51
|
Intranasal Delivery of a Silymarin Loaded Microemulsion for the Effective Treatment of Parkinson's Disease in Rats: Formulation, Optimization, Characterization, and In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15020618. [PMID: 36839940 PMCID: PMC9961237 DOI: 10.3390/pharmaceutics15020618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
A mucoadhesive microemulsion of lipophilic silymarin (SLMMME) was developed to treat Parkinson's disease (PD). Optimization of the SLM microemulsion (ME) was performed using Central Composite Design (CCD). The composition of oil, surfactant, co-surfactant, and water was varied, as per the design, to optimize their ratio and achieve desirable droplet size, zeta potential, and drug loading. The droplet size, zeta potential, and drug loading of optimized SLMME were 61.26 ± 3.65 nm, -24.26 ± 0.2 mV, and 97.28 ± 4.87%, respectively. With the addition of chitosan, the droplet size and zeta potential of the developed ME were both improved considerably. In vitro cell toxicity investigations on a neuroblastoma cell line confirmed that SLMMME was non-toxic and harmless. In comparison to ME and drug solution, mucoadhesive ME had the most flow through sheep nasal mucosa. Further, the in vitro release showed significantly higher drug release, and diffusion of the SLM loaded in MEs than that of the silymarin solution (SLMS). The assessment of behavioral and biochemical parameters, as well as inflammatory markers, showed significant (p < 0.05) amelioration in their level, confirming the significant improvement in neuroprotection in rats treated with SLMMME compared to rats treated with naïve SLM.
Collapse
|
52
|
Liu H, Kang X, Yang X, Yang H, Kuang X, Ren P, Yan H, Shen X, Kang Y, Li L, Wang X, Guo L, Tong M, Fan W. Compound Probiotic Ameliorates Acute Alcoholic Liver Disease in Mice by Modulating Gut Microbiota and Maintaining Intestinal Barrier. Probiotics Antimicrob Proteins 2023; 15:185-201. [PMID: 36456838 DOI: 10.1007/s12602-022-10005-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
Alcoholic liver disease (ALD) is a worldwide health threaten lack of effective treatment. Gut dysbiosis and concomitant augmented intestinal permeability are strongly implicated in the pathogenesis and progression of ALD. Research on the protective effect of probiotics on ALD is limited, and more effective intestinal microecological regulators and the related mechanisms still need to be further explored. In the present study, the protective effects and mechanisms of a compound probiotic against acute alcohol-induced liver injury in vivo were explod. It was showed that the compound probiotic ameliorated liver injury in acute ALD mice and stabilized the levels of ALT, AST, and TG in serum. The compound probiotic reversed acute alcohol-induced gut dysbiosis and maintained the intestinal barrier integrity by upregulating the production of mucus and the expression of tight junction (TJ) proteins and thus reduced LPS level in liver. Meanwhile, the compound probiotic reduced inflammation level by inhibiting TLR4/NF-κB signaling pathway and suppressed oxidative stress level in liver. Furthermore, the compound probiotic alleviated liver lipid accumulation by regulating fatty acid metabolism-associated genes and AMPK-PPARα signaling pathway. Noteworthy, fecal microbiota transplantation (FMT) realized comparable protective effect with that of compound probiotic. In conclusion, present study demonstrates the beneficial effects and underlying mechanism of the compound probiotic against acute alcohol-induced liver injury. It provides clues for development of novel strategy for treatment of ALD.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Hao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Peng Ren
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huan Yan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaorong Shen
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Lin Li
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Laboratory of Morphology, Shanxi Medical University, Jinzhong, 030619, China
| | - Linzhi Guo
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Laboratory of Morphology, Shanxi Medical University, Jinzhong, 030619, China
| | - Mingwei Tong
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
53
|
Brown G. Targeting the Retinoic Acid Pathway to Eradicate Cancer Stem Cells. Int J Mol Sci 2023; 24:2373. [PMID: 36768694 PMCID: PMC9916838 DOI: 10.3390/ijms24032373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
All-trans retinoic acid is a morphogen during embryogenesis and a teratogen. Cancer is an error of development, and the retinoic acid receptors (RAR) for all-trans retinoic acid play a role in cancer. Expression of the cytosolic aldehyde dehydrogenases, which mediate the last step to the synthesis of all-trans retinoic acid, is deregulated in various human cancers. Inhibiting these enzymes using a variety of agents reduced the proliferation of lung cancer cells, reduced the proliferation and induced apoptosis of ovarian, prostate, squamous, and uterine cancer cells, and sensitised breast, colorectal and ovarian cancer cells to chemotherapeutic agents. RARγ is an oncogene within some cases of AML, cholangiocarcinoma, colorectal cancer, clear cell renal cell carcinoma, hepatocellular carcinoma, pancreatic ductal adenocarcinoma, prostate cancer, and ovarian cancer. Pan-RAR and RARγ antagonist inhibition of the action of RARγ led to necroptosis of human prostate and pediatric brain tumour cancer stem cells. Treatment of hepatocellular carcinoma cells with the flavenoid acacetin, which interferes with the action of RARγ, decreased cell growth and induced apoptosis. Targeting the retinoic acid pathway is promising regarding the development of new drugs to eradicate cancer stem cells.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
54
|
Ghodousi M, Karbasforooshan H, Arabi L, Elyasi S. Silymarin as a preventive or therapeutic measure for chemotherapy and radiotherapy-induced adverse reactions: a comprehensive review of preclinical and clinical data. Eur J Clin Pharmacol 2023; 79:15-38. [PMID: 36450892 DOI: 10.1007/s00228-022-03434-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Thus far, silymarin has been examined in several studies for prevention or treatment of various chemotherapy or radiotherapy-induced adverse reactions. In this review, we try to collect all available human, animal, and pre-clinical data in this field. METHODS The search was done in Scopus, PubMed, Medline, and systematic reviews in the Cochrane database, using the following keywords: "Cancer," "Chemotherapy," "Radiotherapy," "Mucositis," "Nephrotoxicity," "Dermatitis," "Ototoxicity," "Cardiotoxicity," "Nephrotoxicity," "Hepatotoxicity," "Reproductive system," "Silybum marianum," "Milk thistle," and "Silymarin" and "Silybin." We included all relevant in vitro, in vivo, and human studies up to the date of publication. RESULTS Based on 64 included studies in this review, silymarin is considered a safe and well-tolerated compound, with no known clinical drug interaction. Notably, multiple adverse reactions of chemotherapeutic agents are effectively managed by its antioxidant, anti-apoptotic, anti-inflammatory, and anti-immunomodulatory properties. Clinical trials suggest that oral silymarin may be a promising adjuvant with cancer treatments, particularly against hepatotoxicity (n = 10), nephrotoxicity (n = 3), diarrhea (n = 1), and mucositis (n = 3), whereas its topical formulation can be particularly effective against radiodermatitis (n = 2) and hand-foot syndrome (HFS) (n = 1). CONCLUSION Further studies are required to determine the optimal dose, duration, and the best formulation of silymarin to prevent and/or manage chemotherapy and radiotherapy-induced complications.
Collapse
Affiliation(s)
- Mahsa Ghodousi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedyieh Karbasforooshan
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Technology Institute, Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
55
|
Yang W, Liang Z, Wen C, Jiang X, Wang L. Silymarin Protects against Acute Liver Injury Induced by Acetaminophen by Downregulating the Expression and Activity of the CYP2E1 Enzyme. Molecules 2022; 27:8855. [PMID: 36557984 PMCID: PMC9784215 DOI: 10.3390/molecules27248855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that silymarin protects against various types of drug-induced liver injury, but whether the protective mechanism of silymarin against acetaminophen-induced liver injury is related to the CYP2E1 enzyme remains unclear. In this study, we investigated the effect of silymarin on the activity and expression of CYP2E1 in vitro and in vivo. The results of in vitro studies showed that silymarin not only inhibited the activity of CYP2E1 in human and rat liver microsomes but also reduced the expression of CYP2E1 in HepG2 cells. In vivo studies showed that silymarin pretreatment significantly reduced the conversion of chlorzoxazone to its metabolite 6-OH-CLX and significantly increased the t1/2, area under the curve (AUC) and mean residence time (MRT) of chlorzoxazone. In addition, silymarin pretreatment significantly inhibited the upregulation of Cyp2e1 expression, reduced the production of 3-cysteinylacetaminophen trifluoroacetic acid salt (APAP-CYS), and restored the liver glutathione level. The results of our study show that silymarin plays an important protective role in the early stage of acetaminophen-induced acute liver injury by reducing the activity and expression of CYP2E1, reducing the generation of toxic metabolites, and alleviating liver injury.
Collapse
Affiliation(s)
| | | | | | | | - Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
56
|
Henriet E, Abdallah F, Laurent Y, Guimpied C, Clement E, Simon M, Pichon C, Baril P. Targeting TGF-β1/miR-21 pathway in keratinocytes reveals protective effects of silymarin on imiquimod-induced psoriasis mouse model. JID INNOVATIONS 2022; 3:100175. [PMID: 36968096 PMCID: PMC10034514 DOI: 10.1016/j.xjidi.2022.100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Epidermal cells integrate multiple signals that activate the signaling pathways involved in skin homeostasis. TGF-β1 signaling pathway upregulates microRNA (miR)-21-5p in keratinocytes and is often deregulated in skin diseases. To identify the bioactive compounds that enable to modulate the TGF-β1/miR-21-5p signaling pathway, we screened a library of medicinal plant extracts using our miR-ON RILES luciferase reporter system placed under the control of the miR-21-5p in keratinocytes treated with TGF-β1. We identified silymarin, a mixture of flavonolignans extracted from Silybum marianum (L.) Gaertn., as the most potent regulator of miR-21-5p expression. Using Argonaute 2 immunoprecipitation and RT-qPCR, we showed that silymarin regulates the expression of miR-21-5p through a noncanonical TGF-β1 signaling pathway, whereas RNA-sequencing analysis revealed three unexpected transcriptomic signatures associated with keratinocyte differentiation, cell cycle, and lipid metabolism. Mechanistically, we demonstrated that SM blocks cell cycle progression, inhibits keratinocyte differentiation through repression of Notch3 expression, stimulates lipid synthesis via activation of PPARγ signaling and inhibits inflammatory responses by suppressing the transcriptional activity of NF-κB. We finally showed that topical application of silymarin alleviates the development of imiquimod-induced psoriasiform lesions in mice by abrogating the altered expression levels of markers involved in inflammation, proliferation, differentiation, and lipid metabolism.
