51
|
Xia X, Li H, Xu X, Wu C, Wang Z, Yi J, Zhao G, Du M. LYC loaded ferritin nanoparticles for intracerebral delivery and the attenuation of neurodegeneration in D-gal-induced mice. BIOMATERIALS ADVANCES 2023; 151:213419. [PMID: 37148595 DOI: 10.1016/j.bioadv.2023.213419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
Recombinant human H-ferritin nanocage (rHuHF) loaded with natural antioxidative lycopene molecules (LYC) was successfully constructed for the first time, aiming to enrich LYC in the brain and explore the regulation mechanism of this nanoparticles on neurodegeneration. Here, the mouse model was constructed via D-galactose-induced neurodegeneration based on behavioural analysis, histological observation, immunostaining analysis, Fourier transform infrared microscopy, and Western blotting analysis for the regulation of rHuHF-LYC. rHuHF-LYC improved the behaviour of mice in a dose-dependent manner. Besides, rHuHF-LYC can attenuate neuronal damage, maintain the number of Nissl body, increase the level of unsaturated fat, inhibit the activation of glial cells, and prevent excessive accumulation of neurotoxic proteins in the hippocampus of mice. More importantly, synaptic plasticity was activated in response to the regulation of rHuHF-LYC with excellent biocompatibility and biosafety. This study proved the validity of the direct use of natural antioxidant nano drugs for treating neurodegeneration, providing a promising therapeutic option against further imbalances in the degenerative brain microenvironment.
Collapse
Affiliation(s)
- Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Chao Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
52
|
Feng L, Luo G, Li Y, Zhang C, Liu Y, Liu Y, Chen H, He D, Zhu Y, Gan L. Curcumin-dependent phenotypic transformation of microglia mediates resistance to pseudorabies-induced encephalitis. Vet Res 2023; 54:25. [PMID: 36918933 PMCID: PMC10015794 DOI: 10.1186/s13567-023-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 03/15/2023] Open
Abstract
Pseudorabies virus (PRV) causes viral encephalitis, a devastating disease with high mortality worldwide. Curcumin (CUR) can reduce inflammatory damage by altering the phenotype of microglia; however, whether and how these changes mediate resistance to PRV-induced encephalitis is still unclear. In this study, BV2 cells were infected with/without PRV for 24 h and further treated with/without CUR for 24 h. The results indicated that CUR promoted the polarization of PRV-infected BV2 cells from the M1 phenotype to the M2 phenotype and reversed PRV-induced mitochondrial dysfunction. Furthermore, M1 BV2 cell secretions induced signalling pathways leading to apoptosis in PC-12 neuronal cells, and this effect was abrogated by the secretions of M2 BV2 cells. RNA sequencing and bioinformatics analysis predicted that this phenotypic shift may be due to changes in energy metabolism. Furthermore, Western blot analysis showed that CUR inhibited the increase in AMP-activated protein kinase (AMPK) phosphorylation, glycolysis, and triacylglycerol synthesis and the reduction in oxidative phosphorylation induced by PRV infection. Moreover, the ATP levels in M2 BV2 cells were higher than those in M1 cells. Furthermore, CUR prevented the increase in mortality, elevated body temperature, slowed growth, nervous system excitation, brain tissue congestion, vascular cuffing, and other symptoms of PRV-induced encephalitis in vivo. Thus, this study demonstrated that CUR protected against PRV-induced viral encephalitis by switching the phenotype of BV2 cells, thereby protecting neurons from inflammatory injury, and this effect was mediated by improving mitochondrial function and the AMPK/NF-κB p65-energy metabolism-related pathway.
Collapse
Affiliation(s)
- Luqiu Feng
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Guodong Luo
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yuhang Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Chen Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yuxuan Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yanqing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Hongyue Chen
- Chongqing General Station of Animal Husbandry Technology Promotion, Chongqing, 401120, China
| | - Daoling He
- Chongqing General Station of Animal Husbandry Technology Promotion, Chongqing, 401120, China
| | - Yan Zhu
- Chongqing General Station of Animal Husbandry Technology Promotion, Chongqing, 401120, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
53
|
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury. Asian J Pharm Sci 2023; 18:100783. [PMID: 36891470 PMCID: PMC9986716 DOI: 10.1016/j.ajps.2023.100783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/13/2023] Open
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies. One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier (BBB), which affects the intracerebral delivery of drugs. Ginkgolide B (GB), a major bioactive component in commercially available products of Ginkgo biloba, has been shown significance in CI/RI treatment by regulating inflammatory pathways, oxidative damage, and metabolic disturbance, and seems to be a candidate for stroke recovery. However, limited by its poor hydrophilicity and lipophilicity, the development of GB preparations with good solubility, stability, and the ability to cross the BBB remains a challenge. Herein, we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid (DHA) to obtain a covalent complex GB-DHA, which can not only enhance the pharmacological effect of GB, but can also be encapsulated in liposomes stably. The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion (MCAO) rats. Compared to the marketed ginkgolide injection, Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion. Low levels of reactive oxygen species (ROS) and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment, while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype, which modulate neuroinflammatory and angiogenesis. In addition, Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway. Thus, transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects.
Collapse
|
54
|
Zhang Y, Ma R, Deng Q, Wang W, Cao C, Yu C, Li S, Shi L, Tian J. S-adenosylmethionine improves cognitive impairment in D-galactose-induced brain aging by inhibiting oxidative stress and neuroinflammation. J Chem Neuroanat 2023; 128:102232. [PMID: 36632907 DOI: 10.1016/j.jchemneu.2023.102232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Oxidative stress and neuroinflammation play crucial roles in aging. S-adenosylmethionine (SAM), a popular supplement, is a potential antioxidant and candidate therapy for depression. This study aimed to evaluate the neuroprotective effects of SAM on D-galactose-induced brain aging and explore its underlying mechanisms. Brain aging model was established with D-galactose (180 mg/kg/day) for 8 weeks. During the last 4 weeks, SAM (16 mg/kg) was co-administrated with D-galactose. Behavior tests were used to assess cognitive function and depression-like behaviors of rats. Results showed that cognitive impairment and depression-like behaviors were reversed by SAM. SAM reduced neuronal cell loss, increased brain-derived neurotrophic factor level in the hippocampus, inhibited amyloid-β level and microglia activation, as well as pro-inflammatory factors levels in the hippocampus and serum. Further, SAM enhanced antioxidant capacity and attenuated cholinergic damage by reducing malondialdehyde levels, increasing acetylcholine levels, expression levels of α7 nicotinic acetylcholine receptor (α7nAChR), nuclear factor erythrocyte 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the hippocampus. Above all, SAM has a potential neuroprotective effect on ameliorating cognitive impairment in brain aging, which is related to inhibition of oxidative stress and neuroinflammation, as well as α7nAChR signals. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Yawen Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Rui Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Qian Deng
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wencheng Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Chi Cao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Chunyang Yu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Shulin Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Lei Shi
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jianying Tian
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
55
|
Huang T, Wu J, Mu J, Gao J. Advanced Therapies for Traumatic Central Nervous System Injury: Delivery Strategy Reinforced Efficient Microglial Manipulation. Mol Pharm 2023; 20:41-56. [PMID: 36469398 DOI: 10.1021/acs.molpharmaceut.2c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic central nervous system (CNS) injuries, including spinal cord injury and traumatic brain injury, are challenging enemies of human health. Microglia, the main component of the innate immune system in CNS, can be activated postinjury and are key participants in the pathological procedure and development of CNS trauma. Activated microglia can be typically classified into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Reducing M1 polarization while promoting M2 polarization is thought to be promising for CNS injury treatment. However, obstacles such as the low permeability of the blood-brain barrier and short retention time in circulation limit the therapeutic outcomes of administrated drugs, and rational delivery strategies are necessary for efficient microglial regulation. To this end, proper administration methods and delivery systems like nano/microcarriers and scaffolds are investigated to augment the therapeutic effects of drugs, while some of these delivery systems have self-efficacies in microglial manipulation. Besides, systems based on cell and cell-derived exosomes also show impressive effects, and some underlying targeting mechanisms of these delivery systems have been discovered. In this review, we introduce the roles of microglia play in traumatic CNS injuries, discuss the potential targets for the polarization regulation of microglial phenotype, and summarize recent studies and clinical trials about delivery strategies on enhancing the effect of microglial regulation and therapeutic outcome, as well as targeting mechanisms post CNS trauma.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer, Pharmacology and Toxicology Research of Zhejiang Province, Affiliated, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Jinhua Institute of Zhejiang University, Jinhua 321002, China
| |
Collapse
|
56
|
Yin N, Wang Y, Huang Y, Cao Y, Jin L, Liu J, Zhang T, Song S, Liu X, Zhang H. Modulating Nanozyme-Based Nanomachines via Microenvironmental Feedback for Differential Photothermal Therapy of Orthotopic Gliomas. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204937. [PMID: 36437111 PMCID: PMC9875674 DOI: 10.1002/advs.202204937] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/03/2022] [Indexed: 05/20/2023]
Abstract
Gliomas are common and refractory primary tumors closely associated with the fine structures of the brain. Photothermal therapy (PTT) has recently shown promise as an effective treatment for gliomas. However, nonspecific accumulation of photothermal agents may affect adjacent normal brain structures, and the inflammatory response induced during PTT may result in an increased risk of brain tumor recurrence or metastasis. Here, the design and fabrication of an intelligent nanomachine is reported based on Gd2 O3 @Ir/TMB-RVG29 (G@IT-R) hybrid nanomaterials. These nanomaterials enable tumor-specific PTT and eliminate inflammation to protect normal brain tissue. The mechanism involves the rabies virus glycopeptide-29 peptide (RVG29) passing through the blood-brain barrier (BBB) and targeting gliomas. In the tumor microenvironment, Ir nanozymes can act as logic control systems to trigger chromogenic reaction amplification of 3,3',5,5'-tetramethylbenzidine (TMB) for tumor-specific PTT, whereas in normal brain tissues, they scavenge reactive oxygen species (ROS) generated by poor therapy and function as protective agents. Autophagy inhibition of Gd2 O3 enables excellent photothermal therapeutic effects on orthotopic gliomas and protection against inflammation in normal cells. The results of this study may prove useful in developing highly efficient nanomedicines for glioma treatment.
