851
|
|
852
|
Smiraglia DJ, Smith LT, Lang JC, Rush LJ, Dai Z, Schuller DE, Plass C. Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 2003; 40:25-33. [PMID: 12525538 PMCID: PMC1735270 DOI: 10.1136/jmg.40.1.25] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) often metastasise to the cervical lymph nodes. It is known for HNSCC as well as other cancers that progression from normal tissue to primary tumour and finally to metastatic tumour is characterised by an accumulation of genetic mutations. DNA methylation, an epigenetic modification, can result in loss of gene function in cancer, similar to genetic mutations such as deletions and point mutations. We have investigated the DNA methylation phenotypes of both primary HNSCC and metastatic tumours from 13 patients using restriction landmark genomic scanning (RLGS). With this technique, we were able to assess the methylation status of an average of nearly 1300 CpG islands for each tumour. We observed that the number of CpG islands hypermethylated in metastatic tumours is significantly greater than what is found in the primary tumours overall, but not in every patient. Interestingly, the data also clearly show that many loci methylated in a patient's primary tumour are no longer methylated in the metastatic tumour of the same patient. Thus, even though metastatic HNSCC methylate a greater proportion of CpG islands than do the primary tumours, they do so at different subsets of loci. These data show an unanticipated variability in the methylation state of loci in primary and metastatic HNSCCs within the same patient. We discuss two possible explanations for how different epigenetic events might arise between the primary tumour and the metastatic tumour of a person.
Collapse
Affiliation(s)
- D J Smiraglia
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
853
|
Abstract
Human testicular germ cell tumour (TGCT) of adolescents and young adults develop from precursor lesions called carcinoma in situ (CIS), which is believed to originate from diploid primordial germ cells during foetal life. CIS is initiated by an aneuploidisation event accompanied by extensive chromosome instability. The further transformation of CIS into invasive TGCT (seminomas and nonseminomas) is associated with increased copy number of chromosome arm 12p, most often seen as isochromosome 12p. Despite the morphological distinctions between seminomatous and nonseminomatous TGCTs, they have many of the same regional genomic disruptions, although frequencies may vary. However, the two histological subtypes have quite distinct epigenomes, which is further evident from their different gene expression patterns. CIS develops from cells with erased parental imprinting, and the seminoma genome is under-methylated compared to that of the nonseminoma genome. High throughput microarray technologies have already pinpointed several genes important to TGCT, and will further unravel secrets of how specific genes and pathways are regulated and deregulated throughout the different stages of TGCT tumourigenesis. In addition to acquiring new insights into the molecular mechanisms of TGCT development, understanding the TGCT genome will also provide clues to the genetics of human embryonic development and of chemotherapy response, as TGCT is a good model system to both.
Collapse
Affiliation(s)
- Rolf I Skotheim
- Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, N-0310 Oslo, Norway
| | | |
Collapse
|
854
|
Abstract
DNA methylation is essential for embryonic development and important for transcriptional repression, as observed in several biological phenomena. These include genomic imprinting, X-inactivation and carcinogenesis. The basic mechanism by which DNA methylation silences transcription is generally understood, but there is still much to be learned about how DNA methyltransferase is targeted to a specific region of the gene. Silencing by DNA methylation occurs at an early stage of carcinogenesis, when the DNA repair genes, MGMT and hMLH1, are frequently inactivated, resulting in mutations in key cancer-related genes in cells. Mice defective in Mgmt and/or Mlh1 gave clear evidence of the significant roles of these proteins in carcinogenesis. Recently, it has been demonstrated that DNA methylation is linked to histone methylation in fungi and plants, although it remains unknown whether this mechanism occurs in mammalian systems.
Collapse
Affiliation(s)
- Tsunehiro Mukai
- Division of Molecular Biology and Genetics, Department of Biomolecular Sciences, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | |
Collapse
|
855
|
Smith-Sørensen B, Lind GE, Skotheim RI, Fosså SD, Fodstad Ø, Stenwig AE, Jakobsen KS, Lothe RA. Frequent promoter hypermethylation of the O6-Methylguanine-DNA Methyltransferase (MGMT) gene in testicular cancer. Oncogene 2002; 21:8878-84. [PMID: 12483540 DOI: 10.1038/sj.onc.1205978] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Revised: 07/09/2002] [Accepted: 08/13/2002] [Indexed: 11/09/2022]
Abstract
Testicular germ cell tumours are classified into two major histological subgroups, seminomas and nonseminomas. All tumours display several recurrent chromosomal aberrations, but few target genes have been identified. Previous studies have shown that genome-wide hypermethylation of CpG islands is significantly more prevalent in nonseminomas than in seminomas. We have studied two potential target genes in testicular cancer. A series of 70 tumours were analysed for methylation of CpG sites in the O(6)-methylguanine-DNA methyltransferase (MGMT) gene promoter, and in exon 1alpha of the cyclin-dependent kinase inhibitor 2A gene (CDKN2A). In addition, eight microsatellite markers within and flanking these genes at chromosome arms 10q and 9p, respectively, were analysed for allelic imbalances. Allele alterations were frequently seen at 9p loci (47 out of 70, 67%), but none of the tumours (none out of 55) showed methylation of CDKN2A. On the other hand, a high frequency of MGMT promoter methylation (32 out of 69, 46%) was found, as well as allelic imbalances at 10q markers (50 out of 70, 71%). A significantly higher methylation frequency was found in nonseminomas (24 out of 35, 69%) compared to seminomas (eight out of 33, 24%) (P=0.0003, Fisher's exact test). Immunohistochemical analysis of the MGMT protein in a subgroup (n=20) of the testicular tumours supported the hypothesis of gene silencing being the functional consequence of the promoter methylation. In summary, our data suggest that inactivation of MGMT contributes to development of nonseminomatous testicular cancer.
Collapse
Affiliation(s)
- B Smith-Sørensen
- Department of Tumour Biology, Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
856
|
Herman JG. Hypermethylation pathways to colorectal cancer. Implications for prevention and detection. Gastroenterol Clin North Am 2002; 31:945-58. [PMID: 12489271 DOI: 10.1016/s0889-8553(02)00058-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Epigenetic changes play an important role in the development and progression of colorectal cancer. The best characterized of these changes is the promoter region methylation of CpG islands of genes that play key roles in this disease. These changes compliment and lead to genetic changes that are well established as central to colorectal cancer progression. They may also prove useful in molecular detection approaches.
Collapse
Affiliation(s)
- James G Herman
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins School of Medicine, Bunting-Blaustein Cancer Research Building, 1650 Orleans, Room 543, Baltimore, MD 21231, USA.
| |
Collapse
|
857
|
Chim CS, Liang R, Kwong YL. Hypermethylation of gene promoters in hematological neoplasia. Hematol Oncol 2002; 20:167-76. [PMID: 12469326 DOI: 10.1002/hon.694] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cancer cells are associated with global hypomethylation but with focal hypermethylation of specific gene promoters organized as CpG island. DNA methyltransferases, DNMT1 and 3 (3a and 3b), have been implicated in mediating maintenance and de novo methylation. Hypermethylation of gene promoters results in the inactivation of the corresponding genes, by preclusion of the formation of the transcription complex, due to the recruitment of MBP, MeCPs and histone deacetylase. This results in the deacetylation of histone and thus a compact chromatin complex unfavourable for the initiation of transcription. This methylation-associated gene silencing has been demonstrated in various genes including tumour suppressor genes (p15, p16, p73, VHL). Therefore, gene promoter hypermethylation collaborates with other mechanisms of gene inactivation such as deletion and intragenic mutations to fulfil Knudson's hypothesis. Hypermethylation may serve as a molecular disease marker for the detection of minimal residual disease. Emerging evidence suggests a possible prognostic value of gene promoter hypermethylation. Moreover, gene hypermethylation may also serve as a target for therapeutic invention by hypomethylating agents.