Collapse
|
57
|
Mi XJ, Le HM, Lee S, Park HR, Kim YJ. Silymarin-Functionalized Selenium Nanoparticles Prevent LPS-Induced Inflammatory Response in RAW264.7 Cells through Downregulation of the PI3K/Akt/NF-κB Pathway. ACS OMEGA 2022; 7:42723-42732. [PMID: 36467957 PMCID: PMC9713780 DOI: 10.1021/acsomega.2c04140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Silymarin exhibits an anti-inflammatory property in various cancers and inflammatory diseases. In our previous work, silymarin-mediated selenium nanoparticles (SeNPs) (Si-SeNPs) were developed using a green synthesis technique, and its potential as an anticancer agent was confirmed. In order to further examine the extended comprehensive potential of Si-SeNPs, this investigation focuses on studying the enhanced anti-inflammatory effect of Si-SeNPs in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction were used to evaluate the expression of pro-inflammatory mediators and cytokines. Western blotting and immunofluorescence assays were conducted to assess the protein expression of p-PI3K, p-Akt, p-NF-κB, and p-IκBα. Compared to silymarin, Si-SeNPs exhibited a significantly increased inhibitory effect on LPS-induced release of nitric oxide and the expression of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β) in RAW264.7 cells. A western blot assay indicated that Si-SeNPs downregulated the PI3K/Akt and NF-κB signaling pathways. The immunofluorescence assay suggested that Si-SeNPs inhibited the nuclear translocation and the activation of NF-κB. In addition, 740 Y-P (PI3K agonist) was used to demonstrate that activating the PI3K/Akt signal could partially reverse the inflammatory response, suggesting a causal role of the PI3K/Akt signaling pathway in the anti-inflammatory effect of Si-SeNPs. Consequently, these findings indicate that Si-SeNPs could be a functional agent of the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages through inhibiting the PI3K/Akt/NF-κB signaling pathway. In addition, biosynthesized Si-SeNPs could be more effective at reducing inflammation than only silymarin extracts. Thus, this study lays an experimental foundation for the clinical application of using biosynthesized SeNPs as a novel candidate in the field of inflammation-associated diseases.
Collapse
Affiliation(s)
- Xiao-jie Mi
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Ha-Minh Le
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Sanghyun Lee
- Department
of Plant Science and Technology, Chung Ang
University, Anseong 17546, Republic of Korea
| | - Hye-Ryung Park
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Yeon-Ju Kim
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
58
|
Fu Y, Zhou Y, Shen L, Li X, Zhang H, Cui Y, Zhang K, Li W, Chen WD, Zhao S, Li Y, Ye W. Diagnostic and therapeutic strategies for non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:973366. [PMID: 36408234 PMCID: PMC9666875 DOI: 10.3389/fphar.2022.973366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
The global incidence rate of non-alcoholic fatty liver disease (NAFLD) is approximately 25%. With the global increase in obesity and its associated metabolic syndromes, NAFLD has become an important cause of chronic liver disease in many countries. Despite recent advances in pathogenesis, diagnosis, and therapeutics, there are still challenges in its treatment. In this review, we briefly describe diagnostic methods, therapeutic targets, and drugs related to NAFLD. In particular, we focus on evaluating carbohydrate and lipid metabolism, lipotoxicity, cell death, inflammation, and fibrosis as potential therapeutic targets for NAFLD. We also summarized the clinical research progress in terms of drug development and combination therapy, thereby providing references for NAFLD drug development.
Collapse
Affiliation(s)
- Yajie Fu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yanzhi Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Linhu Shen
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Xuewen Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Haorui Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yeqi Cui
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Ke Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Weiguo Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Wei-dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| | - Yunfu Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| |
Collapse
|
59
|
Mirzaei N, Jahanian Sadatmahalleh S, Rouholamin S, Nasiri M. A randomized trial assessing the efficacy of Silymarin on endometrioma-related manifestations. Sci Rep 2022; 12:17549. [PMID: 36266431 PMCID: PMC9584967 DOI: 10.1038/s41598-022-22073-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
To study the effect of silymarin on the Interleukin-6 (IL-6) level, size of endometrioma lesion, pain, sexual function, and Quality of Life (QoL) in women diagnosed with endometriosis. This randomized, double-blind placebo-controlled clinical trial was performed on 70 women with endometriosis which was divided into two groups of intervention and control. The intervention was 140 mg silymarin (or matching placebo) administered twice daily for 12 weeks. The volume of endometrioma lesions, the level of IL-6 concentration in serum, pain, sexual function, and QoL were analyzed before and after the intervention. The means of endometrioma volume (P = 0.04), IL-6 (P = 0.002), and pain (P < 0.001) were reduced significantly in the silymarin group after intervention. However, the QoL and female sexual function did not improve substantially in the two groups (P > 0.05). Silymarin significantly reduced interleukin-6 levels, sizes of endometrioma lesions, and pain-related symptoms. The trial has been registered in the Iranian Registry of Clinical Trials (IRCT20150905023897N5) on 4th February 2020 (04/02/2020) ( https://en.irct.ir/trial/42215 ) and the date of initial participant enrollment was 2nd March 2020 (02/03/2020).
Collapse
Affiliation(s)
- Negin Mirzaei
- grid.412266.50000 0001 1781 3962Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Al-Ahmad Highway, Nasr Bridge, Tehran, 14115-111 Iran
| | - Shahideh Jahanian Sadatmahalleh
- grid.412266.50000 0001 1781 3962Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Al-Ahmad Highway, Nasr Bridge, Tehran, 14115-111 Iran
| | - Safoura Rouholamin
- grid.411036.10000 0001 1498 685XDepartment of Obstetrics and Gynecology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Hezar-Jerib Ave., Isfahan, 81746 73461 Iran
| | - Malihe Nasiri
- grid.411600.2Department of Basic Sciences, Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
60
|
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Ou-Yang ZY, Dusenge MA, Guo Y. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med 2022; 17:86. [PMID: 35858928 PMCID: PMC9297608 DOI: 10.1186/s13020-022-00640-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
61
|
Persico M, García-Viñuales S, Santoro AM, Lanza V, Tundo GR, Sbardella D, Coletta M, Romanucci V, Zarrelli A, Di Fabio G, Fattorusso C, Milardi D. Silybins are stereospecific regulators of the 20S proteasome. Bioorg Med Chem 2022; 66:116813. [PMID: 35576657 DOI: 10.1016/j.bmc.2022.116813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022]
Abstract
A reduced proteasome activity tiles excessive amyloid growth during the progress of protein conformational diseases (PCDs). Hence, the development of safe and effective proteasome enhancers represents an attractive target for the therapeutic treatment of these chronic disorders. Here we analyze two natural diastereoisomers belonging to the family of flavonolignans, Sil A and Sil B, by evaluating their capacity to increase proteasome activity. Enzyme assays carried out on yeast 20S (y20S) proteasome and in parallel on a permanently "open gate" mutant (α3ΔN) evidenced that Sil B is a more efficient 20S activator than Sil A. Conversely, in the case of human 20S proteasome (h20S) a higher affinity and more efficient activation is observed for Sil A. Driven by experimental data, computational studies further demonstrated that the taxifolin group of both diastereoisomers plays a crucial role in their anchoring to the α5/α6 groove of the outer α-ring. However, due to the different stereochemistry at C-7" and C-8" of ring D, only Sil A was able to reproduce the interactions responsible for h20S proteasome activation induced by their cognate regulatory particles. The provided silybins/h20S interaction models allowed us to rationalize their different ability to activate the peptidase activities of h20S and y20S. Our results provide structural details concerning the important role played by stereospecific interactions in driving Sil A and Sil B binding to the 20S proteasome and may support future rational design of proteasome enhancers.
Collapse
Affiliation(s)
- Marco Persico
- Department of Pharmacy, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Sara García-Viñuales
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | | | | | | | - Valeria Romanucci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Caterina Fattorusso
- Department of Pharmacy, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy.
