51
|
Muacevic A, Adler JR. Accuracy of Ultrasonography vs. Elastography in Patients With Non-alcoholic Fatty Liver Disease: A Systematic Review. Cureus 2022; 14:e29967. [PMID: 36381908 PMCID: PMC9637432 DOI: 10.7759/cureus.29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Ultrasonography and elastography are the most widely used imaging modalities for diagnosing non-alcoholic fatty liver disease. This study aimed to assess and compare the diagnostic accuracy in patients with non-alcoholic fatty liver disease/non-alcoholic steatohepatitis. This systematic review was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search was done for the past seven years using Pubmed, Pubmed Central, Cochrane, and Google Scholar databases on Jun 29, 2022. Studies were included based on the following predefined criteria: observational studies, randomized controlled trial (RCT), comparative studies, studies using liver biopsy or MRI proton density fat fraction (MRI PDFF) as a reference standard, ultrasonography, and elastography with measures of their diagnostic accuracy like sensitivity (SN), specificity (SP), area under the receiver operating characteristic (AUROC) curve, and English language. The data were extracted on a predefined template. The final twelve eligible studies were assessed using the quality assessment of diagnostic accuracy tool (QUADS-2). Most studies focused on elastography techniques, and the remaining focused on quantitative ultrasonography methods like the controlled attenuation parameter (CAP) and attenuation coefficient (AC). Only one study was available for the evaluation of qualitative ultrasonography. MRI was generally found superior to other diagnostic tests for determining liver stiffness through magnetic resonance elastography (MRE) and steatosis through MRI PDFF. Data assessing the comparative diagnostic accuracy of the two tests were inconclusive.
Collapse
|
52
|
Bozic D, Podrug K, Mikolasevic I, Grgurevic I. Ultrasound Methods for the Assessment of Liver Steatosis: A Critical Appraisal. Diagnostics (Basel) 2022; 12:2287. [PMID: 36291976 PMCID: PMC9600709 DOI: 10.3390/diagnostics12102287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 08/10/2023] Open
Abstract
The prevalence of the non-alcoholic fatty liver disease has reached major proportions, being estimated to affect one-quarter of the global population. The reference techniques, which include liver biopsy and the magnetic resonance imaging proton density fat fraction, have objective practical and financial limitations to their routine use in the detection and quantification of liver steatosis. Therefore, there has been a rising necessity for the development of new inexpensive, widely applicable and reliable non-invasive diagnostic tools. The controlled attenuation parameter has been considered the point-of-care technique for the assessment of liver steatosis for a long period of time. Recently, many ultrasound (US) system manufacturers have developed proprietary software solutions for the quantification of liver steatosis. Some of these methods have already been extensively tested with very good performance results reported, while others are still under evaluation. This manuscript reviews the currently available US-based methods for diagnosing and grading liver steatosis, including their classification and performance results, with an appraisal of the importance of this armamentarium in daily clinical practice.
Collapse
Affiliation(s)
- Dorotea Bozic
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Kristian Podrug
- Department of Gastroenterology and Hepatology, University Hospital Center Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology and Hepatology, University Hospital Center Rijeka, Krešimirova 42, 51 000 Rijeka, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 2, 10 000 Zagreb, Croatia
| |
Collapse
|
53
|
Şendur HN, Özdemir Kalkan D, Cerit MN, Kalkan G, Şendur AB, Özhan Oktar S. Hepatic Fat Quantification With Novel Ultrasound Based Techniques: A Diagnostic Performance Study Using Magnetic Resonance Imaging Proton Density Fat Fraction as Reference Standard. Can Assoc Radiol J 2022; 74:362-369. [PMID: 36113064 DOI: 10.1177/08465371221123696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose: To assess the diagnostic performances of novel Tissue attenuation imaging (TAI) and Tissue scatter distribution imaging (TSI) tools in quantification of liver fat content using magnetic resonance imaging proton density fat fraction (MRI PDFF) as reference standard. Methods: Eighty consecutive patients with known or suspected non-alcoholic fatty liver disease (NAFLD) who volunteered to participate in the study comprised the study cohort. All patients underwent MRI PDFF scan and quantitative ultrasound (QUS) imaging using TAI and TSI tools. The cutoff values of ≥5%, ≥16.3% and ≥21.7% on MRI PDFF were used for mild, moderate and severe steatosis, respectively. Area under the Receiver operating characteristic (AUROC) curves were used to assess the diagnostic performance of TAI and TSI in detecting different grades of hepatic steatosis. Results: The AUROCs of TAI and TSI tools in detecting hepatosteatosis (MRI PDFF ≥5%), were 0.95 [95% Confidence Interval (CI): 0.91–0.99] ( P < 0.001) and 0.96 (95% CI: 0.93–0.99) ( P < 0.001), respectively. In distinguishing between different grades of steatosis, the values of 0.75, 0.86 and 0.96 dB/cm/MHz have 88%, 88% and 100% sensitivity, respectively, for TAI tool; and the values of 92.44, 96.64 and 99.45 have 90%, 92% and 91.7% sensitivity, respectively, for TSI tool. Conclusion: TAI and TSI tools accurately quantify liver fat content and can be used for the assessment and grading of hepatosteatosis in patients with known or suspected NAFLD.
Collapse
Affiliation(s)
- Halit Nahit Şendur
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | | | - Mahi Nur Cerit
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | - Gökalp Kalkan
- Medicana International Ankara Hospital, Radiology Unit, Ankara, Turkey
| | | | - Suna Özhan Oktar
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| |
Collapse
|
54
|
Roeb E, Canbay A, Bantel H, Bojunga J, de Laffolie J, Demir M, Denzer UW, Geier A, Hofmann WP, Hudert C, Karlas T, Krawczyk M, Longerich T, Luedde T, Roden M, Schattenberg J, Sterneck M, Tannapfel A, Lorenz P, Tacke F. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:1346-1421. [PMID: 36100202 DOI: 10.1055/a-1880-2283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- E Roeb
- Gastroenterologie, Medizinische Klinik II, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - A Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland
| | - H Bantel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - J Bojunga
- Medizinische Klinik I Gastroent., Hepat., Pneum., Endokrin., Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - J de Laffolie
- Allgemeinpädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - M Demir
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin, Deutschland
| | - U W Denzer
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Marburg, Deutschland
| | - A Geier
- Medizinische Klinik und Poliklinik II, Schwerpunkt Hepatologie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - W P Hofmann
- Gastroenterologie am Bayerischen Platz - Medizinisches Versorgungszentrum, Berlin, Deutschland
| | - C Hudert
- Klinik für Pädiatrie m. S. Gastroenterologie, Nephrologie und Stoffwechselmedizin, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Berlin, Deutschland
| | - T Karlas
- Klinik und Poliklinik für Onkologie, Gastroenterologie, Hepatologie, Pneumologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - M Krawczyk
- Klinik für Innere Medizin II, Gastroent., Hepat., Endokrin., Diabet., Ern.med., Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - T Longerich
- Pathologisches Institut, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - T Luedde
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - M Roden
- Klinik für Endokrinologie und Diabetologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - J Schattenberg
