diana Ronai
- Immunology Department, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | | | |
Collapse
|
861
|
Lin Q, Chen Q, Lin L, Zhou J. The Promoter Targeting Sequence mediates epigenetically heritable transcription memory. Genes Dev 2005; 18:2639-51. [PMID: 15520283 PMCID: PMC525544 DOI: 10.1101/gad.1230004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Large gene complexes frequently use "specialized" DNA elements to ensure proper regulation of gene activities. The Promoter Targeting Sequence (PTS) from the Abdominal-B locus of the Drosophila Bithorax complex overcomes an insulator, and facilitates, yet restricts, distant enhancers to a single promoter. We found that this promoter-targeting activity is independent of an enhancer's tissue or temporal specificity, and can be remembered in all somatic cells in the absence of promoter activation. It requires an insulator for its establishment, but can be maintained by the PTS in the absence of an insulator. More importantly, the promoter-targeting activity can be remembered after the transgene is translocated to new chromosomal locations. These results suggest that promoter targeting is established independent of enhancer activity, and is maintained epigenetically throughout development and subsequent generations.
Collapse
Affiliation(s)
- Qing Lin
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
862
|
Hata K, Kusumi M, Yokomine T, Li E, Sasaki H. Meiotic and epigenetic aberrations inDnmt3L-deficient male germ cells. Mol Reprod Dev 2005; 73:116-22. [PMID: 16211598 DOI: 10.1002/mrd.20387] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The DNA methyltransferase-like protein Dnmt3L is necessary for the establishment of genomic imprints in oogenesis and for normal spermatogenesis (Bourc'his et al., 2001; Hata et al., 2002). Also, a paternally imprinted gene, H19, loses DNA methylation in Dnmt3L-/- spermatogonia (Bourc'his and Bestor, 2004; Kaneda et al., 2004). To determine the reason for the impaired spermatogenesis in the Dnmt3L-/- testes, we have carried out a series of histological and molecular studies. We show here that Dnmt3L-/- germ cells were arrested and died around the early meiotic stage. A microarray-based gene expression-profiling analysis revealed that various gonad-specific and/or sex-chromosome-linked genes were downregulated in the Dnmt3L-/- testes. In contrast, expression of retrovirus-like intracisternal A-particle (IAP) sequences was upregulated; consistent with this observation, a specific IAP copy showed complete loss of DNA methylation. These findings indicate that Dnmt3L regulates germ cell-specific gene expression and IAP suppression, which are critical for male germ cell proliferation and meiosis.
Collapse
Affiliation(s)
- Kenichiro Hata
- Department of Integrated Genetics, Division of Human Genetics, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan.
| | | | | | | | | |
Collapse
|
863
|
Han JS, Boeke JD. LINE-1 retrotransposons: Modulators of quantity and quality of mammalian gene expression? Bioessays 2005; 27:775-84. [PMID: 16015595 DOI: 10.1002/bies.20257] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
LINE-1 (L1) retrotransposons are replicating repetitive elements that, by mass, are the most-abundant sequences in the human genome. Over one-third of mammalian genomes are the result, directly or indirectly, of L1 retrotransposition. L1 encodes two proteins: ORF1, an RNA-binding protein, and ORF2, an endonuclease/reverse transcriptase. Both proteins are required for L1 mobilization. Apart from the obvious function of self-replication, it is not clear what other roles, if any, L1 plays within its host. The sheer magnitude of L1 sequences in our genome has fueled speculation that over evolutionary time L1 insertions may structurally modify endogenous genes and regulate gene expression. Here we provide a review of L1 replication and its potential functional consequences.
Collapse
Affiliation(s)
- Jeffrey S Han
- Department of Molecular Biology and Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
864
|
Bottardi S, Bourgoin V, Pierre-Charles N, Milot E. Onset and inheritance of abnormal epigenetic regulation in hematopoietic cells. Hum Mol Genet 2004; 14:493-502. [PMID: 15615768 DOI: 10.1093/hmg/ddi046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abnormal epigenetic regulation of gene expression contributes significantly to a variety of human pathologies including cancer. Deletion of hypersensitive site 2 (HS2) at the human beta-globin locus control region can lead to abnormal epigenetic regulation of globin genes in transgenic mice. Here, two HS2-deleted transgenic mouse lines were used as model to demonstrate that heritable alteration of chromatin organization at the human beta-globin locus in multipotent hematopoietic progenitors contributes to the abnormal expression of the beta-globin gene in mature erythroid cells. This alteration is characterized by specific patterns of histone covalent modifications that are inherited during erythropoiesis and, moreover, is plastic because it can be reverted by transient treatment with the histone deacetylase inhibitor Trichostatin A. Altogether, our results indicate that aberrant epigenetic regulation can be detected and modified before tissue-specific gene transcription, a finding which may lead to novel strategies for the prevention of chromatin-related pathologies.
Collapse
Affiliation(s)
- Stefania Bottardi
- Guy-Bernier Research Centre, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, 5415 Boulevard l'Assomption, Montreal, Quebec, Canada H1T 2M4
| | | | | | | |
Collapse
|
865
|
Abstract
Our increased knowledge of epigenetic reprogramming supports the idea that epigenetic marks are not always completely cleared between generations. Incomplete erasure at genes associated with a measurable phenotype can result in unusual patterns of inheritance from one generation to the next. It is also becoming clear that the establishment of epigenetic marks during development can be influenced by environmental factors. In combination, these two processes could provide a mechanism for a rapid form of adaptive evolution.
