51
|
Hu Q, Zheng J, Xu XN, Gu C, Li W. Uranium induces kidney cells apoptosis via reactive oxygen species generation, endoplasmic reticulum stress and inhibition of PI3K/AKT/mTOR signaling in culture. ENVIRONMENTAL TOXICOLOGY 2022; 37:899-909. [PMID: 35044038 DOI: 10.1002/tox.23453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 05/20/2023]
Abstract
Uranium (U) induces generation of excessive intracellular reactive oxygen species (ROS), which is generally considered as a possible mediator of U-triggered kidney tubular cells injury and nephrotoxicity. Our goal is designed to elucidate that the precise molecular mechanism in ROS downstream is association with U-induced NRK-52E cells apoptosis. The results show that U intoxication in NRK-52E cells reduced cell activity and triggered apoptosis, as demonstrated by flow cytometry and apoptotic marker cleaved Caspase-3 expression. U exposure triggered endoplasmic reticulum (ER) stress, which is involvement of apoptosis determined by marker molecules including GRP78, PERK, IRE1, ATF6, CHOP, cleaved Caspase-12, and Caspase-3. Administration of antioxidant N-acetylcysteine (NAC) effectively blocked U-triggered ROS generation, ER stress, and apoptosis. U contamination evidently decreased the expression of phosphorylation PI3K, AKT, and mTOR and ratios of their respective phosphorylation to the corresponding total proteins. Application of a PI3K activator IGF-1 significantly abolished these adverse effects of U intoxication on PI3K/AKT/mTOR signaling and subsequently abrogated U-triggered apoptosis. NAC also effectively reversed down-regulation of phosphorylated PI3K induced by U exposure. Taken together, these data strongly suggest that U treatment induces NRK-52E cells apoptosis through ROS production, ER stress, and down-regulation of PI3K/AKT/mTOR signaling. Targeting ROS formation-, ER stress-, and PI3K/AKT/mTOR pathway-mediated apoptosis could be a novel approach for attenuating U-triggered nephrotoxicity.
Collapse
Affiliation(s)
- Qiaoni Hu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Jifang Zheng
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Xiao Na Xu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
52
|
Measurement of uranium in phosphate fertilizers for groundwater contamination employing X-ray and γ-ray spectroscopic techniques. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08269-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
53
|
Patel K, Sutar AK, Maharana T. Microwave-assisted preparation of carboxylic graphene oxide-chitosan composite for adsorption of uranium and heavy toxic metals in water samples. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2045320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Khilawan Patel
- Department of Chemistry, National Institute of Technology, Raipur, India
| | - Alekha Kumar Sutar
- Department of Chemistry, Gangadhar Mehar University, Sambalpur, India
- Department of Chemistry, Ravenshaw University, Cuttack, India
| | | |
Collapse
|
54
|
Bolt HM. The Janus face of uranium in toxicology. Arch Toxicol 2022; 96:689-690. [PMID: 35118510 PMCID: PMC8850217 DOI: 10.1007/s00204-022-03223-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Hermann M Bolt
- Leibniz Research Centre on Working Environment and Human Factors (IfADo) Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
55
|
Wang S, Shi L, Yu S, Pang H, Qiu M, Song G, Fu D, Hu B, Wang X. Effect of Shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 242:106798. [PMID: 34922130 DOI: 10.1016/j.jenvrad.2021.106798] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/30/2021] [Accepted: 12/12/2021] [Indexed: 05/18/2023]
Abstract
Bacteria may change the physicochemical properties of montmorillonite and further effect the disposal of high-level radioactive waste. Therefore, we explored the influence of Shewanella oneidensis MR-1 on the elimination of representative radionuclide U(VI) by montmorillonite (MMT). The batch experiments showed that MR-1 significantly enhanced the removal efficiency of U(VI), the adsorption capacity of MMT improved from 8.4 to 16.1 mg/g after addition of MR-1, and the adsorption type changed from Langmuir to Freundlich. FTIR and XPS analysis revealed that hydroxyl, phosphate, carbonyl and amine in MMT + MR-1 were primary actors in the elimination of U(VI). The U 4f high-resolution XPS spectrum of MMT + MR-1 showed U(VI) and U(IV) peaks at the same time, indicating that the adsorption process was accompanied by the reduction reaction, which may be due to the extracellular respiration of MR-1. These investigations are significant to insight the potential significance of microbial processes for the transport and elimination of U(VI) in repositories, which in return will contribute to their safe disposal.