Collapse
Affiliation(s)
- Na Yin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Ying Huang
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yue Cao
- Department of NeurosurgeryThe First Hospital of Jilin UniversityChangchunJilin130061China
| | - Longhai Jin
- Department of RadiologyThe Second Hospital of Jilin UniversityChangchunJilin130041China
| | - Jianhua Liu
- Department of RadiologyThe Second Hospital of Jilin UniversityChangchunJilin130041China
| | - Tianqi Zhang
- Department of RadiologyThe Second Hospital of Jilin UniversityChangchunJilin130041China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Xiaogang Liu
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Department of ChemistryTsinghua University100084BeijingChina
| |
Collapse
|
57
|
Ji C, Wei C, Li M, Shen S, Zhang S, Hou Y, Wu Y. Bazi Bushen capsule attenuates cognitive deficits by inhibiting microglia activation and cellular senescence. PHARMACEUTICAL BIOLOGY 2022; 60:2025-2039. [PMID: 36263579 PMCID: PMC9590440 DOI: 10.1080/13880209.2022.2131839] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Bazi Bushen capsule (BZBS) has anti-ageing properties and is effective in enhancing memory. OBJECTIVE To find evidence supporting the mechanisms and biomarkers by which BZBS functions. MATERIALS AND METHODS Male C57BL/6J mice were randomly divided into five groups: normal, ageing, β-nicotinamide mononucleotide capsule (NMN), BZBS low-dose (LD-BZ) and BZBS high-dose (HD-BZ). The last four groups were subcutaneously injected with d-galactose (d-gal, 100 mg/kg/d) to induce the ageing process. At the same time, the LD-BZ, HD-BZ and NMN groups were intragastrically injected with BZBS (1 and 2 g/kg/d) and NMN (100 mg/kg/d) for treatment, respectively. After 60 days, the changes in overall ageing status, brain neuron morphology, expression of p16INK4a, proliferating cell nuclear antigen (PCNA), ionized calcium-binding adapter molecule 1 (Iba1), postsynaptic density protein 95 (PSD95), CD11b, Arg1, CD206, Trem2, Ym1 and Fizz1, and the senescence-associated secretory phenotype (SASP) factors were observed. RESULTS Compared with the mice in the ageing group, the HD-BZ mice exhibited obvious improvements in strength, endurance, motor coordination, cognitive function and neuron injury. The results showed a decrease in p16INK4a, Iba1 and the upregulation of PCNA, PSD95 among brain proteins. The brain mRNA exhibited downregulation of Iba1 (p < 0.001), CD11b (p < 0.001), and upregulation of Arg1 (p < 0.01), CD206 (p < 0.05), Trem2 (p < 0.001), Ym1 (p < 0.01), Fizz1 (p < 0.05) and PSD95 (p < 0.01), as well as improvement of SASP factors. CONCLUSIONS BZBS improves cognitive deficits via inhibition of cellular senescence and microglia activation. This study provides experimental evidence for the wide application of BZBS in clinical practice for cognitive deficits.
Collapse
Affiliation(s)
- Chuanyuan Ji
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Mengnan Li
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Shuang Shen
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shixiong Zhang
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Yunlong Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Yiling Wu
- School of Traditional Chinese Medicine & School of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
58
|
Yu Z, Su G, Zhang L, Liu G, Zhou Y, Fang S, Zhang Q, Wang T, Huang C, Huang Z, Li L. Icaritin inhibits neuroinflammation in a rat cerebral ischemia model by regulating microglial polarization through the GPER-ERK-NF-κB signaling pathway. Mol Med 2022; 28:142. [PMID: 36447154 PMCID: PMC9706854 DOI: 10.1186/s10020-022-00573-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Activated microglia play a key role in initiating the inflammatory cascade following ischemic stroke and exert proinflammatory or anti-inflammatory effects, depending on whether they are polarized toward the M1 or M2 phenotype. The present study investigated the regulatory effect of icaritin (ICT) on microglial polarization in rats after cerebral ischemia/reperfusion injury (CI/RI) and explored the possible anti-inflammatory mechanisms of ICT. METHODS A rat model of transient middle cerebral artery occlusion (tMCAO) was established. Following treatment with ICT, a G protein-coupled estrogen receptor (GPER) inhibitor or an extracellular signal-regulated kinase (ERK) inhibitor, the Garcia scale and rotarod test were used to assess neurological and locomotor function. 2,3,5-Triphenyltetrazolium chloride (TTC) and Fluoro-Jade C (FJC) staining were used to evaluate the infarct volume and neuronal death. The levels of inflammatory factors in the ischemic penumbra were evaluated using enzyme-linked immunosorbent assays (ELISAs). In addition, western blotting, immunofluorescence staining and quantitative PCR (qPCR) were performed to measure the expression levels of markers of different microglial phenotypes and proteins related to the GPER-ERK-nuclear factor kappa B (NF-κB) signaling pathway. RESULTS ICT treatment significantly decreased the cerebral infarct volume, brain water content and fluorescence intensity of FJC; improved the Garcia score; increased the latency to fall and rotation speed in the rotarod test; decreased the levels of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), Iba1, CD40, CD68 and p-P65-NF-κB; and increased the levels of CD206 and p-ERK. U0126 (an inhibitor of ERK) and G15 (a selective antagonist of GPER) antagonized these effects. CONCLUSIONS These findings indicate that ICT plays roles in inhibiting the inflammatory response and achieving neuroprotection by regulating GPER-ERK-NF-κB signaling and then inhibiting microglial activation and M1 polarization while promoting M2 polarization, which provides a new therapeutic for against cerebral ischemic stroke.
Collapse
Affiliation(s)
- Zining Yu
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Graduate School, Gannan Medical University, Ganzhou, 341000 China
| | - Guangjun Su
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Graduate School, Gannan Medical University, Ganzhou, 341000 China
| | - Limei Zhang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000 China
| | - Gaigai Liu
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Graduate School, Gannan Medical University, Ganzhou, 341000 China
| | - Yonggang Zhou
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000 China
| | - Shicai Fang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Graduate School, Gannan Medical University, Ganzhou, 341000 China
| | - Qian Zhang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Graduate School, Gannan Medical University, Ganzhou, 341000 China
| | - Tianyun Wang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000 China
| | - Cheng Huang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000 China
| | - Zhihua Huang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000 China
| | - Liangdong Li
- grid.452437.3First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China
| |
Collapse
|
59
|
Han Z, Gao X, Wang Y, Cheng S, Zhong X, Xu Y, Zhou X, Zhang Z, Liu Z, Cheng L. Ultrasmall iron-quercetin metal natural product nanocomplex with antioxidant and macrophage regulation in rheumatoid arthritis. Acta Pharm Sin B 2022; 13:1726-1739. [PMID: 37139421 PMCID: PMC10150182 DOI: 10.1016/j.apsb.2022.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress, due to the disruption of the balance between reactive oxygen species (ROS) generation and the antioxidant defense system, plays an important role in the pathogenesis of rheumatoid arthritis (RA). Excessive ROS leads to the loss of biological molecules and cellular functions, release of many inflammatory mediators, stimulate the polarization of macrophages, and aggravate the inflammatory response, thus promoting osteoclasts and bone damage. Therefore, foreign antioxidants would effectively treat RA. Herein, ultrasmall iron-quercetin natural coordination nanoparticles (Fe-Qur NCNs) with excellent anti-inflammatory and antioxidant properties were constructed to effectively treat RA. Fe-Qur NCNs obtained by simple mixing retain the inherent ability to remove ROS of quercetin and have a better water-solubility and biocompatibility. In vitro experiments showed that Fe-Qur NCNs could effectively remove excess ROS, avoid cell apoptosis, and inhibit the polarization of inflammatory macrophages by reducing the activation of the nuclear factor-κ-gene binding (NF-κB) pathways. In vivo experiments showed that the swollen joints of mice with rheumatoid arthritis treated with Fe-Qur NCNs significantly improved, with Fe-Qur NCNs largely reducing inflammatory cell infiltration, increasing anti-inflammatory macrophage phenotypes, and thus inhibiting osteoclasts, which led to bone erosion. This study demonstrated that the new metal-natural coordination nanoparticles could be an effective therapeutic agent for the prevention of RA and other diseases associated with oxidative stress.
Collapse
|
60
|
Li Z, Zhao Y, Huang H, Zhang C, Liu H, Wang Z, Yi M, Xie N, Shen Y, Ren X, Wang J, Wang J. A Nanozyme-Immobilized Hydrogel with Endogenous ROS-Scavenging and Oxygen Generation Abilities for Significantly Promoting Oxidative Diabetic Wound Healing. Adv Healthc Mater 2022; 11:e2201524. [PMID: 36100580 DOI: 10.1002/adhm.202201524] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Indexed: 01/28/2023]
Abstract
Non-healing wound is a common complication of diabetic patients associated with high morbidity and mortality. Engineered therapeutic hydrogels have enviable advantages in tissue regeneration, however, they are suboptimal for the healing of diabetic wounds characterized by reactive oxygen species (ROS) accumulation and chronic hypoxia. Here, a unique biological metabolism-inspired hydrogel, for ameliorating this hostile diabetic microenvironment, is presented. Consisting of natural polymers (hydrazide modified hyaluronic acid and aldehyde modified hyaluronic acid) and a metal-organic frameworks derived catalase-mimic nanozyme (ε-polylysine coated mesoporous manganese cobalt oxide), the engineered nanozyme-reinforced hydrogels can not only capture the endogenous elevated ROS in diabetic wounds, but also synergistically produce oxygen through the ROS-driven oxygen production ability. These fascinating properties of hydrogels protect skin cells (e.g., keratinocytes, fibroblasts, and vascular endothelial cells) from ROS and hypoxia-mediated death and proliferation inhibition. Diabetic wounds treated with the nanozyme-reinforced hydrogels highlight the potential of inducing the macrophages polarization from pro-inflammatory phenotype (M1) to anti-inflammatory subtype (M2). The hydrogel dressings demonstrate a prominently accelerated healing rate as shown by alleviating the excessive inflammatory, inducing efficiently proliferation, re-epithelialization, collagen deposition, and neovascularization. This work provides an effective strategy based on nanozyme-reinforced hydrogel as a ROS-driven oxygenerator for enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Orthopaedic Research Institute of Jilin Province, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Yue Zhao
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, No. 3688 Nanhai Avenue, Shenzhen, 518060, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hanwei Huang
- Chen Xinhai Hospital, No. 18 Zhuyuan Road, Xiaolan, Zhongshan, 528415, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Orthopaedic Research Institute of Jilin Province, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Orthopaedic Research Institute of Jilin Province, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Mingjie Yi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Neng Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yuling Shen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiangzhong Ren
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, No. 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Orthopaedic Research Institute of Jilin Province, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
61
|
Xu J, Chen H, Qian H, Wang F, Xu Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J Nanobiotechnology 2022; 20:448. [PMID: 36242051 PMCID: PMC9569062 DOI: 10.1186/s12951-022-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive focus on the gene-oxidative stress environment interaction in the EIME, a comprehensive strategy based on ROS-regulating nanomedicines is greatly anticipated to become the mainstay of anti-psoriasis treatment. This potential therapeutic modality could inhibit the acceleration of psoriasis via remodeling the redox equilibrium and reshaping the EIME. Herein, we present a marked overview of the current progress in the pathomechanisms of psoriasis, with particular concerns on the potential pathogenic role of ROS, which significantly dysregulates redox metabolism of keratinocytes (KCs) and skin-resident or -infiltrating cells. Meanwhile, the emergence of versatile nanomaterial-guided evolution for transdermal drug delivery has been attractive for the percutaneous administration of antipsoriatic therapies in recent years. We emphasize the underlying molecular mechanism of ROS-based nanoreactors for improved therapeutic outcomes against psoriasis and summarize up-to-date progress relating to the advantages and limitations of nanotherapeutic application for transdermal administration, as well as update an insight into potential future directions for nanotherapies in ROS-related skin diseases.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hao Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Fei Wang
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
62
|
Li C, Ren J, Zhang M, Wang H, Yi F, Wu J, Tang Y. The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cell Mol Life Sci 2022; 79:511. [PMID: 36066650 PMCID: PMC11803019 DOI: 10.1007/s00018-022-04536-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.