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
62
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
63
|
Ding Y, Zhang S, Sun Z, Tong Z, Ge Y, Zhou L, Xu Q, Zhou H, Wang W. Preclinical validation of silibinin/albumin nanoparticles as an applicable system against acute liver injury. Acta Biomater 2022; 146:385-395. [PMID: 35460909 DOI: 10.1016/j.actbio.2022.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Silibinin (SIL) has been extensively studied for its therapeutic effects on various liver diseases. However, its effect on acute liver injury was limited for poor solubility and low bioavailability. Thus, we prepared SIL and bovine serum albumin (SIL/BSA) nanoparticles and further evaluated their therapeutic efficacy against acute liver injury in mouse models. METHODS SIL/BSA nanoparticles were prepared via a nanoprecipitation method. Both in vitro cell culture model and in vivo mouse models of acetaminophen (APAP) and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury were used to evaluate the therapeutic effect of SIL/BSA nanoparticles and potential mechanisms. RESULTS The SIL/BSA nanoparticles with hydrophilic diameters of 90 ± 29 nm were stably suspended. SIL/BSA nanoparticles presented better biocompatibility and more liver distribution in vivo than SIL microparticles. SIL/BSA nanoparticles significantly alleviated APAP and LPS/D-GalN induced acute liver injury in mice. Similarly, SIL/BSA nanoparticles remarkably enhanced the viability of hepatocytes in vitro against both APAP and LPS/D-GalN induced hepatocyte damage. Moreover, SIL/BSA nanoparticles exhibited antioxidant effects against intracellular oxidative stress via upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway, decreasing ROS and regulating antioxidant enzyme reactivity. And the downstream of mitochondria damage and caspase 9/3 related apoptosis pathway was also inhibited CONCLUSION: SIL/BSA nanoparticles were successfully prepared to enhance the liver availability of SIL. Both in vivo and in vitro, SIL/BSA nanoparticles exerted ideal hepatoprotective and antioxidant efficacy against acute liver injury, suggesting the promising future in clinical transfer. STATEMENT OF SIGNIFICANCE In our study, we prepared small-size, stable and well-dispersed silibinin/bovine serum albumin (SIL/BSA) nanoparticles via using simple and cost-effective nanoprecipitation techniques. Their physicochemical and pharmacokinetic characteristics were analyzed. We systematically studied the hepatoprotective and antioxidant efficacy of SIL/BSA both in vivo and in vitro, using two acute liver injury models. These findings revealed that SIL/BSA nanoparticles exerted ideal hepatoprotective and antioxidant efficacy against acute liver injury, suggesting the promising future in clinical transfer.
Collapse
|
64
|
Křen V, Valentová K. Silybin and its congeners: from traditional medicine to molecular effects. Nat Prod Rep 2022; 39:1264-1281. [PMID: 35510639 DOI: 10.1039/d2np00013j] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2015 up to 2022 (Feb)Silymarin, an extract of milk thistle (Silybum marianum) fruits, has been used in various medicinal applications since ancient times. A major component of silymarin is the flavonolignan silybin and its relatives isosilybin, silychristin, silydianin, 2,3-dehydrosilybin, and some others. Except for silydianin, they occur in nature as two stereomers. This review focuses on recent developments in chemistry, biosynthesis, modern advanced analytical methods, and transformations of flavonolignans specifically reflecting their chirality. Recently described chemotypes of S. marianum, but also the newest findings regarding the pharmacokinetics, hepatoprotective, antiviral, neuroprotective, and cardioprotective activity, modulation of endocrine functions, modulation of multidrug resistance, and safety of flavonolignans are discussed. A growing number of studies show that the respective diastereomers of flavonolignans have significantly different activities in anisotropic biological systems. Moreover, it is now clear that flavonolignans do not act as antioxidants in vivo, but as specific ligands of biological targets and therefore their chirality is crucial. Many controversies often arise, mainly due to the non-standard composition of this phytopreparation, the use of various undefined mixtures, the misattribution of silymarin vs. silybin, and also the failure to consider the chemistry of the respective components of silymarin.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| |
Collapse
|
65
|
Silybins inhibit human IAPP amyloid growth and toxicity through stereospecific interactions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140772. [PMID: 35307557 DOI: 10.1016/j.bbapap.2022.140772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 01/29/2023]
Abstract
Type 2 Diabetes is a major public health threat, and its prevalence is increasing worldwide. The abnormal accumulation of islet amyloid polypeptide (IAPP) in pancreatic β-cells is associated with the onset of the disease. Therefore, the design of small molecules able to inhibit IAPP aggregation represents a promising strategy in the development of new therapies. Here we employ in vitro, biophysical, and computational methods to inspect the ability of Silybin A and Silybin B, two natural diastereoisomers extracted from milk thistle, to interfere with the toxic self-assembly of human IAPP (hIAPP). We show that Silybin B inhibits amyloid aggregation and protects INS-1 cells from hIAPP toxicity more than Silybin A. Molecular dynamics simulations revealed that the higher efficiency of Silybin B is ascribable to its interactions with precise hIAPP regions that are notoriously involved in hIAPP self-assembly i.e., the S20-S29 amyloidogenic core, H18, the N-terminal domain, and N35. These results highlight the importance of stereospecific ligand-peptide interactions in regulating amyloid aggregation and provide a blueprint for future studies aimed at designing Silybin derivatives with enhanced drug-like properties.
Collapse
|
66
|
Ameliorative Impact of Silymarin on the Male Reproductive System: An Updated Systematic Review. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
67
|
Borymska W, Zych M, Dudek S, Kaczmarczyk-Sedlak I. Silymarin from Milk Thistle Fruits Counteracts Selected Pathological Changes in the Lenses of Type 1 Diabetic Rats. Nutrients 2022; 14:1450. [PMID: 35406062 PMCID: PMC9003010 DOI: 10.3390/nu14071450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a metabolic disease affecting many tissues and organs. The main etiological factor for diabetic complications is hyperglycemia and subsequent pathologies, such as oxidative stress. One of the organs susceptible to the development of diabetic complications is the eye with all of its elements, including the lens. The aim of this study was to evaluate the effect of silymarin, an extract obtained from milk thistle fruit husks, on the oxidative stress markers in the lenses of type 1 diabetic rats. The study was performed on male rats in which type 1 diabetes was induced with 60 mg/kg streptozotocin injection. Diabetic animals were treated via an intragastric tube with silymarin at 50 and 100 mg/kg doses for four weeks. Multiple oxidative stress and polyol pathway-related parameters were measured in the lenses, and auxiliary biochemical tests in the serum were conducted. Diabetes induced severe pathological changes both in the lenses and the serum, and silymarin counteracted several of them. Nevertheless, the qualitative analyses encompassing all tested parameters indicate that silymarin slightly improved the overall state of diabetic animals. Upon the obtained results, it can be concluded that silymarin reveals a faint positive effect on the lenses in type 1 diabetic rats.
Collapse
Affiliation(s)
- Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (M.Z.); (S.D.); (I.K.-S.)
| | | | | | | |
Collapse
|
68
|
Rath P, Ranjan A, Ghosh A, Chauhan A, Gurnani M, Tuli HS, Habeeballah H, Alkhanani MF, Haque S, Dhama K, Verma NK, Jindal T. Potential Therapeutic Target Protein Tyrosine Phosphatase-1B for Modulation of Insulin Resistance with Polyphenols and Its Quantitative Structure–Activity Relationship. Molecules 2022; 27:molecules27072212. [PMID: 35408611 PMCID: PMC9000704 DOI: 10.3390/molecules27072212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
The increase in the number of cases of type 2 diabetes mellitus (T2DM) and the complications associated with the side effects of chemical/synthetic drugs have raised concerns about the safety of the drugs. Hence, there is an urgent need to explore and identify natural bioactive compounds as alternative drugs. Protein tyrosine phosphatase 1B (PTP1B) functions as a negative regulator and is therefore considered as one of the key protein targets modulating insulin signaling and insulin resistance. This article deals with the screening of a database of polyphenols against PTP1B activity for the identification of a potential inhibitor. The research plan had two clear objectives. Under first objective, we conducted a quantitative structure–activity relationship analysis of flavonoids with PTP1B that revealed the strongest correlation (R2 = 93.25%) between the number of aromatic bonds (naro) and inhibitory concentrations (IC50) of PTP1B. The second objective emphasized the binding potential of the selected polyphenols against the activity of PTP1B using molecular docking, molecular dynamic (MD) simulation and free energy estimation. Among all the polyphenols, silydianin, a flavonolignan, was identified as a lead compound that possesses drug-likeness properties, has a higher negative binding energy of −7.235 kcal/mol and a pKd value of 5.2. The free energy-based binding affinity (ΔG) was estimated to be −7.02 kcal/mol. MD simulation revealed the stability of interacting residues (Gly183, Arg221, Thr263 and Asp265). The results demonstrated that the identified polyphenol, silydianin, could act as a promising natural PTP1B inhibitor that can modulate the insulin resistance.
Collapse
Affiliation(s)
- Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India; (P.R.); (M.G.)
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
- Correspondence: (A.R.); (A.G.); Tel.: +91-999-090-7571 (A.R.); +91-967-862-9146 (A.G.)
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati 781014, India
- Correspondence: (A.R.); (A.G.); Tel.: +91-999-090-7571 (A.R.); +91-967-862-9146 (A.G.)
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida 201303, India; (A.C.); (T.J.)
| | - Manisha Gurnani
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India; (P.R.); (M.G.)
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Hamza Habeeballah
- Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh Branch, Rabigh 25732, Saudi Arabia;
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Bursa Uludağ University Görükle Campus, Nilüfer 16059, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Naval Kumar Verma
- Homeopathy, Ministry of Ayush, Ayush Bhawan, B Block, GPO Complex INA, New Delhi 110023, India;
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida 201303, India; (A.C.); (T.J.)
| |
Collapse
|
69
|
Eita AAB. Milk thistle (Silybum marianum (L.)Gaertn.): An overview about its pharmacology and medicinal uses with an emphasis on oral diseases. J Oral Biosci 2022; 64:71-76. [PMID: 34968721 DOI: 10.1016/j.job.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Milk thistle, a medicinal plant, has different uses and benefits. Pathologies of the oral cavity manifest as different diseases with various therapeutic options. The main phytochemical extract of the milk thistle plant is silymarin. It has optimistic, protective, and therapeutic properties. However, evidence about the role of milk thistle extracts in oral diseases is lacking. HIGHLIGHT The pharmacology of milk thistle was overviewed. The role of the plant in some systemic diseases was reviewed. Furthermore, its role in various oral diseases was discussed. The presented articles described such effects in the context of periodontal disease, dental caries, oral candidiasis, oral lichen planus, oral cancer, and oral mucositis. Results on the promising effects of milk thistle extracts with a preference for silymarin were presented from different research designs. A summary of the previously used doses and the currently available pharmaceutical products was proposed for future research. CONCLUSION Milk thistle has antioxidant, anti-inflammatory, anticancer, antifungal, immunomodulatory, and other properties. The evidence from human research about the role of milk thistle in oral diseases is limited. Further studies, particularly clinical trials, to test milk thistle either as a potential treatment modality or a supplementary therapy for oral diseases on higher levels would be useful in the future.