Collapse
Affiliation(s)
- Suyinn Chong
- School of Molecular and Microbial Biosciences, Biochemistry Building-G08, University of Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
866
|
Druker R, Bruxner TJ, Lehrbach NJ, Whitelaw E. Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucleic Acids Res 2004; 32:5800-8. [PMID: 15520464 PMCID: PMC528799 DOI: 10.1093/nar/gkh914] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here we report that transcriptional effects of the insertion of a retrotransposon can occur simultaneously both upstream and downstream of the insertion site. We have identified an intra-cisternal A particle (IAP) retrotransposon in intron 6 of a gene that we have named Cabp (CDK5 activator binding protein). The presence of the IAP is associated with an aberrant transcript initiating from a cryptic promoter in the IAP, reading out into the adjacent Cabp gene sequence. The expression of this transcript is highly variable among isogenic mice within the C57BL/6J strain and so Cabp(IAP) can be classified as a metastable epiallele. As expected, the presence or absence of the transcript correlates with differential DNA methylation of the 5' LTR of the IAP. More surprisingly, in mice where the retrotransposon is unmethylated and presumably transcriptionally active, we find a number of short Cabp transcripts which initiate at the normal 5' end of the gene but terminate prematurely, just 5' of the retrotransposon. This is the first report of a retrotransposon having both upstream and downstream effects on transcription at the site of insertion and it suggests that alternative polyadenylation may sometimes be caused by a downstream convergent transcription unit.
Collapse
Affiliation(s)
- Riki Druker
- School of Molecular and Microbial Biosciences, Biochemistry Building G08, University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
867
|
Abstract
Classic neo-Darwinian theory is predicated on the notion that all heritable phenotypic change is mediated by alterations of the DNA sequence in genomes. However, evidence is accumulating that stably heritable phenotypes can also have an epigenetic basis, lending support to the long-discarded notion of inheritance of acquired traits. As many of the examples of epigenetic inheritance are mediated by position effects, the possibility exists that chromosome rearrangements may be one of the driving forces behind evolutionary change by exerting position effect alterations in gene activity, an idea articulated by Richard Goldschmidt. The emerging evidence suggests that Goldschmidt's controversial hypothesis deserves a serious reevaluation.
Collapse
|
868
|
Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, Miyazaki T, Ogura C, Okazaki Y, Jinno Y. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 2004; 68:196-204. [PMID: 15180700 DOI: 10.1046/j.1529-8817.2004.00081.x] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The goal of the present study was to investigate inter-individual and age-dependent variation of global DNA methylation in human tissues. In this work, we examined 5-methyldeoxycytidine ((met)C) content by HPLC in human peripheral blood leukocytes obtained from 76 healthy individuals of ages varying from 4 to 94 years (yr), and 39 human placentas from various gestational stages. The HPLC analysis revealed a significant variation of (met)C across individuals and is consistent with the previous findings of age-dependent decrease of global methylation levels in human tissues. The age-dependent decrease of (met)C was relatively small, but statistically highly significant (p= 0.0002) in the aged group (65.9 +/- 8.9 [mean age +/- SD] yr; n = 22) in comparison to the young adult group (19.3 +/- 1.4 yr; n = 21). Males showed a subtle but statistically significant higher mean (met)C content than females. In contrast to the peripheral blood samples, DNA extracted from placentas exhibited gestational stage-dependent increase of methylation levels that appeared to inversely correlate with the expression levels of human endogenous retroviruses. These data may be helpful in further studies of DNA methylation, such as inheritance of epigenetic patterns, environment-induced changes, and involvement of epigenetic changes in disease.
Collapse
Affiliation(s)
- C Fuke
- Department of Legal Medicine, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
869
|
Fukata H, Mori C. Epigenetic alteration by the chemical substances, food and environmental factors. Reprod Med Biol 2004; 3:115-121. [PMID: 29699190 PMCID: PMC5904593 DOI: 10.1111/j.1447-0578.2004.00066.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Epigenetic alteration is one of the most important mechanisms for gene regulation; however, it is not changes in gene function with DNA sequence changes. Recently, epigenetics were studied in the wide ranging fields of research. In the present review, we introduce recent studies on epigenetic alteration, especially DNA methylation, by chemical exposure, food intake and environmental factors. In addition, we introduced our results on alteration of DNA methylation by transient exposure of neonatal mice to diethylstilbestrol. As these data suggest that chemical exposure, food intake and environmental factors are responsible for epigenetic alteration, we insist the necessity of the new risk assessment focusing on epigenetic alteration. (Reprod Med Biol 2004; 3: 115-121).