Collapse
Affiliation(s)
- Chaoyi Li
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Ren
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengfei Zhang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huakun Wang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Yi
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Tang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
- The Biobank of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
63
|
Xu D, Wu L, Yao H, Zhao L. Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203400. [PMID: 35971168 DOI: 10.1002/smll.202203400] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The field of nanozymes has developed rapidly over the past decade. Among various oxidoreductases mimics, catalase (CAT)-like nanozyme, acting as an essential part of the regulation of reactive oxygen species (ROS), has attracted extensive research interest in recent years. However, CAT-like nanozymes are not as well discussed as other nanozymes such as peroxidase (POD)-like nanozymes, etc. Compared with natural catalase or artificial CAT enzymes, CAT-like nanozymes have unique properties of low cost, size-dependent properties, high catalytic activity and stability, and easy surface modification, etc., which make them widely used in various fields, especially in tumor therapy and disease treatment. Consequently, there is a great requirement to make a systematic discussion on CAT-like nanozymes. In this review, some key aspects of CAT-like nanozymes are deeply summarized as: 1) Typical CAT-like nanozymes classified by different nanomaterials; 2) The catalytic mechanisms proposed by experimental and theoretical studies; 3) Extensive applications in regard to tumor therapy, cytoprotection and sensing. Therefore, it is prospected that this review will contribute to the further design of CAT-like nanozymes and optimize their applications with much higher efficiency than before.
Collapse
Affiliation(s)
- Deting Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liyuan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haodong Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
64
|
Cao LX, Lin SJ, Zhao SS, Wang SQ, Zeng H, Chen WA, Lin ZW, Chen JX, Zhu MM, Zhang YM. Effects of acupuncture on microglial polarization and the TLR4/TRIF/MyD88 pathway in a rat model of traumatic brain injury. Acupunct Med 2022:9645284221108214. [PMID: 36046956 DOI: 10.1177/09645284221108214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Neuroinflammation caused by traumatic brain injury (TBI) can lead to neurological deficits. Acupuncture can inhibit neuroinflammation and promote nerve repair; however, the specific mechanism is still unclear. The purpose of this study was to explore whether acupuncture could modulate the M1 and M2 phenotypic polarization of microglia in a rat model of TBI via the toll-like receptor 4 (TLR4)/intracellular toll-interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)/myeloid differentiation factor 88 (MyD88) pathway. METHODS A total of 90 adult male Sprague-Dawley (SD) rats, SPF grade, were randomly divided into a normal group, model group and acupuncture group. Each group was further divided into three subgroups (first, third, and fifth day groups) according to the treatment time (n = 10 rats/subgroup). We used the modified neurological severity score (mNSS) method to quantify neurological deficits before and after modeling. We used Nissl staining to observe the pathological changes in brain tissue, flow cytometry to detect the proportion of M1 and M2 polarized microglia in the injured area on the first, third and fifth day, and co-immunoprecipitation (Co-IP) to examine TLR4/TRIF/MyD88 expression in microglia on the first, third and fifth day, as well as expression of the amount of binding of TLR4 with TRIF and MyD88. RESULTS Compared to the model group, mNSS in the acupuncture group gradually decreased and pathological morphology improved. The proportion of CD11b/CD86 positive cells was decreased, while that of CD11b/CD206 was increased in the acupuncture group. Expression of IP TLR4, IP TRIF and IP MyD88 also decreased in the acupuncture group. CONCLUSION The results of this study demonstrate that one of the mechanisms through which acupuncture mitigates neuroinflammation and promotes nerve repair in TBI rats may be inhibition of M1 phenotypic polarization and promotion of M2 phenotypic polarization through inhibition of the TLR4/TRIF/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Lu-Xi Cao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shu-Jun Lin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Si Zhao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shi-Qi Wang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hai Zeng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wen-An Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhuo-Wen Lin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ming-Min Zhu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yi-Min Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
65
|
Zhao C, Deng H, Chen X. Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Adv Drug Deliv Rev 2022; 188:114456. [PMID: 35843505 DOI: 10.1016/j.addr.2022.114456] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
With the increasing understanding of various biological functions mediated by reactive oxygen species (ROS) in the immune system, a number of studies have been designed to develop ROS-generating/eliminating strategies to selectively modulate immunogenicity for disease treatment. These strategies potentially exploit ROS-modulating inorganic biomaterials to harness host immunity to maximize the therapeutic potency by eliciting a favorable immune response. Inorganic biomaterial-guided in vivo ROS scavenging can exhibit several effects to: i) reduce the secretion of pro-inflammatory factors, ii) induce the phenotypic transition of macrophages from inflammatory M1 to immunosuppressive M2 phase, iii) minimize the recruitment and infiltration of immune cells. and/or iv) suppress the activation of nuclear factor kappa-B (NF-κB) pathway. Inversely, ROS-generating inorganic biomaterials have been found to be capable of: i) inducing immunogenic cell death (ICD), ii) reprograming tumor-associated macrophages from M2 to M1 phenotypes, iii) activating inflammasomes to stimulate tumor immunogenicity, and/or iv) recruiting phagocytes for antimicrobial therapy. This review provides a systematic and up-to-date overview on the progress related to ROS-nanotechnology mediated immunomodulation. We highlight how the ROS-generating/eliminating inorganic biomaterials can converge with immunomodulation and ultimately elicit an effective immune response against inflammation, autoimmune diseases, and/or cancers. We expect that contents presented in this review will be beneficial for the future advancements of ROS-based nanotechnology and its potential applications in this evolving field.
Collapse
Affiliation(s)
- Caiyan Zhao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
66
|
Yokel RA, Ensor ML, Vekaria HJ, Sullivan PG, Feola DJ, Stromberg A, Tseng MT, Harrison DA. Cerium dioxide, a Jekyll and Hyde nanomaterial, can increase basal and decrease elevated inflammation and oxidative stress. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102565. [PMID: 35595014 DOI: 10.1016/j.nano.2022.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
It was hypothesized that the catalyst nanoceria can increase inflammation/oxidative stress from the basal and reduce it from the elevated state. Macrophages clear nanoceria. To test the hypothesis, M0 (non-polarized), M1- (classically activated, pro-inflammatory), and M2-like (alternatively activated, regulatory phenotype) RAW 264.7 macrophages were nanoceria exposed. Inflammatory responses were quantified by IL-1β level, arginase activity, and RT-qPCR and metabolic changes and oxidative stress by the mito and glycolysis stress tests (MST and GST). Morphology was determined by light microscopy, macrophage phenotype marker expression, and a novel three-dimensional immunohistochemical method. Nanoceria blocked IL-1β and arginase effects, increased M0 cell OCR and GST toward the M2 phenotype and altered multiple M1- and M2-like cell endpoints toward the M0 level. M1-like cells had greater volume and less circularity/roundness. M2-like cells had greater volume than M0 macrophages. The results are overall consistent with the hypothesis.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Marsha L Ensor
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Hemendra J Vekaria
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, USA; Neuroscience, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Patrick G Sullivan
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, USA; Neuroscience, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David J Feola
- Pharmacy Practice and Science, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Arnold Stromberg
- Statistics, University of Kentucky, Lexington, KY 40536-0082, USA
| | - Michael T Tseng
- Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
67
|
Yin N, Zhao Y, Liu C, Yang Y, Wang ZH, Yu W, Zhang K, Zhang Z, Liu J, Zhang Y, Shi J. Engineered Nanoerythrocytes Alleviate Central Nervous System Inflammation by Regulating the Polarization of Inflammatory Microglia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201322. [PMID: 35483045 DOI: 10.1002/adma.202201322] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Microglial polarization is one of the most promising therapeutic strategies for multiple central nervous system (CNS) disorders. However, safe, effective, and controllable microglial regulation still faces formidable challenges. Although some anti-inflammatory factors promote microglia polarization, their short half-life, high cost, unpredictable in vivo behavior, and complex delivery operations, hamper their clinical application. Here, inspired by the natural microhemorrhage cleaning mechanism, an MG1 peptide and RVG29 peptide engineered nanoerythrocyte (NEMR) that can reprogram microglia are developed from classical M1 toward alternative M2 by inducing heme oxygenase-1 (HO-1), stimulating Notch1/Hes1/Stat3 signaling, and further inhibiting NF-κB p65 translocation. Moreover, anti-inflammatory carbon monoxide (CO) and bilirubin produced by endogenous metabolism of heme further reinforces the anti-inflammatory effect. In middle cerebral artery occlusion and experimental autoimmune encephalomyelitis models, a satisfactory prognosis is achieved, with precise regulation of inflammatory microglia in lesion sites, increased expression of anti-inflammatory factors, reduced blood-brain barrier permeability, as well as promotion of neurogenesis and functional recovery. Furthermore, NEMR can be integrated with clinical therapeutic agents, which facilitates precise drug delivery to enhance therapeutic effects. Hence, the natural nanoerythrocytes, as a feasible, efficient, safe, and practical tool, provides a new strategy for rebalancing of the immune environment in the CNS disorders.
Collapse
Affiliation(s)
- Na Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Changhua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Yue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Wenyan Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China
| | - Yun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, P. R. China
| |
Collapse
|
68
|
Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects. J Control Release 2022; 347:143-163. [PMID: 35513209 DOI: 10.1016/j.jconrel.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
Synaptic plasticity is an important basis of learning and memory and participates in brain network remodelling after different types of brain injury (such as that caused by neurodegenerative diseases, cerebral ischaemic injury, posttraumatic stress disorder (PTSD), and psychiatric disorders). Therefore, improving synaptic plasticity is particularly important for the treatment of nervous system-related diseases. With the rapid development of nanotechnology, increasing evidence has shown that nanoparticles (NPs) can cross the blood-brain barrier (BBB) in different ways, directly or indirectly act on nerve cells, regulate synaptic plasticity, and ultimately improve nerve function. Therefore, to better elucidate the effect of NPs on synaptic plasticity, we review evidence showing that NPs can improve synaptic plasticity by regulating different influencing factors, such as neurotransmitters, receptors, presynaptic membrane proteins and postsynaptic membrane proteins, and further discuss the possible mechanism by which NPs improve synaptic plasticity. We conclude that NPs can improve synaptic plasticity and restore the function of damaged nerves by inhibiting neuroinflammation and oxidative stress, inducing autophagy, and regulating ion channels on the cell membrane. By reviewing the mechanism by which NPs regulate synaptic plasticity and the applications of NPs for the treatment of neurological diseases, we also propose directions for future research in this field and provide an important reference for follow-up research.