Collapse
Affiliation(s)
- Aliaa Abdelmoniem Bedeir Eita
- Faculty of Dentistry, Oral Medicine, Periodontology, Diagnosis and Radiology Department, Alexandria University, Alexandria, Egypt; Alexandria Dental Research Center, Alexandria, Egypt.
| |
Collapse
|
70
|
Soleymani S, Ayati MH, Mansourzadeh MJ, Namazi N, Zargaran A. The effects of Silymarin on the features of cardiometabolic syndrome in adults: A systematic review and meta-analysis. Phytother Res 2022; 36:842-856. [PMID: 35016260 DOI: 10.1002/ptr.7364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/15/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022]
Abstract
Some medicinal herbs and their effective components showed positive effects on the features of the cardiometabolic syndrome (CMS). The aim of the present systematic review and meta-analysis is to examine the effects of silymarin on the components of CMS in adults. Four electronic databases including PubMed/Medline, Scopus, Web of Science, and Embase were systematically searched up to December 31, 2020 to identify all eligible clinical trials. A random-effect model using DerSimonian and Laird method was used to estimate the pooled weighted mean differences (WMDs) and the 95% confidence intervals (95%CIs). Finally, 11 clinical trials met the eligibility criteria. Our results demonstrated that silymarin significantly reduced the levels of fasting blood glucose (WMD: -17.96 mg/dL, 95% CI: -32.91, -3.02;I2 : 82.4%, p < 0.001), hemoglobin A1C (WMD: -1.25%, 95% CI: -2.34, 0.16; I2 : 92.9%, p ˂ 0.001), total cholesterol (WMD: -17.46 mg/dL, 95% CI: -30.98, -3.95; I2 = 62.9%, p = 0.006), triglyceride (WMD: -25.70 mg/dL, 95% CI: -47.23, -4.17; I2 :54.3%, p = 0.025), low-density lipoprotein-cholesterol (WMD: -10.53, 95% CI: -19.12, -1.94; I2: 37.5%, p = 0.119) and increased high-density lipoprotein- cholesterol (WMD: 3.36 mg/dL, 95% CI: 0.88, 5.84; I2 : 37.4%, p = 0.120) compared to placebo. However, its effects on BMI were not statistically significant. Silymarin can be an effective complementary therapy to improve most features of CMS. However, due to high heterogeneity and limited clinical trials in some parameters, further high-quality clinical trials are needed to confirm its efficacy.
Collapse
Affiliation(s)
- Samaneh Soleymani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ayati
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mansourzadeh
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Zargaran
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
71
|
A comprehensive review on phytochemicals for fatty liver: are they potential adjuvants? J Mol Med (Berl) 2022; 100:411-425. [PMID: 34993581 DOI: 10.1007/s00109-021-02170-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and, as such, is associated with obesity. With the current and growing epidemic of obesity, NAFLD is already considered the most common liver disease in the world. Currently, there is no official treatment for the disease besides weight loss. Although there are a few synthetic drugs currently being studied, there is also an abundance of herbal products that could also be used for treatment. With the World Health Organization (WHO) traditional medicine strategy (2014-2023) in mind, this review aims to analyze the mechanisms of action of some of these herbal products, as well as evaluate toxicity and herb-drug interactions available in literature.
Collapse
|
72
|
Aliyeva D, Amanvermez R, Karabulut K, Gün S. The effects of silymarin plus glutathione on the prevention of liver ischemia-reperfusion injury. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
| | | | | | - Seda Gün
- Ondokuz Mayıs University, Turkey
| |
Collapse
|
73
|
Krepkova LV, Babenko AN, Saybel' OL, Lupanova IA, Kuzina OS, Job KM, Sherwin CM, Enioutina EY. Valuable Hepatoprotective Plants - How Can We Optimize Waste Free Uses of Such Highly Versatile Resources? Front Pharmacol 2021; 12:738504. [PMID: 34867345 PMCID: PMC8637540 DOI: 10.3389/fphar.2021.738504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Humans used plants for thousand of years as food, drugs, or fuel to keep homes warm. People commonly used fruits and roots, and other parts of the plant were often wasted. This review aims to discuss the potential of rational stem-to-stern use of three highly versatile and valuable plants with hepatoprotective properties. Milk thistle (Silybum marianum L. Gaertn.), artichoke (Cynara cardunculus), and chicory (Cichorium intybus L.) have well-characterized hepatoprotective properties. These plants have been chosen since liver diseases are significant diseases of concern worldwide, and all parts of plants can be potentially utilized. Artichoke and chicory are commonly used as food or dietary supplements and less often as phytodrugs. Various dietary supplements and phytodrugs prepared from milk thistle (MT) fruits/seeds are well-known to consumers as remedies supporting liver functions. However, using these plants as functional food, farm animal feed, is not well-described in the literature. We also discuss bioactive constituents present in various parts of these plants, their pharmacological properties. Distinct parts of MT, artichoke, and chicory can be used to prepare remedies and food for humans and animals. Unused plant parts are potentially wasted. To achieve waste-free use of these and many other plants, the scientific community needs to analyze the complex use of plants and propose strategies for waste-free technologies. The government must stimulate companies to utilize by-products. Another problem associated with plant use as a food or source of phytodrug is the overharvesting of wild plants. Consequently, there is a need to use more active cultivation techniques for plants.
Collapse
Affiliation(s)
- Lubov V Krepkova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Aleksandra N Babenko
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Olga L Saybel'
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Irina A Lupanova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Olga S Kuzina
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Kathleen M Job
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Catherine M Sherwin
- Department of Pediatrics, Boonshoft School of Medicine, Dayton Children's Hospital, Wright State University, Dayton, OH, United States
| | - Elena Y Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
74
|
Pouresmaieli M, Ekrami E, Akbari A, Noorbakhsh N, Moghadam NB, Mamoudifard M. A comprehensive review on efficient approaches for combating coronaviruses. Biomed Pharmacother 2021; 144:112353. [PMID: 34794240 PMCID: PMC8531103 DOI: 10.1016/j.biopha.2021.112353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Almost 80% of people confronting COVID-19 recover from COVID-19 disease without any particular treatments. They experience heterogeneous symptoms; a wide range of respiratory symptoms, cough, dyspnea, fever, and viral pneumonia. However, some others need urgent intervention and special treatment to get rid of this widespread disease. So far, there isn't any unique drug for the potential treatment of COVID 19. However, some available therapeutic drugs used for other diseases seem beneficial for the COVID-19 treatment. On the other hand, there is a robust global concern for developing an efficient COVID-19 vaccine to control the COVID-19 pandemic sustainably. According to the WHO report, since 8 October 2021, 320 vaccines have been in progress. 194 vaccines are in the pre-clinical development stage that 126 of them are in clinical progression. Here, in this paper, we have comprehensively reviewed the most recent and updated information about coronavirus and its mutations, all the potential therapeutic approaches for treating COVID-19, developed diagnostic systems for COVID- 19 and the available COVID-19 vaccines and their mechanism of action.
Collapse
Affiliation(s)
- Mahdi Pouresmaieli
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
| | - Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Negin Noorbakhsh
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,Faculty of Medical Science and Technologies, Islamic Azad University Science and Research, Tehran, Iran
| | - Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mamoudifard
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
75
|
El-Gendy ZA, Ramadan A, El-Batran SA, Ahmed RF, El-Marasy SA, Abd El-Rahman SS, Youssef S. Carvacrol hinders the progression of hepatic fibrosis via targeting autotaxin and thioredoxin in thioacetamide-induced liver fibrosis in rat. Hum Exp Toxicol 2021; 40:2188-2201. [PMID: 34155936 DOI: 10.1177/09603271211026729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibrosis is a common outcome of nearly all chronic diseases of liver that results in changes of its functions which requires medical attention. The current research aims to investigate the potential anti-fibrotic efficacy of Carvacrol against thioacetamide (TAA)-induced liver fibrosis in male rats using Ursodeoxycholic acid (UDCA) as a reference anti-fibrotic product. Carvacrol (25 and 50 mg/kg) markedly declined TAA-increased serum liver enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) as well as total bilirubin (TB) and direct bilirubin (DB) levels as well as increased levels of total protein (TP) and albumin. Carvacrol significantly reduced glutathione depletion (GSH), Nitric oxide (NOX) and malondialdehyde (MDA) accumulation in liver tissue. Additionally, its anti-oxidant effect brightened up via affecting markers of stress found in the cell as nuclear factor erythroid 2-related factor 2 (Nrf-2) where it still had high content and decreased Thioredoxin (Trx) level. The anti-inflammatory effect of Carvacrol was confirmed by decreasing nuclear factor kappa B (NF-κB), interleukin-1beta (IL-1β) and inducible nitric oxide synthase (iNOS) contents. Carvacrol showed anti-fibrotic effect clarified by turning down fibrosis-related markers; TGF-β1, matrix metalloproteinase-3 and 9 (MMP-3 and 9) and Autotaxin (ATX) contents. Furthermore, it decreased alpha smooth muscle actin (α-SMA) and caspase-3 immune-expression. The overall outcome of aforementioned markers results showed that Carvacrol suppresses the progression of liver fibrosis via its anti-oxidant, anti-inflammatory, anti-apoptotic effect and its ability in lowering Thioredoxin and Autotaxin; hence it can be categorized as a hepatoprotective natural substance.
