51
|
Luckey AM, Robertson IH, Lawlor B, Mohan A, Vanneste S. Sex Differences in Locus Coeruleus: A Heuristic Approach That May Explain the Increased Risk of Alzheimer's Disease in Females. J Alzheimers Dis 2021; 83:505-522. [PMID: 34334399 DOI: 10.3233/jad-210404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article aims to reevaluate our approach to female vulnerability to Alzheimer's disease (AD) and put forth a new hypothesis considering how sex differences in the locus coeruleus-noradrenaline (LC-NA) structure and function could account for why females are more likely to develop AD. We specifically focus our attention on locus coeruleus (LC) morphology, the paucity of estrogens, neuroinflammation, blood-brain barrier permeability, apolipoprotein ɛ4 polymorphism (APOEɛ4), and cognitive reserve. The role of the LC-NA system and sex differences are two of the most rapidly emerging topics in AD research. Current literature either investigates the LC due to it being one of the first brain areas to develop AD pathology or acknowledges the neuroprotective effects of estrogens and how the loss of these female hormones have the capacity to contribute to the sex differences seen in AD; however, existing research has neglected to concurrently examine these two rationales and therefore leaving our hypothesis undetermined. Collectively, this article should assist in alleviating current challenges surrounding female AD by providing thought-provoking connections into the interrelationship between the disruption of the female LC-NA system, the decline of estrogens, and AD vulnerability. It is therefore likely that treatment for this heterogeneous disease may need to be distinctly developed for females and males separately, and may require a precision medicine approach.
Collapse
Affiliation(s)
- Alison M Luckey
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Ian H Robertson
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Brian Lawlor
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Anusha Mohan
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland.,Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
52
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
53
|
Karia PS, Joshu CE, Visvanathan K. Association of Oophorectomy and Fat and Lean Body Mass: Evidence from a Population-Based Sample of U.S. Women. Cancer Epidemiol Biomarkers Prev 2021; 30:1424-1432. [PMID: 33879451 DOI: 10.1158/1055-9965.epi-20-1849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Bilateral oophorectomy during a nonmalignant hysterectomy is frequently performed for ovarian cancer prevention in premenopausal women. Oophorectomy before menopause leads to an abrupt decline in ovarian hormones that could adversely affect body composition. We examined the relationship between oophorectomy and whole-body composition. METHODS Our study population included cancer-free women 35 to 70 years old from the 1999-2006 National Health and Nutrition Examination Survey, a representative sample of the U.S. POPULATION A total of 4,209 women with dual-energy x-ray absorptiometry scans were identified, including 445 with hysterectomy, 552 with hysterectomy and oophorectomy, and 3,212 with no surgery. Linear regression was used to estimate the difference in total and regional (trunk, arms, and legs) fat and lean body mass by surgery status. RESULTS In multivariable models, hysterectomy with and without oophorectomy was associated with higher total fat mass [mean percent difference (β); βoophorectomy: 1.61%; 95% confidence interval (CI), 1.00-2.28; βhysterectomy: 0.88%; 95% CI, 0.12-1.58] and lower total lean mass [βoophorectomy: -1.48%; 95% CI, -2.67, -1.15; βhysterectomy: -0.87%; 95% CI, -1.50, -0.24) compared with no surgery. Results were stronger in women with a normal body mass index (BMI) and those <45 years at surgery. All body regions were significantly affected for women with oophorectomy, whereas only the trunk was affected for women with hysterectomy alone. CONCLUSIONS Hysterectomy with oophorectomy, particularly in young women, may be associated with systemic changes in fat and lean body mass irrespective of BMI. IMPACT Our results support prospective evaluation of body composition in women undergoing hysterectomy with oophorectomy at a young age.