Collapse
|
69
|
Wang L, Wang Z, Pan Y, Chen S, Fan X, Li X, Chen G, Ma Y, Cai Y, Zhang J, Yang H, Xiao W, Yu M. Polycatechol-Derived Mesoporous Polydopamine Nanoparticles for Combined ROS Scavenging and Gene Interference Therapy in Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19975-19987. [PMID: 35442639 DOI: 10.1021/acsami.1c25180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Benefiting from the evolution of nanotechnology, the combination therapy by gene interference and reactive oxygen species (ROS) scavenging are expected, which holds great potential in inflammatory bowel disease (IBD) therapy. However, the functional integration of different therapeutic modules through interface modification of gene vectors for safe and efficient treatment is urgently needed. Herein, we present a catechol chemistry-mediated core-shell nanoplatform for ROS scavenging-mediated oxidative stress alleviation and siRNA-mediated gene interference in a dextran sulfate sodium (DSS)-induced colitis model. The nanoplatform is constructed by employing mesoporous polydopamine nanoparticles (MPDA NPs) with surface modification of amines as the porous core for TNF-α-siRNA loading (31 wt %) and exerts an antioxidant function, while PDA-induced biomineralization of the calcium phosphate (CaP) coating is used as the pH-sensitive protective shell to prevent siRNA from premature release. The CaP layer degraded under weakly acidic subcellular conditions (lysosomes); thus, the synergistic integration of catechol and cation moieties on the exposed surface of MPDA resulted in an efficient lysosomal escape. Subsequently, effective ROS scavenging caused by the electron-donating ability of MPDA and efficient knocking down (40.5%) of tumor necrosis factor-α (TNF-α) via sufficient cytosolic gene delivery resulted in a synergistic anti-inflammation therapeutic effect both in vitro and in vivo. This work establishes the first paradigm of synergistic therapy in IBD by ROS scavenging and gene interference.
Collapse
Affiliation(s)
- Liucan Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Yiyang Pan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| | - Shuaishuai Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| | - Xin Fan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| | - Xiaolong Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| | - Guoqing Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| | - Yuanhang Ma
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| | - Yujiao Cai
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China
| |
Collapse
|
70
|
Li Z, Zhu Y, Kang Y, Qin S, Chai J. Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Front Cell Neurosci 2022; 16:843069. [PMID: 35418837 PMCID: PMC8995749 DOI: 10.3389/fncel.2022.843069] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication following surgery and general anesthesia, especially in elderly patients. Severe cases delay patient discharge, affect the patient’s quality of life after surgery, and are heavy burdens to society. In addition, as the population ages, surgery is increasingly used for older patients and those with higher prevalences of complications. This trend presents a huge challenge to the current healthcare system. Although studies on POCD are ongoing, the underlying pathogenesis is still unclear due to conflicting results and lack of evidence. According to existing studies, the occurrence and development of POCD are related to multiple factors. Among them, the pathogenesis of neuroinflammation in POCD has become a focus of research in recent years, and many clinical and preclinical studies have confirmed the correlation between neuroinflammation and POCD. In this article, we reviewed how central nervous system inflammation occurred, and how it could lead to POCD with changes in peripheral circulation and the pathological pathways between peripheral circulation and the central nervous system (CNS). Furthermore, we proposed some potential therapeutic targets, diagnosis and treatment strategies at the cellular and molecular levels, and clinical applications. The goal of this article was to provide a better perspective for understanding the occurrence of POCD, its development, and preventive strategies to help manage these vulnerable geriatric patients.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihan Kang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shangyuan Qin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Chai,
| |
Collapse
|
71
|
Xian X, Cai LL, Li Y, Wang RC, Xu YH, Chen YJ, Xie YH, Zhu XL, Li YF. Neuron secrete exosomes containing miR-9-5p to promote polarization of M1 microglia in depression. J Nanobiotechnology 2022; 20:122. [PMID: 35264203 PMCID: PMC8905830 DOI: 10.1186/s12951-022-01332-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background Neuroinflammation is an important component mechanism in the development of depression. Exosomal transfer of MDD-associated microRNAs (miRNAs) from neurons to microglia might exacerbate neuronal cell inflammatory injury. Results By sequence identification, we found significantly higher miR-9-5p expression levels in serum exosomes from MDD patients than healthy control (HC) subjects. Then, in cultured cell model, we observed that BV2 microglial cells internalized PC12 neuron cell-derived exosomes while successfully transferring miR-9-5p. MiR-9-5p promoted M1 polarization in microglia and led to over releasing of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which exacerbated neurological damage. Furthermore, we identified suppressor of cytokine signaling 2 (SOCS2) as a direct target of miR-9-5p. Overexpression of miR-9-5p suppressed SOCS2 expression and reactivated SOCS2-repressed Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathways. Consistently, we confirmed that adeno-associated virus (AAV)-mediated overexpression of miR-9-5p polarized microglia toward the M1 phenotype and exacerbated depressive symptoms in chronic unpredictable mild stress (CUMS) mouse mode. Conclusion MiR-9-5p was transferred from neurons to microglia in an exosomal way, leading to M1 polarization of microglia and further neuronal injury. The expression and secretion of miR-9-5p might be novel therapeutic targets for MDD. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01332-w.
Collapse
Affiliation(s)
- Xian Xian
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Li-Li Cai
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Yang Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Ran-Chao Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Yu-Hao Xu
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Ya-Jie Chen
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Yu-Hang Xie
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Xiao-Lan Zhu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang, 212001, Jiangsu, China.
| | - Yue-Feng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, 212001, Jiangsu, China. .,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
72
|
Zeng F, Shi Y, Wu C, Liang J, Zhong Q, Briley K, Xu B, Huang Y, Long M, Wang C, Chen J, Tang Y, Li X, Jiang M, Wang L, Xu Q, Yang L, Chen P, Duan S, Xie J, Li C, Wu Y. A drug-free nanozyme for mitigating oxidative stress and inflammatory bowel disease. J Nanobiotechnology 2022; 20:107. [PMID: 35246140 PMCID: PMC8896226 DOI: 10.1186/s12951-022-01319-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an incurable disease of the gastrointestinal tract with a lack of effective therapeutic strategies. The proinflammatory microenvironment plays a significant role in both amplifying and sustaining inflammation during IBD progression. Herein, biocompatible drug-free ceria nanoparticles (CeNP-PEG) with regenerable scavenging activities against multiple reactive oxygen species (ROS) were developed. CeNP-PEG exerted therapeutic effect in dextran sulfate sodium (DSS)-induced colitis murine model, evidenced by corrected the disease activity index, restrained colon length shortening, improved intestinal permeability and restored the colonic epithelium disruption. CeNP-PEG ameliorated the proinflammatory microenvironment by persistently scavenging ROS, down-regulating the levels of multiple proinflammatory cytokines, restraining the proinflammatory profile of macrophages and Th1/Th17 response. The underlying mechanism may involve restraining the co-activation of NF-κB and JAK2/STAT3 pathways. In summary, this work demonstrates an effective strategy for IBD treatment by ameliorating the self-perpetuating proinflammatory microenvironment, which offers a new avenue in the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Feng Zeng
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China
| | - Yahong Shi
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chunni Wu
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China
| | - Jianming Liang
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China
| | - Qixin Zhong
- Department of Cardiovascular, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518034, China
| | - Karen Briley
- Invicro, A Konica Minolta Company, Boston, MA, 02210, USA
| | - Bin Xu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Zhongshan Institute for Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, 528437, China.,School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou University, Taizhou, 318000, China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Cong Wang
- Key Laboratory of Smart Drug Deliver, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201213, China.,China Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jian Chen
- Key Laboratory of Smart Drug Deliver, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201213, China
| | - Yonghua Tang
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Xinying Li
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Luting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qin Xu
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China
| | - Liu Yang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Peng Chen
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China
| | - Shengzhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jingyuan Xie
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
| | - Cong Li
- Key Laboratory of Smart Drug Deliver, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201213, China.
| | - Yingwei Wu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
73
|
Xi Y, Chen Y, Jin Y, Han G, Song M, Song T, Shi Y, Tao L, Huang Z, Zhou J, Ding Y, Zhang H. Versatile nanomaterials for Alzheimer's disease: Pathogenesis inspired disease-modifying therapy. J Control Release 2022; 345:38-61. [DOI: 10.1016/j.jconrel.2022.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022]
|
74
|
Chen Y, Zhou Y, Li XC, Ma X, Mi WL, Chu YX, Wang YQ, Mao-Ying QL. Neuronal GRK2 regulates microglial activation and contributes to electroacupuncture analgesia on inflammatory pain in mice. Biol Res 2022; 55:5. [PMID: 35115050 PMCID: PMC8812183 DOI: 10.1186/s40659-022-00374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/22/2022] [Indexed: 12/30/2022] Open
Abstract
Background G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. Methods The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund’s Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and downregulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. Results Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. Conclusion The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00374-6.
Collapse
Affiliation(s)
- Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yang Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao-Chen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xue Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, People's Republic of China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
75
|
The consequences of particle uptake on immune cells. Trends Pharmacol Sci 2022; 43:305-320. [DOI: 10.1016/j.tips.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
|
76
|
Cheng C, Cheng Y, Zhao S, Wang Q, Li S, Chen X, Yang X, Wei H. Multifunctional Nanozyme Hydrogel with Mucosal Healing Activity for Single-Dose Ulcerative Colitis Therapy. Bioconjug Chem 2022; 33:248-259. [PMID: 34936326 DOI: 10.1021/acs.bioconjchem.1c00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like activities, which have been developed for inflammatory disease therapy by reactive oxygen species (ROS) scavenging. The application of nanozymes in ulcerative colitis (UC) treatment not only inherits the merits of small molecular antioxidants (e.g., 5-aminosalicylic acid) to scavenge ROS but also achieves catalytic recycle instead of stoichiometric consumption. However, current therapies usually ignore the repair of mucosa, the first line of defense, whose damage increases the risk of infections. Herein, a multifunctional nanozyme hydrogel is designed and verified both as an ROS scavenger and a mucosal healing enhancer for UC therapy. The chitosan-coated CeO2 nanozyme (CCNZ) not only possesses excellent ROS-scavenging ability but also exhibits satisfactory antibacterial capacity. After gelation with alginate, the optimized CCNZ1:Alg1.5 nanozyme hydrogel exhibits multiple functions, including inflamed site targeting, supporting cell growth, ROS scavenging, and antibacterial activity, which alleviates UC better than a clinical medication 5-aminosalicylic acid by even a single-dose treatment. This study reveals that a nanozyme providing mucosal healing is promising for UC therapy with excellent potential for clinical application and enriches the nanozyme research of treatment for diseases.