Collapse
Affiliation(s)
| | - Chisato Mori
- Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
870
|
Affiliation(s)
- Mark D Garfinkel
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | |
Collapse
|
871
|
Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004; 20:63-8. [PMID: 14698016 DOI: 10.1016/j.nut.2003.09.011] [Citation(s) in RCA: 513] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Robert A Waterland
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
872
|
Sugino H, Toyama T, Taguchi Y, Esumi S, Miyazaki M, Yagi T. Negative and positive effects of an IAP-LTR on nearby Pcdaα gene expression in the central nervous system and neuroblastoma cell lines. Gene 2004; 337:91-103. [PMID: 15276205 DOI: 10.1016/j.gene.2004.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 03/25/2004] [Accepted: 04/13/2004] [Indexed: 11/19/2022]
Abstract
Intracisternal A-particles (IAPs) are defective retrovirions encoded by members of a large family of endogenous proviral elements in the murine genome. An intact IAP element was found in the protocadherin alpha (Pcdhalpha) gene cluster of five laboratory mouse strains. However, IAP insertion was not detected in three wild mouse strains we investigated. This IAP insertion caused the disruption of one variable exon of laboratory mouse and down-regulated expression of the Pcdhalpha v8 exon, which is located just downstream of the IAP in the brain following the methylation of 5' regulatory region of Pcdhalpha v8. In contrast, the Pcdhalpha v8 exon was highly expressed in mouse neuroblastoma cell lines. This suggested that the IAP insertion activates the expression of the nearby Pcdhalpha v8 exon in these cell lines. In fact, the Pcdhalpha v8 exon expression was driven by the IAP-long terminal repeat (LTR) following the de-methylation of 5' regulatory region of Pcdhalpha v8. To investigate the promoter activity of the IAP, we constructed an IAP-LTR-ECFP reporter gene and introduced it into neuroblastoma, melanoma, lymphoma, and plasmacytoma cell lines. Interestingly, ECFP-positive cells were observed only in the neuroblastoma cell lines. Moreover, there were no differences in the promoter activities of the IAP-LTR whether it was in the sense or complimentary orientation. Thus, this IAP-LTR has negative and positive regulation on near by gene expression in the brain and neuroblastoma cell lines.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cadherins/genetics
- Cell Line, Tumor
- Central Nervous System/metabolism
- Gene Expression Profiling
- Gene Expression Regulation
- Genes/genetics
- Genes, Intracisternal A-Particle/genetics
- Green Fluorescent Proteins
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred Strains
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutagenesis, Insertional
- Neuroblastoma/genetics
- Neuroblastoma/pathology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retroelements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Species Specificity
- Terminal Repeat Sequences/genetics
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Hidehiko Sugino
- KOKORO Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
873
|
Chong S, Whitelaw E. Murine metastable epialleles and transgenerational epigenetic inheritance. Cytogenet Genome Res 2004. [DOI: 10.1159/000079513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
874
|
Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol 2004; 288:R34-8. [PMID: 15178540 DOI: 10.1152/ajpregu.00106.2004] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidemiological studies linking low birth weight and subsequent cardiometabolic disease have given rise to the hypothesis that events in fetal life permanently program subsequent cardiovascular risk. The effects of fetal programming may not be limited to the first-generation offspring. We have explored intergenerational effects in the dexamethasone-programmed rat, a model in which fetal exposure to excess glucocorticoid results in low birth weight with subsequent adult hyperinsulinemia and hyperglycemia underpinned by increased activity of the key hepatic gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that the male offspring of female rats that had been exposed prenatally to dexamethasone, but were not manipulated in their own pregnancy, also had reduced birth weight (5.66 +/- 0.06 vs. 6.12 +/- 0.06 g, P < 0.001), glucose intolerance, and elevated hepatic PEPCK activity (5.7 +/- 0.6 vs. 3.3 +/- 0.2 nmol.min(-1).mg protein(-1), P < 0.001). These effects resolved in a third generation. Similar intergenerational programming was observed in offspring of male rats exposed prenatally to dexamethasone mated with control females. The persistence of such programming effects through several generations, transmitted by either maternal or paternal lines, indicates the potential importance of epigenetic factors in the intergenerational inheritance of the "programming phenotype" and provides a basis for the inherited association between low birth weight and cardiovascular risk factors.
Collapse
Affiliation(s)
- Amanda J Drake
- Endocrinology Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Molecular Medicine Center, Western General Hospital, United Kingdom.
| | | | | |
Collapse
|
875
|
Abstract
Maternal alcohol use during pregnancy is associated with a wide range of adverse outcomes for the child. Many women who drink during pregnancy also have male partners who abuse alcohol. Existing data on paternal effects of alcohol abuse during the preconceptual period and at the time of conception are reviewed. Epidemiological data offer some support for a paternal influence on birth weight, congenital heart defects, and some evidence of mild cognitive impairments. Animal data have demonstrated decreased litter size, increased prevalence of low birth weight fetuses and mixed data on risk of malformations. Increased susceptibility to Pseudomonas bacterial infection has been reported. Cognitive and behavioral findings are the most robust effects. These include learning and memory deficits, hyperactivity, and poor stress tolerance. Multiple causal mechanisms for a paternal effect have been suggested, but none seems satisfactory to explain all findings. Further research is needed on paternal effects in animals and human populations. The results of this research may influence prevention activities.
Collapse
Affiliation(s)
- Ernest Abel
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
876
|
Suter CM, Martin DIK, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 2004; 36:497-501. [PMID: 15064764 DOI: 10.1038/ng1342] [Citation(s) in RCA: 323] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 03/11/2004] [Indexed: 12/12/2022]
Abstract
Epigenetic silencing can mimic genetic mutation by abolishing expression of a gene. We hypothesized that an epimutation could occur in any gene as a germline event that predisposes to disease and looked for examples in tumor suppressor genes in individuals with cancer. Here we report two individuals with soma-wide, allele-specific and mosaic hypermethylation of the DNA mismatch repair gene MLH1. Both individuals lack evidence of genetic mutation in any mismatch repair gene but have had multiple primary tumors that show mismatch repair deficiency, and both meet clinical criteria for hereditary nonpolyposis colorectal cancer. The epimutation was also present in spermatozoa of one of the individuals, indicating a germline defect and the potential for transmission to offspring. Germline epimutation provides a mechanism for phenocopying of genetic disease. The mosaicism and nonmendelian inheritance that are characteristic of epigenetic states could produce patterns of disease risk that resemble those of polygenic or complex traits.