Collapse
Affiliation(s)
- Pritesh S Karia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Corinne E Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
54
|
Bove R, Okai A, Houtchens M, Elias-Hamp B, Lugaresi A, Hellwig K, Kubala Havrdová E. Effects of Menopause in Women With Multiple Sclerosis: An Evidence-Based Review. Front Neurol 2021; 12:554375. [PMID: 33815241 PMCID: PMC8017266 DOI: 10.3389/fneur.2021.554375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
Over two thirds of all individuals who develop multiple sclerosis (MS) will be women prior to the age of menopause. Further, an estimated 30% of the current MS population consists of peri- or postmenopausal women. The presence of MS does not appear to influence age of menopausal onset. In clinical practice, symptoms of MS and menopause can frequently overlap, including disturbances in cognition, mood, sleep, and bladder function, which can create challenges in ascertaining the likely cause of symptoms to be treated. A holistic and comprehensive approach to address these common physical and psychological changes is often suggested to patients during menopause. Although some studies have suggested that women with MS experience reduced relapse rates and increased disability progression post menopause, the data are not consistent enough for firm conclusions to be drawn. Mechanisms through which postmenopausal women with MS may experience disability progression include neuroinflammation and neurodegeneration from age-associated phenomena such as immunosenescence and inflammaging. Additional effects are likely to result from reduced levels of estrogen, which affects MS disease course. Following early retrospective studies of women with MS receiving steroid hormones, more recent interventional trials of exogenous hormone use, albeit as oral contraceptive, have provided some indications of potential benefit on MS outcomes. This review summarizes current research on the effects of menopause in women with MS, including the psychological impact and symptoms of menopause on disease worsening, and the treatment options. Finally, we highlight the need for more inclusion of MS patients from underrepresented racial and geographic groups in clinical trials, including among menopausal women.
Collapse
Affiliation(s)
- Riley Bove
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Annette Okai
- Multiple Sclerosis Treatment Center of Dallas, Dallas, TX, United States
| | - Maria Houtchens
- Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, United States
| | - Birte Elias-Hamp
- Neurological Private Practice, Institute of Neuroimmunology and Multiple Sclerosis, Hamburg, Germany
| | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Kerstin Hellwig
- Department of Neurology, Ruhr University Bochum and St. Josef-Hospital, Bochum, Germany
| | - Eva Kubala Havrdová
- Department of Neurology and Center of Clinical Neuroscience, First Medical Faculty, General University Hospital, Charles University, Prague, Czechia
| |
Collapse
|
55
|
Chaikittisilpa S, Orprayoon N, Santibenchakul S, Hemrungrojn S, Phutrakool P, Kengsakul M, Jaisamrarn U. Prevalence of mild cognitive impairment in surgical menopause: subtypes and associated factors. Climacteric 2021; 24:394-400. [PMID: 33688775 DOI: 10.1080/13697137.2021.1889499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The aim of this study was to determine the prevalence and associated factors of mild cognitive impairment (MCI) and subtypes, amnestic MCI (aMCI) and non-amnestic MCI (naMCI), in women with surgical menopause. METHODS We obtained the database containing information for 200 women with surgical menopause from our previous study. The Montreal Cognitive Assessment - total score, the Montreal Cognitive Assessment - memory index score (MoCA-MIS) and their age, years since menopause, education, medical and surgical history, hormone therapy use, exercise, sleep duration, alcohol use, smoking and family history of dementia were obtained. All participants without the MoCA-MIS were excluded. RESULT The average age of the 164 participants was 56.3 ± 6.9 years. The prevalence of MCI, aMCI and naMCI was 43.3%, 9.8% and 33.5%, respectively. The duration of education reduced MCI for 93% (95% confidence interval 0.03-0.20) of the women. In late postmenopause, hormone therapy >10 years showed 47% lower prevalence of MCI (age-adjusted odds ratio = 0.53, 95% confidence interval 0.22-1.28). Finally, length of education was the only independent factor associated with MCI and its subtypes. CONCLUSION We found a high prevalence of MCI and the non-amnestic subtype in women with surgical menopause. Further study is needed to clarify the long-term effects of surgical menopause on cognitive function.