Collapse
Affiliation(s)
- Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Lei Shi
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Shujun Yu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Hongwei Pang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dong Fu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China.
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China.
| |
Collapse
|
56
|
Chen W, Feng J, Liu S, Zhang J, Cai Y, Lv Z, Fang M, Tan X. A green and economical MgO/biochar composite for the removal of U(VI) from aqueous solutions. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
57
|
Perlova OV, Tekmenzhi EI, Perlova NA, Polikarpov AP. Dynamic Sorption of Carbonate Forms of Uranium(VI) with FIBAN Fibrous Ion Exchangers. RADIOCHEMISTRY 2022. [DOI: 10.1134/s1066362221060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Zheng J, Hu Q, Zou X, Xu G, Cao Y. Uranium induces kidney cells pyroptosis in culture involved in ROS/NLRP3/Caspase-1 signaling. Free Radic Res 2022; 56:40-52. [DOI: 10.1080/10715762.2022.2032021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jifang Zheng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Qiaoni Hu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Xia Zou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Gang Xu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Yunchang Cao
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| |
Collapse
|
59
|
Uranium contamination in drinking water as a health concern in Uttarakhand, India. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
60
|
Akl ZF. Rapid electrochemical sensor for uranium( vi) assessment in aqueous media. RSC Adv 2022; 12:20147-20155. [PMID: 35919617 PMCID: PMC9272783 DOI: 10.1039/d2ra02619h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 01/01/2023] Open
Abstract
The significance of reliable monitoring of uranium levels in water recourses calls for the development of time-saving, robust, and accurate methods for its estimation. In this view, the current study describes the design and analytical parameters of a potentiometric membrane sensor for uranium(vi) ions. The sensor is based on a new Schiff base derivative, as an ionophore, that was synthesized and structurally characterized by elemental, FTIR, and 1HNMR analyses. The impact of the membrane constituents was studied and the membrane composition of PVC (32.50) : o-NPOE (65.00) : ionophore (2.00) : KTpClPB (0.50) (%, w/w) achieved the optimal performance. A Nernestian response was observed for uranium(vi) ions within the concentration range 1.00 × 10−6 to 1.00 × 10−1 mol L−1. The sensor revealed a low detection limit of 3.90 × 10−7 mol L−1 with satisfactory reproducibility. Stable and reproducible potentials were obtained within a short time (9 s) over the pH range 2.10–4.21. The impact of possible competing ions was investigated and the selectivity coefficients revealed appropriate selectivity for uranium(vi) ions over various cations without significant interference. The sensor's performance was examined by determining the amount of uranium(vi) in water samples and the results showed no significant differences from those obtained by the ICP-OES method. A new Schiff base was synthesized and applied as ionophore to construct potentiometric sensor for uranium(vi) determination.![]()
Collapse
Affiliation(s)
- Zeinab F. Akl
- Egyptian Atomic Energy Authority, P.O. Box 11762, Cairo, Egypt
| |
Collapse
|
61
|
Nezhad MM, Semnani A, Tavakkoli N, Shirani M. Selective and highly efficient removal of uranium from radioactive effluents by activated carbon functionalized with 2-aminobenzoic acid as a new sorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113587. [PMID: 34479154 DOI: 10.1016/j.jenvman.2021.113587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was modification of activated carbon (AC) to prepare a new selective sorbent for removal of uranium ion. The modification was performed by introducing carboxyl groups onto AC using ammonium persulfate (APS) in sulfuric acid solution followed by functionalization with 2-aminobenzoic acid (ABA) as a selective ligand for U (VI) ion (UO22+) adsorption. The characterization of the synthetized sorbent (AC-ABA) was carried out through several methods including potentiometry, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction and FT-IR to confirm successful functionalization of the sorbent surface with oxygen and amine groups. The sorption of U (VI) on the unmodified AC and AC-ABA was investigated as a function of contact time, sorbent content, initial uranium concentration, solution pH, and temperature using batch sorption technique. In addition, the effect of various parameters on the U (VI) sorption capacity was optimized by the response surface methodology as a potent experimental design method. The results indicated that sorption of U (VI) under the optimal