- I. Medizinische Klinik und Poliklinik, Universitätsmedizin Mainz, Mainz, Deutschland
| | - M Sterneck
- Klinik für Hepatobiliäre Chirurgie und Transplantationschirurgie, Universitätsklinikum Hamburg, Hamburg, Deutschland
| | - A Tannapfel
- Institut für Pathologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - P Lorenz
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Berlin, Deutschland
| | - F Tacke
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin, Deutschland
| |
Collapse
|
55
|
Updated S2k Clinical Practice Guideline on Non-alcoholic Fatty Liver Disease (NAFLD) issued by the German Society of Gastroenterology, Digestive and Metabolic Diseases (DGVS) - April 2022 - AWMF Registration No.: 021-025. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e733-e801. [PMID: 36100201 DOI: 10.1055/a-1880-2388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
56
|
Rónaszéki AD, Budai BK, Csongrády B, Stollmayer R, Hagymási K, Werling K, Fodor T, Folhoffer A, Kalina I, Győri G, Maurovich-Horvat P, Kaposi PN. Tissue attenuation imaging and tissue scatter imaging for quantitative ultrasound evaluation of hepatic steatosis. Medicine (Baltimore) 2022; 101:e29708. [PMID: 35984128 PMCID: PMC9387959 DOI: 10.1097/md.0000000000029708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We aimed to assess the feasibility of ultrasound-based tissue attenuation imaging (TAI) and tissue scatter distribution imaging (TSI) for quantification of liver steatosis in patients with nonalcoholic fatty liver disease (NAFLD). We prospectively enrolled 101 participants with suspected NAFLD. The TAI and TSI measurements of the liver were performed with a Samsung RS85 Prestige ultrasound system. Based on the magnetic resonance imaging proton density fat fraction (MRI-PDFF), patients were divided into ≤5%, 5-10%, and ≥10% of MRI-PDFF groups. We determined the correlation between TAI, TSI, and MRI-PDFF and used multiple linear regression analysis to identify any association with clinical variables. The diagnostic performance of TAI, TSI was determined based on the area under the receiver operating characteristic curve (AUC). The intraclass correlation coefficient (ICC) was calculated to assess interobserver reliability. Both TAI (rs = 0.78, P < .001) and TSI (rs = 0.68, P < .001) showed significant correlation with MRI-PDFF. TAI overperformed TSI in the detection of both ≥5% MRI-PDFF (AUC = 0.89 vs 0.87) and ≥10% (AUC = 0.93 vs 0.86). MRI-PDFF proved to be an independent predictor of TAI (β = 1.03; P < .001), while both MRI-PDFF (β = 50.9; P < .001) and liver stiffness (β = -0.86; P < .001) were independent predictors of TSI. Interobserver analysis showed excellent reproducibility of TAI (ICC = 0.95) and moderate reproducibility of TSI (ICC = 0.73). TAI and TSI could be used successfully to diagnose and estimate the severity of hepatic steatosis in routine clinical practice.
Collapse
Affiliation(s)
- Aladár D. Rónaszéki
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- *Correspondence: Aladár D. Rónaszéki, MD, Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Korányi Sándor str. 2., H-1082 Budapest, Hungary (e-mail: )
| | - Bettina K. Budai
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Barbara Csongrády
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Róbert Stollmayer
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztina Hagymási
- Department of Surgery, Transplantation and Gastroenterology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Klára Werling
- Department of Surgery, Transplantation and Gastroenterology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Fodor
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Folhoffer
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ildikó Kalina
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gabriella Győri
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Pál N. Kaposi
- Department of Radiology, Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
57
|
Barr RG, Cestone A, De Silvestri A. A Pre-Release Algorithm With a Confidence Map for Estimating the Attenuation Coefficient for Liver Fat Quantification. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1939-1948. [PMID: 34730847 DOI: 10.1002/jum.15870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/09/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To compare the estimates of attenuation coefficient (AC) for liver fat quantification between 2 Ultrasound systems and to evaluate the quality measure of a pre-released software. METHODS AC were obtained in 30 participants in this single-center IRB-approved, HIPAA compliant study. Images were obtained on the Philips Epiq Elite system using experimental software and the Canon Medical Systems Aplio i800 with released software. Five AC measurements were taken and the median and IQR/M were calculated. Region of interest placement was based on a confidence map. ROI was at the same depth and size for each system. The concordance was estimated using the Lin's concordance correlation coefficient (CCC), the r Pearson's correlation coefficient, the bias-correction factor (Cb), and the Bland-Altman method. RESULTS The ACs varied from 0.45 to 1.0 dB/cm/MHz for the Philips system and 0.30 to 0.96 dB/cm/MHz for the Canon system. The CCC (95% CI) was 0.792 (0.666-0.918), Pearson's r was 0.839 with Cb of 0.944, and the mean difference was 0.03 (-0.101; 0.162) suggesting the 2 methods are considered to be in agreement. Based on a Philips confidence map to determine the best location for performing the measurements, a depth of 3.5 to 4.0 cm from the liver capsule was determined, which might be significantly different than that of the Canon system. CONCLUSIONS Estimation of the AC of the 2 systems showed a high agreement, that is, a similar trend. Assessment of the placement of the measurement box based on the quality of the measurement might be different between the 2 systems.
Collapse
Affiliation(s)
- Richard G Barr
- Professor of Radiology, Northeastern Ohio Medical University, Rootstown, OH, USA
- Southwoods Imaging, Youngstown, OH, USA
| | | | - Annalisa De Silvestri
- Clinical Epidemiology and Biometeric Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
58
|
Song K, Son NH, Chang DR, Chae HW, Shin HJ. Feasibility of Ultrasound Attenuation Imaging for Assessing Pediatric Hepatic Steatosis. BIOLOGY 2022; 11:biology11071087. [PMID: 36101465 PMCID: PMC9313139 DOI: 10.3390/biology11071087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
We investigated the feasibility of ultrasound attenuation imaging (ATI) for assessing pediatric hepatic steatosis. A total of 111 children and adolescents who underwent liver ultrasonography with ATI for suspected hepatic steatosis were included. Participants were classified into the normal, mild, or moderate−severe fatty liver group according to grayscale US findings. Associations between clinical factors, magnetic resonance imaging proton density fat fraction, steatosis stage and ATI values were evaluated. To determine the cutoff values of ATI for staging hepatic steatosis, areas under the curve (AUCs) were analyzed. Factors that could cause measurement failure with ATI were assessed. Of 111 participants, 88 had successful measurement results. Median ATI values were significantly increased according to steatosis stage (p < 0.001). Body mass index (BMI) was a significant factor for increased ATI values (p = 0.047). To differentiate fatty liver from normal liver, a cutoff value of 0.59 dB/cm/MHz could be used with an AUC value of 0.853. To differentiate moderate to severe fatty liver from mild fatty liver, a cutoff value of 0.69 dB/cm/MHz could be used with an AUC value up to 0.91. ATI can be used in children as an effective ultrasonography technique for quantifying and staging pediatric hepatic steatosis.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.C.)
| | - Nak-Hoon Son
- Department of Statistics, Keimyung University, Daegu 42601, Korea;
| | - Dong Ryul Chang
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Korea;
| | - Hyun Wook Chae
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.C.)