Collapse
Affiliation(s)
- C S Chim
- University Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
858
|
Koul S, Houldsworth J, Mansukhani MM, Donadio A, McKiernan JM, Reuter VE, Bosl GJ, Chaganti RS, Murty VV. Characteristic promoter hypermethylation signatures in male germ cell tumors. Mol Cancer 2002; 1:8. [PMID: 12495446 PMCID: PMC149411 DOI: 10.1186/1476-4598-1-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Accepted: 11/28/2002] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Human male germ cell tumors (GCTs) arise from undifferentiated primordial germ cells (PGCs), a stage in which extensive methylation reprogramming occurs. GCTs exhibit pluripotentiality and are highly sensitive to cisplatin therapy. The molecular basis of germ cell (GC) transformation, differentiation, and exquisite treatment response is poorly understood. RESULTS To assess the role and mechanism of promoter hypermethylation, we analyzed CpG islands of 21 gene promoters by methylation-specific PCR in seminomatous (SGCT) and nonseminomatous (NSGCT) GCTs. We found 60% of the NSGCTs demonstrating methylation in one or more gene promoters whereas SGCTs showed a near-absence of methylation, therefore identifying distinct methylation patterns in the two major histologies of GCT. DNA repair genes MGMT, RASSF1A, and BRCA1, and a transcriptional repressor gene HIC1, were frequently methylated in the NSGCTs. The promoter hypermethylation was associated with gene silencing in most methylated genes, and reactivation of gene expression occurred upon treatment with 5-Aza-2' deoxycytidine in GCT cell lines. CONCLUSIONS Our results, therefore, suggest a potential role for epigenetic modification of critical tumor suppressor genes in pathways relevant to GC transformation, differentiation, and treatment response.
Collapse
Affiliation(s)
- Sanjay Koul
- Department of Pathology, College of Physicians & Surgeons of Columbia University, 630 West 168Street, New York, NY, 10032, USA
| | - Jane Houldsworth
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Mahesh M Mansukhani
- Department of Pathology, College of Physicians & Surgeons of Columbia University, 630 West 168Street, New York, NY, 10032, USA
| | - Alessia Donadio
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - James M McKiernan
- Department of Urology, College of Physicians & Surgeons of Columbia University, 630 West 168Street, New York, NY, 10032, USA
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - George J Bosl
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Raju S Chaganti
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Vundavalli V Murty
- Department of Pathology, College of Physicians & Surgeons of Columbia University, 630 West 168Street, New York, NY, 10032, USA
- Institute for Cancer Genetics, College of Physicians & Surgeons of Columbia University, 630 West 168Street, New York, NY, 10032, USA
| |
Collapse
|
859
|
Abstract
The DNA methylation profile of cancer cells is frequently characterized by global hypomethylation and simultaneous hypermethylation of selected CpG island gene promoters. In recent years, the epigenetic phenomenon of DNA promoter methylation has gained increasing recognition as an important mechanism for transcriptional inactivation of cancer related genes. Studies on both liquid and solid tumors have revealed myriad aberrant methylation events, some of which may provide important clues to the pathogenesis of these tumors. The identification of these methylation alterations and elucidation of the mechanistic events surrounding them are of prime importance, as the methylation status of cancer cells can now be manipulated in vivo with demethylating chemotherapeutics.
Collapse
Affiliation(s)
- Laura J Rush
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
860
|
Zardo G, Tiirikainen MI, Hong C, Misra A, Feuerstein BG, Volik S, Collins CC, Lamborn KR, Bollen A, Pinkel D, Albertson DG, Costello JF. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet 2002; 32:453-8. [PMID: 12355068 DOI: 10.1038/ng1007] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Accepted: 08/20/2002] [Indexed: 11/09/2022]
Abstract
Aberrant methylation of CpG islands and genomic deletion are two predominant mechanisms of gene inactivation in tumorigenesis, but the extent to which they interact is largely unknown. The lack of an integrated approach to study these mechanisms has limited the understanding of tumor genomes and cancer genes. Restriction landmark genomic scanning (RLGS; ref. 1) is useful for global analysis of aberrant methylation of CpG islands, but has not been amenable to alignment with deletion maps because the identity of most RLGS fragments is unknown. Here, we determined the nucleotide sequence and exact chromosomal position of RLGS fragments throughout the genome using the whole chromosome of origin of the fragments and in silico restriction digestion of the human genome sequence. To study the interaction of these gene-inactivation mechanisms in primary brain tumors, we integrated RLGS-based methylation analysis with high-resolution deletion maps from microarray-based comparative genomic hybridization (array CGH; ref. 3). Certain subsets of gene-associated CpG islands were preferentially affected by convergent methylation and deletion, including genes that exhibit tumor-suppressor activity, such as CISH1 (encoding SOCS1; ref. 4), as well as genes such as COE3 that have been missed by traditional non-integrated approaches. Our results show that most aberrant methylation events are focal and independent of deletions, and the rare convergence of these mechanisms can pinpoint biallelic gene inactivation without the use of positional cloning.
Collapse
Affiliation(s)
- Giuseppe Zardo
- Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
861
|
Abstract
Circulating tumor nucleic acids in blood have been demonstrated to reflect the biologic characteristics of tumors. During tumor progression, aberrant DNA methylation can lead to transcriptional silencing of tumor suppressor genes, DNA repair genes, and metastasis-inhibitor genes. Hypermethylation of multiple genes, detectable in the blood of cancer patients, has demonstrated increasing promise as a specific and sensitive molecular marker for detecting and monitoring cancer. In addition to these epigenetic markers, a number of mRNA markers may also enable cancer detection in the blood of patients with different cancer types. Quantification of circulating tumor cell mRNAs in cancer patients appears to be useful for monitoring cancer progression and response to treatment. DNA methylation markers and mRNA markers in the blood may open up diagnostic and prognostic possibilities.
Collapse
Affiliation(s)
- Ivy H N Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong Special Administrative Region
| | | |
Collapse
|
862
|
Abstract
Cancer is a multistep process resulting from an accumulation of genetic mutations leading to dysfunction of critical genes, including tumour suppressor genes. Epigenetic changes are now also recognised as an important alternative mechanism of gene inactivation. In particular, aberrant methylation of the promoter region of a gene can lead to silencing ultimately contributing to the initiation or malignant progression of tumours. BRCA1, a breast and ovarian cancer susceptibility gene, is a tumour suppressor gene involved in the maintenance of genome integrity. Recent evidence for BRCA1 hypermethylation corroborates the view that this epigenetic alteration may play a determinant role in tumour suppressor silencing and possibly tumorigenesis. Here, we offer a summary of the data providing evidence for BRCA1 hypermethylation in tumours, and an investigation into the associated mechanism leading to BRCA1 silencing. We also discuss the impact of BRCA1 hypermethylation, as a form of epigenetic change, versus BRCA1 genetic mutations in tumour development.
Collapse
Affiliation(s)
- Aurélie Catteau
- Division of Medical and Molecular Genetics, GKT School of Medicine, 8th Floor Guy's Tower, Guy's Hospital, London SE1 9RT, UK.
| | | |
Collapse
|
863
|
Dai Z, Weichenhan D, Wu YZ, Hall JL, Rush LJ, Smith LT, Raval A, Yu L, Kroll D, Muehlisch J, Frühwald MC, de Jong P, Catanese J, Davuluri RV, Smiraglia DJ, Plass C. An AscI boundary library for the studies of genetic and epigenetic alterations in CpG islands. Genome Res 2002; 12:1591-8. [PMID: 12368252 PMCID: PMC187524 DOI: 10.1101/gr.197402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Knudson's two-hit hypothesis postulates that genetic alterations in both alleles are required for the inactivation of tumor-suppressor genes. Genetic alterations include small or large deletions and mutations. Over the past years, it has become clear that epigenetic alterations such as DNA methylation are additional mechanisms for gene silencing. Restriction Landmark Genomic Scanning (RLGS) is a two-dimensional gel electrophoresis that assesses the methylation status of thousands of CpG islands. RLGS has been applied successfully to scan cancer genomes for aberrant DNA methylation patterns. So far, the majority of this work was done using NotI as the restriction landmark site. Here, we describe the development of RLGS using AscI as the restriction landmark site for genome-wide scans of cancer genomes. The availability of AscI as a restriction landmark for RLGS allows for scanning almost twice as many CpG islands in the human genome compared with using NotI only. We describe the development of an AscI-EcoRV boundary library that supports the cloning of novel methylated genes. Feasibility of this system is shown in three tumor types, medulloblastomas, lung cancers, and head and neck cancers. We report the cloning of 178 AscI RLGS fragments via two methods by use of this library.