conditions was significantly improved onto AC-ABA compared to AC. Kinetic studies displayed that the sorption process reached equilibrium after 100 min and followed the pseudo-second-order rate equation. The isothermal data fitted better with the Langmuir model than the Freundlich model. The maximum sorption capacity of AC-ABA for U(VI) was obtained to be 194.2 mg g-1 by the Langmuir model under optimum conditions, which demonstrates the sorption capacity has been improved by the modification process. The thermodynamic parameters (ΔH, ΔS and ΔG) indicated that sorption of uranium onto AC-ABA was an endothermic and spontaneous process. The sorption studies on radioactive effluents of the nuclear fuel plant represented high selectivity of AC-ABA for removal of uranium in the presence of other metal ions, and the selectivity coefficients significantly improved after modification of the sorbent. Application of AC-ABA for treatment of industrial effluents containing heavy and radioactive metal ions show high potential and capability of the proposed method.
Collapse
Affiliation(s)
- Majid Mohammad Nezhad
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran
| | - Abolfazl Semnani
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran.
| | - Nahid Tavakkoli
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran
| | - Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 7867161167, Iran.
| |
Collapse
|
62
|
Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214148] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
63
|
Das PN, Jithesh K, Raj KG. Recent developments in the adsorptive removal of heavy metal ions using metal-organic frameworks and graphene-based adsorbents. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
64
|
Seltenrich N. Cleaning Up after the Cold War: Experts Call for Action on Abandoned Uranium Mines on the Navajo Nation. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:94001. [PMID: 34495740 PMCID: PMC8425519 DOI: 10.1289/ehp9425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
|
65
|
Adsorption of Uranium (VI) onto Natural Algerian Phosphate: Study of Influencing Factors, and Mechanism. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05299-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
66
|
Xie J, Dai Y, Wang Y, Liu Y, Zhang Z, Wang Y, Tao Q, Liu Y. Facile immobilization of NiFeAl-LDHs into electrospun poly(vinyl alcohol)/poly(acrylic acid) nanofibers for uranium adsorption. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07860-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
67
|
Byrne P, Fuller CC, Naftz DL, Runkel RL, Lehto NJ, Dam WL. Transport and speciation of uranium in groundwater-surface water systems impacted by legacy milling operations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143314. [PMID: 33187709 DOI: 10.1016/j.scitotenv.2020.143314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Growing worldwide concern over uranium contamination of groundwater resources has placed an emphasis on understanding uranium transport dynamics and potential toxicity in groundwater-surface water systems. In this study, we utilized novel in-situ sampling methods to establish the location and magnitude of contaminated groundwater entry into a receiving surface water environment, and to investigate the speciation and potential bioavailability of uranium in groundwater and surface water. Streambed temperature mapping successfully identified the location of groundwater entry to the Little Wind River, downgradient from the former Riverton uranium mill site, Wyoming, USA. Diffusive equilibrium in thin-film (DET) samplers further constrained the groundwater plume and established sediment pore water solute concentrations and patterns. In this system, evidence is presented for attenuation of uranium-rich groundwater in the shallow sediments where surface water and groundwater interaction occurs. Surface water grab and DET sampling successfully detected an increase in river uranium concentrations where the groundwater plume enters the Little Wind River; however, concentrations remained below environmental guideline levels. Uranium speciation was investigated using diffusive gradients in thin-film (DGT) samplers and geochemical speciation modelling. Together, these investigations indicate uranium may have limited bioavailability to organisms in the Little Wind River and, possibly, in other similar sites in the western U.S.A. This could be due to ion competition effects or the presence of non- or partially labile uranium complexes. Development of methods to establish the location of contaminated (uranium) groundwater entry to surface water environments, and the potential effects on ecosystems, is crucial to develop both site-specific and general conceptual models of uranium behavior and potential toxicity in affected ground and surface water environments.