| | - Hyun Joo Shin
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Korea;
- Correspondence: ; Tel.: +82-31-5189-8321; Fax: +82-31-5189-8377
| |
Collapse
|
59
|
Cassinotto C, Jacq T, Anselme S, Ursic-Bedoya J, Blanc P, Faure S, Belgour A, Guiu B. Diagnostic Performance of Attenuation to Stage Liver Steatosis with MRI Proton Density Fat Fraction as Reference: A Prospective Comparison of Three US Machines. Radiology 2022; 305:353-361. [PMID: 35819322 DOI: 10.1148/radiol.212846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background US tools to quantify liver fat content have recently been made clinically available by different vendors, but comparative data on their accuracy are lacking. Purpose To compare the diagnostic performances of the attenuation parameters of US machines from three different manufacturers (vendors 1, 2, and 3) in participants who underwent liver fat quantification with the MRI-derived proton density fat fraction (PDFF). Materials and Methods From July 2020 to June 2021, consecutive participants with chronic liver disease were enrolled in this prospective single-center study and underwent MRI PDFF quantification (reference standard) and US on the same day. US was performed with two different machines from among three vendors assessed. Areas under the receiver operating characteristic curve (AUCs) for the staging of liver steatosis (MRI PDFF: ≥5.5% for grade ≥S1 and ≥15.5% for grade ≥S2) were calculated in test and validation samples and then compared between vendors in the study sample. Results A total of 534 participants (mean age, 60 years ± 13 [SD]; 320 men) were evaluated. Failure of measurements occurred in less than 1% of participants for all vendors. Correlation coefficients with the MRI PDFF were 0.71, 0.73, and 0.54 for the attenuation coefficients of vendors 1, 2, and 3, respectively. In the test sample, AUCs for diagnosis of steatosis grade S1 and higher and grade S2 and higher were 0.89 and 0.93 for vendor 1 attenuation, 0.88 and 0.92 for vendor 2 attenuation, and 0.79 and 0.79 for vendor 3 attenuation, respectively. In the validation sample, a threshold value of 0.65 for vendor 1 and 0.66 for vendor 2 yielded sensitivity of 77% and 84% and specificity of 78% and 85%, respectively, for diagnosis of grade S1 and higher. Vendor 2 attenuation had greater AUCs than vendor 3 attenuation (P = .001 and P = .003) for diagnosis of grade S1 and higher and grade S2 and higher, respectively, and vender 2 had greater AUCs for attenuation than vendor 1 for diagnosis of grade S2 and higher (P = .04). For all vendors, attenuation was not associated with liver stiffness (correlation coefficients <0.05). Conclusion To stage liver steatosis, attenuation coefficient accuracy varied among US devices across vendors when using MRI proton density fat fraction quantification as the reference standard, with some demonstrating excellent diagnostic performance and similar cutoff values. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Dubinsky in this issue.
Collapse
Affiliation(s)
- Christophe Cassinotto
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Tony Jacq
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Sophie Anselme
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - José Ursic-Bedoya
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Pierre Blanc
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Stéphanie Faure
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Ali Belgour
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| | - Boris Guiu
- From the Departments of Diagnostic and Interventional Radiology (C.C., T.J., S.A., A.B., B.G.), Hepatology A (J.U.B., S.F.), and Hepatology B (P.B.), Saint-Eloi Hospital, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34090 Montpellier, France; and Institut Desbrest d'Epidémiologie et de Santé Publique, IDESP UMR UA11 INSERM, Montpellier University, Montpellier, France (C.C., B.G.)
| |
Collapse
|
60
|
The effect of the skin-liver capsule distance on the accuracy of ultrasound diagnosis for liver steatosis and fibrosis. J Med Ultrason (2001) 2022; 49:443-450. [PMID: 35524897 DOI: 10.1007/s10396-022-01210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Transient elastography (TE) and the controlled attenuation parameter (CAP) have been used for diagnosis of liver fibrosis and steatosis. Obesity is a limiting factor to the accuracy of elastography; however, an XL probe was validated for use in obese patients. Two-dimensional shear wave elastography (2D-SWE) and attenuation imaging (ATI) have also been developed. It is unknown if obesity affects 2D-SWE/ATI values for evaluation of liver fibrosis and steatosis. We assessed the reliability of the measurement rate and the diagnostic performance of TE/CAP versus SWE/ATI. METHODS The patients (n = 85) underwent TE/CAP, 2D-SWE/ATI, and liver biopsy on the same day. They were diagnosed with chronic hepatitis based on liver biopsy. The patients were divided into three groups by skin-liver capsule distance (SCD). RESULTS The reliability of the measurement rate for the M probe was lower than that for the XL probe in the group with SCD over 22.5 mm. The rate achieved with 2D-SWE was high in all groups regardless of the SCD. In the assessment of the diagnostic performance, there was no difference between the area under the receiver-operating curve (AUROC) of TE compared to 2D-SWE to stratify the fibrosis stage. There was no difference in the AUROC for the stratification of the steatosis grades between CAP and ATI. The diagnostic accuracy of TE for F ≥ 3 fibrosis evaluated with the M probe and 2D-SWE was lower than that of TE evaluated with the XL probe in the group with SCD over 22.5 mm. CONCLUSION The ability of 2D-SWE to stratify fibrosis stage and steatosis grade was as good as FibroScan. However, 2D-SWE had a high reliability in the measurement rate regardless of the SCD with one probe. And the XL probe showed high diagnostic accuracy for severe fibrosis in the group with SCD over 22.5 mm.
Collapse
|
61
|
Rehman A, Darira J, Hamid K, Ahmed MS, Shazlee MK, Amirali A. Relationship Between Greyscale Ultrasound Grading of Hepatic Steatosis and Attenuation Imaging. Cureus 2022; 14:e23435. [PMID: 35494925 PMCID: PMC9038208 DOI: 10.7759/cureus.23435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) has been rising worldwide due to the rising public health threat of metabolic syndrome. Because non-alcoholic steatohepatitis can proceed to liver fibrosis and cirrhosis, early identification and monitoring are critical for management. For the examination of NAFLD, greyscale ultrasound has been frequently employed. A relatively new technique, attenuation imaging (ATI), can quantitatively evaluate and compute the attenuation coefficient (AC). Our goal was to evaluate the performance and cutoff values of attenuation imaging to identify hepatic steatosis. As a reference standard, greyscale ultrasound was employed. Method A total of 207 patients were assessed from June to November 2021 after getting informed consent. The association between ATI values and greyscale grading to diagnose hepatic steatosis was investigated, and the Statistical Package for the Social Sciences (SPSS) version 21 (IBM Corp., Armonk, NY, USA) was used to analyze the data. In the analysis, the Spearman correlation and area under the receiver operating characteristic curve (AUROC) tests were performed. Receiver operating characteristic curve analysis was also used to assess ATI’s diagnostic capability and cutoff values. Result The correlation between ATI values and hepatic steatosis grades on greyscale was statistically significant (p < 0.05). Greyscale grading and ATI levels have a correlation coefficient (r) of 0.85, indicating a strong association. Steatosis grades 1, 2, and 3 had threshold ATI values of 0.65, 0.73, and 0.96 dB/cm/MHz, respectively. According to greyscale, the diagnostic ability of ATI for steatosis grades 1, 2, and 3 were 0.948 (95% CI: 0.917-0.979), 0.978 (95% CI: 0.961-0.995), and 1.000 (95% CI: 1.000-1.000), respectively. Conclusions Attenuation imaging is a reliable method for identifying liver steatosis, with great performance and a strong association with the greyscale ultrasound.