Collapse
Affiliation(s)
- Zunyan Dai
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
864
|
Abstract
Leukaemogenesis is a multi-step process whereby a clonal population arises that has undergone successive alterations to the genotype and the phenotype of the cells that make up the clone. Leukaemia has traditionally been viewed as a genetic disease, however epigenetic defects also play an important role. Expression of the DNA methyltransferase enzymes is elevated in leukaemia, and aberrant methylation is common with both a decrease in the total genomic 5-methylcytosine, and a concomitant hypermethylation of CpG island-associated tumour suppressor genes. This review will discuss the multitude of DNA methylation changes in haematopoietic malignancies and the implications they have for diagnosis and treatment.
Collapse
Affiliation(s)
- John R Melki
- Kanematsu Laboratories, Sydney Cancer Centre, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | | |
Collapse
|
865
|
Abstract
Genetic mutation of genes that inhibit the formation of tumours has long been known to be one of the main driving forces in the development of cancer. Inactivation of one such gene, E-cadherin, is thought to be an important step in the development of most, or all, epithelial derived tumour types. Mutations within the E-cadherin gene have been identified as the cause of familial gastric cancer and loss of expression of E-cadherin has been found to be widespread in sporadically occurring epithelial tumours. Despite this, mutations of the E-cadherin gene have been only rarely found in most types of sporadic cancers. However, recent evidence has identified a second mechanism potentially responsible for inactivation of E-cadherin, and other important genes, during tumourigenesis, namely DNA methylation. This review will examine the importance of genetic (mutation) versus epigenetic (DNA methylation) mechanisms in the inactivation of E-cadherin during tumour development and also discuss potential differences in the functional consequences between inactivation by epigenetic or genetic means.
Collapse
Affiliation(s)
- Gordon Strathdee
- Cancer Research Campaign Department of Medical Oncology, CRC Beatson Laboratories, Glasgow University, Glasgow G61 1BD, UK.
| |
Collapse
|
866
|
Sarkar S, Roy BC, Hatano N, Aoyagi T, Gohji K, Kiyama R. A novel ankyrin repeat-containing gene (Kank) located at 9p24 is a growth suppressor of renal cell carcinoma. J Biol Chem 2002; 277:36585-91. [PMID: 12133830 DOI: 10.1074/jbc.m204244200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By a combination of genome subtraction and comprehensive analysis of loss of heterozygosity based on mapping hemizygous deletions for a potential tumor-related locus, a minimum overlapping region of deletions at 9p24 the size of 165 kb was identified and found to harbor a new potential tumor suppressor gene for renal cell carcinoma, the Kank gene. Kank (for kidney ankyrin repeat-containing protein) contains four ankyrin repeats at its C terminus. Expression of the gene was suppressed in 6 of 8 or 6 of 10 cancer tissues examined by reverse transcription-PCR or Western blotting, respectively, and in several kidney tumor cell lines due to methylation at CpG sites in the gene. Epigenetic methylation or imprinting seemed to be the first hit, which was followed by a second hit of deletion, resulting in loss of function in many of these deletion cases. Expression of this gene in expression-negative HEK293 cells induced growth retardation at G(0)/G(1) as well as morphological changes.
Collapse
Affiliation(s)
- Shubhashish Sarkar
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
867
|
Tra J, Kondo T, Lu Q, Kuick R, Hanash S, Richardson B. Infrequent occurrence of age-dependent changes in CpG island methylation as detected by restriction landmark genome scanning. Mech Ageing Dev 2002; 123:1487-503. [PMID: 12425956 DOI: 10.1016/s0047-6374(02)00080-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypermethylation of CpG islands, resulting in the inactivation of tumor suppressor genes, is an early event in the development of some malignancies. Recent studies suggest that this abnormal methylation may be a function of aging. The number of CpG islands that methylate with age is unknown. We used restriction landmark genome scanning (RLGS) to approximate the extent to which CpG islands change methylation status during aging. Comparison of more than 2000 loci in T lymphocytes isolated from newborn, middle age, and elderly people revealed that 29 loci ( approximately 1%) changed methylation status during aging, with 23 increasing methylation, and six decreasing. The same subset also changed methylation status with age in the esophagus, lung, and pancreas, but in variable directions. Virtual genome scanning identified one of these loci as a member of the forkhead family, recently implicated in aging, and another as an EST fragment. The methylation status of both correlated with level of expression. Confirming studies in multiple tissues from normal and DNMT1(+/-) mice demonstrated only one age dependent change in the methylation of more than 2000 loci, occurring in liver and kidney. These results indicate that the methylation status of the majority of CpG islands in both mice and humans is tightly controlled during aging, and that changes are infrequent and in humans confined to a specific subset of genes.
Collapse
Affiliation(s)
- John Tra
- Department of Pediatrics and Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
868
|
Abstract
Epigenetic inactivation of genes that are crucial for the control of normal cell growth is a hallmark of cancer cells. These epigenetic mechanisms include crosstalk between DNA methylation, histone modification and other components of chromatin higher-order structure, and lead to the regulation of gene transcription. Re-expression of genes epigenetically inactivated can result in the suppression of tumour growth or sensitization to other anticancer therapies. Small molecules that reverse epigenetic inactivation are now undergoing clinical trials in cancer patients. This, together with epigenomic analysis of chromatin alterations such as DNA methylation and histone acetylation, opens up the potential both to define epigenetic patterns of gene inactivation in tumours and to use drugs that target epigenetic silencing.
Collapse
Affiliation(s)
- Robert Brown
- Cancer Research UK Dept of Medical Oncology, Beatson Laboratories, Glasgow University, Glasgow, UK G61 1BD.
| | | |
Collapse
|
869
|
Rush LJ, Plass C. Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal Biochem 2002; 307:191-201. [PMID: 12202234 DOI: 10.1016/s0003-2697(02)00033-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The field of molecular biology was revolutionized by the advent of gel electrophoresis. Restriction landmark genomic scanning (RLGS) is a type of two-dimensional electrophoresis employed in the genome-wide assessment of genomic alterations. RLGS has been used to study genetic and epigenetic changes in normal tissues, primary tumors, cancer cell lines, and various organisms such as mice, rats, hamsters, bacteria, and plants. An RLGS profile displays over 2000 radiolabeled restriction landmark sites in a single assay. When conducted with methylation-sensitive restriction enzymes whose sites are preferentially located in CpG island regulatory regions, RLGS becomes a very versatile tool for the investigation of both normal and aberrant methylation patterns. Early studies performed on tumor DNA were mainly descriptive in nature, essentially a catalogue of loci that were changed to varying degrees in different tumor types. Over time, as investigators have become more proficient with RLGS and have undertaken high-throughput studies, the need for efficient cloning, imaging, and analysis systems has become paramount. Current studies focus on identifying specific genes and pathways involved in deregulated methylation in cancer. As such, RLGS analysis of tumor samples has made tremendous contributions to our understanding of the role of DNA methylation in cancer. Future directions will take advantage of the abundant genomic sequence data available to link all of the RLGS loci to genes and create biologically relevant methylation profiles of cancer. This review discusses practical considerations of using RLGS as a genome scanning tool and the past, present, and future applications in cancer biology.