Collapse
Affiliation(s)
- Z A El-Gendy
- Department of Pharmacology, 68787National Research Centre, Dokki, Giza, Egypt
| | - A Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, 63526Cairo University, Cairo, Egypt
| | - S A El-Batran
- Department of Pharmacology, 68787National Research Centre, Dokki, Giza, Egypt
| | - R F Ahmed
- Department of Pharmacology, 68787National Research Centre, Dokki, Giza, Egypt
| | - S A El-Marasy
- Department of Pharmacology, 68787National Research Centre, Dokki, Giza, Egypt
| | - S S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, 63526Cairo University, Cairo, Egypt
| | - Sah Youssef
- Department of Pharmacology, Faculty of Veterinary Medicine, 63526Cairo University, Cairo, Egypt
| |
Collapse
|
76
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
77
|
Sibeko L, Johns T, Cordeiro LS. Traditional plant use during lactation and postpartum recovery: Infant development and maternal health roles. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114377. [PMID: 34192598 DOI: 10.1016/j.jep.2021.114377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/11/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evidence of phytochemical roles in infant development and maternal recovery offers insights into beneficial functions of traditional plant use during lactation and the postpartum period. Ethnopharmacological research has relevance to global priorities on maternal and child health, to understanding origins and determinants of human self-medication, and for reconciling traditional postpartum practices and mainstream healthcare. AIM OF THE STUDY Present emerging evidence, within evolutionary and socio-cultural contexts, on the role of maternal consumption on transfer of phytochemicals into breast milk with impacts on maternal and child health, and on infant development. Establish current state of knowledge and an ethnopharmacological research agenda that is attentive to cross-cultural and regional differences in postpartum plant use. MATERIALS AND METHODS An extensive literature review using Medline, Scopus, and Web of Science focused on traditional and contemporary use and socio-cultural context, as well as physiological, pharmacological, toxicological, and behavioral activities of plants used medicinally by women during postpartum recovery and lactation. RESULTS The most widely reported postpartum plants show antimicrobial, anti-inflammatory, immunological, and neurophysiological activities, with low toxicity. Phytochemicals transfer from maternal consumption into breast milk in physiological concentrations, while animal studies demonstrate immunomodulation and other actions of medicinal plants during lactation. Reporting on the use and diverse traditional knowledge of women about plants during the postpartum period is obscured by the marginal place of obstetric issues and by gender biases in ethnobotanical research. In many contemporary contexts use is prejudiced by precautionary risk warnings in health literature and practice that confound lactation with pregnancy. CONCLUSIONS Although systematic investigation of postpartum plant use is lacking, known pharmacological activities support potential benefits on infant development and maternal health with immediate and long-term consequences in relation to allergic, inflammatory, autoimmune, and other diseases. An ethnopharmacological agenda focused on the perinatal period requires directed methodologies and a regional approach in relation to culturally-specific knowledge and practices, traditional plant use, and local health needs. Testing the hypothesis that phytochemicals transferred from medicinal plants into breast milk impact the human immune system and other aspects of infant development requires extended analysis of phytochemicals in human milk and infant lumen and plasma, as well as effects on gastrointestinal and milk microbiome.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Lorraine S Cordeiro
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
78
|
Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M, Rashidian A, Hamblin MR, Chamanara M, Naghsh N, Mirzaei H. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharmacother 2021; 142:112024. [PMID: 34399200 PMCID: PMC8458260 DOI: 10.1016/j.biopha.2021.112024] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Silymarin contains a group of closely-related flavonolignan compounds including silibinin, and is extracted from Silybum marianum species, also called milk thistle. Silymarin has been shown to protect the liver in both experimental models and clinical studies. The chemopreventive activity of silymarin has shown some efficacy against cancer both in vitro and in vivo. Silymarin can modulate apoptosis in vitro and survival in vivo, by interfering with the expression of cell cycle regulators and apoptosis-associated proteins. In addition to its anti-metastatic activity, silymarin has also been reported to exhibit anti-inflammatory activity. The chemoprotective effects of silymarin and silibinin (its major constituent) suggest they could be applied to reduce the side effects and increase the anti-cancer effects of chemotherapy and radiotherapy in various cancer types, especially in gastrointestinal cancers. This review examines the recent studies and summarizes the mechanistic pathways and down-stream targets of silymarin in the therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran; Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Navid Naghsh
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
79
|
Yang J, Li H, Wang X, Zhang C, Feng G, Peng X. Inhibition Mechanism of α-Amylase/α-Glucosidase by Silibinin, Its Synergism with Acarbose, and the Effect of Milk Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10515-10526. [PMID: 34463509 DOI: 10.1021/acs.jafc.1c01765] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a natural flavonolignan, silibinin is reported to possess multiple biological activities, while the inhibitory potential of silibinin on carbohydrate-hydrolyzing enzymes is still unclear. Therefore, in this study, the inhibitory effect and underlying mechanism of silibinin against α-amylase/α-glucosidase were investigated. The results indicated that silibinin showed a strong inhibitory efficiency against α-amylase/α-glucosidase in noncompetitive manners and exhibited synergistic inhibition against α-glucosidase with acarbose. However, interestingly, the inhibitory effect of silibinin was significantly hindered in various milk protein-rich environments, but this phenomenon disappeared after simulated gastrointestinal digestion of milk proteins in vitro. Furthermore, silibinin could combine with the inactive site of α-amylase/α-glucosidase and change the microenvironment and secondary structure of the enzymes, thereby influencing the catalytic efficiency of enzymes. This research suggested that silibinin could be used as a novel carbohydrate-hydrolyzing enzyme inhibitor, and milk beverages rich in silibinin had the potential for further application in antidiabetic dietary or medicine.
Collapse
Affiliation(s)
- Jichen Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huan Li
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoli Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuanying Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guo Feng
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xin Peng
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, People's Republic of China
| |
Collapse
|
80
|
Tuli HS, Mittal S, Aggarwal D, Parashar G, Parashar NC, Upadhyay SK, Barwal TS, Jain A, Kaur G, Savla R, Sak K, Kumar M, Varol M, Iqubal A, Sharma AK. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin Cancer Biol 2021; 73:196-218. [PMID: 33130037 DOI: 10.1016/j.semcancer.2020.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
In the last few decades, targeting cancer by the use of dietary phytochemicals has gained enormous attention. The plausible reason and believe or mind set behind this fact is attributed to either lesser or no side effects of natural compounds as compared to the modern chemotherapeutics, or due to their conventional use as dietary components by mankind for thousands of years. Silibinin is a naturally derived polyphenol (a flavonolignans), possess following biochemical features; molecular formula C25H22O10, Molar mass: 482.44 g/mol, Boiling point 793 °C, with strikingly high antioxidant and anti-tumorigenic properties. The anti-cancer properties of Silibinin are determined by a variety of cellular pathways which include induction of apoptosis, cell cycle arrest, inhibition of angiogenesis and metastasis. In addition, Silibinin controls modulation of the expression of aberrant miRNAs, inflammatory response, and synergism with existing anti-cancer drugs. Therefore, modulation of a vast array of cellular responses and homeostatic aspects makes Silibinin an attractive chemotherapeutic agent. However, like other polyphenols, the major hurdle to declare Silibinin a translational chemotherapeutic agent, is its lesser bioavailability. After summarizing the chemistry and metabolic aspects of Silibinin, this extensive review focuses on functional aspects governed by Silibinin in chemoprevention with an ultimate goal of summarizing the evidence supporting the chemopreventive potential of Silibinin and clinical trials that are currently ongoing, at a single platform.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | | | - Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | - Raj Savla
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| |
Collapse
|
81
|
The effect of silymarin on liver enzymes and antioxidant status in trauma patients in the intensive care unit: a randomized double blinded placebo-controlled clinical trial. Clin Exp Hepatol 2021; 7:149-155. [PMID: 34295981 PMCID: PMC8284169 DOI: 10.5114/ceh.2021.107067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/24/2021] [Indexed: 01/09/2023] Open
Abstract
Aim of the study This study was conducted to investigate the positive effect of silymarin on liver enzymes and antioxidant status in trauma patients with elevated liver enzymes due to trauma-induced liver injury, admitted to the intensive care unit. Material and methods This one-year, randomized, double-blinded, placebo-controlled clinical trial was conducted on 90 trauma patients. The participants were assigned to either receiving Livergol tablets containing 140 mg of silymarin or 140 mg of placebo three times daily for 14 days. Liver enzymes, including aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP), were measured at baseline and days 3, 7, 9 and 14 after intervention. Also, antioxidant markers were measured at baseline and day 14 after treatment. Results Receiving silymarin supplement significantly lowered the liver enzymes, compared to placebo (p < 0.05). The mean serum level of malondialdehyde (MDA) was significantly decreased and the mean serum levels of total antioxidant capacity (TAC) and thiol groups were significantly increased in the silymarin group from baseline to day 14. In the placebo group, mean serum levels of MDA and thiol groups were significantly increased, while serum level of TAC was not significantly changed at day 14, compared to baseline. Also, the mean serum level of MDA was significantly lower, while the serum levels of thiol groups and TAC were significantly higher in the silymarin group. Conclusions Silymarin supplementation significantly improved some antioxidant markers (TAC and thiol) and decreased liver enzymes in patients with trauma-induced liver injury.