Collapse
Affiliation(s)
- Patrick Byrne
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| | | | - David L Naftz
- U.S. Geological Survey, 3162 Bozeman, Helena, MT 59601, USA
| | - Robert L Runkel
- U.S. Geological Survey, 3215 Marine St, Boulder, CO 80303, USA
| | - Niklas J Lehto
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | | |
Collapse
|
68
|
Hydrated titanium dioxide modified with potassium cobalt hexacyanoferrate(II) for sorption of cationic and anionic complexes of uranium(VI). APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01721-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
69
|
Ouassel S, Chegrouche S, Nibou D, Melikchi R, Aknoun A, Mellah A. Application of response surface methodology for uranium(VI) adsorption using hydroxyapatite prepared from eggshells waste material: study of influencing factors and mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1198-1216. [PMID: 33724947 DOI: 10.2166/wst.2021.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydroxyapatite (HAp) was synthesized from biowaste hen eggshells by wet precipitation method in which calcium hydroxide and phosphoric acid were used as precursors. The effectiveness of uranium(VI) adsorption onto HAp was investigated by batch adsorption experiments from aqueous solutions. The obtained HAp powder was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrometry, point of zero charge and Scanning electron microscope. The factors and levels used during the experiments were pH (2-5), adsorbent mass (0.01-0.05 g), and initial U(VI) concentration (100-310 mg L-1). A Box-Behnken design combined with analysis of variance was used to interpret the main effect influencing the adsorption. The results showed that pH was the most significant parameter affecting U(VI). The kinetic data correlates well with the pseudo-second-order model. The adsorption isotherms fitted the Langmuir-1 type model with the qmax = 175.22 mg g-1 at 25 °C. The calculated value of the mean free energy indicates the chemisorption process. Under optimal conditions, the uranium effluent derived from the precipitation of ammonium uranyl carbonate removal performance of 98% was achieved. This study proved that HAp prepared from eggshell was an ecofriendly and low-cost adsorbent and was very effective for the adsorption of U(VI) from aqueous solutions.