Collapse
Affiliation(s)
- Laura J Rush
- Department of Veterinary Biosciences, Division of Human Cancer Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
870
|
Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21:5483-95. [PMID: 12154409 DOI: 10.1038/sj.onc.1205699] [Citation(s) in RCA: 1055] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
5-Azacytidine was first synthesized almost 40 years ago. It was demonstrated to have a wide range of anti-metabolic activities when tested against cultured cancer cells and to be an effective chemotherapeutic agent for acute myelogenous leukemia. However, because of 5-azacytidine's general toxicity, other nucleoside analogs were favored as therapeutics. The finding that 5-azacytidine was incorporated into DNA and that, when present in DNA, it inhibited DNA methylation, led to widespread use of 5-azacytidine and 5-aza-2'-deoxycytidine (Decitabine) to demonstrate the correlation between loss of methylation in specific gene regions and activation of the associated genes. There is now a revived interest in the use of Decitabine as a therapeutic agent for cancers in which epigenetic silencing of critical regulatory genes has occurred. Here, the current status of our understanding of the mechanism(s) by which 5-azacytosine residues in DNA inhibit DNA methylation is reviewed with an emphasis on the interactions of these residues with bacterial and mammalian DNA (cytosine-C5) methyltransferases. The implications of these mechanistic studies for development of less toxic inhibitors of DNA methylation are discussed.
Collapse
Affiliation(s)
- Judith K Christman
- Department of Biochemistry and Molecular Biology and UNMC/Eppley Cancer Center, University of Nebraska Medical Center, 984525 University Medical Center, Omaha, Nebraska, NE 68198-4525, USA.
| |
Collapse
|
871
|
Abstract
The laboratory mouse is one of the most powerful tools for both gene discovery and validation in cancer genetics. Recent technological advances in engineering the mouse genome with chromosome translocations, latent alleles, and tissue-specific and temporally regulated mutations have provided more exacting models of human disease. The marriage of mouse tumor models with rapidly evolving methods to profile genetic and epigenetic alterations in tumors, and to finely map genetic modifier loci, will continue to provide insight into the key pathways leading to tumorigenesis. These discoveries hold great promise for identifying relevant drug targets for treating human cancer.
Collapse
Affiliation(s)
- Laurie Jackson-Grusby
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts, MA 02142, USA.
| |
Collapse
|
872
|
Prokhortchouk E, Hendrich B. Methyl-CpG binding proteins and cancer: are MeCpGs more important than MBDs? Oncogene 2002; 21:5394-9. [PMID: 12154402 DOI: 10.1038/sj.onc.1205631] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Egor Prokhortchouk
- Group of Transcriptional Control and Oncogenesis, Institute of Gene Biology, Vavilova 34/5, 117334 Moscow, Russian Federation
| | | |
Collapse
|
873
|
Abstract
Cancer-associated DNA hypomethylation is as prevalent as cancer-linked hypermethylation, but these two types of epigenetic abnormalities usually seem to affect different DNA sequences. Much more of the genome is generally subject to undermethylation rather than overmethylation. Genomic hypermethylation in cancer has been observed most often in CpG islands in gene regions. In contrast, very frequent hypomethylation is seen in both highly and moderately repeated DNA sequences in cancer, including heterochromatic DNA repeats, dispersed retrotransposons, and endogenous retroviral elements. Also, unique sequences, including transcription control sequences, are often subject to cancer-associated undermethylation. The high frequency of cancer-linked DNA hypomethylation, the nature of the affected sequences, and the absence of associations with DNA hypermethylation are consistent with an independent role for DNA undermethylation in cancer formation or tumor progression. Increased karyotypic instability and activation of tumor-promoting genes by cis or trans effects, that might include altered heterochromatin-euchromatin interactions, may be important consequences of DNA hypomethylation which favor oncogenesis. The relationship of DNA hypomethylation to tumorigenesis is important to be considered in the light of cancer therapies involving decreasing DNA methylation. Inducing DNA hypomethylation may have short-term anticancer effects, but might also help speed tumor progression from cancer cells surviving the DNA demethylation chemotherapy.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Human Genetics Program/SL31, Department of Biochemistry, Tulane Medical School, New Orleans, Louisiana, LA 70122, USA.
| |
Collapse
|
874
|
Abstract
DNA methylation alterations are now widely recognized as a contributing factor in human tumorigenesis. A significant number of tumor suppressor genes are transcriptionally silenced by promoter hypermethylation, and recent research implicates alterations in chromatin structure as the mechanistic basis for this repression. The enzymes responsible for catalyzing DNA-cytosine methylation, as well as the proteins involved in interpreting the DNA methylation signal, have now been elucidated. Technological advances, including gene expression microarrays and genome scanning techniques, have allowed the comprehensive measurement of DNA methylation changes in human cancers. An important distinction between DNA methylation (epigenetic) and mutation or deletion (genetic) tumor suppressor gene inactivation is that epigenetic inactivation can be abrogated by small molecules, including DNA methyltransferase and histone deacetylase inhibitors. Further, strategies have been developed that combine treatments with drugs that reactivate silenced gene expression with secondary agents that target the re-expressed genes and/or reconstituted signal transduction pathways. In this review, we will discuss in detail the mechanisms of gene silencing by DNA methylation, the techniques used to decipher the complement of methylation-inactivated genes in human cancers, and current and future strategies for reactivating the expression of methylation-silenced genes.
Collapse
Affiliation(s)
- Adam R Karpf
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, UT 84112, USA.
| | | |
Collapse
|
875
|
Abstract
The DNA methylation pattern of a cell is exquisitely controlled during early development resulting in distinct methylation patterns. The tight control of DNA methylation is released in the cancer cell characterized by a reversal of methylation states. CpG island associated genes, in particular tumour suppressor or related genes, are often hypermethylated and this is associated with silencing of these genes. Therefore methylation is commonly convicted as a critical causal event in silencing this important class of genes in cancer. In this review, we argue that methylation is not the initial guilty party in triggering gene silencing in cancer, but that methylation of CpG islands is a consequence of prior gene silencing, similar to the role of methylation in maintaining the silencing of CpG island genes on the inactive X chromosome. We propose that gene silencing is the critical precursor in cancer, as it changes the dynamic interplay between de novo methylation and demethylation of the CpG island and tilts the balance to favour hypermethylation and chromatin inactivation.
Collapse
Affiliation(s)
- Susan J Clark
- Sydney Cancer Centre, Kanematsu Laboratories, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia.
| | | |
Collapse
|
876
|
Smiraglia DJ, Plass C. The study of aberrant methylation in cancer via restriction landmark genomic scanning. Oncogene 2002; 21:5414-26. [PMID: 12154404 DOI: 10.1038/sj.onc.1205608] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Restriction landmark genomic scanning (RLGS) has been used to study DNA methylation in cancer for nearly a decade. The strong bias of RLGS for assessing the methylation state of CpG islands genome wide makes this an attractive technique to study both hypo- and hypermethylation of regions of the genome likely to harbor genes. RLGS has been used successfully to identify regions of hypomethylation, candidate tumor suppressor genes, correlations between hypermethylation events and clinical factors, and quantification of hypermethylation in a multitude of malignancies. This review will examine the major uses of RLGS in the study of aberrant methylation in cancer and discuss the significance of some of the findings.
Collapse
Affiliation(s)
- Dominic J Smiraglia
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, OH 43210, USA.
| | | |
Collapse
|
877
|
Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA. DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 2002; 21:5450-61. [PMID: 12154407 DOI: 10.1038/sj.onc.1205605] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Carcinoma of the lung is the most common cause of cancer death worldwide. The estimated 5-year survival ranges from 6-16%, depending on the cell type. The best opportunity for improving survival of lung cancer patients is through early detection, when curative surgical resection is possible. Although the subjects at increased risk for developing carcinoma of the lung (long-term smokers) can be identified, only 10-20% of this group will ultimately develop the disease. Screening tests of long-term smokers employed to date (radiography and sputum cytology) have not been successful in reducing lung cancer mortality. The application of molecular markers specific for lung cancer offers new possibilities for early detection. Hypermethylation of CpG islands in the promoter regions of genes is a common phenomenon in lung cancer, as demonstrated by the analysis of the methylation status of over 40 genes from lung cancer tumors, cell lines, patient sputum and/or serum. Determination of the methylation patterns of multiple genes to obtain complex DNA methylation signatures promises to provide a highly sensitive and specific tool for lung cancer diagnosis. When combined with the development of non-invasive methods to detect such signatures, this may provide a viable method to screen subjects at risk for lung cancer.