Collapse
|
62
|
Kim PH, Cho YA, Yoon HM, Bak B, Lee JS, Jung AY, Oh SH, Kim KM. Accuracy of attenuation imaging in the assessment of pediatric hepatic steatosis: correlation with the controlled attenuation parameter. Ultrasonography 2022; 41:761-769. [PMID: 35765803 PMCID: PMC9532206 DOI: 10.14366/usg.21246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/05/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE This study evaluated the accuracy of attenuation imaging (ATI) for the assessment of hepatic steatosis in pediatric patients, in comparison with the FibroScan vibration-controlled transient elastography controlled attenuation parameter (CAP). METHODS Consecutive pediatric patients referred for evaluation of obesity who underwent both ATI and FibroScan between February 2020 and September 2021 were included. The correlation between attenuation coefficient (AC) and CAP values was assessed using the Spearman test. The AC cutoff value for discriminating hepatic steatosis corresponding to a CAP value of 241 dB/m was calculated. Multivariable linear regression analysis was performed to estimate the strength of the association between AC and CAP. The diagnostic accuracy of AC cutoffs was estimated using the imperfect gold-standard methodology based on a two-level Bayesian latent class model. RESULTS Seventy patients (median age, 12.5 years; interquartile range, 11.0 to 14.0 years; male:female, 58:12) were included. AC and CAP showed a moderate-to-good correlation (ρ =0.646, P<0.001). Multivariable regression analysis affirmed the significant association between AC and CAP (P<0.001). The correlation was not evident in patients with a body mass index ≥30 kg/m2 (ρ=-0.202, P=0.551). Linear regression revealed that an AC cutoff of 0.66 dB/cm/MHz corresponded to a CAP of 241 dB/m (sensitivity, 0.93; 95% confidence interval [CI], 0.85 to 0.98 and specificity, 0.87; 95% CI, 0.56 to 1.00). CONCLUSION ATI showed an acceptable correlation with CAP values in a pediatric population, especially in patients with a body mass index <30 kg/m2. An AC cutoff of 0.66 dB/cm/MHz, corresponding to a CAP of 241 dB/m, can accurately diagnose hepatic steatosis.
Collapse
Affiliation(s)
- Pyeong Hwa Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Ah Cho
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Mang Yoon
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Boram Bak
- University of Ulsan Foundation for Industry Cooperation, Ulsan, Korea
| | - Jin Seong Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ah Young Jung
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
63
|
Gao J, Lee R, Trujillo M. Reliability of Performing Multiparametric Ultrasound in Adult Livers. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:699-711. [PMID: 33982805 DOI: 10.1002/jum.15751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE The aim of the study was to test inter-observer and intra-observer reliability of measuring multiparametric ultrasound in adult livers. METHODS We prospectively measured shear wave velocity (SWV, m/s), shear wave dispersion slope (SWD, m/s/kHz), attenuation coefficient (ATI, dB/cm/MHz), normalized local variance (NLV), and echo intensity ratio of liver to kidney (L/K ratio) in 21 adults who underwent liver magnetic resonance imaging-proton density fat fraction (MRI-PDFF). Intraclass correlation coefficient and 95% Bland-Altman limits of agreement (95% LOA) were used to analyze intra- and inter-observer reproducibility. RESULTS Based on liver MRI-PDFF, 21 participants (8 men and 13 women, mean age 55 years) were divided into group 1 (11 normal livers, MRI-PDFF <5%) and group 2 (10 steatotic livers, MRI-PDFF ≥5%). ICCs for intra-observer repeatability and inter-observer reproducibility in measuring multiple ultrasound parameters in both normal and steatotic livers were above 0.75. However, 95% confidence interval for measuring SWD in all livers and L/K ratio in normal livers was 0.38-0.90 and 0.47-0.91, respectively. Differences in SWV, SWD, ATI, NLV, L/K ratio, and MRI-PDFF between participants with and without hepatic steatosis were significant (p < .05), whereas serum biomarkers and body mass index were not (p > .05), based on a two-tailed t-test. CONCLUSIONS The results suggest that the repeatability and reproducibility for measuring liver SWV, ATI, and NLV are moderate to excellent, while those for SWD and L/K ratio are poor. Standardized machine settings, scanning protocols, and operator training are suggested in performing multiparametric ultrasound of the liver.
Collapse
Affiliation(s)
- Jing Gao
- Rocky Vista University, Ivins, Utah, USA
| | | | | |
Collapse
|
64
|
Ferraioli G, Kumar V, Ozturk A, Nam K, de Korte CL, Barr RG. US Attenuation for Liver Fat Quantification: An AIUM-RSNA QIBA Pulse-Echo Quantitative Ultrasound Initiative. Radiology 2022; 302:495-506. [PMID: 35076304 DOI: 10.1148/radiol.210736] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with an estimated prevalence of up to 30% in the general population and higher in people with type 2 diabetes. The assessment of liver fat content is essential to help identify patients with or who are at risk for NAFLD and to follow their disease over time. The American Institute of Ultrasound in Medicine-RSNA Quantitative Imaging Biomarkers Alliance Pulse-Echo Quantitative Ultrasound Initiative was formed to help develop and standardize acquisition protocols and to better understand confounding factors of US-based fat quantification. The three quantitative US parameters explored by the initiative are attenuation, backscatter coefficient, and speed of sound. The purpose of this review is to present the current state of attenuation imaging for fat quantification and to provide expert opinion on examination performance and interpretation. US attenuation methods that need further study are outlined.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| | - Viksit Kumar
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| | - Arinc Ozturk
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| | - Kibo Nam
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| | - Chris L de Korte
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| | - Richard G Barr
- From the Medical School University of Pavia, Viale Brambilla, Pavia, Italy (G.F.); Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Boston, Mass (V.K., A.O.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (K.N.); Medical UltraSound Imaging Center, Radboud University Medical Center, Nijmegen, the Netherlands (C.L.d.K.); Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands (C.L.d.K.); Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio (R.G.B.); and Southwoods Imaging, 7623 Market St, Youngstown, OH 44512 (R.G.B.)
| |
Collapse
|
65
|
Gao J. Ultrasound attenuation coefficient of the liver and spleen in adults: A preliminary observation. Clin Imaging 2022; 84:140-148. [DOI: 10.1016/j.clinimag.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/03/2022]
|
66
|
Park J, Lee JM, Lee G, Jeon SK, Joo I. Quantitative Evaluation of Hepatic Steatosis Using Advanced Imaging Techniques: Focusing on New Quantitative Ultrasound Techniques. Korean J Radiol 2022; 23:13-29. [PMID: 34983091 PMCID: PMC8743150 DOI: 10.3348/kjr.2021.0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease, characterized by excessive accumulation of fat in the liver, is the most common chronic liver disease worldwide. The current standard for the detection of hepatic steatosis is liver biopsy; however, it is limited by invasiveness and sampling errors. Accordingly, MR spectroscopy and proton density fat fraction obtained with MRI have been accepted as non-invasive modalities for quantifying hepatic steatosis. Recently, various quantitative ultrasonography techniques have been developed and validated for the quantification of hepatic steatosis. These techniques measure various acoustic parameters, including attenuation coefficient, backscatter coefficient and speckle statistics, speed of sound, and shear wave elastography metrics. In this article, we introduce several representative quantitative ultrasonography techniques and their diagnostic value for the detection of hepatic steatosis.