Collapse
Affiliation(s)
- Safir Ouassel
- Laboratory of Materials Technology, University of Science and Technology Houari Boumediene, BP 32, 16123, El-Alia, Bab-Ezzouar, Algiers, Algeria E-mail:
| | - Salah Chegrouche
- Atomic Energy Commission, Nuclear Research Center of Draria, BP 43, 16050 Draria, Algiers, Algeria
| | - Djamel Nibou
- Laboratory of Materials Technology, University of Science and Technology Houari Boumediene, BP 32, 16123, El-Alia, Bab-Ezzouar, Algiers, Algeria E-mail:
| | - Redouane Melikchi
- Atomic Energy Commission, Nuclear Research Center of Draria, BP 43, 16050 Draria, Algiers, Algeria
| | - Abderahmane Aknoun
- Atomic Energy Commission, Nuclear Research Center of Draria, BP 43, 16050 Draria, Algiers, Algeria
| | - Abdelhamid Mellah
- Atomic Energy Commission, Nuclear Research Center of Draria, BP 43, 16050 Draria, Algiers, Algeria
| |
Collapse
|
70
|
Redvers N, Chischilly AM, Warne D, Pino M, Lyon-Colbert A. Uranium Exposure in American Indian Communities: Health, Policy, and the Way Forward. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:35002. [PMID: 33769848 PMCID: PMC7997609 DOI: 10.1289/ehp7537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Uranium contamination of drinking-water sources on American Indian (AI) reservations in the United States is a largely ignored and underfunded public health crisis. With an estimated 40% of the headwaters in the western U.S. watershed, home to many AI reservation communities, being contaminated with untreated mine waste, the potential health effects have largely been unexplored. With AI populations already facing continued and progressive economic and social marginalization, higher prevalence of chronic disease, and systemic discrimination, associations between various toxicant exposures, including uranium, and various chronic conditions, need further examination. OBJECTIVES Uranium's health effects, in addition to considerations for uranium drinking-water testing, reporting, and mitigation in reference to AI communities through the lens of water quality, is reviewed. DISCUSSION A series of environmental health policy recommendations are described with the intent to proactively improve responsiveness to the water quality crisis in AI reservation communities in the United States specific to uranium. There is a serious and immediate need for better coordination of uranium-related drinking-water testing and reporting on reservations in the United States that will better support and guide best practices for uranium mitigation efforts. https://doi.org/10.1289/EHP7537.
Collapse
Affiliation(s)
- Nicole Redvers
- University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
- Arctic Indigenous Wellness Foundation, Yellowknife, Northwest Territories, Canada
- inVIVO Planetary Health, Worldwide Universities Network, West New York, New Jersey, USA
| | | | - Donald Warne
- University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Manuel Pino
- Scottsdale Community College, Scottsdale, Arizona, USA
| | - Amber Lyon-Colbert
- University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
71
|
Khan R, Islam HMT, Islam ARMT. Mechanism of elevated radioactivity in Teesta river basin from Bangladesh: Radiochemical characterization, provenance and associated hazards. CHEMOSPHERE 2021; 264:128459. [PMID: 33032211 DOI: 10.1016/j.chemosphere.2020.128459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
This work presents a river basin (Teesta River, Bangladesh) which possesses significantly higher radioactivity compared to other freshwater basins around the globe. A total of thirty sediment samples were collected to determine the naturally occurring radionuclides (226Ra, 232Th, and 4 K)and elemental abundances using the HPGe gamma spectrometry and instrumental neutron activation analysis (INAA), respectively. To understand the provenance of higher radioactivity, the compositional elements (Sc, Ti, V, Fe, La, Ce, Sm, Eu, Dy, Yb, Lu, Hf, Ta, Th, and U) of heavy minerals are thoroughly studied, where ∑REEs (rare earth elements), Hf, Ta, Th, and U are ∼2 times higher than the crustal values with negative Ce and Eu anomalies. Mechanism to co-occurrence among radioactivity concentrations and REEs has been explored in this work. Enrichment of light rare earth elements ( × 2.01 UCC) and thorium ( × 2.8 UCC), and Th/U (=5.54 ± 1.05), 232Th/4 K ratio and statistical analyses demonstrate the presence of heavy minerals with monazite predominance. Accumulations of these minerals are most likely due to the fluvial suspended sediments transported by the hydrodynamic forces from up-stream. Elemental ratios including La/V, Th/Yb, Th/Sc, and Hf/Sc confirm the dominance of felsic-source over the mafic-components and the source of sediment has experienced major recycling and sorting during transportation. Evaluation of radiological risks invokes ionizing radiation related hazards to the local inhabitants and the householders residing in the buildings comprised with sandy river sediments. However, minute probability of REEs, Th, and U entrance to the human body through food chain can cause trivial health risks.