Collapse
|
82
|
Effect of carrier type and Tween® 80 concentration on the release of silymarin from amorphous solid dispersions. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
83
|
Petreski T, Piko N, Petrijan T, Dvoršak B, Hojs R, Bevc S. Statin-Associated Necrotizing Myopathy Leading to Acute Kidney Injury: A Case Report. Case Rep Nephrol Dial 2021; 11:129-135. [PMID: 34250030 PMCID: PMC8255745 DOI: 10.1159/000515584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
Statins or 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors are a mainstay of cardiovascular disease therapy. In addition to their lipid-lowering capabilities, they exhibit several pleiotropic effects. Their adverse reactions such as myalgias are not uncommon, but in rare cases, the resulting rhabdomyolysis can be fatal. Recently, more insight has been brought into the pathogenesis of statin-induced rhabdomyolysis, and immune-mediated necrotizing myopathies are diagnosed more frequently. We present a case of a female patient who was on chronic rosuvastatin therapy and developed necrotizing myopathy. The disease progressed to acute kidney and liver injury. We discontinued the drug, started supportive measures, and initiated renal replacement therapy with a high cutoff dialysis membrane once. Her recovery was prompt, with a normal control electromyography 2 weeks after discharge.
Collapse
Affiliation(s)
- Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Center Maribor, Maribor, Slovenia
- Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Nejc Piko
- Department of Nephrology, Clinic for Internal Medicine, University Medical Center Maribor, Maribor, Slovenia
- Department of Dialysis, Clinic for Internal Medicine, University Medical Center Maribor, Maribor, Slovenia
| | - Timotej Petrijan
- Department of Neurology, University Medical Center Maribor, Maribor, Slovenia
| | - Benjamin Dvoršak
- Department of Nephrology, Clinic for Internal Medicine, University Medical Center Maribor, Maribor, Slovenia
- Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Center Maribor, Maribor, Slovenia
- Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Center Maribor, Maribor, Slovenia
- Medical Faculty, University of Maribor, Maribor, Slovenia
| |
Collapse
|
84
|
Sibeko L, Johns T. Global survey of medicinal plants during lactation and postpartum recovery: Evolutionary perspectives and contemporary health implications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113812. [PMID: 33450288 DOI: 10.1016/j.jep.2021.113812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cross-cultural comparison of plants used during lactation and the postpartum period offers insight into a largely overlooked area of ethnopharmacological research. Potential roles of phytochemicals in emerging models of interaction among immunity, inflammation, microbiome and nervous system effects on perinatal development have relevance for the life-long health of individuals and of populations in both traditional and contemporary contexts. AIM OF THE STUDY Delineate and interpret patterns of traditional and contemporary global use of medicinal plants ingested by mothers during the postpartum period relative to phytochemical activity on immune development and gastrointestinal microbiome of breastfed infants, and on maternal health. MATERIALS AND METHODS Published reviews and surveys on galactagogues and postpartum recovery practices plus ethnobotanical studies from around the world were used to identify and rank plants, and ascertain regional use patterns. Scientific literature for 20 most-cited plants based on frequency of publication was assessed for antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, antidepressant, analgesic, galactagogic and safety properties. RESULTS From compilation of 4418 use reports related to 1948 species, 105 plant taxa were recorded ≥7 times, with the most frequently cited species, Foeniculum vulgare, Trigonella foenum-graecum, Pimpinella anisum, Euphorbia hirta and Asparagus racemosus, 81, 64, 42, 40 and 38 times, respectively. Species and use vary globally, illustrated by the pattern of aromatic plants of culinary importance versus latex-producing plants utilized in North Africa/Middle East and Sub-Saharan Africa with opposing predominance. For 18/20 of the plants a risk/benefit perspective supports assessment that positive immunomodulation and related potential exceed any safety concerns. Published evidence does not support a lactation-enhancing effect for nearly all the most-cited plants while antidepressant data for the majority of plants are predominately limited to animal studies. CONCLUSIONS Within a biocultural context traditional postpartum plant use serves adaptive functions for the mother-infant dyad and contributes phytochemicals absent in most contemporary diets and patterns of ingestion, with potential impacts on allergic, inflammatory and other conditions. Polyphenolics and other phytochemicals are widely immunologically active, present in breast milk and predominately non-toxic. Systematic analysis of phytochemicals in human milk, infant lumen and plasma, and immunomodulatory studies that differentiate maternal ingestion during lactation from pregnancy, are needed. Potential herb-drug interaction and other adverse effects should remain central to obstetric advising, but unless a plant is specifically shown as harmful, considering potential contributions to health of individuals and populations, blanket advisories against postpartum herbal use during lactation appear empirically unwarranted.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
85
|
Mega A, Marzi L, Kob M, Piccin A, Floreani A. Food and Nutrition in the Pathogenesis of Liver Damage. Nutrients 2021; 13:nu13041326. [PMID: 33923822 PMCID: PMC8073814 DOI: 10.3390/nu13041326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
The liver is an important organ and plays a key role in the regulation of metabolism and in the secretion, storage, and detoxification of endogenous and exogenous substances. The impact of food and nutrition on the pathophysiological mechanisms of liver injury represents a great controversy. Several environmental factors including food and micronutrients are involved in the pathogenesis of liver damage. Conversely, some xenobiotics and micronutrients have been recognized to have a protective effect in several liver diseases. This paper offers an overview of the current knowledge on the role of xenobiotics and micronutrients in liver damage.
Collapse
Affiliation(s)
- Andrea Mega
- Gastroenterology Department, Bolzano Regional Hospital, 39100 Bolzano, Italy;
- Correspondence:
| | - Luca Marzi
- Gastroenterology Department, Bolzano Regional Hospital, 39100 Bolzano, Italy;
| | - Michael Kob
- Dietetics and Clinical Nutrition Unit, Bolzano Regional Hospital, 39100 Bolzano, Italy;
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast BT9 7TS, UK;
- Department of Internal Medicine V, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, 38100 Trento, Italy
| | - Annarosa Floreani
- Scientific Institute for Research, Hospitalization and Healthcare, 37024 Negrar-Verona, Italy;
- Department Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| |
Collapse
|
86
|
Frankova J, Juranova J, Biedermann D, Ulrichova J. Influence of silymarin components on keratinocytes and 3D reconstructed epidermis. Toxicol In Vitro 2021; 74:105162. [PMID: 33839235 DOI: 10.1016/j.tiv.2021.105162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Silymarin is a flavonoid complex isolated from the plant Silybum marianum which is well known for its antioxidant, hepatoprotective and immunomodulatory effects. Since little is known about its anti-inflammatory properties and healing effects, our study focused on whether or not silymarin components reduce inflammation and support epidermis regeneration. Lipopolysaccharides (LPS) and sodium dodecyl sulfate (SDS) were used to induce inflammation in normal human epidermal keratinocytes (NHEKs) and reconstructed epidermis (RHE), respectively. The expression of pro-inflammatory cytokines (IL-1, IL-6 and IL-8) in NHEKs and RHE was measured by enzyme - linked immunosorbent assay (ELISA). The expression of cytokeratin 14 and loricrin in RHE was detected by immunofluorescent analysis. Hematoxylin and eosin staining was used for the morphological evaluation of RHE. It was determined that 2, 3 - dehydrosilybin (DHSB) downregulated the production of selected pro-inflammatory cytokines produced by NHEKs. Although all layers of RHE displayed full thickness, when SDS was applied, cell detachment was seen in the stratum corneum and loricrin expression was diminished.
Collapse
Affiliation(s)
- J Frankova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Hněvotínská 3, 775 15 Olomouc, Czech Republic..
| | - J Juranova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - D Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - J Ulrichova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
87
|
Speciale A, Muscarà C, Molonia MS, Cimino F, Saija A, Giofrè SV. Silibinin as potential tool against SARS-Cov-2: In silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects. Phytother Res 2021; 35:4616-4625. [PMID: 33822421 PMCID: PMC8251480 DOI: 10.1002/ptr.7107] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/27/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
The spread of SARS‐CoV‐2, along with the lack of targeted medicaments, encouraged research of existing drugs for repurposing. The rapid response to SARS‐CoV‐2 infection comprises a complex interaction of cytokine storm, endothelial dysfunction, inflammation, and pathologic coagulation. Thus, active molecules targeting multiple steps in SARS‐CoV‐2 lifecycle are highly wanted. Herein we explored the in silico capability of silibinin from Silybum marianum to interact with the SARS‐CoV‐2 main target proteins, and the in vitro effects against cytokine‐induced‐inflammation and dysfunction in human umbilical vein endothelial cells (HUVECs). Computational analysis revealed that silibinin forms a stable complex with SARS‐CoV‐2 spike protein RBD, has good negative binding affinity with Mpro, and interacts with many residues on the active site of Mpro, thus supporting its potentiality in inhibiting viral entry and replication. Moreover, HUVECs pretreatment with silibinin reduced TNF‐α‐induced gene expression of the proinflammatory genes IL‐6 and MCP‐1, as well as of PAI‐1, a critical factor in coagulopathy and thrombosis, and of ET‐1, a peptide involved in hemostatic vasoconstriction. Then, due to endothelium antiinflammatory and anticoagulant properties of silibinin and its capability to interact with SARS‐CoV‐2 main target proteins demonstrated herein, silibinin could be a strong candidate for COVID‐19 management from a multitarget perspective.