Collapse
Affiliation(s)
- Junghoan Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Gunwoo Lee
- Ultrasound R&D 2 Group, Health & Medical Equipment Business, Samsung Electronics Co., Ltd., Seoul, Korea
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
67
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|
68
|
Aitharaju V, De Silvestri A, Barr RG. Assessment of chronic liver disease by multiparametric ultrasound: results from a private practice outpatient facility. Abdom Radiol (NY) 2021; 46:5152-5161. [PMID: 34304291 DOI: 10.1007/s00261-021-03225-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess chronic liver disease (CLD) using multiparametric US in a private practice setting in a cohort of patients with increased skin-to-liver distance. METHODS 110 consecutive patients with increased skin-to-liver distance scheduled for US assessment of CLD were reviewed for study completion time, liver stiffness values (LS), attenuation imaging, and shear wave dispersion slope. The ROI was placed 2 cm below the liver capsule. The study included patients with NAFLD/NASH (68), hepatitis C (30), prior Fontan surgery (1), elevated liver function tests (5), alcohol abuse (3), hepatitis B (2), and primary biliary cirrhosis (1). IQR/M values were obtained. Comparison of less experienced sonographers (LES) and more experienced sonographers (MES) were evaluated through Student's t test for independent data. Pearson coefficient r of correlation among quantitative variables was calculated. RESULTS The mean time to perform the exam was 129.7 ± 62.1 s. There was a statistically significant difference between LES and MES. The mean IQR/M for LS was 12.3 ± 5.5% m/s. Overall, in a cohort of difficult patients, 4.5% of LS values were not reliable. Fat quantification using attenuation imaging had a mean value of 0.60 ± 0.15 dB/cm/MHz (range 0.35-0.98 cm/dB/MHz) with an IQR/M of 14.7 ± 9.2%. Less reliable measurements of steatosis were obtained in 4.5% of patients. The mean shear wave dispersion slope was 12.74 ± 4.05 (m/s)/kHz (range 7.7-27.5 (m/s)/kHz) with an IQR/M of 38.7 ± 20.2% (range 3-131%). 20.9% of patients had values suggestive of compensated advanced chronic liver disease (cACLD). CONCLUSION Multiparametric US can provide assessment of CLD in less than 3 min in most patients and identify patients at risk for cACLD.
Collapse
Affiliation(s)
- Varun Aitharaju
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH, USA
| | - Annalisa De Silvestri
- Clinical Epidemiology and Biometeric Unit, -, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH, USA.
- Southwoods Imaging, 7623 Market Street, Youngstown, OH, 44512, USA.
| |
Collapse
|
69
|
Audière S, Labourdette A, Miette V, Fournier C, Ternifi R, Boussida S, Pouletaut P, Charleux F, Bensamoun SF, Harrison SA, Sandrin L. Improved Ultrasound Attenuation Measurement Method for the Non-invasive Evaluation of Hepatic Steatosis Using FibroScan. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3181-3195. [PMID: 34373137 DOI: 10.1016/j.ultrasmedbio.2021.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Controlled attenuation parameter (CAP) is a measurement of ultrasound attenuation used to assess liver steatosis non-invasively. However, the standard method has some limitations. This study assessed the performance of a new CAP method by ex vivo and in vivo assessments. The major difference with the new method is that it uses ultrasound data continuously acquired during the imaging phase of the FibroScan examination. Seven reference tissue-mimicking phantoms were used to test the performance. In vivo performance was assessed in two cohorts (in total 195 patients) of patients using magnetic resonance imaging proton density fat fraction (MRI-PDFF) as a reference. The precision of CAP was improved by more than 50% on tissue-mimicking phantoms and 22%-41% in the in vivo cohort studies. The agreement between both methods was excellent, and the correlation between CAP and MRI-PDFF improved in both studies (0.71 to 0.74; 0.70 to 0.76). Using MRI-PDFF as a reference, the diagnostic performance of the new method was at least equal or superior (area under the receiver operating curve 0.889-0.900, 0.835-0.873). This study suggests that the new continuous CAP method can significantly improve the precision of CAP measurements ex vivo and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Redouane Ternifi
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne, France
| | - Salem Boussida
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne, France
| | - Philippe Pouletaut
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne, France
| | - Fabrice Charleux
- ACRIM-Polyclinique Saint Côme, Medical Radiology, Compiègne, France
| | - Sabine F Bensamoun
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne, France
| | | | | |
Collapse
|
70
|
Jeon SK, Lee JM, Joo I, Yoon JH. Assessment of the inter-platform reproducibility of ultrasound attenuation examination in nonalcoholic fatty liver disease. Ultrasonography 2021; 41:355-364. [PMID: 34933319 PMCID: PMC8942738 DOI: 10.14366/usg.21167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/31/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to assess the inter-platform reproducibility of ultrasound attenuation examination in patients with nonalcoholic fatty liver disease (NAFLD). Methods Between March 2021 and April 2021, patients with clinically suspected or known NAFLD were prospectively enrolled; each patient underwent ultrasound attenuation examinations with three different platforms (Attenuation Imaging [ATI], Canon Medical System; Tissue Attenuation Imaging [TAI], Samsung Medison; and Ultrasound-Guided Attenuation Parameter [UGAP], GE Healthcare) on the same day. The mean attenuation coefficient (AC) values of the three platforms were compared using repeated-measures analysis of variance with the Bonferroni correction. To evaluate inter-platform reproducibility, the AC values obtained for each platform were compared using Bland-Altman analysis with the calculation of 95% limits of agreement (LOA), intraclass correlation coefficients (ICCs), and coefficients of variation (CVs). Results Forty-six patients (23 men; mean age±standard deviation, 52.3±12.4 years) were enrolled. The mean AC values showed significant differences among the three platforms (0.75±0.12, 0.80±0.11, and 0.74±0.09 dB/cm/MHz for ATI, TAI, and UGAP, respectively; P<0.001). For inter-platform reproducibility, the 95% LOAs were -0.22 to 0.11 dB/cm/MHz between ATI and TAI, -0.17 to 0.18 dB/cm/MHz between ATI and UGAP, and -0.08 to 0.20 dB/cm/MHz between TAI and UGAP, respectively. The pairwise ICCs were 0.790-0.797 in terms of absolute agreement among the three platforms; the CVs were 8.23%-9.47%. Conclusion The AC values obtained from different ultrasound attenuation examination platforms showed significant differences, with significant inter-platform variability. Therefore, the AC values measured using different ultrasound attenuation examination techniques should not be used interchangeably for longitudinal follow-up of patients with NAFLD.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
71
|
Bae JS, Lee DH, Suh KS, Kim H, Lee KB, Lee JY, Han JK. Noninvasive assessment of hepatic steatosis using a pathologic reference standard: comparison of CT, MRI, and US-based techniques. Ultrasonography 2021; 41:344-354. [PMID: 34852424 PMCID: PMC8942731 DOI: 10.14366/usg.21150] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/25/2021] [Indexed: 11/05/2022] Open
Abstract
Purpose The present study compared the performance of computed tomography (CT), magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF), controlled attenuation parameter (CAP), grayscale ultrasonography (US), and attenuation imaging (ATI) for the diagnosis of hepatic steatosis (HS). Methods In total, 120 prospectively recruited patients who underwent hepatic resection between June 2018 and June 2020 were retrospectively analyzed. CT, MRI-PDFF, CAP, grayscale US, and ATI were performed within 3 months before surgery. Diagnostic performance for HS ≥5% and HS >33% was compared using the area under the curve (AUC) of receiver operating characteristic curves. Histopathologic examinations served as the reference standard for the degree of HS. Results For detecting HS ≥5%, MRI-PDFF (AUC, 0.946) significantly outperformed CT, CAP and grayscale US (AUC, 0.807, 0.829, and 0.761, respectively) (P<0.01 for all). ATI (AUC, 0.892) was the second-best modality and significantly outperformed grayscale US (P=0.001). In pairwise comparisons, there were no significant differences between the AUC of ATI and the values of MRI-PDFF, CT, or CAP (P=0.133, P=0.063, and P=0.150, respectively). For detecting HS >33%, all the modalities provided good diagnostic performance without significant differences (AUC, 0.887-0.947; P>0.05 for all). Conclusion For detecting HS ≥5%, MRI-PDFF was the best imaging modality, while ATI outperformed grayscale US. For detecting HS >33%, all five imaging tools demonstrated good diagnostic performance.