Collapse
Affiliation(s)
- Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh.
| | - H M Touhidul Islam
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh; Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | | |
Collapse
|
72
|
|
73
|
Zhou X, Xue B, Medina S, Burchiel SW, Liu KJ. Uranium directly interacts with the DNA repair protein poly (ADP-ribose) polymerase 1. Toxicol Appl Pharmacol 2020; 410:115360. [PMID: 33279515 DOI: 10.1016/j.taap.2020.115360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/26/2022]
Abstract
People living in southwest part of United States are exposed to uranium (U) through drinking water, air, and soil. U is radioactive, but independent of this radioactivity also has important toxicological considerations as an environmental metal. At environmentally relevant concentrations, U is both mutagenic and carcinogenic. Emerging evidence shows that U inhibits DNA repair activity, but how U interacts with DNA repair proteins is still largely unknown. Herein, we report that U directly interacts with the DNA repair protein, Protein Poly (ADP-ribose) Polymerase 1 (PARP-1) through direct binding with the zinc finger motif, resulting in zinc release from zinc finger and DNA binding activity loss of the protein. At the peptide level, instead of direct competition with zinc ion in the zinc finger motif, U does not show thermodynamic advantages over zinc. Furthermore, zinc pre-occupied PARP-1 zinc finger is insensitive to U treatment, but U bound to PARP-1 zinc finger can be partially replaced by zinc. These results provide mechanistic basis on molecular level to U inhibition of DNA repair.
Collapse
Affiliation(s)
- Xixi Zhou
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Bingye Xue
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Sebastian Medina
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA; New Mexico Highlands University, Department of Biology, Las Vegas, NM 87701, United States
| | - Scott W Burchiel
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA.
| |
Collapse
|
74
|
Ma M, Wang R, Xu L, Xu M, Liu S. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. ENVIRONMENT INTERNATIONAL 2020; 145:106107. [PMID: 32932066 DOI: 10.1016/j.envint.2020.106107] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Uranium contamination is a global health concern. Regarding natural or anthropogenic uranium contamination, the major sources of concern are groundwater, mining, phosphate fertilizers, nuclear facilities, and military activities. Many epidemiological and laboratory studies have demonstrated that environmental and occupational uranium exposure can induce multifarious health problems. Uranium exposure may cause health risks because of its chemotoxicity and radiotoxicity in natural or anthropogenic scenarios: the former is generally thought to play a more significant role with regard to the natural uranium exposure, and the latter is more relevant to enriched uranium exposure. The understanding of the health risks and underlying toxicological mechanisms of uranium remains at a preliminary stage, and many controversial findings require further research. In order to present state-of-the-art status in this field, this review will primarily focus on the chemotoxicity of uranium, rather than its radiotoxicity, as well as the involved toxicological mechanisms. First, the natural or anthropogenic uranium contamination scenarios will be briefly summarized. Second, the health risks upon natural uranium exposure, for example, nephrotoxicity, bone toxicity, reproductive toxicity, hepatotoxicity, neurotoxicity, and pulmonary toxicity, will be discussed based on the reported epidemiological cases and laboratory studies. Third, the recent advances regarding the toxicological mechanisms of uranium-induced chemotoxicity will be highlighted, including oxidative stress, genetic damage, protein impairment, inflammation, and metabolic disorder. Finally, the gaps and challenges in the knowledge of uranium-induced chemotoxicity and underlying mechanisms will be discussed.