Collapse
Affiliation(s)
- Jeffrey A Tsou
- Department of Biochemistry, University of Southern California, School of Medicine, Norris Comprehensive Cancer Center, NOR 6420, 1441 Eastlake Ave, Los Angeles, California, CA 90089-9176, USA
| | | | | | | |
Collapse
|
878
|
Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002; 21:5427-40. [PMID: 12154405 DOI: 10.1038/sj.onc.1205600] [Citation(s) in RCA: 879] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have come a long way since the first reports of the existence of aberrant DNA methylation in human cancer. Hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes is now firmly established as an important mechanism for gene inactivation. CpG island hypermethylation has been described in almost every tumor type. Many cellular pathways are inactivated by this type of epigenetic lesion: DNA repair (hMLH1, MGMT), cell cycle (p16(INK4a), p15(INK4b), p14(ARF)), apoptosis (DAPK), cell adherence (CDH1, CDH13), detoxification (GSTP1), etc em leader However, we still know little of the mechanisms of aberrant methylation and why certain genes are selected over others. Hypermethylation is not an isolated layer of epigenetic control, but is linked to the other pieces of the puzzle such as methyl-binding proteins, DNA methyltransferases and histone deacetylase, but our understanding of the degree of specificity of these epigenetic layers in the silencing of specific tumor suppressor genes remains incomplete. The explosion of user-friendly technologies has given rise to a rapidly increasing list of hypermethylated genes. Careful functional and genetic studies are necessary to determine which hypermethylation events are truly relevant for human tumorigenesis. The development of CpG island hypermethylation profiles for every form of human tumors has yielded valuable pilot clinical data in monitoring and treating cancer patients based in our knowledge of DNA methylation. Basic and translational will both be needed in the near future to fully understand the mechanisms, roles and uses of CpG island hypermethylation in human cancer. The expectations are high.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Laboratory, Molecular Pathology Program, Centro Nacional de Investigaciones Oncologicas, 28029 Madrid, Spain
| |
Collapse
|
879
|
Li J, Protopopov A, Wang F, Senchenko V, Petushkov V, Vorontsova O, Petrenko L, Zabarovska V, Muravenko O, Braga E, Kisselev L, Lerman MI, Kashuba V, Klein G, Ernberg I, Wahlestedt C, Zabarovsky ER. NotI subtraction and NotI-specific microarrays to detect copy number and methylation changes in whole genomes. Proc Natl Acad Sci U S A 2002; 99:10724-9. [PMID: 12149436 PMCID: PMC125025 DOI: 10.1073/pnas.132271699] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2002] [Indexed: 11/18/2022] Open
Abstract
Methylation, deletions, and amplifications of cancer genes constitute important mechanisms in carcinogenesis. For genome-wide analysis of these changes, we propose the use of NotI clone microarrays and genomic subtraction, because NotI recognition sites are closely associated with CpG islands and genes. We show here that the CODE (Cloning Of DEleted sequences) genomic subtraction procedure can be adapted to NotI flanking sequences and to CpG islands. Because the sequence complexity of this procedure is greatly reduced, only two cycles of subtraction are required. A NotI-CODE procedure can be used to prepare NotI representations (NRs) containing 0.1-0.5% of the total DNA. The NRs contain, on average, 10-fold less repetitive sequences than the whole human genome and can be used as probes for hybridization to NotI microarrays. These microarrays, when probed with NRs, can simultaneously detect copy number changes and methylation. NotI microarrays offer a powerful tool with which to study carcinogenesis.
Collapse
Affiliation(s)
- Jingfeng Li
- Microbiology and Tumor Biology Center, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
880
|
Abstract
Research over the past decade has established that the progression from normal colonic epithelium to colon cancer is in every case a step-wise process in which specific pathologic and molecular markers can be identified for study and clinical therapy. Genetic and epigenetic instability appears fundamentally important to this process. We have now determined that this neoplastic progression occurs along a limited set of pathways, in which specific tumor suppressors are inactivated or oncogenes activated in a defined order. Although incomplete, our new understanding of the process of carcinogenesis in the colon has already significantly impacted patient care and will continue to do so for the foreseeable future. Increasingly rapid research developments and technologic advances will transform the way we prevent, diagnose, and treat this common and deadly form of cancer.
Collapse
Affiliation(s)
- John P Lynch
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, 415 Curie, Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
881
|
Abstract
Methylation has been implied in a number of biological processes and has been shown to vary under environmental influences as well as in age. Most results on the correlation of methylation patterns with phenotypic characteristics of cells have been obtained by analysis of very few or even single genomic fragments for methylation. However, variation of methylation may more often than not be a phenomenon that affects multiple genomic loci. The role of methylation has been most conclusively demonstrated in complex disease, with cancer being the most prominent example. The influence of aging and environmental influences such as diet seems to be on global methylation patterns, in turn exerting local effects on groups of genes. Hence, methylation seems literally to be orchestrating complex genetic systems. It could, therefore, be considered an archetypal "genomics" parameter. In consequence, technologies used to analyze methylation patterns should be as industrialized as possible to capture the local events across the entire genome. Epigenomics' research team is the first to have achieved the industrialized production of genome sequence-specific wide methylation data. Our microarray and mass-spectrometry-based detection platform currently allow the analysis of up to 50,000 methylation positions per day, for the first time making methylation data amenable to sophisticated information mining. The information content of methylation position has never been analyzed using the high-dimensional statistical methods that are recognized to be required for the analysis of, for example, mRNA expression profiles or proteomic data. As methylation patterns are nothing but a quasi-digital form of expression data, their information content must be evaluated using similar but adapted algorithms. This article presents a broad set of studies that demonstrate that methylation yields information that is comparable or even superior to the current state of the art, namely, mRNA profiling. We argue that the resulting robust, digital and-because of the highly stable nature of DNA as the analyte-more reproducible information could become the "gold standard" for clinical diagnostics and disease gene identification in age-related, environmentally influenced and epigenetic disease in general, substituting for mRNA expression.
Collapse
|
882
|
Abstract
Cytosine guanine dinucleotide (CpG) island methylation is a known mechanism of epigenetic inheritance in postmeiotic cells. Through associated chromatin changes and silencing, such epigenetic states can influence cellular physiology and affect disease risk and severity. Our studies of CpG island methylation in normal colorectal mucosa revealed progressive age-related increases at multiple gene loci, suggesting genome-wide molecular alterations with potential to silence gene expression. However, there was considerable variation in the degree of methylation among individuals of comparable ages. Such variation could be related to genetic factors, lifestyle, or environmental exposures. Studies in ulcerative colitis and hepatocellular cirrhosis and neoplasia revealed that chronic inflammatory states are accompanied by marked increases in CpG island methylation in normal-appearing tissues, confirming the hypothesis that proinflammatory exposures could account for part of the epigenetic variation in human populations. Preliminary data also suggest potential influences of lifestyle and exposure factors on CpG island methylation. It is suggested that epigenetic variation related to aging, lifestyle, exposures and possibly genetic factors, is one of the modulators of acquired, age-related human diseases, including neoplasia.