Collapse
Affiliation(s)
- Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Kyung Bun Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Jae Young Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
72
|
Jin J, Gong P, Yang Q, Hui D, Zhang H, Qiu C, Wang N, Yi S, Zheng R, Yang Y, Ren J, Chen S. Noninvasive, quantitative evaluation of hepatic steatosis of donor livers by reference frequency method: A preliminary study. Eur J Radiol 2021; 143:109909. [PMID: 34455133 DOI: 10.1016/j.ejrad.2021.109909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Evaluating degree of hepatic steatosis is of great value for prognosis of liver transplantation. There is an urgent need for a non-invasive method to assess hepatic steatosis grade of donor livers. Purpose of our study was to evaluate diagnostic accuracy of attenuation coefficient estimation (ACE) by reference frequency method (RFM) in detecting hepatic steatosis of donor livers. METHOD We retrospectively enrolled 62 potential liver donors which underwent ACE by RFM ex-vivo, in-vivo or both. We acquired raw data of B-mode images of liver parenchyma and offline-processes for attenuation estimation. Finally, we calculated and compared diagnostic performance of ACEs for steatosis grade detection and used histological results as the gold standard. RESULTS ACEs with none, mild and moderate hepatic steatosis were 0.57, 0.73 and 0.80 dB/cm/MHz in potential donor livers. The cutoff value to diagnose mild hepatic steatosis was 0.63 dB/cm/MHz and 0.77 dB/cm/MHz for moderate hepatic steatosis, and values for the area under the receiver operating characteristic curve for diagnosis of mild and moderate hepatic steatosis were 0.92 and 0.90, respectively. CONCLUSIONS According to our results, ACE by RFM is an accurate non-invasive method in detecting hepatic steatosis, which may be of great help for clinical evaluation of donor livers before liver transplantation.
Collapse
Affiliation(s)
- Jieyang Jin
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China; GuangDong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Ping Gong
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Qing Yang
- GuangDong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China; Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital; Organ Transplantation Institute, Sun Yat-Sen University; Organ Transplantation Research Center of Guangdong Province; Guangdong Province Engineering Laboratory for Transplantation Medicine, 600 Tianhe Road, Guangzhou, China
| | - Dayang Hui
- GuangDong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China; Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Hongjun Zhang
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China; GuangDong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Chen Qiu
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China; GuangDong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Nana Wang
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China; GuangDong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Shuhong Yi
- GuangDong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China; Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital; Organ Transplantation Institute, Sun Yat-Sen University; Organ Transplantation Research Center of Guangdong Province; Guangdong Province Engineering Laboratory for Transplantation Medicine, 600 Tianhe Road, Guangzhou, China
| | - Rongqin Zheng
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China; GuangDong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Yang Yang
- GuangDong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China; Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital; Organ Transplantation Institute, Sun Yat-Sen University; Organ Transplantation Research Center of Guangdong Province; Guangdong Province Engineering Laboratory for Transplantation Medicine, 600 Tianhe Road, Guangzhou, China.
| | - Jie Ren
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China; GuangDong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China.
| | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
73
|
Ferraioli G, Berzigotti A, Barr RG, Choi BI, Cui XW, Dong Y, Gilja OH, Lee JY, Lee DH, Moriyasu F, Piscaglia F, Sugimoto K, Wong GLH, Wong VWS, Dietrich CF. Quantification of Liver Fat Content with Ultrasound: A WFUMB Position Paper. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2803-2820. [PMID: 34284932 DOI: 10.1016/j.ultrasmedbio.2021.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
New ultrasound methods that can be used to quantitatively assess liver fat content have recently been developed. These quantitative ultrasound (QUS) methods are based on the analysis of radiofrequency echoes detected by the transducer, allowing calculation of parameters for quantifying the fat in the liver. In this position paper, after a section dedicated to the importance of quantifying liver steatosis in patients with non-alcoholic fatty liver disease and another section dedicated to the assessment of liver fat with magnetic resonance, the current clinical studies performed using QUS are summarized. These new methods include spectral-based techniques and techniques based on envelope statistics. The spectral-based techniques that have been used in clinical studies are those estimating the attenuation coefficient and those estimating the backscatter coefficient. Clinical studies that have used tools based on the envelope statistics of the backscattered ultrasound are those performed by using the acoustic structure quantification or other parameters derived from it, such as the normalized local variance, and that performed by estimating the speed of sound. Experts' opinions are reported.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Medical School University of Pavia, Pavia, Italy
| | - Annalisa Berzigotti
- Hepatology Dept., University Clinic for Visceral Surgery and Medicine, Inselspital, University Hospital of Bern, University of Bern, Switzerland
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio, USA
| | - Byung I Choi
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Xin Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, and Department of Clinical Medicine, University of Bergen, Norway
| | - Jae Young Lee
- Departments of Health and Science and Technology and Medical Device Management and Research, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Fuminori Moriyasu
- Department of Gastroenterology and Hepatology, International University of Health and Welfare, Sanno Hospital, Tokyo, Japan
| | - Fabio Piscaglia
- Unit of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, Department of Medical and Surgical Sciences, University of Bologna S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Japan
| | - Grace Lai-Hung Wong
- Medical Data Analytic Centre and Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permancence, Bern, Switzerland.
| |
Collapse
|
74
|
Jang JK, Kim SY, Yoo IW, Cho YB, Kang HJ, Lee DH. Diagnostic performance of ultrasound attenuation imaging for assessing low-grade hepatic steatosis. Eur Radiol 2021; 32:2070-2077. [PMID: 34549325 DOI: 10.1007/s00330-021-08269-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To investigate the diagnostic performance of attenuation imaging (ATI) for the assessment of low-grade hepatic steatosis using liver biopsy as the reference standard. METHODS The study included 57 potential donor candidates for living liver transplantation who underwent ATI, transient elastography (TE), and liver biopsy for evaluation of hepatic steatosis between February 2020 and April 2020. The attenuation coefficient (AC) from ATI and the controlled attenuation parameter (CAP) from TE were measured for each participant in a random and blind manner. The histologic hepatic fat fraction (HFF) was graded (S0, < 5%; S1, 5-33%; S2, 33-66%; S3, > 66%). The accuracy of ATI for diagnosing hepatic steatosis was compared with that of CAP using ROC analysis. Correlations between AC and HFF were evaluated, and factors affecting AC were determined by linear regression analysis. RESULTS The median HFF was 3% (range: 0-35%), with 31 (54.4%), 24 (42.0%), and 2 (3.5%) participants being graded as S0, S1, and S2, respectively. The AUCs for the ROCs of AC and CAP for the detection of hepatic steatosis were 0.808 (95% CI: 0.682-0.900) and 0.829 (95% CI: 0.706-0.916), respectively, with the difference not being statistically significant (p = 0.762). AC showed 61.5% of sensitivity and 90.3% of specificity. AC was positively correlated with HFF (p < 0.001). HFF was the only factor significantly affecting AC. CONCLUSIONS ATI showed moderate sensitivity and high specificity in the diagnosis and quantification of hepatic steatosis in low-grade steatosis without fibrosis. Only HFF significantly affected AC. KEY POINTS • Attenuation imaging showed moderate sensitivity and high specificity performance in the diagnosis and quantification of hepatic steatosis in low-grade steatosis without fibrosis. • The diagnostic performance of the attenuation coefficient by attenuation imaging did not significantly differ from that of the controlled attenuation parameter by transient elastography in quantifying low-grade steatosis. • The histopathologically determined hepatic fat fraction was the only factor significantly affecting the attenuation coefficient.