Collapse
Affiliation(s)
- Chaoqun Cheng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuan Cheng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sheng Zhao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiwen Chen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaohan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
77
|
Zaazaa AM, Abd El-Motelp BA, Ali NA, Youssef AM, Sayed MA, Mohamed SH. Stem cell-derived exosomes and copper sulfide nanoparticles attenuate the progression of neurodegenerative disorders induced by cadmium in rats. Heliyon 2022; 8:e08622. [PMID: 35028441 PMCID: PMC8741450 DOI: 10.1016/j.heliyon.2021.e08622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
The goal of the current study was to investigate the therapeutic effects of exosomes derived from mesenchymal stem cells (MSCs-Exo) and copper sulfide nanoparticles (CuSNPs) as biomaterials in order to understand the mechanisms that contribute to overcoming cadmium (Cad) induced neurological disorders in rats. Animals were divided into five groups (n = 10): group 1 was served as a negative control and receive vehicle saline (Con), group 2 Positive control groups were received Cad as cadmium chloride at a dose of 20 mg/kg/day for six weeks (Cad group), group 3 was received Cad plus MSCs-Exo as a single dose of 100 μLi. v. (Cad + MSCs-Exo), group 4 was received Cad plus CuSNPs at a dose of 6.5 mg/kg orally (Cad + CuSNPs), group 5 was received Cad + MSCs-Exo + CuSNPs for six weeks. However, the activities of each acetylcholine (Ach), acetylcholinesterase (AchE), total antioxidant status (TAC) were measured. Also, the levels of ROS, nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), Brain brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were evaluated. Beneficial effects on the behavior of animals were observed after treatment with MSCs-Exo and CuSNPs. Furthermore, the administration of MSCs-Exo and CuSNPs have been improve the TAC, BDNF and NGF via ameliorating the oxidative stress and inflammatory markers. Moreover, Histopathological studies had shown that great development in the brain of Cad rats treated with MSCs-Exo and CuSNPs. In conclusion, this study offers an overview of innovative stem cell therapy techniques and how to integrate them with nanotechnology to boost therapeutic performance.
Collapse
Affiliation(s)
- Asmaa Magdy Zaazaa
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, AsmaaFahmy Street Heliopolis, Cairo, Egypt
| | - Bosy Azmy Abd El-Motelp
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, AsmaaFahmy Street Heliopolis, Cairo, Egypt
| | - Naglaa A. Ali
- Hormones Department, Research Division, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
- Corresponding author.
| | - Ahmed M. Youssef
- Inorganic Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed Aly Sayed
- Department of Animal Reproduction and A. I., Veterinary Research Division, National Research Centre, 33 Bohouth St. Dokki, Cairo, Egypt
| | - Safaa H. Mohamed
- Hormones Department, Research Division, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
- Corresponding author.
| |
Collapse
|
78
|
Yin S, Zhou S, Ren D, Zhang J, Xin H, He X, Gao H, Hou J, Zeng F, Lu Y, Zhang X, Fan M. Mesenchymal Stem Cell-derived Exosomes Attenuate Epithelial-mesenchymal Transition of HK-2 cells. Tissue Eng Part A 2022; 28:651-659. [PMID: 35019728 DOI: 10.1089/ten.tea.2021.0190] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Renal fibrosis predisposes patients to an increased risk of progressive chronic kidney disease (CKD), and effective treatments remain elusive. Mesenchymal stem cell (MSC) derived exosomes are considered a new treatment for tissue damage. Our study aimed to investigate the in vitro effects of bone marrow MSC-derived exosomes (BM-MSC-Ex) on transforming growth factor-β1 (TGF-β1)-induced fibrosis in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. Herein, we found exosomes derived from bone marrow mesenchymal stem cells (BM-MSC-Ex) could inhibit TGF-β1-induced epithelial-mesenchymal transition (EMT) in HK-2 cells, and may involve autophagy activation of BM-MSC-Ex. Moreover, we first reported that after CeNPs treatment, the improvements induced by BM-MSC-Ex on EMT were significantly enhanced by up-regulating the expression of Nedd4Lof MSCs and promoting the secretion of exosomes, which contained Nedd4L. In addition, Nedd4L could activate autophagy in HK-2 cells. In conclusion, BM-MSC-Ex prevents the TGF-β1-induced EMT of renal tubular epithelial cells by transporting Nedd4L, which activates autophagy. The results of this in vitro experiment may extend to renal fibrosis, whereby BM-MSC-Ex may also be used as a novel treatment for improving renal fibrosis.
Collapse
Affiliation(s)
- Shuai Yin
- Third Affiliated Hospital of Soochow University, 117850, Changzhou, Jiangsu, China;
| | - Shilin Zhou
- Fudan University School of Pharmacy, 70579, Shanghai, Zhangjiang Hi-Tech Park, China;
| | - Dadui Ren
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Jing Zhang
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Hong Xin
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Xiaozhou He
- Third Affiliated Hospital of Soochow University, 117850, Changzhou, Jiangsu, China;
| | - Hongjian Gao
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Jiayun Hou
- Zhongshan Hospital Fudan University, 92323, Shanghai, Shanghai, China;
| | - Feng Zeng
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Yunjie Lu
- Third Affiliated Hospital of Soochow University, 117850, Changzhou, Jiangsu, China;
| | - Xuemei Zhang
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Min Fan
- Third Affiliated Hospital of Soochow University, 117850, Changzhou, Jiangsu, China;
| |
Collapse
|
79
|
Microglia Polarization from M1 toward M2 Phenotype Is Promoted by Astragalus Polysaccharides Mediated through Inhibition of miR-155 in Experimental Autoimmune Encephalomyelitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:5753452. [PMID: 34976303 PMCID: PMC8720009 DOI: 10.1155/2021/5753452] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
Activated microglia is considered to be major mediators of the neuroinflammatory environment in demyelinating diseases of the central nervous system (CNS). Activated microglia are mainly polarized into M1 type, which plays a role in promoting inflammation and demyelinating. However, the proportion of microglia polarized into M2 type is relatively low, which cannot fully play the role of anti-inflammatory and resistance to demyelinating. Our previous study found that Astragalus polysaccharides (APS) has an immunomodulatory effect and can inhibit neuroinflammation and demyelination in experimental autoimmune encephalomyelitis (EAE), which is a classic animal model of CNS demyelinating disease. In this study, we found that APS was effective in treating EAE mice. It restored microglia balance by inhibiting the polarization of microglia to M1-like phenotype and promoting the polarization of microglia to M2-like phenotype in vivo and in vitro. miR-155 is a key factor in regulating microglia polarization. We found that APS could inhibit the expression level of miR-155 in vivo and in vitro. Furthermore, we performed transfection overexpression and blocking experiments. The results showed that miR-155 mediated the polarization of microglia M1/M2 phenotype, while the selective inhibitor of miR-155 attenuated the inhibition of APS on microglia M1 phenotype and eliminated the promotion of APS on microglia M2 phenotype. Microglia can secrete IL-1α, TNF-α, and C1q after polarizing into M1 type and induce the activation of A1 neurotoxic astrocytes, further aggravating neuroinflammation and demyelination. APS reduced the secretion of IL-1α, TNF-α, and C1q by activated microglia, thus inhibited the formation of A1 neurotoxic astrocytes. In summary, our study suggests that APS regulates the polarization of microglia from M1 to M2 phenotype by inhibiting the miR-155, reduces the secretion of inflammatory factors, and inhibits the activation of neurotoxic astrocytes, thus effectively treating EAE.
Collapse
|
80
|
Wang M, Zeng F, Ning F, Wang Y, Zhou S, He J, Li C, Wang C, Sun X, Zhang D, Xiao J, Hu P, Reilly S, Xin H, Xu X, Zhang X. Ceria nanoparticles ameliorate renal fibrosis by modulating the balance between oxidative phosphorylation and aerobic glycolysis. J Nanobiotechnology 2022; 20:3. [PMID: 34983531 PMCID: PMC8725394 DOI: 10.1186/s12951-021-01122-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Renal fibrosis is the common outcome in all progressive forms of chronic kidney disease. Unfortunately, the pathogenesis of renal fibrosis remains largely unexplored, among which metabolic reprogramming plays an extremely crucial role in the evolution of renal fibrosis. Ceria nanoparticles (CeNP-PEG) with strong ROS scavenging and anti-inflammatory activities have been applied for mitochondrial oxidative stress and inflammatory diseases. The present study aims to determine whether CeNP-PEG has therapeutic value for renal fibrosis. METHODS The unilateral ureteral obstructive fibrosis model was used to assess the therapeutic effects in vivo. Transforming growth factor beta1-induced epithelial-to-mesenchymal transition in HK-2 cells was used as the in vitro cell model. The seahorse bioscience X96 extracellular flux analyzer was used to measure the oxygen consumption rate and extracellular acidification rate. RESULTS In the present study, CeNP-PEG treatment significantly ameliorated renal fibrosis by increased E-cadherin protein expression, and decreased α-SMA, Vimentin and Fibronectin expression both in vitro and in vivo. Additionally, CeNP-PEG significantly reduced the ROS formation and improved the levels of mitochondrial ATP. The seahorse analyzer assay demonstrated that the extracellular acidification rate markedly decreased, whereas the oxygen consumption rate markedly increased, in the presence of CeNP-PEG. Furthermore, the mitochondrial membrane potential markedly enhanced, hexokinase 1 and hexokinase 2 expression significantly decreased after treatment with CeNP-PEG. CONCLUSIONS CeNP-PEG can block the dysregulated metabolic status and exert protective function on renal fibrosis. This may provide another therapeutic option for renal fibrosis.
Collapse
Affiliation(s)
- Mengling Wang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Feng Zeng
- Artemisinin Research Center, Institute of Science and Technology, The First Clinical Medical School, Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Fengling Ning
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Yinhang Wang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Shilin Zhou
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Jiaqi He
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Cong Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China, Academy for Engineering and Technology, Fudan University, 20 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Dongliang Zhang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Jisheng Xiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ping Hu
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Department of Medicine, University of Oxford, John Radcliffe Hospital, RadcliffeOxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Xudong Xu
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
81
|
Dong X, Luo S, Hu D, Cao R, Wang Q, Meng Z, Feng Z, Zhou W, Song W. Gallic acid inhibits neuroinflammation and reduces neonatal hypoxic-ischemic brain damages. Front Pediatr 2022; 10:973256. [PMID: 36619526 PMCID: PMC9813953 DOI: 10.3389/fped.2022.973256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Neuroinflammation is a leading cause of secondary neuronal injury in neonatal hypoxic-ischemic encephalopathy (HIE). Regulation of neuroinflammation may be beneficial for treatment of HIE and its secondary complications. Gallic acid (GA) has been shown to have anti-inflammatory and antioxidant effects. In this report we found that oxygen-glucose deprivation and/reoxygenation (OGD/R)-induced cell death, and the generation of excessive reactive oxygen species (ROS) and inflammatory cytokines by microglia were inhibited by GA treatment. Furthermore, GA treatment reduced neuroinflammation and neuronal loss, and alleviated motor and cognitive impairments in rats with hypoxic-ischemic brain damage (HIBD). Together, our results reveal that GA is an effective regulator of neuroinflammation and has potential as a pharmaceutical intervention for HIE therapy.