Collapse
Affiliation(s)
- Jean-Pierre Issa
- Department of Leukemia, The University of Texas at M.D. Anderson Cancer Center, Houston 77030, USA.
| |
Collapse
|
883
|
Zardo G, Reale A, Passananti C, Pradhan S, Buontempo S, De Matteis G, Adams RLP, Caiafa P. Inhibition of poly(ADP-ribosyl)ation induces DNA hypermethylation: a possible molecular mechanism. FASEB J 2002; 16:1319-21. [PMID: 12154007 DOI: 10.1096/fj.01-0827fje] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The pattern of DNA methylation established during embryonic development is necessary for the control of gene expression and is preserved during the replicative process. DNA regions of about 1-2 kb in size, termed CpG islands and located mostly in the promoter regions of housekeeping genes, are protected from methylation, despite being about 6-10 times richer in the dinucleotide CpG than the rest of DNA. Their unmethylated state guarantees the expression of the corresponding housekeeping genes. At present, the mechanism by which CpG islands remain protected from methylation is not clear. However, some results suggest that poly(ADP-ribosyl)ation, an enzymatic process that introduces a postsynthetic modification onto chromatin proteins, might be involved. Here we show in L929 mouse fibroblast cells that inhibition of poly(ADP-ribose) polymerase(s) at different cell-cycle phases increases the mRNA and protein levels of the major maintenance DNA methyltransferase (DNMT1) in G1/S border. Increase of DNMT1 results in a premature PCNA-DNMT1 complex formation, which facilitates robust maintenance, as well as de novo DNA methylation processes during the G1/S border, which leads to abnormal hypermethylation.
Collapse
Affiliation(s)
- Giuseppe Zardo
- Department of Cellular Biotechnologies and Haematology, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
884
|
Shiraishi M, Oates AJ, Sekiya T. An overview of the analysis of DNA methylation in mammalian genomes. Biol Chem 2002; 383:893-906. [PMID: 12222679 DOI: 10.1515/bc.2002.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
DNA methylation at position C5 of the pyrimidine ring of cytosine in mammalian genomes has received a great deal of research interest due to its importance in many biological phenomena. It is associated with events such as epigenetic gene silencing and the maintenance of genome integrity. Aberrant DNA methylation, particularly that of chromosomal regions called CpG islands, is an important step in carcinogenesis. In order to elucidate methylation profiling of complex genomes, various methods have been developed. Many of these methods are based on the differential reactivity of cytosine and 5-methylcytosine to various chemicals. The combined use of these chemical reactions and other preexisting methods has enabled the discrimination of cytosine and 5-methylcytosine in complex genomes. The use of proteins that preferentially bind to methylated DNA has also successfully been used to discriminate between methylated and unmethylated sites. The chemical and structural dissection of the in vivo processes of enzymatic methylation and the binding of methyl-CpG binding proteins provides evidence for the complex mechanisms that nature has acquired. In this review we summarize the methods available for the discrimination between cytosine and 5-methylcytosine in complex genomes.
Collapse
Affiliation(s)
- Masahiko Shiraishi
- DNA Methylation and Genome Function Project, National Cancer Center Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
885
|
Abstract
Patterns of DNA methylation and chromatin structure are profoundly altered in neoplasia and include genome-wide losses of, and regional gains in, DNA methylation. The recent explosion in our knowledge of how chromatin organization modulates gene transcription has further highlighted the importance of epigenetic mechanisms in the initiation and progression of human cancer. These epigenetic changes -- in particular, aberrant promoter hypermethylation that is associated with inappropriate gene silencing -- affect virtually every step in tumour progression. In this review, we discuss these epigenetic events and the molecular alterations that might cause them and/or underlie altered gene expression in cancer.
Collapse
Affiliation(s)
- Peter A Jones
- USC/Norris Comprehensive Cancer Center, Department of Urology, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, MS 8302L, Los Angeles, California 90089-9181, USA.
| | | |
Collapse
|
886
|
Strathdee G, Brown R. Epigenetic cancer therapies: DNA methyltransferase inhibitors. Expert Opin Investig Drugs 2002; 11:747-54. [PMID: 12036419 DOI: 10.1517/13543784.11.6.747] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human cancers frequently show altered patterns of DNA methylation, particularly at CpG islands. These CpG islands are sequences of DNA rich in CpG dinucleotides and are often found close to gene promoters. Methylation within islands has been shown to be associated with transcriptional repression of the linked gene. Genes involved in all facets of tumour development and progression can become methylated and epigenetically silenced. Re-expression of such silenced genes can lead to suppression of tumour growth or sensitisation to anticancer therapies. Agents that can reverse DNA methylation include nucleoside and non-nucleoside inhibitors of DNA methyltransferase. Such agents are now undergoing preclinical evaluation and clinical trials in cancer patients.
Collapse
Affiliation(s)
- Gordon Strathdee
- Cancer Research UK, Dept Medical Oncology, Beatson Laboratories, Glasgow University, Glasgow, G61 1BD, Scotland, UK
| | | |
Collapse
|
887
|
Abstract
The development of multiple DNA methylation analysis techniques, including higher-throughput assays, has resulted in data structures of increasing complexity and diversity. Here, we discuss the general principles of DNA methylation analysis and propose a nomenclature for the various types of methylation analysis. We briefly outline several DNA methylation analysis techniques and discuss how these different technologies affect the structure of the resulting methylation data. We then describe the basic statistics and bioinformatic principles relevant to the analysis of simple and complex methylation data.
Collapse
Affiliation(s)
- Kimberly D Siegmund
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, USA
| | | |
Collapse
|
888
|
Abstract
Restriction landmark genome scanning (RLGS) is a quantitative approach that is uniquely suited for simultaneously assessing the methylation status of thousands of CpG islands. RLGS separates radiolabeled NotI fragments (or other CpG-containing restriction enzyme fragments) in two dimensions and allows distinction of single-copy CpG islands from multicopy CpG-rich sequences. The methylation sensitivity of the endonuclease activity of NotI provides the basis for differential methylation analysis, and NotI sites occur primarily in CpG islands and genes. RLGS has been used to identify novel imprinted genes, novel targets of DNA amplification and methylation in human cancer, and to identify deletion, methylation, and gene amplification in a mouse model of tumorigenesis. Such massively parallel analyses are critical for pattern recognition within and between tumor types, and for estimating the overall influence of CpG island methylation on the cancer cell genome. RLGS is also a useful method for integrating methylation analyses with high-resolution gene copy number analyses.
Collapse
Affiliation(s)
- Joseph F Costello
- University of California-San Francisco, San Francisco, CA 94115-0875, USA.
| | | | | |
Collapse
|
889
|
Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP, Herman JG, Baylin SB. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 2002; 31:141-9. [PMID: 11992124 DOI: 10.1038/ng892] [Citation(s) in RCA: 638] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant hypermethylation of gene promoters is a major mechanism associated with inactivation of tumor-suppressor genes in cancer. We previously showed this transcriptional silencing to be mediated by both methylation and histone deacetylase activity, with methylation being dominant. Here, we have used cDNA microarray analysis to screen for genes that are epigenetically silenced in human colorectal cancer. By screening over 10,000 genes, we show that our approach can identify a substantial number of genes with promoter hypermethylation in a given cancer; these are distinct from genes with unmethylated promoters, for which increased expression is produced by histone deacetylase inhibition alone. Many of the hypermethylated genes we identified have high potential for roles in tumorigenesis by virtue of their predicted function and chromosome position. We also identified a group of genes that are preferentially hypermethylated in colorectal cancer and gastric cancer. One of these genes, SFRP1, belongs to a gene family; we show that hypermethylation of four genes in this family occurs very frequently in colorectal cancer, providing for (i) a unique potential mechanism for loss of tumor-suppressor gene function and (ii) construction of a molecular marker panel that could detect virtually all colorectal cancer.