Collapse
Affiliation(s)
- Catherine M Suter
- Department of Medical Oncology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
877
|
Ball M, McLellan A, Collins B, Coadwell J, Stewart F, Moore T. An abundant placental transcript containing an IAP-LTR is allelic to mouse pregnancy-specific glycoprotein 23 (Psg23): cloning and genetic analysis. Gene 2004; 325:103-13. [PMID: 14697515 DOI: 10.1016/j.gene.2003.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several families of endogenous retroviruses (ERVs) are expressed in mammalian placental tissues, and are implicated in aspects of placental development and function. We characterized the structure of abundant ERV-related transcripts in mouse placenta. In addition to the 7 kb full-length type I and 5 kb type I deleted intracisternal A-particle (IAP) transcripts, we identified and cloned an abundant 2 kb transcript encoding a novel member of the pregnancy-specific glycoprotein (Psg) gene family, which contains an IAP long terminal repeat (LTR) in the 3' untranslated region (UTR). The polyadenylation signal for the transcript is provided by the inserted LTR sequence. This sequence is allelic to Psg23 and is therefore denoted as Psg23(LTR). The transcript encodes a protein of 471 amino acids and has a domain organisation similar to previously described Psg proteins. Modelling of the protein N-domain produced a structure in good agreement with an existing crystalline structure for mouse sCEACAM1a. The LTR insertion is widely distributed among inbred mouse strains but is not found in 129/sv, CBA/2, or in wild mice. Cloning of the genomic region downstream of the LTR insertion site from the C57Bl/6J strain indicates that the insertion consists of a solo LTR without additional IAP sequence, and identified the original Psg23 polyadenylation signal sequence downstream of the insertion site. Psg23(LTR) was mapped to proximal chromosome 7 using the European collaborative interspecific mouse backcross (EUCIB) panel, and to yeast artificial chromosome (YAC) E072, which contains other members of the Psg gene family, by polymerase chain reaction (PCR). Northern blot analysis of RNA from adult and fetal mouse tissues and in situ hybridization to mid-gestation mouse embryos indicated that Psg23(LTR) is expressed predominantly in placental spongiotrophoblast. We detected a small, but statistically non-significant, bias in favour of transmission of Psg23(LTR) to the offspring of heterozygous parents. However, a larger study would be required to determine whether this allele is selectively advantageous to the developing embryo.
Collapse
MESH Headings
- Alleles
- Animals
- Base Sequence
- Cloning, Molecular
- Crosses, Genetic
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Female
- Gene Expression Profiling
- Genes, Intracisternal A-Particle/genetics
- Glycoproteins/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred DBA
- Mice, Inbred Strains
- Models, Molecular
- Molecular Sequence Data
- Muridae
- Physical Chromosome Mapping
- Placenta/metabolism
- Pregnancy Proteins/chemistry
- Pregnancy Proteins/genetics
- Protein Conformation
- Rats
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Terminal Repeat Sequences/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Melanie Ball
- Department of Biochemistry, BioSciences Institute, University College Cork, College Road, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
878
|
Gaudet F, Rideout WM, Meissner A, Dausman J, Leonhardt H, Jaenisch R. Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol Cell Biol 2004; 24:1640-8. [PMID: 14749379 PMCID: PMC344181 DOI: 10.1128/mcb.24.4.1640-1648.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The methylation of intracisternal A-type particle (IAP) sequences is maintained during mouse embryogenesis. Methylation suppresses IAP expression and the potential for mutagenesis by retrotransposition, but it is not clear how methylation of these elements is maintained during the embryonic stages when the bulk of the genome is being demethylated. It has been suggested that the high levels of DNA methyltransferase-1 (Dnmt1) present during cleavage could be important for keeping IAPs methylated. To test this hypothesis, we combined mutant alleles of Dnmt1 with an agouti allele (A(iapy)), which provided a coat color readout for the methylation status of the IAP insertion in the agouti locus. We found that reduction in Dnmt1 levels directly impacted methylation at this locus, leading to stable transcriptional activation of the agouti gene in the adult. Specifically, the short maternal Dnmt1 protein was important in maintaining methylation at the A(iapy) locus in cleavage embryos, whereas the longer Dnmt1 isoform found in somatic cells was important in maintaining IAP methylation during the postimplantation stage. These results underscore the importance of maintaining proper maintenance of methylation patterns during gestation and suggest that interference with this process may stably affect gene expression patterns in the adult and may have profound phenotypic consequences.
Collapse
Affiliation(s)
- F Gaudet
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
879
|
Suter CM, Martin DI, Ward RL. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis 2004; 19:95-101. [PMID: 14534800 DOI: 10.1007/s00384-003-0539-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2003] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Malignant cells often exhibit perturbations in the pattern of cytosine methylation. Hypermethylation of CpG islands has been extensively documented, but genome-wide hypomethylation is also a common feature of malignant cells. The bulk of cytosine methylation in the mammalian genome occurs on repetitive elements. This study analysed the methylation status of L1 retrotransposons in colorectal cancer. PATIENTS AND METHODS Methylation-sensitive Southern blotting was used to determine L1 promoter methylation in colon tumours, adjacent normal tissue, and normal colonic mucosa from healthy individuals. RESULTS Hypomethylation of L1 promoter sequences was detected in all tumours but was also detected in the histologically normal colonic mucosa of 6 of 19 cancer patients, even at a considerable distance from the tumour. L1 hypomethylation was not detected in matched normal peripheral blood, lymph node or smooth muscle tissue from cancer patients or in the colonic mucosa of 14 healthy individuals. We also assayed for the total proportion of methylated CpG in normal bowel specimens from normal and colon cancer patients. Normal mucosa from cancer patients exhibited lower levels of genomic methylation than the mucosa from healthy individuals, and levels were significantly lower in those patients exhibiting L1 promoter hypomethylation. CONCLUSION These results suggest that genomic hypomethylation is an early event in tumourigenesis. Progressive demethylation of L1 promoter sequences could lead to disturbance of normal gene expression and facilitate the process of neoplastic progression.