Collapse
Affiliation(s)
- Antonio Speciale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Claudia Muscarà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Maria Sofia Molonia
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Francesco Cimino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Antonella Saija
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| |
Collapse
|
88
|
Sardanelli AM, Isgrò C, Palese LL. SARS-CoV-2 Main Protease Active Site Ligands in the Human Metabolome. Molecules 2021; 26:1409. [PMID: 33807773 PMCID: PMC7961382 DOI: 10.3390/molecules26051409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
In late 2019, a global pandemic occurred. The causative agent was identified as a member of the Coronaviridae family, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we present an analysis on the substances identified in the human metabolome capable of binding the active site of the SARS-CoV-2 main protease (Mpro). The substances present in the human metabolome have both endogenous and exogenous origins. The aim of this research was to find molecules whose biochemical and toxicological profile was known that could be the starting point for the development of antiviral therapies. Our analysis revealed numerous metabolites-including xenobiotics-that bind this protease, which are essential to the lifecycle of the virus. Among these substances, silybin, a flavolignan compound and the main active component of silymarin, is particularly noteworthy. Silymarin is a standardized extract of milk thistle, Silybum marianum, and has been shown to exhibit antioxidant, hepatoprotective, antineoplastic, and antiviral activities. Our results-obtained in silico and in vitro-prove that silybin and silymarin, respectively, are able to inhibit Mpro, representing a possible food-derived natural compound that is useful as a therapeutic strategy against COVID-19.
Collapse
Affiliation(s)
- Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Camilla Isgrò
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Luigi Leonardo Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
| |
Collapse
|
89
|
Hosseini S, Rezaei S, Moghaddam MRN, Elyasi S, Karimi G. Evaluation of oral nano-silymarin formulation efficacy on prevention of radiotherapy induced mucositis: A randomized, double-blinded, placebo-controlled clinical trial. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
90
|
El-Gendy ZA, El-Batran SA, Youssef S, Ramadan A, Hotaby WE, Bakeer RM, Ahmed RF. Hepatoprotective effect of Omega-3 PUFAs against acute paracetamol-induced hepatic injury confirmed by FTIR. Hum Exp Toxicol 2021; 40:526-537. [PMID: 32909844 DOI: 10.1177/0960327120954522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute paracetamol over dose-induced hepatotoxicity is considered an important medical hazard especially among women. Omega-3 long-chain polyunsaturated fatty acids (Omega-3 PUFAs) daily doses are nowadays recommended for their antioxidant and anti-inflammatory potentials. Fourier transform infrared (FTIR) spectroscopy is considered a reliable method in analyzing cellular alterations and is now efficiently used to diagnose several diseases and the efficacy of drugs even in the early stages. The aim of our study was to evaluate the hepatoprotective effect of Omega-3 PUFAs against paracetamol-induced hepatotoxicity in rats confirmed through measuring protein alterations in hepatocytes by FTIR. Rats were pretreated with Omega-3 PUFAs (50 and 100 mg/kg) for 21 days prior to oral ingestion of paracetamol. FTIR results revealed that Omega-3 PUFAs (50 mg/kg) limited the toxic effects of paracetamol by restoring the hepatic amide I to amide II ratio. In addition; biochemical analyses demonstrated that serum ALT, AST, Cholesterol, LDL-cholesterol and Il-6 levels as well as hepatic TNF-α, MDA, NOx levels were decreased. Besides; serum HDL-cholesterol level and hepatic GSH level were increased. Histopathological examinations of hepatic sections validated the hepatoprotective potential. The overall effect of this dose was comparable to those of the usual recommended hepatoprotective supplement; silymarin. In conclusion; it would be recommended to use Omega-3 PUFAs in low doses on daily bases as a hepatoprotective agent.
Collapse
Affiliation(s)
- Zeinab A El-Gendy
- Department of Pharmacology, Medical Research Division, 68787National Research Centre, Dokki, Giza, Egypt
| | - Seham A El-Batran
- Department of Pharmacology, Medical Research Division, 68787National Research Centre, Dokki, Giza, Egypt
| | - Sah Youssef
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - A Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Walid El Hotaby
- Department of Spectroscopy, Physics Division, 68787National Research Centre, Dokki, Giza, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
- Department of Pathology, 110123October University of Modern Sciences and Arts (MSA) University, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research Division, 68787National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
91
|
Biedermann D, Hurtová M, Biedermannová L, Valentová K, Křen V. Flavonolignans from silymarin do not intercalate into DNA: Rebuttal of data published in the paper J. Mol. Recognit. e2812 (2019). J Mol Recognit 2021; 34:e2888. [PMID: 33624887 DOI: 10.1002/jmr.2888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022]
Affiliation(s)
- David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Hurtová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Lada Biedermannová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology - BIOCEV, Czech Academy of Sciences, Vestec, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
92
|
Koenig G, Callipari C, Smereck JA. Acute Liver Injury After Long-Term Herbal "Liver Cleansing" and "Sleep Aid" Supplement Use. J Emerg Med 2021; 60:610-614. [PMID: 33579656 DOI: 10.1016/j.jemermed.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Acute liver injury is reported in association with toxins, pharmaceuticals, and viral infections. Increasingly prevalent are cases of herbal- and dietary supplement-related hepatotoxicity. Early recognition of this potentially life-threatening complication by emergency care providers leads to more appropriate management and disposition. CASE REPORT A 53-year-old woman presented to the emergency department with a 3-day history of jaundice and increased abdominal girth after a month-long use of a combination herbal "liver-cleansing" compound and a nightly herbal "sleep aid." The "Liver Detoxifier and Regenerator" listed multiple constituents, including concentrated scute root and turmeric root; "Restful Sleep" listed multiple constituents, including valerian. Emergency department evaluation revealed marked hyperbilirubinemia with liver enzyme elevations indicative of cholestatic jaundice. Imaging studies, including ultrasound and abdominal magnetic resonance imaging, revealed hepatomegaly and steatosis without biliary dilatation; a biopsy specimen was obtained, and the results were consistent with drug-induced liver injury. The patient's liver function abnormalities gradually improved with discontinuation of the products as well as a tapered course of corticosteroid therapy. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: A significant proportion of the U.S. adult population uses herbal and dietary supplements. Most patients do not discuss nonprescription medication use with their providers and many physicians will not specifically ask about herbal supplements. It is important for emergency physicians to be aware of the potential for herbal supplements to contribute to acute liver injury and be able to investigate the active agents reported in these formulations. The diagnostic criteria for cholestatic jaundice and drug-induced liver injury are discussed.
Collapse
Affiliation(s)
- Gavin Koenig
- Georgetown University School of Medicine, Washington, DC
| | - Cameron Callipari
- Department of Emergency Medicine, New York Presbyterian-Columbia/Cornell, New York, NY
| | - Janet A Smereck
- Department of Emergency Medicine, Georgetown University Medical Center, Washington, DC; MedStar Georgetown University Hospital, Washington, DC
| |
Collapse
|
93
|
Pérez-Lozano ML, Cesaro A, Mazor M, Esteve E, Berteina-Raboin S, Best TM, Lespessailles E, Toumi H. Emerging Natural-Product-Based Treatments for the Management of Osteoarthritis. Antioxidants (Basel) 2021; 10:265. [PMID: 33572126 PMCID: PMC7914872 DOI: 10.3390/antiox10020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is a complex degenerative disease in which joint homeostasis is disrupted, leading to synovial inflammation, cartilage degradation, subchondral bone remodeling, and resulting in pain and joint disability. Yet, the development of new treatment strategies to restore the equilibrium of the osteoarthritic joint remains a challenge. Numerous studies have revealed that dietary components and/or natural products have anti-inflammatory, antioxidant, anti-bone-resorption, and anabolic potential and have received much attention toward the development of new therapeutic strategies for OA treatment. In the present review, we provide an overview of current and emerging natural-product-based research treatments for OA management by drawing attention to experimental, pre-clinical, and clinical models. Herein, we review current and emerging natural-product-based research treatments for OA management.
Collapse
Affiliation(s)
- Maria-Luisa Pérez-Lozano
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
| | - Annabelle Cesaro
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
| | - Marija Mazor
- Center for Proteomics, Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia;
| | - Eric Esteve
- Service de Dermatologie, Centre Hospitalier Régional d′Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France;
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique ICOA, Université d’Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, CEDEX 2, 45067 Orléans, France;
| | - Thomas M. Best
- Department of Orthopedics, Division of Sports Medicine, Health Sports Medicine Institute, University of Miami, Coral Gables, FL 33146, USA;
| | - Eric Lespessailles
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
- Centre Hospitalier Régional d’Orléans, Institut Département de Rhumatologie, 45067 Orléans, France
| | - Hechmi Toumi
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
- Centre Hospitalier Régional d’Orléans, Institut Département de Rhumatologie, 45067 Orléans, France
| |
Collapse
|
94
|
Liu W, Wang F, Li C, Otkur W, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Onodera S, Ikejima T. Silibinin treatment protects human skin cells from UVB injury through upregulation of estrogen receptors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112147. [PMID: 33561689 DOI: 10.1016/j.jphotobiol.2021.112147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/27/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Ultraviolet B (UVB) from the sunlight is a major environmental cause for human skin damages, inducing cell death, inflammation, senescence and even carcinogenesis. The natural flavonoid silibinin, clinically used as liver protectant, has protective effects against UVB-caused skin injury in vivo and in vitro. Silibinin is often classified as a phytoestrogen, because it modulates the activation of estrogen receptors (ERs). However, whether silibinin's estrogenic effect contributes to the skin protection against UVB injury remains to be elucidated. The issue was explored in this study by using the human foreskin dermal fibroblasts (HFF) and human non-malignant immortalized keratinocytes (HaCaT). In HFF, pre-treatment with silibinin rescued UVB-irradiated cells from apoptosis. Interestingly, silibinin increased the whole cellular and nuclear levels of ERα and ERβ in UVB-irradiated cells. Activation of ERs by treatment with estradiol elevated the cell survival and reduced apoptosis in UVB-treated cells. ERα agonist increased cell survival, while its antagonist decreased it. ERβ agonist also increased cell survival, but the antagonist had no effect on cell survival. Transfection of the cells with the small interfering RNAs (si-RNAs) to ERα or ERβ diminished the protective effect of silibinin on UVB-irradiated cells. In UVB-treated HaCaT cells, both ERα and ERβ were increased by silibinin treatment. Inhibition of activation and expression of ERα or ERβ by specific antagonists and si-RNAs, respectively, reduced cell survival in UVB-treated HaCaT cells regardless of silibinin treatment. Taken together, it is summarized that silibinin up-regulates both ERα and ERβ pathways in UVB-treated dermal HFF cells and epidermal HaCaT cells, leading to protection of skin from UVB-damage.