Collapse
Affiliation(s)
- Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
75
|
Carmona A, Porcaro F, Somogyi A, Roudeau S, Domart F, Medjoubi K, Aubert M, Isnard H, Nonell A, Rincel A, Paredes E, Vidaud C, Malard V, Bresson C, Ortega R. Cytoplasmic aggregation of uranium in human dopaminergic cells after continuous exposure to soluble uranyl at non-cytotoxic concentrations. Neurotoxicology 2020; 82:35-44. [PMID: 33166614 DOI: 10.1016/j.neuro.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022]
Abstract
Uranium exposure can lead to neurobehavioral alterations in particular of the monoaminergic system, even at non-cytotoxic concentrations. However, the mechanisms of uranium neurotoxicity after non-cytotoxic exposure are still poorly understood. In particular, imaging uranium in neurons at low intracellular concentration is still very challenging. We investigated uranium intracellular localization by means of synchrotron X-ray fluorescence imaging with high spatial resolution (< 300 nm) and high analytical sensitivity (< 1 μg.g-1 per 300 nm pixel). Neuron-like SH-SY5Y human cells differentiated into a dopaminergic phenotype were continuously exposed, for seven days, to a non-cytotoxic concentration (10 μM) of soluble natural uranyl. Cytoplasmic submicron uranium aggregates were observed accounting on average for 62 % of the intracellular uranium content. In some aggregates, uranium and iron were co-localized suggesting common metabolic pathways between uranium and iron storage. Uranium aggregates contained no calcium or phosphorous indicating that detoxification mechanisms in neuron-like cells are different from those described in bone or kidney cells. Uranium intracellular distribution was compared to fluorescently labeled organelles (lysosomes, early and late endosomes) and to fetuin-A, a high affinity uranium-binding protein. A strict correlation could not be evidenced between uranium and the labeled organelles, or with vesicles containing fetuin-A. Our results indicate a new mechanism of uranium cytoplasmic aggregation after non-cytotoxic uranyl exposure that could be involved in neuronal defense through uranium sequestration into less reactive species. The remaining soluble fraction of uranium would be responsible for protein binding and for the resulting neurotoxic effects.
Collapse
Affiliation(s)
- Asuncion Carmona
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France.
| | | | - Andrea Somogyi
- Nanoscopium, Synchrotron SOLEIL Saint-Aubin, Gif-sur-Yvette Cedex, France
| | - Stéphane Roudeau
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Florelle Domart
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Kadda Medjoubi
- Nanoscopium, Synchrotron SOLEIL Saint-Aubin, Gif-sur-Yvette Cedex, France
| | - Michel Aubert
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Hélène Isnard
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Anthony Nonell
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Anaïs Rincel
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Eduardo Paredes
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Claude Vidaud
- CEA, BIAM, Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA-Marcoule, 30207 Bagnols Sur Cèze, France
| | - Véronique Malard
- Aix Marseille Univ., CEA, CNRS, BIAM, IPM, Saint Paul-Lez-Durance F-13108, France
| | - Carole Bresson
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Richard Ortega
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France.
| |
Collapse
|
76
|
Semenova Y, Pivina L, Zhunussov Y, Zhanaspayev M, Chirumbolo S, Muzdubayeva Z, Bjørklund G. Radiation-related health hazards to uranium miners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34808-34822. [PMID: 32638305 DOI: 10.1007/s11356-020-09590-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Concerns on health effects from uranium (U) mining still represent a major issue of debate. Any typology of active job in U mines is associated with exposure to U and its decay products, such as radon (Rn), thorium (Th), and radium (Ra) and its decay products with alpha-emission and gamma radiation. Health effects in U miners have been investigated in several cohort studies in the USA, Canada, Germany, the Czech Republic, and France. While public opinion is particularly addressed to pay attention to the safety of nuclear facilities, health hazard associated with mining is poorly debated. According to the many findings from cohort studies, the most significant positive dose-response relationship was found between occupational U exposure and lung cancer. Other types of tumors associated with occupational U exposure are leukemia and lymphoid cancers. Furthermore, it was found increased but not statistically significant death risk in U miners due to cancers in the liver, stomach, and kidneys. So far, there has not been found a significant association between U exposure and increased cardiovascular mortality in U miners. This review tries to address the current state of the art of these studies.
Collapse
Affiliation(s)
- Yuliya Semenova
- Semey Medical University, Semey, Kazakhstan
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | | | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific, Verona, Italy
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
77
|
Wei H, Dong F, Chen M, Zhang W, He M, Liu M. Removal of uranium by biogenetic jarosite coupled with photoinduced reduction in the presence of oxalic acid: a low-cost remediation technology. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07125-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|