Collapse
Affiliation(s)
- Catherine M Suter
- Medical Oncology Department, St. Vincent's Hospital, Darlinghurst, 2010 Sydney, Australia
| | | | | |
Collapse
|
880
|
Andersson L, Georges M. Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet 2004; 5:202-12. [PMID: 14970822 DOI: 10.1038/nrg1294] [Citation(s) in RCA: 362] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 597, SE-751 24 Uppsala, Sweden.
| | | |
Collapse
|
881
|
Martienssen R, Lippman Z, May B, Ronemus M, Vaughn M. Transposons, tandem repeats, and the silencing of imprinted genes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:371-9. [PMID: 16117670 DOI: 10.1101/sqb.2004.69.371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- R Martienssen
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
882
|
Abstract
The plethora of genomic information gathered by the sequencing of the human and mouse genomes has paved the way for a new era of genetics. While in the past we focused mainly on the small percentage of DNA that codes for proteins, we can now concentrate on the remainder, i.e. the noncoding sequences that interrupt and separate genes. This portion of the genome is made up, in most part, of repetitive DNA sequences including DNA transposons, long terminal repeat (LTR) retrotransposons, LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements). Some of these elements are transcriptionally active and can transpose or retrotranspose around the genome, resulting in insertional mutagenesis that can cause disease. In these cases, insertions have occurred in the coding sequence. However, recent evidence suggests that the main effect of these elements is their ability to influence transcription of neighbouring genes. The elements themselves contain promoters that can initiate transcription of flanking genomic DNA. Furthermore, they are susceptible to epigenetic silencing, which is often stochastic and incomplete, resulting in complex patterns of transcription. This review discusses some diseases in both human and mouse that are caused by these repetitive elements.
Collapse
Affiliation(s)
- R Druker
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
883
|
Spillane C, Baroux C, Escobar-Restrepo JM, Page DR, Laoueille S, Grossniklaus U. Transposons and tandem repeats are not involved in the control of genomic imprinting at the MEDEA locus in Arabidopsis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:465-75. [PMID: 16117682 DOI: 10.1101/sqb.2004.69.465] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- C Spillane
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
884
|
Nakamura A, Okazaki Y, Sugimoto J, Oda T, Jinno Y. Human endogenous retroviruses with transcriptional potential in the brain. J Hum Genet 2003; 48:575-81. [PMID: 14564540 DOI: 10.1007/s10038-003-0081-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 09/05/2003] [Indexed: 12/23/2022]
Abstract
Genetic studies of neuropsychiatric disorders have often produced conflicting results, which might partly result from the involvement of epigenetic modifications. We intended to explore the possible implication of DNA methylation and human endogenous retroviruses (HERVs) in neuropsychiatric disorders. In the present study, we identified two HERV loci that are expected to retain the transcriptional activity in the brain. One was located on chromosome 1q21-q22 and the other on 22q12. Interestingly, these regions were overlapped with or included in those of schizophrenia-susceptible loci, SCZD9 and SCZD4, respectively. Particularly, the HERV on 22q12 was located in the opposite direction 4 kb downstream of the Synapsin III gene. These HERV loci could afford clear targets for methylation and expression analyses in postmortem brains of patients with psychiatric disorders such as schizophrenia. In addition, we confirmed our previous finding that only a few of particular HERV-K loci were activated among a number of highly homologous loci in teratocarcinoma cell lines. These activated loci included ones common to all teratocarcinoma cell lines analyzed and depending on their male or female origin.
Collapse
Affiliation(s)
- Akifumi Nakamura
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | |
Collapse
|
885
|
Suto JI, Sekikawa K. Genetic determinants of sable and umbrous coat color phenotypes in mice. PIGMENT CELL RESEARCH 2003; 16:388-96. [PMID: 12859623 DOI: 10.1034/j.1600-0749.2003.00060.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The dorsal fur in yellow F1 mice (F1-Ay) between C3H/HeJ and C57BL/6J-Ay is darker than that in C57BL/6J-Ay. Moreover, yellow F2 mice (F2-Ay) exhibit a wide spectrum of coat color phenotypes in terms of lightness and darkness. Quantitative trait locus (QTL) analysis on F2-Ay identified three significant modifier loci that accounted for darkening of the coat color on chromosomes 1 (Dmyaq1 and Dmyaq2) and 15 (Dmyaq3), and the C3H/HeJ allele at these loci increased the darkness. Because agouti F2 mice (F2-A) also exhibited a spectrum of coat color phenotypes, the question of whether these QTLs had any effects on F2-A was examined. Dmyaq1 and Dmyaq2 were shown to increase the darkness in F2-A, whereas Dmyaq3 did not. The results showed that Dmyaq1-Dmyaq3 were parts of determinants responsible for the sable (darker modification of yellow) coat color phenotype, and that Dmyaq1 and Dmyaq2 were parts of determinants responsible for the umbrous (darker modification of agouti) coat color phenotype. It is, thus, demonstrated that both the sable and the umbrous phenotypes resulted from multigenic contributions, and that they shared genetic bases, as had been implied for several decades.
Collapse
Affiliation(s)
- Jun-ichi Suto
- Department of Molecular Biology and Immunology, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
886
|
Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003; 23:5293-300. [PMID: 12861015 PMCID: PMC165709 DOI: 10.1128/mcb.23.15.5293-5300.2003] [Citation(s) in RCA: 1267] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Revised: 04/14/2003] [Accepted: 05/08/2003] [Indexed: 12/11/2022] Open
Abstract
Early nutrition affects adult metabolism in humans and other mammals, potentially via persistent alterations in DNA methylation. With viable yellow agouti (A(vy)) mice, which harbor a transposable element in the agouti gene, we tested the hypothesis that the metastable methylation status of specific transposable element insertion sites renders them epigenetically labile to early methyl donor nutrition. Our results show that dietary methyl supplementation of a/a dams with extra folic acid, vitamin B(12), choline, and betaine alter the phenotype of their A(vy)/a offspring via increased CpG methylation at the A(vy) locus and that the epigenetic metastability which confers this lability is due to the A(vy) transposable element. These findings suggest that dietary supplementation, long presumed to be purely beneficial, may have unintended deleterious influences on the establishment of epigenetic gene regulation in humans.