Collapse
Affiliation(s)
- Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyue Luo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixue Cao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| |
Collapse
|
82
|
Rauch S. Contrast media and side effects. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
83
|
ROS-Induced mtDNA Release: The Emerging Messenger for Communication between Neurons and Innate Immune Cells during Neurodegenerative Disorder Progression. Antioxidants (Basel) 2021; 10:antiox10121917. [PMID: 34943020 PMCID: PMC8750316 DOI: 10.3390/antiox10121917] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 02/04/2023] Open
Abstract
One of the most striking hallmarks shared by various neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease and amyotrophic lateral sclerosis, is microglia-mediated and astrocyte-mediated neuroinflammation. Although inhibitions of both harmful proteins and aggregation are major treatments for neurodegenerative diseases, whether the phenomenon of non-normal protein or peptide aggregation is causally related to neuronal loss and synaptic damage is still controversial. Currently, excessive production of reactive oxygen species (ROS), which induces mitochondrial dysfunction in neurons that may play a key role in the regulation of immune cells, is proposed as a regulator in neurological disorders. In this review, we propose that mitochondrial DNA (mtDNA) release due to ROS may act on microglia and astrocytes adjacent to neurons to induce inflammation through activation of innate immune responses (such as cGAS/STING). Elucidating the relationship between mtDNA and the formation of a pro-inflammatory microenvironment could contribute to a better understanding of the mechanism of crosstalk between neuronal and peripheral immune cells and lead to the development of novel therapeutic approaches to neurodegenerative diseases.
Collapse
|
84
|
Liu J, Ma L, Zhang G, Chen Y, Wang Z. Recent Progress of Surface Modified Nanomaterials for Scavenging Reactive Oxygen Species in Organism. Bioconjug Chem 2021; 32:2269-2289. [PMID: 34669378 DOI: 10.1021/acs.bioconjchem.1c00402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) are essential for normal physiological processes and play important roles in signal transduction, immunity, and tissue homeostasis. However, excess ROS may have a negative effect on the normal cells leading to various diseases. Nanomaterials are an attractive therapeutic alternative of antioxidants and possess an intrinsic ability to scavenge ROS. Surface modification for nanomaterials is a critical strategy to improve their comprehensive performances. Herein, we review the different surface modified strategies for nanomaterials to scavenge ROS and their inherent antioxidant capability, mechanisms of action, and biological applications. At last, the primary challenges and future perspectives in this emerging research frontier have also been highlighted. It is believed that this review paper will offer a top understanding and guidance on engineering future high-performance surface modified ROS scavenging nanomaterials for wide biomedical applications.
Collapse
Affiliation(s)
- Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100039, P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
85
|
Translocator Protein Regulate Polarization Phenotype Transformation of Microglia after Cerebral Ischemia-reperfusion Injury. Neuroscience 2021; 480:203-216. [PMID: 34624453 DOI: 10.1016/j.neuroscience.2021.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Microglia cells are activated after cerebral ischemia-reperfusion injury (CIRI), playing a dual role in aggravating the injury or promoting tissue repair by polarization. Translocator protein (TSPO) is a biomarker of neuroinflammation or microglia activation. Its expression is significantly increased while brain injury and neuroinflammation occur. However, the relationship between TSPO and microglia polarization in CIRI is still not clear. In the present study, the middle cerebral artery occlusion (MCAO) methods in rats were used to simulate CIRI. We found that the expressions of M1 markers (CD86, IL-1β, and TNF-α) and M2 markers (CD206, IL-10, and TGF-β) were significantly increased. Moreover, the injection of TSPO ligand, PK11195, inhibited the increase of M1 polarization markers but promoted the expressions of M2 polarization markers, which significantly ameliorated the neurological damage after MCAO in rats. In vitro studies showed that shRNA-mediated TSPO knock-down promoted M1 polarization but inhibited M2 polarization, accompanied by a significant decrease in cell viability. On the contrary, overexpression of TSPO inhibited M1 polarization, promoted M2 polarization, and significantly improved cell viability. In summary, TSPO plays a neuroprotective role in CIRI by inhibiting M1 polarization and promoting M2 polarization, which suggests that TSPO may have the potential to serve as a therapeutic target for stroke.
Collapse
|
86
|
Li C, Zhao Z, Luo Y, Ning T, Liu P, Chen Q, Chu Y, Guo Q, Zhang Y, Zhou W, Chen H, Zhou Z, Wang Y, Su B, You H, Zhang T, Li X, Song H, Li C, Sun T, Jiang C. Macrophage-Disguised Manganese Dioxide Nanoparticles for Neuroprotection by Reducing Oxidative Stress and Modulating Inflammatory Microenvironment in Acute Ischemic Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101526. [PMID: 34436822 PMCID: PMC8529435 DOI: 10.1002/advs.202101526] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Indexed: 05/06/2023]
Abstract
Reperfusion injury is still a major challenge that impedes neuronal survival in ischemic stroke. However, the current clinical treatments are remained on single pathological process, which are due to lack of comprehensive neuroprotective effects. Herein, a macrophage-disguised honeycomb manganese dioxide (MnO2 ) nanosphere loaded with fingolimod (FTY) is developed to salvage the ischemic penumbra. In particular, the biomimetic nanoparticles can accumulate actively in the damaged brain via macrophage-membrane protein-mediated recognition with cell adhesion molecules that are overexpressed on the damaged vascular endothelium. MnO2 nanosphere can consume excess hydrogen peroxide (H2 O2 ) and convert it into desiderated oxygen (O2 ), and can be decomposed in acidic lysosome for cargo release, so as to reduce oxidative stress and promote the transition of M1 microglia to M2 type, eventually reversing the proinflammatory microenvironment and reinforcing the survival of damaged neuron. This biomimetic nanomedicine raises new strategy for multitargeted combined treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yifan Luo
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tingting Ning
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Peixin Liu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Qinjun Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yongchao Chu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Qin Guo
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Hongyi Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Zheng Zhou
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yu Wang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Boyu Su
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Haoyu You
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tongyu Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Xuwen Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Haolin Song
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chufeng Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
87
|
Ding Y, Li Z, Hu W, Feng X, Chen Y, Yan G, Wang Y, Zhu B, Yao W, Zheng L, He M, Gao M, Zhao J. Carbazate-modified cross-linked dextran microparticles suppress the progression of osteoarthritis by ROS scavenging. Biomater Sci 2021; 9:6236-6250. [PMID: 34365495 DOI: 10.1039/d1bm00743b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of modified polysaccharide microparticles have been fabricated and their potential application for scavenging reactive oxygen species (ROS) and their derivatives to achieve osteoarthritis (OA) treatment has been explored. These microparticles were cross-linked dextran (Sephadex) with different carbazate substitution ratios determined by the TNBS assay and elemental analysis. It has been demonstrated that they could effectively scavenge carbonylated proteins and ROS including hydroxyl radicals (˙OH), superoxide anions (˙O2-) and H2O2 and their derivatives with high efficiency, improve the viability of H2O2-treated chondrocytes by reducing their ROS levels, as well as lower their inflammatory factors. The above ability of antioxidation and inflammation resistance improved with the increase of carbazate substitution ratio. Significantly, this work provided the proof that modified Sephadex successfully alleviated the deterioration of cartilage and the progression of OA in vivo. The proposed microparticles showed a very promising capability for reducing ROS levels and further treating OA.
Collapse
Affiliation(s)
- Yanfeng Ding
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhimin Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Wenwen Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Xianjing Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Ying Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Guohua Yan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yonglin Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Bo Zhu
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wei Yao
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Maolin He
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Ming Gao
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Liboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
88
|
Liu P, Zhang T, Chen Q, Li C, Chu Y, Guo Q, Zhang Y, Zhou W, Chen H, Zhou Z, Wang Y, Zhao Z, Luo Y, Li X, Song H, Su B, Li C, Sun T, Jiang C. Biomimetic Dendrimer-Peptide Conjugates for Early Multi-Target Therapy of Alzheimer's Disease by Inflammatory Microenvironment Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100746. [PMID: 33998706 DOI: 10.1002/adma.202100746] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Current therapeutic strategies for Alzheimer's disease (AD) treatments mainly focus on β-amyloid (Aβ) targeting. However, such therapeutic strategies have limited clinical outcomes due to the chronic and irreversible impairment of the nervous system in the late stage of AD. Recently, inflammatory responses, manifested in oxidative stress and glial cell activation, have been reported as hallmarks in the early stages of AD. Based on the crosstalk between inflammatory response and brain cells, a reactive oxygen species (ROS)-responsive dendrimer-peptide conjugate (APBP) is devised to target the AD microenvironment and inhibit inflammatory responses at an early stage. With the modification of the targeting peptide, this nanoconjugate can efficiently deliver peptides to the infected regions and restore the antioxidant ability of neurons by activating the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. Moreover, this multi-target strategy exhibits a synergistic function of ROS scavenging, promoting Aβ phagocytosis, and normalizing the glial cell phenotype. As a result, the nanoconjugate can reduce ROS level, decrease Aβ burden, alleviate glial cell activation, and eventually enhance cognitive functions in APPswe/PSEN1dE9 model mice. These results indicate that APBP can be a promising candidate for the multi-target treatment of AD.
Collapse
Affiliation(s)
- Peixin Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Tongyu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Hongyi Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yifan Luo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Xuwen Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Haolin Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chufeng Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
89
|
Li C, Sun T, Jiang C. Recent advances in nanomedicines for the treatment of ischemic stroke. Acta Pharm Sin B 2021; 11:1767-1788. [PMID: 34386320 PMCID: PMC8343119 DOI: 10.1016/j.apsb.2020.11.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/27/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs in vivo, achieve effective drug accumulation at the target site, enhance the therapeutic effect and meanwhile reduce the side effect. In this review, we comprehensively describe the pathophysiology of stroke, traditional treatment strategies and emerging nanomedicines, summarize the barriers and methods for transporting nanomedicine to the lesions, and illustrate the latest progress of nanomedicine in treating ischemic stroke, with a view to providing a new feasible path for the treatment of cerebral ischemia.