Collapse
Affiliation(s)
- Hiromu Suzuki
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
890
|
Smiraglia DJ, Szymanska J, Kraggerud SM, Lothe RA, Peltomäki P, Plass C. Distinct epigenetic phenotypes in seminomatous and nonseminomatous testicular germ cell tumors. Oncogene 2002; 21:3909-16. [PMID: 12032829 DOI: 10.1038/sj.onc.1205488] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Revised: 03/14/2002] [Accepted: 03/18/2002] [Indexed: 01/16/2023]
Abstract
The genetic nature of testicular germ cell tumors and the molecular mechanisms underlying the morphological and clinical differences between the two subtypes, seminomas and nonseminomas, remains unclear. Genetic studies show that both subtypes exhibit many of the same regional genomic disruptions, although the frequencies vary and few clear differences are found. We demonstrate significant epigenetic differences between seminomas and nonseminomas by restriction landmark genomic scanning. Seminomas show almost no CpG island methylation, in contrast to nonseminomas that show CpG island methylation at a level similar to other solid tumors. We find an average of 1.11% of CpG islands methylation in nonseminomas, but only 0.08% methylated in seminomas. Furthermore, we demonstrate that seminomas are more highly hypomethylated than nonseminomas throughout their genome. Since both subtypes are thought to arise from primordial germ cells, the epigenetic differences seen between these subtypes may reflect the normal developmental switch in primordial germ cells from an undermethylated genome to a normally methylated genome. We discuss these findings in relation to different developmental models for seminomatous and nonseminomatous testicular germ cell tumors.
Collapse
Affiliation(s)
- Dominic J Smiraglia
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 420 West 12th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
891
|
Shiraishi M, Sekiguchi A, Terry MJ, Oates AJ, Miyamoto Y, Chuu YH, Munakata M, Sekiya T. A comprehensive catalog of CpG islands methylated in human lung adenocarcinomas for the identification of tumor suppressor genes. Oncogene 2002; 21:3804-13. [PMID: 12032849 DOI: 10.1038/sj.onc.1205454] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2001] [Revised: 02/15/2002] [Accepted: 02/20/2002] [Indexed: 01/16/2023]
Abstract
CpG island methylation is an important mechanism in gene silencing and is a key epigenetic event in cancer development. As yet, the number and identities of the genes that are inactivated in cancer cells has not been determined. In order to address this issue, we have performed a comprehensive isolation of CpG islands that are methylated in human lung adenocarcinomas. We have isolated approximately 200 CpG islands that are methylated in tumor DNA including those of known tumor-associated genes such as the HOXA5 gene. As the library contains the CpG islands of a number of known tumor suppressor genes it is highly likely that additional, previously unidentified tumor suppressor genes, will be present. On average, 1-2% of CpG islands were methylated specifically in tumors although this figure differed greatly between patients. This study provides an important resource in the search for genes inactivated in tumors and for the investigation of epigenetic dysregulation of gene expression by CpG island methylation.
Collapse
Affiliation(s)
- Masahiko Shiraishi
- DNA Methylation and Genome Function Project, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
892
|
Billard LM, Magdinier F, Lenoir GM, Frappart L, Dante R. MeCP2 and MBD2 expression during normal and pathological growth of the human mammary gland. Oncogene 2002; 21:2704-12. [PMID: 11965543 DOI: 10.1038/sj.onc.1205357] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 01/21/2002] [Accepted: 01/22/2002] [Indexed: 11/09/2022]
Abstract
During the last years, a direct link between DNA methylation and repressive chromatin structure has been established. This structural modification is mediated by histone deacetylases targeted to the methylated sequences by Methyl Binding Proteins (MBD). Human cancer cells exhibit both a global hypomethylation and some localized hypermethylations suggesting that the deregulation of the methylation machinery is a central event in tumorigenesis. Therefore, we have investigated in human tissues the expression of two major MBDs, MeCP2 and MBD2, during the proliferation of normal breast and in benign and neoplasic breast tumors. Quantitation of the transcripts indicates that MBD2 mRNAs are 20-30-fold more abundant than MeCP2 transcripts in the adult and fetal human mammary gland. In pathological tissues samples MBD2 mRNA levels are significantly higher (P=0.001) in benign tumors compared with normal breast tissues, whereas MeCP2 expression is not modified in these specimens. In neoplasic samples a deregulation of the expression of both genes was found. The amounts of MBD2 and MeCP2 transcripts vary greatly between samples in cancer cells compared to normal breast tissues or benign tumors, and in invasive ductal carcinomas the amount of MBD2 mRNA is significantly (P=0.03) associated with the tumor size. Taken together these data suggest that upregulation of MBD2 might be associated with breast cell proliferation. In line with this hypothesis MBD2 is also upregulated during the prenatal development of the human mammary gland, but in contrast to that observed in tumor cells, MeCP2 is also coordinately upregulated in the fetal breast tissues, suggesting that deregulation of MeCP2 and MBD2 occurs in human breast cancers.
Collapse
Affiliation(s)
- Lise-Marie Billard
- Laboratoire de Génétique, UMR 5641 CNRS, UCBL1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France
| | | | | | | | | |
Collapse
|
893
|
Moinova HR, Chen WD, Shen L, Smiraglia D, Olechnowicz J, Ravi L, Kasturi L, Myeroff L, Plass C, Parsons R, Minna J, Willson JKV, Green SB, Issa JP, Markowitz SD. HLTF gene silencing in human colon cancer. Proc Natl Acad Sci U S A 2002; 99:4562-7. [PMID: 11904375 PMCID: PMC123687 DOI: 10.1073/pnas.062459899] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chromatin remodeling enzymes are increasingly implicated in a variety of important cellular functions. Various components of chromatin remodeling complexes, including several members of the SWI/SNF family, have been shown to be disrupted in cancer. In this study we identified as a target for gene inactivation in colon cancer the gene for helicase-like transcription factor (HLTF), a SWI/SNF family protein. Loss of HLTF expression accompanied by HLTF promoter methylation was noted in nine of 34 colon cancer cell lines. In these cell lines HLTF expression was restored by treatment with the demethylating agent 5-azacytidine. In further studies of primary colon cancer tissues, HLTF methylation was detected in 27 of 63 cases (43%). No methylation of HLTF was detected in breast or lung cancers, suggesting selection for HLTF methylation in colonic malignancies. Transfection of HLTF suppressed 75% of colony growth in each of three different HLTF-deficient cell lines, but showed no suppressive effect in any of three HLTF-proficient cell lines. These findings show that HLTF is a common target for methylation and epigenetic gene silencing in colon cancer and suggest HLTF is a candidate colon cancer suppressor gene.
Collapse
Affiliation(s)
- Helen R Moinova
- Cancer Center and Department of Medicine at Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
894
|
Ueki T, Walter KM, Skinner H, Jaffee E, Hruban RH, Goggins M. Aberrant CpG island methylation in cancer cell lines arises in the primary cancers from which they were derived. Oncogene 2002; 21:2114-7. [PMID: 11960385 DOI: 10.1038/sj.onc.1205275] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2001] [Revised: 12/05/2001] [Accepted: 12/19/2001] [Indexed: 12/31/2022]
Abstract
A higher prevalence of epigenetic inactivation of tumor suppressor genes has been reported in cancer cell line populations compared to primary cancer populations. Cancer-related genes are commonly methylated in cancer cell lines but it is not known the extent to which tumor suppressor genes may be artificially methylated in vitro. We therefore examined 10 pancreatic cancer cell lines and corresponding primary tumors for aberrant DNA methylation of promoter CpG islands of eight genes and seven CpG islands. Using methylation-specific PCR (MSP), methylation was not detected at any of the 15 CpG islands in 15 normal pancreata or in an immortalized normal pancreatic duct epithelial (HPDE) cell line. Of 150 loci examined, 49 loci were methylated in both primary carcinomas and their corresponding cell lines, 95 loci were not methylated in either cell lines or their corresponding primary carcinomas. There were four loci methylated only in cell lines while another two loci were methylated only in primary carcinomas. Overall, the methylation status of primary carcinomas and their cell lines were concordant in 96% of cases (144 of 150) (J statistic; J=0.92, P<0.0001). We conclude that most of the DNA methylation of tumor suppressor genes observed in cancer cell lines is present in the primary carcinomas from which they were derived.