Collapse
Affiliation(s)
- Robert A Waterland
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
887
|
Lees-Murdock DJ, De Felici M, Walsh CP. Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics 2003; 82:230-7. [PMID: 12837272 DOI: 10.1016/s0888-7543(03)00105-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Repetitive DNA elements account for a substantial fraction of the mammalian genome. Many are subject to DNA methylation, which is known to undergo dynamic change during mouse germ cell development. We found that repeat sequences of three different classes retain high levels of methylation at E12.5, when methylation is erased from many single-copy genes. Maximal demethylation of repeats was seen later in development and at different times in male and female germ cells. At none of the time points examined (E12.5, E15.5, and E17.5) did we see complete demethylation, suggesting that methylation patterns on repeats may be passed on from one generation to the next. In male germ cells, we observed a de novo methylation event resulting in complete methylation of all the repeats in the interval between E15.5 and E17.5, which was not seen in females. These results suggest that repeat sequences undergo coordinate changes in methylation during germ cell development and give further insights into germ cell reprogramming in mice.
Collapse
Affiliation(s)
- D J Lees-Murdock
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | | | | |
Collapse
|
888
|
Abstract
In contrast to the biallelic expression of most genes, expression of genes subject to genomic imprinting is monoallelic and based on the sex of the transmitting parent. Possession of only a single active allele can lead to deleterious health consequences in humans. Aberrant expression of imprinted genes, through either genetic or epigenetic alterations, can result in developmental failures, neurodevelopmental and neurobehavioral disorders and cancer. The evolutionary emergence of imprinting occurred in a common ancestor to viviparous mammals after divergence from the egg-laying monotremes. Current evidence indicates that imprinting regulation in metatherian mammals differs from that in eutherian mammals. This suggests that imprinting mechanisms are evolving from those that were established 150 million years ago. Therefore, comparing genomic sequence of imprinted domains from marsupials and eutherians with those of orthologous regions in monotremes offers a potentially powerful bioinformatics approach for identifying novel imprinted genes and their regulatory elements. Such comparative studies will also further our understanding of the molecular evolution and phylogenetic distribution of imprinted genes.
Collapse
Affiliation(s)
- Susan K Murphy
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
889
|
Preis JI, Downes M, Oates NA, Rasko JEJ, Whitelaw E. Sensitive flow cytometric analysis reveals a novel type of parent-of-origin effect in the mouse genome. Curr Biol 2003; 13:955-9. [PMID: 12781134 DOI: 10.1016/s0960-9822(03)00335-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The discovery of classic parental imprinting came, at least in part, from the analysis of transgene expression in mice. It was noticed that some transgenes were only expressed following paternal transmission and that others sometimes showed differential patterns of methylation depending on the parent of origin. Here, we present evidence of a novel and more subtle form of parental imprinting by taking advantage of the highly sensitive detection of murine transgene expression afforded by flow cytometry. We have produced nine lines of transgenic mice carrying a GFP reporter linked to the human alpha-globin promoter and enhancer elements, which direct expression to erythroid cells. A high proportion of transgenic lines, four of the nine, display significantly lower levels of expression following maternal transmission. Both the percentage of expressing cells and the mean fluorescence in expressing cells are between 10% and 30% lower following maternal transmission. These effects are reversible upon passage through the opposite germline. This finding raises the possibility that differences in the epigenetic state of the maternal and paternal chromosomes in adult somatic cells are more widespread than was previously thought.
Collapse
Affiliation(s)
- Jost I Preis
- School of Molecular and Microbial Biosciences, Building G08, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
890
|
Mangiacasale R, Pittoggi C, Sciamanna I, Careddu A, Mattei E, Lorenzini R, Travaglini L, Landriscina M, Barone C, Nervi C, Lavia P, Spadafora C. Exposure of normal and transformed cells to nevirapine, a reverse transcriptase inhibitor, reduces cell growth and promotes differentiation. Oncogene 2003; 22:2750-61. [PMID: 12747369 DOI: 10.1038/sj.onc.1206354] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endogenous, nontelomeric reverse transcriptase (RT) is encoded by two classes of repeated elements: retrotransposons and endogenous retroviruses. Expression of RT-coding genes is generally repressed in differentiated nonpathological tissues, yet is active in the mammalian germ line, embryonic tissues and tumor cells. Nevirapine is a non-nucleoside RT inhibitor with a well-characterized inhibitory activity on RT enzymes of retroviral origin. Here, we show that nevirapine is also an effective inhibitor of the endogenous RT in murine and human cell lines. In addition, progenitor and transformed cells undergo a significant reduction in the rate of cell growth upon exposure to nevirapine. This is accompanied by the onset of differentiation, as depicted in F9 and C2C7 progenitor cells cultures in which nevirapine triggers the expression of differentiation-specific markers. Consistent with this, an extensive reprogramming of cell cycle gene expression was depicted in nevirapine-treated F9 cultures. Furthermore, nevirapine exposure rescued the differentiation block present in acute myeloid leukemia (AML) cell lines and primary blasts from two AML patients, as indicated by morphological, functional and immunophenotypic assays. The finding that an RT inhibitor can modulate cell proliferation and differentiation suggests that RT may represent a novel target in the development of therapeutical approaches to neoplasia.