Collapse
Affiliation(s)
- Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Fang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Can Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Wuxiyar Otkur
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Department of Chemistry and Life science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Satoshi Onodera
- Medical Research Institute of Curing Mibyo, 1-6-28 Narusedai Mechida Tokyo, 194-0042, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
95
|
Mahmood N, Nasir SB, Hefferon K. Plant-Based Drugs and Vaccines for COVID-19. Vaccines (Basel) 2020; 9:15. [PMID: 33396667 PMCID: PMC7823519 DOI: 10.3390/vaccines9010015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus SARS-CoV-2 has turned our own health and the world economy upside down. While several vaccine candidates are currently under development, antivirals with the potential to limit virus transmission or block infection are also being explored. Plant production platforms are being used to generate vaccines and antiviral proteins inexpensively and at mass scale. The following review discusses the biology and origins of the current coronavirus pandemic, and describes some of the conventional, synthetic, and plant-based approaches to address the challenge that it presents to our way of life.
Collapse
Affiliation(s)
- Nasir Mahmood
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 2E8, Canada;
- Department of Biochemistry, University of Health Sciences, Lahore 54600, Pakistan
- Forest Ridge Health Care Inc., Toronto, ON M5J 2V1, Canada
| | - Sarah Bushra Nasir
- Department of Life Sciences, Abdus Salam School of Sciences, Nusrat Jahan College, Chenab Nagar 35460, Pakistan;
| | | |
Collapse
|
96
|
Kaipa JM, Starkuviene V, Erfle H, Eils R, Gladilin E. Transcriptome profiling reveals Silibinin dose-dependent response network in non-small lung cancer cells. PeerJ 2020; 8:e10373. [PMID: 33362957 PMCID: PMC7749657 DOI: 10.7717/peerj.10373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Silibinin (SIL), a natural flavonolignan from the milk thistle (Silybum marianum), is known to exhibit remarkable hepatoprotective, antineoplastic and EMT inhibiting effects in different cancer cells by targeting multiple molecular targets and pathways. However, the predominant majority of previous studies investigated effects of this phytocompound in a one particular cell line. Here, we carry out a systematic analysis of dose-dependent viability response to SIL in five non-small cell lung cancer (NSCLC) lines that gradually differ with respect to their intrinsic EMT stage. By correlating gene expression profiles of NSCLC cell lines with the pattern of their SIL IC50 response, a group of cell cycle, survival and stress responsive genes, including some prominent targets of STAT3 (BIRC5, FOXM1, BRCA1), was identified. The relevancy of these computationally selected genes to SIL viability response of NSCLC cells was confirmed by the transient knockdown test. In contrast to other EMT-inhibiting compounds, no correlation between the SIL IC50 and the intrinsic EMT stage of NSCLC cells was observed. Our experimental results show that SIL viability response of differently constituted NSCLC cells is linked to a subnetwork of tightly interconnected genes whose transcriptomic pattern can be used as a benchmark for assessment of individual SIL sensitivity instead of the conventional EMT signature. Insights gained in this study pave the way for optimization of customized adjuvant therapy of malignancies using Silibinin.
Collapse
Affiliation(s)
- Jagan Mohan Kaipa
- Helmholtz Center for Infection Research, Braunschweig, Germany.,BioQuant, University Heidelberg, Heidelberg, Germany.,Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, University Heidelberg, Heidelberg, Germany.,Institute of Biosciences, Vilnius University Life Science Center, Vilnius, Lithuania
| | - Holger Erfle
- BioQuant, University Heidelberg, Heidelberg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Evgeny Gladilin
- BioQuant, University Heidelberg, Heidelberg, Germany.,Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany.,Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
97
|
Kesharwani SS, Jain V, Dey S, Sharma S, Mallya P, Kumar VA. An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
98
|
Unni S, Aouti S, Thiyagarajan S, Padmanabhan B. Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods. J Biosci 2020. [PMID: 33184246 PMCID: PMC7561504 DOI: 10.1007/s12038-020-00102-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is an emerging new viral pathogen that causes severe respiratory disease. SARS-CoV-2 is responsible for the outbreak of COVID-19 pandemic worldwide. As there are no confirmed antiviral drugs or vaccines currently available for the treatment of COVID-19, discovering potent inhibitors or vaccines are urgently required for the benefit of humanity. The glycosylated Spike protein (S-protein) directly interacts with human angiotensin-converting enzyme 2 (ACE2) receptor through the receptor-binding domain (RBD) of S-protein. As the S-protein is exposed to the surface and is essential for entry into the host, the S-protein can be considered as a first-line therapeutic target for antiviral therapy and vaccine development. In silico screening, docking, and molecular dynamics simulation studies were performed to identify repurposing drugs using DrugBank and PubChem library against the RBD of S-protein. The study identified a laxative drug, Bisoxatin (DB09219), which is used for the treatment of constipation and preparation of the colon for surgical procedures. It binds nicely at the S-protein–ACE2 interface by making substantial π-π interactions with Tyr505 in the ‘Site 1’ hook region of RBD and hydrophilic interactions with Glu406, Ser494, and Thr500. Bisoxatin consistently binds to the protein throughout the 100 ns simulation. Taken together, we propose that the discovered molecule, Bisoxatin may be a promising repurposable drug molecule to develop new chemical libraries for inhibiting SARS-CoV-2 entry into the host.
Collapse
Affiliation(s)
- Sruthi Unni
- Department of Biophysics, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Main Road, Bengaluru 560 029, India
| | | | | | | |
Collapse
|
99
|
Silymarin Inhibits Glutamate Release and Prevents against Kainic Acid-Induced Excitotoxic Injury in Rats. Biomedicines 2020; 8:biomedicines8110486. [PMID: 33182349 PMCID: PMC7695262 DOI: 10.3390/biomedicines8110486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Silymarin, a polyphenoic flavonoid derived from the seeds of milk thistle (Silybum marianum), exhibits neuroprotective effects. In this study, we used a model of rat cerebrocortical synaptosomes to investigate whether silymarin affects the release of glutamate, an essential neurotransmitter involved in excitotoxicity. Its possible neuroprotective effect on a rat model of kainic acid (KA)-induced excitotoxicity was also investigated. In rat cortical synaptosomes, silymarin reduced glutamate release and calcium elevation evoked by the K+ channel blocker 4-aminopyridine but did not affect glutamate release caused by the Na+ channel activator veratridine or the synaptosomal membrane potential. Decreased glutamate release by silymarin was prevented by removal of extracellular calcium and blocking of N- and P/Q-type Ca2+ channel or extracellular signal-regulated kinase 1/2 (ERK1/2) but not by blocking of intracellular Ca2+ release. Immunoblotting assay results revealed that silymarin reduced 4-aminopyridine-induced phosphorylation of ERK1/2. Moreover, systemic treatment of rats with silymarin (50 or 100 mg/kg) 30 min before systemic KA (15 mg/kg) administration attenuated KA-induced seizures, glutamate concentration elevation, neuronal damage, glial activation, and heat shock protein 70 expression as well as upregulated KA-induced decrease in Akt phosphorylation in the rat hippocampus. Taken together, the present study demonstrated that silymarin depressed synaptosomal glutamate release by suppressing voltage-dependent Ca2+ entry and ERK1/2 activity and effectively prevented KA-induced in vivo excitotoxicity.
Collapse
|
100
|
Singh A, Kaur K, Mandal UK, Narang RK. Nanoparticles as Budding Trends in Colon Drug Delivery for the Management of Ulcerative Colitis. CURRENT NANOMEDICINE 2020; 10:225-247. [DOI: 10.2174/2468187310999200621200615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a disorder of the gastrointestinal tract,
which is characterized by Crohn’s disease and Ulcerative colitis. Ulcerative colitis (UC) is
a chronic idiopathic relapsing colon disease distinguishes by the interference of epithelial
wall and colonic site tenderness. For the treatment of ulcerative colitis, various side effects
have been reported, due to the non-specific delivery of the targeted drug of the conventional
system. This review will explain the reader about various considerations for the preparation
of orally administered NPs drug delivery systems for the treatment of ulcerative colitis.
Moreover, principles and novel strategies for colon targeting based on the physiology
of colon so that the tract of gastro intestine can be used as the identification marker for a
target site for drugs. Besides this, the role of phytomedicines in controlling and managing
the ulcerative colitis has been discussed. Additionally, the major problem for the smart delivery
of NPs in clinical applications with their difficulties in Intellectual Property Rights
(IPR) was also discussed. Finally, this review provides various potential approaches to NPs
for the treatment of UC.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Kirandeep Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Uttam Kumar Mandal
- Maharaja Ranjit Singh Punjab Technical University, Department of Pharmaceutics, Bathinda, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|