Collapse
Affiliation(s)
- Takashi Ueki
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, MD 21205-2196, USA
| | | | | | | | | | | |
Collapse
|
895
|
Rietveld LE, Caldenhoven E, Stunnenberg HG. In vivo repression of an erythroid-specific gene by distinct corepressor complexes. EMBO J 2002; 21:1389-97. [PMID: 11889044 PMCID: PMC125357 DOI: 10.1093/emboj/21.6.1389] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To assess the mechanisms of repression of the erythroid-specific carbonic anhydrase II (CAII) locus we used chromatin immunoprecipitation and show that an NCoR-histone deacetylase (HDAC)3 complex is recruited by the nuclear receptor v-ErbA to the intronic HS2 enhancer turning it into a potent silencer. Furthermore we demonstrate that efficient CAII silencing requires binding of a MeCP2-targeted HDAC-containing corepressor complex to the hypermethylated CpG-island at the promoter. Activation of transcription by either AZAdC or thyroid hormone results in loss of one of the two corepressor complexes. Thyroid hormone further replaces the enhancer-bound NCoR-corepressor complex by the TRAP220 coactivator. Treatment with the HDAC inhibitor trichostatin A (TSA) causes activation of CAII transcription and histone H3 and H4 hyperacetylation at the enhancer, apparently without affecting binding of the two corepressor complexes. Unexpectedly, histone H3 and H4 at the fully repressed promoter are already hyperacetylated despite the close apposition of the MeCP2-targeted HDAC complex. Acetylation of histone H4, but not H3, at the promoter is moderately increased following TSA treatment. Our data suggest that the hyperacetylated but repressed CAII promoter is (partially) remodeled and primed for activation in v-ErbA-transformed cells.
Collapse
Affiliation(s)
| | | | - Hendrik G. Stunnenberg
- Department of Molecular Biology, NCMLS 191, University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
Corresponding author e-mail: L.E.G.Rietveld and E.Caldenhoven contributed equally to this work
| |
Collapse
|
896
|
Goessl C, Müller M, Heicappell R, Krause H, Schostak M, Straub B, Miller K. Methylation-specific PCR for detection of neoplastic DNA in biopsy washings. J Pathol 2002; 196:331-4. [PMID: 11857497 DOI: 10.1002/path.1063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Epigenetic DNA alterations such as promoter hypermethylation of glutathione S-transferase P1 (GSTP1) in prostatic adenocarcinoma frequently constitute tumour biomarkers. Neoplastic transformation was identified in washings of prostate biopsies by GSTP1 promoter hypermethylation, using methylation-specific PCR (MSP). Twenty-six patients undergoing sextant transrectal prostate biopsies for clinically suspected prostate cancer were enrolled. All ten patients diagnosed with adenocarcinoma (100%) and four of six patients with prostatic intraepithelial neoplasia (67%), but none of ten patients with benign hyperplasia (0%), exhibited GSTP1 promoter hypermethylation in at least one out of six biopsy washings. Since this approach is transferable to various cancer entities, a sensitive and specific DNA-based analysis of biopsy material seems generally feasible without impeding routine histopathological examination.
Collapse
Affiliation(s)
- Carsten Goessl
- Department of Urology, Benjamin Franklin Medical School, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
897
|
Rush LJ, Heinonen K, Mrózek K, Wolf BJ, Abdel-Rahman M, Szymanska J, Peltomäki P, Kapadia F, Bloomfield CD, Caligiuri MA, Plass C. Comprehensive cytogenetic and molecular genetic characterization of the TI-1 acute myeloid leukemia cell line reveals cross-contamination with K-562 cell line. Blood 2002; 99:1874-6. [PMID: 11871388 DOI: 10.1182/blood.v99.5.1874] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
898
|
Adorján P, Distler J, Lipscher E, Model F, Müller J, Pelet C, Braun A, Florl AR, Gütig D, Grabs G, Howe A, Kursar M, Lesche R, Leu E, Lewin A, Maier S, Müller V, Otto T, Scholz C, Schulz WA, Seifert HH, Schwope I, Ziebarth H, Berlin K, Piepenbrock C, Olek A. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res 2002; 30:e21. [PMID: 11861926 PMCID: PMC101257 DOI: 10.1093/nar/30.5.e21] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant DNA methylation of CpG sites is among the earliest and most frequent alterations in cancer. Several studies suggest that aberrant methylation occurs in a tumour type-specific manner. However, large-scale analysis of candidate genes has so far been hampered by the lack of high throughput assays for methylation detection. We have developed the first microarray-based technique which allows genome-wide assessment of selected CpG dinucleotides as well as quantification of methylation at each site. Several hundred CpG sites were screened in 76 samples from four different human tumour types and corresponding healthy controls. Discriminative CpG dinucleotides were identified for different tissue type distinctions and used to predict the tumour class of as yet unknown samples with high accuracy using machine learning techniques. Some CpG dinucleotides correlate with progression to malignancy, whereas others are methylated in a tissue-specific manner independent of malignancy. Our results demonstrate that genome-wide analysis of methylation patterns combined with supervised and unsupervised machine learning techniques constitute a powerful novel tool to classify human cancers.
Collapse
Affiliation(s)
- Péter Adorján
- Information Sciences, Biomedical Research and Development, Epigenomics AG, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
899
|
Wimmer K, Zhu Xx XX, Rouillard JM, Ambros PF, Lamb BJ, Kuick R, Eckart M, Weinhäusl A, Fonatsch C, Hanash SM. Combined restriction landmark genomic scanning and virtual genome scans identify a novel human homeobox gene, ALX3, that is hypermethylated in neuroblastoma. Genes Chromosomes Cancer 2002; 33:285-94. [PMID: 11807986 DOI: 10.1002/gcc.10030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Restriction landmark genome scanning (RLGS) allows comparative analysis of several thousand DNA fragments in the genome and provides a means to identify CpG islands that are altered in tumor cells as a result of amplification, deletion, or methylation changes. We have developed a novel informatics tool, designated virtual genome scan (VGS), that makes it possible to predict automatically the sequence of fragments in RLGS patterns by matching to the human genome sequence. A combination of RLGS and VGS was utilized to identify changes of chromosome 1-derived fragments in neuroblastoma. A NotI-EcoRV fragment was found to be absent frequently in neuroblastoma cell line RLGS patterns. Sequence prediction by VGS as well as cloning of the fragment showed that it contained a CpG island that is part of the human orthologue of the hamster homeobox gene Alx3. Expression analysis in a panel of human and mouse tissues showed predominant expression of ALX3 in brain tissue. Methylation-sensitive sequence analysis of the promoter region in neuroblastoma cell lines indicated that methylation of specific sequences correlated with repression of the ALX3 gene. Expression was re-induced after treatment with the methylation inhibitor 5-aza-2'-deoxycytidine. Promoter methylation analysis of ALX3 in primary neuroblastoma tumors, using methylation-sensitive polymerase chain reaction, found preferential ALX3 methylation in advanced-stage tumors. The VGS approach we have implemented in combination with RLGS is useful for the identification of genomic CpG island-related methylation changes or deletions in cancer.
Collapse
Affiliation(s)
- Katharina Wimmer
- Institut für Medizinische Biologie, Universität Wien, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
900
|
Pradhan S, Kim GD. The retinoblastoma gene product interacts with maintenance human DNA (cytosine-5) methyltransferase and modulates its activity. EMBO J 2002; 21:779-88. [PMID: 11847125 PMCID: PMC125847 DOI: 10.1093/emboj/21.4.779] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian DNA (cytosine-5) methyltransferase (Dnmt1) is involved in the maintenance of methylation patterns in the genome during DNA replication and development. The retinoblastoma gene product, Rb, is a cell cycle regulator protein that represses transcription by recruiting histone deacetylase (HDAC1). In vivo, histone deacetylase associates with Dnmt1. Here we show that Rb itself associates with human Dnmt1 (hDnmt1) independently of its own phosphorylation status. Methyltransferase activity was co-purified with Rb. The regulatory domain of hDnmt1 binds strongly to the B and C pockets of Rb (amino acids 701-872) and inhibits methyltransferase activity by disruption of the hDnmt1-DNA binary complex. Weak interaction of Rb pockets A and B with Dnmt1 was also observed. Overexpression of Rb leads to hypomethylation of the cellular DNA, suggesting that Rb may modulate Dnmt1 activity during DNA replication in the cell cycle.
Collapse
|