Collapse
|
891
|
Abstract
The concept of evolvability covers a broad spectrum of, often contradictory, ideas. At one end of the spectrum it is equivalent to the statement that evolution is possible, at the other end are untestable post hoc explanations, such as the suggestion that current evolutionary theory cannot explain the evolution of evolvability. We examine similarities and differences in eukaryote and prokaryote evolvability, and look for explanations that are compatible with a wide range of observations. Differences in genome organisation between eukaryotes and prokaryotes meets this criterion. The single origin of replication in prokaryote chromosomes (versus multiple origins in eukaryotes) accounts for many differences because the time to replicate a prokaryote genome limits its size (and the accumulation of junk DNA). Both prokaryotes and eukaryotes appear to switch from genetic stability to genetic change in response to stress. We examine a range of stress responses, and discuss how these impact on evolvability, particularly in unicellular organisms versus complex multicellular ones. Evolvability is also limited by environmental interactions (including competition) and we describe a model that places limits on potential evolvability. Examples are given of its application to predator competition and limits to lateral gene transfer. We suggest that unicellular organisms evolve largely through a process of metabolic change, resulting in biochemical diversity. Multicellular organisms evolve largely through morphological changes, not through extensive changes to cellular biochemistry.
Collapse
Affiliation(s)
- Anthony M Poole
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
892
|
Smith RJ, Dean W, Konfortova G, Kelsey G. Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res 2003; 13:558-69. [PMID: 12670997 PMCID: PMC430166 DOI: 10.1101/gr.781503] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A characteristic of imprinted genes is that the maternal and paternal alleles show differences in methylation. To perform a genome-wide screen for novel imprinted loci, we applied methylation-sensitive representational difference analysis (Me-RDA) to parthenogenetic mouse embryos, to identify differentially methylated regions (DMRs) methylated specifically on the maternal allele. We isolated a total of 26 distinct clones from known and novel DMRs and identified three novel imprinted genes. Nap1l5 is located on proximal chromosome 6 and encodes a protein with homology with nucleosome assembly proteins (NAPs); it has tissue-specific imprinting with expression from the paternal allele. We identified two DMRs on chromosome 15, a chromosome that was not thought to contain imprinted loci, and demonstrated that each is associated with a paternally expressed transcript. Peg13 gives rise to a noncoding RNA that is highly expressed in the brain and imprinted in all tissues examined. A DMR was also identified at the chromosome 15 Slc38a4 gene, which encodes a system A amino acid transporter; we show that Slc38a4 is imprinted in a tissue-specific manner. Interestingly, two of the three novel genes identified in this screen are located within the introns of other genes; their identification indicates that such "microimprinted" domains may be more common than previously thought.
Collapse
Affiliation(s)
- Rachel J Smith
- Developmental Genetics Program, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | |
Collapse
|
893
|
Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KVK, Whitelaw E. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A 2003; 100:2538-43. [PMID: 12601169 PMCID: PMC151376 DOI: 10.1073/pnas.0436776100] [Citation(s) in RCA: 426] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Indexed: 11/18/2022] Open
Abstract
Phenotypic variation that cannot be explained by genetic or environmental heterogeneity has intrigued geneticists for decades. The molecular basis of this phenomenon, however, is largely a mystery. Axin-fused (Axin(Fu)), first identified in 1937, is a classic example of a mammalian allele displaying extremely variable expression states. Here we demonstrate that the presence or absence of its characteristic phenotype, a kinked tail, correlates with differential DNA methylation at a retrotransposon within Axin(Fu) and identify mutant transcripts arising adjacent to the retrotransposon LTR that are likely to be causative of the phenotype. Furthermore, the epigenetic state at Axin(Fu) can be inherited transgenerationally after both maternal and paternal transmission. This is in contrast to epigenetic inheritance at the murine agouti-viable yellow (A(vy)) allele, which occurs through the female only. Unlike the egg, the sperm contributes very little (if any) cytoplasm to the zygote, and therefore paternal inheritance at Axin(Fu) argues against the possibility that the effects are due to cytoplasmic or metabolic influences. Consistent with the idea of transgenerational inheritance of epigenetic marks, we find that the methylation state of Axin(Fu) in mature sperm reflects the methylation state of the allele in the somatic tissue of the animal, suggesting that it does not undergo epigenetic reprogramming during gametogenesis. Finally, we show that epigenetic inheritance is influenced by strain background. These findings enable us to propose a model for transgenerational epigenetic inheritance in mammals.
Collapse
Affiliation(s)
- Vardhman K Rakyan
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
894
|
Abstract
With the exception of lymphocytes, the various cell types in a higher multicellular organism have basically an identical genotype but are functionally and morphologically different. This is due to tissue-specific, temporal, and spatial gene expression patterns which are controlled by genetic and epigenetic mechanisms. Successful cloning of mammals by transfer of nuclei from differentiated tissues into enucleated oocytes demonstrates that these genetic and epigenetic programs can be largely reversed and that cellular totipotency can be restored. Although these experiments indicate an enormous plasticity of nuclei from differentiated tissues, somatic cloning is a rather inefficient and unpredictable process, and a plethora of anomalies have been described in cloned embryos, fetuses, and offspring. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. In this review, we discuss the roles of various epigenetic mechanisms, including DNA methylation, chromatin remodeling, imprinting, X chromosome inactivation, telomere maintenance, and epigenetic inheritance in normal embryonic development and in the observed abnormalities in clones from different species. Nuclear transfer represents an invaluable tool to experimentally address fundamental questions related to epigenetic reprogramming. Understanding the dynamics and mechanisms underlying epigenetic control will help us solve problems inherent in nuclear transfer technology and enable many applications, including the modulation of cellular plasticity for human cell therapies.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Molecular Animal Breeding, Gene Center, University of Munich, Feodor-Lynen-Strasse 25, Germany
| | | | | |
Collapse
|
895
|
Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el-Maarri O, Horsthemke B. Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet 2003; 72:571-7. [PMID: 12545427 PMCID: PMC1180233 DOI: 10.1086/367926] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2002] [Accepted: 12/04/2002] [Indexed: 11/03/2022] Open
Abstract
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurogenetic disorders that are caused by the loss of function of imprinted genes in 15q11-q13. In a small group of patients, the disease is due to aberrant imprinting and gene silencing. Here, we describe the molecular analysis of 51 patients with PWS and 85 patients with AS who have such a defect. Seven patients with PWS (14%) and eight patients with AS (9%) were found to have an imprinting center (IC) deletion. Sequence analysis of 32 patients with PWS and no IC deletion and 66 patients with AS and no IC deletion did not reveal any point mutation in the critical IC elements. The presence of a faint methylated band in 27% of patients with AS and no IC deletion suggests that these patients are mosaic for an imprinting defect that occurred after fertilization. In patients with AS, the imprinting defect occurred on the chromosome that was inherited from either the maternal grandfather or grandmother; however, in all informative patients with PWS and no IC deletion, the imprinting defect occurred on the chromosome inherited from the paternal grandmother. These data suggest that this imprinting defect results from a failure to erase the maternal imprint during spermatogenesis.