Collapse
Key Words
- AEPO, asialo-erythropoietin
- APOE, apolipoprotein E
- BBB, blood‒brain barrier
- BCECs, brain capillary endothelial cells
- Blood‒brain barrier
- CAT, catalase
- COX-1, cyclooxygenase-1
- CXCR-4, C-X-C chemokine receptor type 4
- Ce-NPs, ceria nanoparticles
- CsA, cyclosporine A
- DAMPs, damage-associated molecular patterns
- GFs, growth factors
- GPIIb/IIIa, glycoprotein IIb/IIIa
- HMGB1, high mobility group protein B1
- Hb, hemoglobin
- ICAM-1, intercellular adhesion molecule-1
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- Ischemic cascade
- LFA-1, lymphocyte function-associated antigen-1
- LHb, liposomal Hb
- MCAO, middle cerebral artery occlusion
- MMPs, matrix metalloproteinases
- MSC, mesenchymal stem cell
- NF-κB, nuclear factor-κB
- NGF, nerve growth factor
- NMDAR, N-methyl-d-aspartate receptor
- NOS, nitric oxide synthase
- NPs, nanoparticles
- NSCs, neural stem cells
- Nanomedicine
- Neuroprotectant
- PBCA, poly-butylcyanoacrylate
- PCMS, poly (chloromethylstyrene)
- PEG, poly-ethylene-glycol
- PEG-PLA, poly (ethylene-glycol)-b-poly (lactide)
- PLGA NPs, poly (l-lactide-co-glycolide) nanoparticles
- PSD-95, postsynaptic density protein-95
- PSGL-1, P-selectin glycoprotein ligand-1
- RBCs, red blood cells
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp
- ROS, reactive oxygen species
- Reperfusion
- SDF-1, stromal cell-derived factor-1
- SHp, stroke homing peptide
- SOD, superoxide dismutase
- SUR1-TRPM4, sulfonylurea receptor 1-transient receptor potential melastatin-4
- Stroke
- TEMPO, 2,2,6,6-tetramethylpiperidine-1-oxyl
- TIA, transient ischemic attack
- TNF-α, tumor necrosis factor-α
- Thrombolytics
- cRGD, cyclic Arg-Gly-Asp
- e-PAM-R, arginine-poly-amidoamine ester
- iNOS, inducible nitric oxide synthase
- miRNAs, microRNAs
- nNOS, neuron nitric oxide synthase
- siRNA, small interfering RNA
Collapse
|
90
|
Bondarenko O, Saarma M. Neurotrophic Factors in Parkinson's Disease: Clinical Trials, Open Challenges and Nanoparticle-Mediated Delivery to the Brain. Front Cell Neurosci 2021; 15:682597. [PMID: 34149364 PMCID: PMC8206542 DOI: 10.3389/fncel.2021.682597] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neurotrophic factors (NTFs) are small secreted proteins that support the development, maturation and survival of neurons. NTFs injected into the brain rescue and regenerate certain neuronal populations lost in neurodegenerative diseases, demonstrating the potential of NTFs to cure the diseases rather than simply alleviating the symptoms. NTFs (as the vast majority of molecules) do not pass through the blood-brain barrier (BBB) and therefore, are delivered directly into the brain of patients using costly and risky intracranial surgery. The delivery efficacy and poor diffusion of some NTFs inside the brain are considered the major problems behind their modest effects in clinical trials. Thus, there is a great need for NTFs to be delivered systemically thereby avoiding intracranial surgery. Nanoparticles (NPs), particles with the size dimensions of 1-100 nm, can be used to stabilize NTFs and facilitate their transport through the BBB. Several studies have shown that NTFs can be loaded into or attached onto NPs, administered systemically and transported to the brain. To improve the NP-mediated NTF delivery through the BBB, the surface of NPs can be functionalized with specific ligands such as transferrin, insulin, lactoferrin, apolipoproteins, antibodies or short peptides that will be recognized and internalized by the respective receptors on brain endothelial cells. In this review, we elaborate on the most suitable NTF delivery methods and envision "ideal" NTF for Parkinson's disease (PD) and clinical trial thereof. We shortly summarize clinical trials of four NTFs, glial cell line-derived neurotrophic factor (GDNF), neurturin (NRTN), platelet-derived growth factor (PDGF-BB), and cerebral dopamine neurotrophic factor (CDNF), that were tested in PD patients, focusing mainly on GDNF and CDNF. We summarize current possibilities of NP-mediated delivery of NTFs to the brain and discuss whether NPs have impact in improving the properties of NTFs and delivery across the BBB. Emerging delivery approaches and future directions of NTF-based nanomedicine are also discussed.
Collapse
Affiliation(s)
- Olesja Bondarenko
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
91
|
Zeng H, Qi Y, Zhang Z, Liu C, Peng W, Zhang Y. Nanomaterials toward the treatment of Alzheimer’s disease: Recent advances and future trends. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
92
|
Huang X, He D, Pan Z, Luo G, Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater Today Bio 2021; 11:100124. [PMID: 34458716 PMCID: PMC8379340 DOI: 10.1016/j.mtbio.2021.100124] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) mediate multiple physiological functions; however, the over-accumulation of ROS causes premature aging and/or death and is associated with various inflammatory conditions. Nevertheless, there are limited clinical treatment options that are currently available. The good news is that owing to the considerable advances in nanoscience, multiple types of nanomaterials with unique ROS-scavenging abilities that influence the temporospatial dynamic behaviors of ROS in biological systems have been developed. This has led to the emergence of next-generation nanomaterial-controlled strategies aimed at ameliorating ROS-related inflammatory conditions. Accordingly, herein we reviewed recent progress in research on nanotherapy based on ROS scavenging. The underlying mechanisms of the employed nanomaterials are emphasized. Furthermore, important issues in developing cross-disciplinary nanomedicine-based strategies for ROS-based inflammatory conditions are discussed. Our review of this increasing interdisciplinary field will benefit ongoing studies and clinical applications of nanomedicine based on ROS scavenging.
Collapse
Affiliation(s)
- X. Huang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - D. He
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - Z. Pan
- Department of Endocrinology and Nephrology, The Seventh People's Hospital of Chongqing
| | - G. Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - J. Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| |
Collapse
|
93
|
The Role of Nanomaterials in Stroke Treatment: Targeting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8857486. [PMID: 33815664 PMCID: PMC7990543 DOI: 10.1155/2021/8857486] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Stroke has a high rate of morbidity and disability, which seriously endangers human health. In stroke, oxidative stress leads to further damage to the brain tissue. Therefore, treatment for oxidative stress is urgently needed. However, antioxidative drugs have demonstrated obvious protective effects in preclinical studies, but the clinical studies have not seen breakthroughs. Nanomaterials, with their characteristically small size, can be used to deliver drugs and have demonstrated excellent performance in treating various diseases. Additionally, some nanomaterials have shown potential in scavenging reactive oxygen species (ROS) in stroke according to the nature of nanomaterials. The drugs' delivery ability of nanomaterials has great significance for the clinical translation and application of antioxidants. It increases drug blood concentration and half-life and targets the ischemic brain to protect cells from oxidative stress-induced death. This review summarizes the characteristics and progress of nanomaterials in the application of antioxidant therapy in stroke, including ischemic stroke, hemorrhagic stroke, and neural regeneration. We also discuss the prospect of nanomaterials for the treatment of oxidative stress in stroke and the challenges in their application, such as the toxicity and the off-target effects of nanomaterials.
Collapse
|
94
|
Tian R, Xu J, Luo Q, Hou C, Liu J. Rational Design and Biological Application of Antioxidant Nanozymes. Front Chem 2021; 8:831. [PMID: 33644000 PMCID: PMC7905316 DOI: 10.3389/fchem.2020.00831] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Nanozyme is a type of nanostructured material with intrinsic enzyme mimicking activity, which has been increasingly studied in the biological field. Compared with natural enzymes, nanozymes have many advantages, such as higher stability, higher design flexibility, and more economical production costs. Nanozymes can be used to mimic natural antioxidant enzymes to treat diseases caused by oxidative stress through reasonable design and modification. Oxidative stress is caused by imbalances in the production and elimination of reactive oxygen species (ROS) and reactive nitrogen species (RNS). This continuous oxidative stress can cause damage to some biomolecules and significant destruction to cell structure and function, leading to many physiological diseases. In this paper, the methods to improve the antioxidant properties of nanozymes were reviewed, and the applications of nanozyme antioxidant in the fields of anti-aging, cell protection, anti-inflammation, wound repair, cancer, traumatic brain injury, and nervous system diseases were introduced. Finally, the future challenges and prospects of nanozyme as an ideal antioxidant were discussed.
Collapse
Affiliation(s)
- Ruizhen Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
95
|
Yu D, Liu C, Zhang H, Ren J, Qu X. Glycoengineering artificial receptors for microglia to phagocytose Aβ aggregates. Chem Sci 2021; 12:4963-4969. [PMID: 34163743 PMCID: PMC8179537 DOI: 10.1039/d0sc07067j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Oligomeric and fibrillar amyloid-β (Aβ) are principally internalized via receptor-mediated endocytosis (RME) by microglia, the main scavenger of Aβ in the brain. Nevertheless, the inflammatory cascade will be evoked after vast Aβ aggregate binding to pattern recognition receptors on the cell membrane, which then significantly decreases the expression of these receptors and further deteriorate Aβ deposition. This vicious circle will weaken the ability of microglia for Aβ elimination. Herein, a combination of metabolic glycoengineering and self-triggered click chemistry is utilized to engineer microglial membranes with ThS as artificial Aβ receptors to promote microglia to phagocytose Aβ aggregates. Additionally, to circumvent the undesirable immune response during the process of the bioorthogonal chemistry reaction and Aβ-microglial interaction, Mn-porphyrin metal-organic frameworks (Mn-MOFs) with superoxide dismutase (SOD) and catalase (CAT) mimic activity are employed to carry N-azidoacetylmannosamine (AcManNAz) and eradicate over-expressed reactive oxygen species (ROSs). The artificial Aβ receptors independent of a signal pathway involved in immunomodulation as well as Mn-MOFs with antioxidant properties can synergistically promote the phagocytosis and clearance of Aβ with significantly enhanced activity and negligible adverse effects. The present study will not only provide valuable insight into the rational design of the microglial surface engineering strategy via bioorthogonal chemistry, but also hold great potential for other disease intervention associated with receptor starvation.
Collapse
Affiliation(s)
- Dongqin Yu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Chun Liu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Haochen Zhang
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|
96
|
Feng L, Dou C, Xia Y, Li B, Zhao M, Yu P, Zheng Y, El-Toni AM, Atta NF, Galal A, Cheng Y, Cai X, Wang Y, Zhang F. Neutrophil-like Cell-Membrane-Coated Nanozyme Therapy for Ischemic Brain Damage and Long-Term Neurological Functional Recovery. ACS NANO 2021; 15:2263-2280. [PMID: 33426885 DOI: 10.1021/acsnano.0c07973] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Oxidative stress and a series of excessive inflammatory responses are major obstacles for neurological functional recovery after ischemic stroke. Effective noninvasive anti-inflammatory therapies are urgently needed. However, unsatisfactory therapeutic efficacy of current drugs and inadequate drug delivery to the damaged brain are major problems. Nanozymes with robust anti-inflammatory and antioxidative stress properties possess therapeutic possibility for ischemic stroke. However, insufficiency of nanozyme accumulation in the ischemic brain by noninvasive administration hindered their application. Herein, we report a neutrophil-like cell-membrane-coated mesoporous Prussian blue nanozyme (MPBzyme@NCM) to realize noninvasive active-targeting therapy for ischemic stroke by improving the delivery of a nanozyme to the damaged brain based on the innate connection between inflamed brain microvascular endothelial cells and neutrophils after stroke. The long-term in vivo therapeutic efficacy of MPBzyme@NCM for ischemic stroke was illustrated in detail after being delivered into the damaged brain and uptake by microglia. Moreover, the detailed mechanism of ischemic stroke therapy via MPBzyme@NCM uptake by microglia was further studied, including microglia polarization toward M2, reduced recruitment of neutrophils, decreased apoptosis of neurons, and proliferation of neural stem cells, neuronal precursors, and neurons. This strategy may provide an applicative perspective for nanozyme therapy in brain diseases.