Collapse
Affiliation(s)
- Jong Keon Jang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - In Woon Yoo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Young Bum Cho
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| |
Collapse
|
75
|
Quantitative assessment of liver steatosis using ultrasound: dual-energy CT. J Med Ultrason (2001) 2021; 48:507-514. [PMID: 34536163 DOI: 10.1007/s10396-021-01136-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023]
Abstract
Reflecting the growing interest in early diagnosis of non-alcoholic fatty liver disease in recent years, the development of noninvasive and reliable fat quantification methods is needed. Dual-energy computed tomography (DE-CT) is a quantitative diagnostic imaging method that estimates the composition of the imaging target using a material decomposition technique based on the X-ray absorption characteristics peculiar to substances from DE-CT scanning using X-rays generated with different energies (tube voltage). In this review article, we first explain the basic principles and technical aspects of DE-CT. Then, we will present the current diagnostic ability of DE-CT and the factors influencing the quantitative evaluation of liver steatosis using DE-CT as compared to multi-modal methods including ultrasound and magnetic resonance imaging-based methods. In brief, DE-CT may have comparable diagnostic performance to the modern US-based liver fat measurement methods. However, the current material decomposition technique using DE-CT does not seem to have added value to the simple quantitative assessment of liver steatosis, because DE-CT measurement does not improve the accuracy of fat quantification over conventional single-energy computed tomography (SE-CT) attenuation. The most significant influencing factor for the quantitative assessment of liver steatosis using DE-CT can be hepatic iron deposition. An iron-specific multi-material decomposition algorithm correcting for the influences of iron in the liver has been under development. The current material decomposition algorithm can still have added value in a specific situation such as the quantitative assessment of liver steatosis using contrast-enhanced DE-CT. However, there is a lack of evidence for the influence of liver fibrosis in the quantitative assessment of liver steatosis using DE-CT.
Collapse
|
76
|
Cloutier G, Destrempes F, Yu F, Tang A. Quantitative ultrasound imaging of soft biological tissues: a primer for radiologists and medical physicists. Insights Imaging 2021; 12:127. [PMID: 34499249 PMCID: PMC8429541 DOI: 10.1186/s13244-021-01071-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Quantitative ultrasound (QUS) aims at quantifying interactions between ultrasound and biological tissues. QUS techniques extract fundamental physical properties of tissues based on interactions between ultrasound waves and tissue microstructure. These techniques provide quantitative information on sub-resolution properties that are not visible on grayscale (B-mode) imaging. Quantitative data may be represented either as a global measurement or as parametric maps overlaid on B-mode images. Recently, major ultrasound manufacturers have released speed of sound, attenuation, and backscatter packages for tissue characterization and imaging. Established and emerging clinical applications are currently limited and include liver fibrosis staging, liver steatosis grading, and breast cancer characterization. On the other hand, most biological tissues have been studied using experimental QUS methods, and quantitative datasets are available in the literature. This educational review addresses the general topic of biological soft tissue characterization using QUS, with a focus on disseminating technical concepts for clinicians and specialized QUS materials for medical physicists. Advanced but simplified technical descriptions are also provided in separate subsections identified as such. To understand QUS methods, this article reviews types of ultrasound waves, basic concepts of ultrasound wave propagation, ultrasound image formation, point spread function, constructive and destructive wave interferences, radiofrequency data processing, and a summary of different imaging modes. For each major QUS technique, topics include: concept, illustrations, clinical examples, pitfalls, and future directions.
Collapse
Affiliation(s)
- Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis, Montréal, Québec, H2X 0A9, Canada.
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada.
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada.
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis, Montréal, Québec, H2X 0A9, Canada
| | - François Yu
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada
- Microbubble Theranostics Laboratory, CRCHUM, Montréal, Québec, Canada
| | - An Tang
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Laboratory of Medical Image Analysis, Montréal, CRCHUM, Canada
| |
Collapse
|
77
|
The most appropriate region-of-interest position for attenuation coefficient measurement in the evaluation of liver steatosis. J Med Ultrason (2001) 2021; 48:615-621. [PMID: 34453648 DOI: 10.1007/s10396-021-01124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Attenuation imaging (ATI) is a new noninvasive ultrasound technique for assessing steatosis grade (S). However, validated region-of-interest (ROI) sampling strategies are not currently available. We investigated the diagnostic performance of various ATI-ROI positions for determining histopathologic S in patients with nonalcoholic fatty liver disease (NAFLD). METHODS This retrospective study included 105 patients with biopsy-proven NAFLD. All attenuation coefficient (AC, dB/cm/MHz) measurements were obtained by the same hepatologist using a commercially available ultrasound system on the same day as liver biopsy. Mean (± standard deviation) age and body mass index of the patients were 53 (± 18) years and 27.1 (± 4.1) kg/m2, respectively. The numbers of patients with steatosis affecting < 5%, 5-33%, 33-66%, and > 66% of hepatocytes were 8, 50, 29, and 18, respectively. The ATI-ROI was placed at three different positions for AC measurement using a dedicated workstation: the upper edge of the area ROI, twice the depth of the liver capsule, and the lower edge of the area ROI. Diagnostic performance was evaluated using the area under the receiver-operating characteristic curve (AUC). RESULTS The AUCs of AC at the three ATI-ROI positions were 0.734 (95% confidence interval [CI]: 0.470-0.998), 0.750 (0.639-0.861), and 0.878 (0.788-0.968) for S ≥ 1; 0.503 (0.392-0.615), 0.824 (0.741-0.907), and 0.809 (0.724-0.895) for S ≥ 2; and 0.606 (0.486-0.726), 0.849 (0.767-0.932), and 0.737 (0.626-0.848) for S = 3, respectively. CONCLUSION For accurate steatosis grade assessment, the ATI-ROI should not be placed at the upper edge of the area ROI.