Collapse
Affiliation(s)
- Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
896
|
Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33 Suppl:245-54. [PMID: 12610534 DOI: 10.1038/ng1089] [Citation(s) in RCA: 4223] [Impact Index Per Article: 192.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.
Collapse
Affiliation(s)
- Rudolf Jaenisch
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
897
|
Oakes CC, Smiraglia DJ, Plass C, Trasler JM, Robaire B. Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci U S A 2003; 100:1775-80. [PMID: 12574505 PMCID: PMC149909 DOI: 10.1073/pnas.0437971100] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a concern that increased paternal age may be associated with altered fertility and an increased incidence of birth defects in man. In previous studies of aged male rats, we have found abnormalities in the fertility and in the embryos sired by older males. Aging in mammals is associated with alterations in the content and patterns of DNA methylation in somatic cells; however, little is known in regard to germ cells. A systematic search for global and gene-specific alterations of DNA methylation in germ cells and liver of male rats was done. Restriction landmark genomic scanning, a method used to determine specific methylation patterns of CpG island sequences, has revealed a region of the ribosomal DNA locus that is preferentially hypermethylated with age in both spermatozoa and liver. In contrast, all single copy CpG island sequences in spermatozoa and in liver remain unaltered with age. We further demonstrate that a large proportion of rat ribosomal DNA is normally methylated and that regional and site-specific differences exist in the patterns of methylation between spermatozoa and liver. We conclude that patterns of ribosomal DNA methylation in spermatozoa are vulnerable to the same age-dependent alterations that we observe in normal aging liver. Failure to maintain normal DNA methylation patterns in male germ cells could be one of the mechanisms underlying age-related abnormalities in fertility and progeny outcome.
Collapse
Affiliation(s)
- Christopher C Oakes
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada H3H 1P3
| | | | | | | | | |
Collapse
|
898
|
|
899
|
Wolff GL. Regulation of yellow pigment formation in mice: a historical perspective. PIGMENT CELL RESEARCH 2003; 16:2-15. [PMID: 12519120 DOI: 10.1034/j.1600-0749.2003.00012.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pigment synthesis by hair follicle melanocytes is modulated by a large number of environmental and genetic factors, many of which are discussed in this review. Eumelanic (non-yellow) pigment is produced by hair follicle melanocytes following the binding of alpha-melanocyte stimulating hormone to melanocortin receptor 1. Binding of this hormone to the melanocyte membrane is blocked by agouti signaling protein (ASP) which is encoded by the agouti locus and results in the synthesis of yellow pigment, instead of non-yellow (black/brown) pigment. The cyclical release of ASP by hair follicle cells results in a black/brown hair with a subapical yellow band. This is the wild-type coat color pattern of many mammals and is called agouti. Several dominant mutations at the agouti locus in mice, induced by retrotransposon-like intracisternal A particles, result in ectopic over-expression of ASP and animals with much higher proportions of all-yellow hairs. This abnormal presence of ASP in essentially all body cells results in the 'yellow agouti obese mouse syndrome.' The obesity has been associated with binding of ASP to melanocortin receptor 4 inactivating the latter. The syndrome also includes hyperinsulinemia, increased somatic growth, and increased susceptibility to hyperplasia and carcinogenesis. The physiologic and molecular bases for these syndrome components have not yet been elucidated. This historically orientated review is subdivided, where applicable, into pre- and post-1992 subsections to emphasize the impact of the cloning of the agouti and extension loci and their protein products on the identification of the molecular and physiological pathways modulating the manifold aspects of pheomelanogenesis.
Collapse
Affiliation(s)
- George L Wolff
- Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
900
|
Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 2003; 35:88-93. [PMID: 12533790 DOI: 10.1002/gene.10168] [Citation(s) in RCA: 456] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genome-wide epigenetic reprogramming by demethylation occurs in early mouse embryos and primordial germ cells. In early embryos many single-copy sequences become demethylated both by active and passive demethylation, whereas imprinted gene methylation remains unaffected. In primordial germ cells single-copy and imprinted sequences are demethylated, presumably by active demethylation. Here we investigated systematically by bisulphite sequencing the methylation profiles of IAP and Line1 repeated sequence families during preimplantation and primordial germ cell development. Whereas Line1 elements were substantially demethylated during both developmental periods, IAP elements were largely resistant to demethylation, particularly during preimplantation development. This may be desirable in order to prevent IAP retrotransposition, which could cause mutations. In turn, this can result in the transgenerational inheritance of epigenetic states of IAPs, which could lead to heritable epimutations of neighbouring genes through influencing their transcriptional states.
Collapse
Affiliation(s)
- Natasha Lane
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|