Collapse
Affiliation(s)
- Lishuai Feng
- Department of Radiology, Department of Ultrasound in Medicine, and Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Chaoran Dou
- Department of Radiology, Department of Ultrasound in Medicine, and Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Yuguo Xia
- Department of Radiology, Department of Ultrasound in Medicine, and Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Benhao Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Yuanyi Zheng
- Department of Radiology, Department of Ultrasound in Medicine, and Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Central Metallurgical Research and Development Institute (CMRDI), Helwan, 11421 Cairo, Egypt
| | - Nada Farouk Atta
- Department of Chemistry, Cairo University, Giza, 12613 Cairo, Egypt
| | - Ahmed Galal
- Department of Chemistry, Cairo University, Giza, 12613 Cairo, Egypt
| | - Yingsheng Cheng
- Department of Radiology, Department of Ultrasound in Medicine, and Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Xiaojun Cai
- Department of Radiology, Department of Ultrasound in Medicine, and Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Yan Wang
- Department of Radiology, Department of Ultrasound in Medicine, and Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
97
|
Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: microglia-astrocyte involvement in remyelination. J Neuroinflammation 2021; 18:43. [PMID: 33588866 PMCID: PMC7883579 DOI: 10.1186/s12974-021-02101-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) can induce excessive accumulation of reactive oxygen species (ROS) that may subsequently cause severe white matter injury. The process of oligodendrocyte progenitor cell (OPC) differentiation is orchestrated by microglia and astrocytes, and ROS also drives the activation of microglia and astrocytes. In light of the potent ROS scavenging capacity of ceria nanoparticles (CeNP), we aimed to investigate whether treatment with CeNP ameliorates white matter injury by modulating ROS-induced microglial polarization and astrocyte alteration. Methods ICH was induced in vivo by collagenase VII injection. Mice were administered with PLX3397 for depleting microglia. Primary microglia and astrocytes were used for in vitro experiments. Transmission electron microscopy analysis and immunostaining were performed to verify the positive effects of CeNP in remyelination and OPC differentiation. Flow cytometry, real-time polymerase chain reaction, immunofluorescence and western blotting were used to detect microglia polarization, astrocyte alteration, and the underlying molecular mechanisms. Results CeNP treatment strongly inhibited ROS-induced NF-κB p65 translocation in both microglia and astrocytes, and significantly decreased the expression of M1 microglia and A1 astrocyte. Furthermore, we found that CeNP treatment promoted remyelination and OPC differentiation after ICH, and such effects were alleviated after microglial depletion. Interestingly, we also found that the number of mature oligodendrocytes was moderately increased in ICH + CeNP + PLX3397-treated mice compared to the ICH + vehicle + PLX3397 group. Therefore, astrocytes might participate in the pathophysiological process. The subsequent phagocytosis assay indicated that A1 astrocyte highly expressed C3, which could bind with microglia C3aR and hinder microglial engulfment of myelin debris. This result further replenished the feedback mechanism from astrocytes to microglia. Conclusion The present study reveals a new mechanism in white matter injury after ICH: ICH induces M1 microglia and A1 astrocyte through ROS-induced NF-κB p65 translocation that hinders OPC maturation. Subsequently, A1 astrocytes inhibit microglial phagocytosis of myelin debris via an astrocytic C3-microglial C3aR axis. Polyethylene glycol-CeNP treatment inhibits this pathological process and ultimately promotes remyelination. Such findings enlighten us that astrocytes and microglia should be regarded as a functional unit in future works. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02101-6.
Collapse
|
98
|
Wan MM, Chen H, Da Wang Z, Liu ZY, Yu YQ, Li L, Miao ZY, Wang XW, Wang Q, Mao C, Shen J, Wei J. Nitric Oxide-Driven Nanomotor for Deep Tissue Penetration and Multidrug Resistance Reversal in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002525. [PMID: 33552861 PMCID: PMC7856908 DOI: 10.1002/advs.202002525] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Indexed: 05/19/2023]
Abstract
Poor permeation of therapeutic agents and multidrug resistance (MDR) in solid tumors are the two major challenges that lead to the failure of the current chemotherapy methods. Herein, a zero-waste doxorubicin-loaded heparin/folic acid/l-arginine (HFLA-DOX) nanomotor with motion ability and sustained release of nitric oxide (NO) to achieve deep drug penetration and effective reversal of MDR in cancer chemotherapy is designed. The targeted recognition, penetration of blood vessels, intercellular penetration, special intracellular distribution (escaping from lysosomes and accumulating in Golgi and nucleus), 3D multicellular tumor spheroids (3D MTSs) penetration, degradation of tumor extracellular matrix (ECM), and reversal of MDR based on the synergistic effects of the motion ability and sustained NO release performance of the NO-driven nanomotors are investigated in detail. Correspondingly, a new chemotherapy mode called recognition-penetration-reversal-elimination is proposed, whose effectiveness is verified by in vitro cellular experiments and in vivo animal tumor model, which can not only provide effective solutions to these challenges encountered in cancer chemotherapy, but also apply to other therapy methods for the special deep-tissue penetration ability of a therapeutic agent.
Collapse
Affiliation(s)
- Mi Mi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Zhong Da Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Zhi Yong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Yue Qi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Lin Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Zhuo Yue Miao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Xing Wen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008China
| |
Collapse
|
99
|
Yang Y, Guo L, Wang Z, Liu P, Liu X, Ding J, Zhou W. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials 2021; 264:120390. [PMID: 32980634 DOI: 10.1016/j.biomaterials.2020.120390] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Infiltration of inflammatory cells, especially the M1 macrophages that secrete various types of inflammation cytokines, play crucial roles in the pathogenesis of rheumatoid arthritis (RA). To relief synovial inflammation, M1 macrophages must be eliminated or switched to anti-inflammatory M2 phenotype. We herein developed folic acid modified silver nanoparticles (FA-AgNPs) that can actively deliver into M1 macrophages to synergistically induce M1 macrophages reduction and M2 macrophages polarization for effective RA treatment. The AgNPs was facilely prepared, PEGylated and modified with FA to realize M1 macrophages targeting delivery via folate receptor overexpressed on M1 macrophages surface. After entering cells, FA-AgNPs dissolved and released Ag+ in response to intracellular glutathione (GSH), which is the key element to exert a series of anti-inflammatory functions, such as M1 macrophages apoptosis and reactive oxygen species (ROS) scavenging to facilitate M2 macrophages polarization, both of which contributed to RA treatment. This nano-system could passively accumulate into inflamed joints, permit potent anti-inflammatory activity, and impose strong therapeutic efficacy in mice RA models with high biosafety. After treatment, FA-AgNPs could be gradually cleared from the body mainly via feces without tissue accumulation, and did not show any appreciable long-term toxicity. This work declares the first example of using bio-active nanoparticles for RA treatment without loading any drugs, and highlights the potential of FA-AgNPs for targeted RA therapy via simultaneous M1 macrophage apoptosis and M1-to-M2 macrophages re-polarization.
Collapse
Affiliation(s)
- Yihua Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmaceutical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Lina Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Zhe Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Peng Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Xuanjun Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
100
|
Qiao P, Ma J, Wang Y, Huang Z, Zou Q, Cai Z, Tang Y. Curcumin Prevents Neuroinflammation by Inducing Microglia to Transform into the M2-phenotype via CaMKKβ-dependent Activation of the AMP-Activated Protein Kinase Signal Pathway. Curr Alzheimer Res 2020; 17:735-752. [PMID: 33176649 DOI: 10.2174/1567205017666201111120919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/03/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Neuroinflammation plays an important role in the pathophysiological process of various neurodegenerative diseases. It is well known that curcumin has obvious anti-inflammatory effects in various neuroinflammation models. However, its effect on the modulation of microglial polarization is largely unknown. OBJECTIVE This study aimed to investigate whether curcumin changed microglia to an anti-inflammatory M2-phenotype by activating the AMP-activated protein kinase (AMPK) signaling pathway. METHODS LPS treatment was used to establish BV2 cells and primary microglia neuroinflammation models. The neuroinflammation mouse model was established by an intracerebroventricular (ICV) injection of lipopolysaccharide (LPS) in the lateral septal complex region of the brain. TNF-α was measured by ELISA, and cell viability was measured by Cell Counting Kit-8 (CCK-8). The expression of proinflammatory and anti-inflammatory cytokines was examined by Q-PCR and Western blot analysis. Phenotypic polarization of BV2 microglia was detected by immunofluorescence. RESULTS Curcumin enhanced AMPK activation in BV2 microglial cells in the presence and absence of LPS. Upon LPS stimulation, the addition of curcumin promoted M2 polarization of BV2 cells, as evidenced by suppressed M1 and the elevated M2 signature protein and gene expression. The effects of curcumin were inhibited by an AMPK inhibitor or AMPK knockdown. Calmodulin-dependent protein kinase kinase β (CaMKKβ) and liver kinase B1 (LKB1) are upstream kinases that activate AMPK. Curcumin can activate AMPK in Hela cells, which do not express LKB1. However, both the CaMKKβ inhibitor and siRNA blocked curcumin activation of AMPK in LPS-stimulated BV2 cells. Moreover, the CaMKKβ inhibitor and siRNA weaken the effect of curcumin suppression on M1 and enhancement of M2 protein and gene expression in LPS-stimulated BV2 cells. Finally, curcumin enhanced AMPK activation in the brain area where microglia were over-activated upon LPS stimulation in an in vivo neuroinflammation model. Moreover, curcumin also suppressed M1 and promoted M2 signature protein and gene expression in this in vivo model. CONCLUSION Curcumin enhances microglia M2 polarization via the CaMKKβ-dependent AMPK signaling pathway. Additionally, curcumin treatment was found to be neuroprotective and thus might be considered as a novel therapeutic agent to treat the neurodegenerative disease such as Alzheimer's disease, Parkinson's disease, etc.
Collapse
Affiliation(s)
- Peifeng Qiao
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing,
China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China,Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Jingxi Ma
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing,
China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Yangyang Wang
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing,
China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Zhenting Huang
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing,
China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Qian Zou
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing,
China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing,
China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|