Collapse
|
78
|
Shao CX, Ye J, Dong Z, Li F, Lin Y, Liao B, Feng S, Zhong B. Steatosis grading consistency between controlled attenuation parameter and MRI-PDFF in monitoring metabolic associated fatty liver disease. Ther Adv Chronic Dis 2021; 12:20406223211033119. [PMID: 34408822 PMCID: PMC8366131 DOI: 10.1177/20406223211033119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Background The consistency in steatosis grading between magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) and controlled attenuation parameter (CAP) before and after treatment remains unclear. This study aimed to compare the diagnostic accuracy of steatosis grading between MRI-PDFF and CAP using liver biopsy as standard and to evaluate the value of monitoring changes in steatosis grading with CAP during follow-up utilizing MRI-PDFF as a reference. Methods Consecutive patients from a biopsy cohort and a randomized controlled trial were included in this study and classified into 3 groups (the biopsy, orlistat treatment, and routine treatment subgroups). Hepatic steatosis was measured via MRI-PDFF and CAP at baseline and at the 6th month; the accuracy and cutoffs were assessed in the liver biopsy cohort at baseline. Results A total of 209 consecutive patients were enrolled. MRI-PDFF and CAP showed comparable diagnostic accuracy for detecting pathological steatosis [⩾S1, area under the receiver operating characteristic curve (AUC) = 0.984 and 0.972, respectively]; in contrast, CAP presented significantly lower AUCs in grades S2-3 and S3 (0.820 and 0.815, respectively). The CAP values correlated well with the MRI-PDFF values at baseline and at the 6th month (r = 0.809 and 0.762, respectively, both p < 0.001), whereas a moderate correlation in their changes (r = 0.612 and 0.524 for moderate-severe and mild steatosis, respectively; both p < 0.001) was observed. The AUC of CAP change was obtained to predict MRI-PDFF changes of ⩾5% and ⩾10% (0.685 and 0.704, p < 0.001 and p = 0.001, respectively). The diagnostic agreement of steatosis grade changes between MRI-PDFF and CAP was weak (κ = 0.181, p = 0.001). Conclusions CAP has decreased value for the initial screening of moderate-severe steatosis and is limited in monitoring changes in steatosis during treatment. The confirmation of steatosis grading with MRI-PDFF remains necessary.
Collapse
Affiliation(s)
- Cong Xiang Shao
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Junzhao Ye
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Zhi Dong
- Department of Radiology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Fuxi Li
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Yansong Lin
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Bing Liao
- Department of Pathology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Shiting Feng
- Department of Radiology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Bihui Zhong
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, China
| |
Collapse
|
79
|
Jang JK, Choi SH, Lee JS, Kim SY, Lee SS, Kim KW. Accuracy of the ultrasound attenuation coefficient for the evaluation of hepatic steatosis: a systematic review and meta-analysis of prospective studies. Ultrasonography 2021; 41:83-92. [PMID: 34399043 PMCID: PMC8696131 DOI: 10.14366/usg.21076] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 11/03/2022] Open
Abstract
PURPOSE The accurate detection and quantification of hepatic steatosis using a noninvasive method are important for the management of nonalcoholic fatty liver disease. We performed a systematic review and meta-analysis of the accuracy of the ultrasound-measured attenuation coefficient (AC) in the evaluation of hepatic steatosis. METHODS The PubMed, Embase, and Cochrane databases were searched for prospective studies reporting the diagnostic accuracy of AC for assessing hepatic steatosis. The meta-analytic pooled sensitivity and specificity of AC for any grade of steatosis (S≥1) and advanced steatosis (S≥2) were estimated using a bivariate random-effects model. Meta-regression analysis was conducted to investigate the causes of heterogeneity among studies. RESULTS Thirteen studies including 1,509 patients were identified. The pooled sensitivity and specificity of AC for S≥1 were 76% (95% confidence interval [CI], 73% to 80%; I2=43%) and 84% (95% CI, 77% to 89%; I2=74%), respectively, while for S≥2 they were 87% (95% CI, 83% to 91%; I2=0%) and 79% (95% CI, 75% to 83%; I2=59%), respectively. Study heterogeneity was associated with body mass index (BMI) and the prevalence of steatosis or significant fibrosis. CONCLUSION AC can be clinically useful for assessing hepatic steatosis, with good overall diagnostic performance. The data reported in the published literature differed according to BMI and the prevalence of steatosis or significant fibrosis, and careful interpretation with consideration of these factors might be needed.
Collapse
Affiliation(s)
- Jong Keon Jang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Sung Lee
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
80
|
Lee S, Choi YH, Cho YJ, Lee SB, Cheon JE, Kim WS, Ko JS, Koh J, Kang GH. The usefulness of noninvasive liver stiffness assessment using shear-wave elastography for predicting liver fibrosis in children. BMC Med Imaging 2021; 21:68. [PMID: 33845776 PMCID: PMC8040233 DOI: 10.1186/s12880-021-00601-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pediatric patients with liver disease require noninvasive monitoring to evaluate the risk of fibrosis progression. This study aimed to identify the significant factors affecting liver stiffness values using two-dimensional shear-wave elastography (2D-SWE), and determine whether liver stiffness can predict the fibrosis stage of various childhood liver diseases. METHODS This study included 30 children (22 boys and 8 girls; mean age, 5.1 ± 6.1 years; range, 7 days-17.9 years) who had undergone biochemical evaluation, 2D-SWE examination, histopathologic analysis of fibrosis grade (F0 to F3), assessment of necroinflammatory activity, and steatosis grading between August 2016 and March 2020. The liver stiffness from 2D-SWE was compared between fibrosis stages using Kruskal-Wallis analysis. Factors that significantly affected liver stiffness were evaluated using univariate and multivariate linear regression analyses. The diagnostic performance was determined from the area under the receiver operating curve (AUC) values of 2D-SWE liver stiffness. RESULTS Liver stiffness at the F0-1, F2, and F3 stages were 7.9, 13.2, and 21.7 kPa, respectively (P < 0.001). Both fibrosis stage and necroinflammatory grade were significantly associated with liver stiffness (P < 0.001 and P = 0.021, respectively). However, in patients with alanine aminotransferase (ALT) levels below 200 IU/L, the only factor affecting liver stiffness was fibrosis stage (P = 0.030). The liver stiffness value could distinguish significant fibrosis (≥ F2) with an AUC of 0.950 (cutoff value, 11.3 kPa) and severe fibrosis (F3 stage) with an AUC of 0.924 (cutoff value, 18.1 kPa). The 2D-SWE values for differentiating significant fibrosis were 10.5 kPa (≥ F2) and 18.1 kPa (F3) in patients with ALT levels below 200 IU/L. CONCLUSION The liver stiffness values on 2D-SWE can be affected by both fibrosis and necroinflammatory grade and can provide excellent diagnostic performance in evaluating the fibrosis stage in various pediatric liver diseases. However, clinicians should be mindful of potential confounders, such as necroinflammatory activity or transaminase level, when performing 2D-SWE measurements for liver fibrosis staging.
Collapse
Affiliation(s)
- Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Young Hun Choi
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Yeon Jin Cho
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seul Bi Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung-Eun Cheon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Woo Sun Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
81
|
Karlas T, Blank V, Böhlig A. Diagnostic Value of Ultrasound in Fatty Liver Disease. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2021; 42:128-153. [PMID: 33622003 DOI: 10.1055/a-1352-4313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hepatic steatosis is a commonly seen phenomenon in clinical practice and is the result of the accumulation of lipids in the hepatocytes. In most cases steatosis refers to nonalcoholic fatty liver disease (NAFLD), but it also occurs in other diseases of the liver parenchyma of a different etiology and is the result of the dysregulation of metabolic processes. Consequently, inflammatory processes can induce progressive fibrosis. Due to the high prevalence of fatty liver disease, a further increase in metabolic liver cirrhosis with corresponding complications can be expected in the near future. Due to its broad availability, ultrasound is particularly important, especially for the management of NAFLD. In addition to diagnosis and risk stratification, the monitoring of high-risk patients in NAFLD is becoming increasingly clinically important. Multimodality ultrasound includes B-mode and duplex methods, analysis of tissue stiffness (elastography), contrast-enhanced imaging (CEUS), and steatosis quantification. When using ultrasound in fatty liver disease, a standardized approach that takes into account the limitations of the method is essential.
Collapse
Affiliation(s)
- Thomas Karlas
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Valentin Blank
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Albrecht Böhlig
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|