Collapse
Affiliation(s)
- S Chaikittisilpa
- Menopause Research Group, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - N Orprayoon
- Menopause Research Group, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - S Santibenchakul
- Family Planning and Reproductive Health Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - S Hemrungrojn
- Cognitive Fitness Research Group, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - P Phutrakool
- Chula Data Management Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - M Kengsakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Bangkok, Thailand
| | - U Jaisamrarn
- Menopause Research Group, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Family Planning and Reproductive Health Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
56
|
Maas AHEM, Rosano G, Cifkova R, Chieffo A, van Dijken D, Hamoda H, Kunadian V, Laan E, Lambrinoudaki I, Maclaran K, Panay N, Stevenson JC, van Trotsenburg M, Collins P. Cardiovascular health after menopause transition, pregnancy disorders, and other gynaecologic conditions: a consensus document from European cardiologists, gynaecologists, and endocrinologists. Eur Heart J 2021; 42:967-984. [PMID: 33495787 PMCID: PMC7947184 DOI: 10.1093/eurheartj/ehaa1044] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Women undergo important changes in sex hormones throughout their lifetime that can impact cardiovascular disease risk. Whereas the traditional cardiovascular risk factors dominate in older age, there are several female-specific risk factors and inflammatory risk variables that influence a woman's risk at younger and middle age. Hypertensive pregnancy disorders and gestational diabetes are associated with a higher risk in younger women. Menopause transition has an additional adverse effect to ageing that may demand specific attention to ensure optimal cardiovascular risk profile and quality of life. In this position paper, we provide an update of gynaecological and obstetric conditions that interact with cardiovascular risk in women. Practice points for clinical use are given according to the latest standards from various related disciplines (Figure 1).
Collapse
Affiliation(s)
- Angela H E M Maas
- Department of Cardiology, Director Women’s Cardiac Health Program, Radboud University Medical Center, Geert Grooteplein-Zuid 10, Route 616, 6525GA Nijmegen, The Netherlands
| | - Giuseppe Rosano
- Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Renata Cifkova
- Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer Hospital, Vídeňská 800, 140 59 Prague 4, Czech Republic
- Department of Internal Cardiovascular Medicine, First Medical Faculty, Charles University in Prague and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Alaide Chieffo
- Interventional Cardiology Unit, IRCCS San Raffaele Hospital, Olgettina Street, 60 - 20132 Milan (Milan), Italy
| | - Dorenda van Dijken
- Department of Obstetrics and Gynaecology, OLVG location West, Jan Tooropstraat 164, 1061 AE Amsterdam, The Netherlands
| | - Haitham Hamoda
- Department Gynaecology, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Vijay Kunadian
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University and Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, M4:146 4th Floor William Leech Building, Newcastle upon Tyne NE2 4HH, UK
| | - Ellen Laan
- Department of Sexology and Psychosomatic Gynaecology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Irene Lambrinoudaki
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, 30 Panepistimiou Str., 10679 Athens, Greece
| | - Kate Maclaran
- Department Gynaecology, Chelsea and Westminster Hospital, NHS Foundation Trust, 69 Fulham Road London SW10 9NH, UK
| | - Nick Panay
- Department of Gynaecology, Queen Charlotte's & Chelsea and Westminster Hospitals, Imperial College, Du Cane Road, London W12 0HS, UK
| | - John C Stevenson
- Department of Cardiology, National Heart & Lung Institute, Imperial College London, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Mick van Trotsenburg
- Bureau Gender PRO Vienna and Department of Obstetrics and Gynaecology, University Hospital St. Poelten-Lilienfeld, Probst Führer Straße 4 · 3100 St. Pölten, Austria
| | - Peter Collins
- Department of Cardiology, National Heart & Lung Institute, Imperial College London, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
57
|
Bacon ER, Brinton RD. Epigenetics of the developing and aging brain: Mechanisms that regulate onset and outcomes of brain reorganization. Neurosci Biobehav Rev 2021; 125:503-516. [PMID: 33657435 DOI: 10.1016/j.neubiorev.2021.02.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a life-long process that encompasses several critical periods of transition, during which significant cognitive changes occur. Embryonic development, puberty, and reproductive senescence are all periods of transition that are hypersensitive to environmental factors. Rather than isolated episodes, each transition builds upon the last and is influenced by consequential changes that occur in the transition before it. Epigenetic marks, such as DNA methylation and histone modifications, provide mechanisms by which early events can influence development, cognition, and health outcomes. For example, parental environment influences imprinting patterns in gamete cells, which ultimately impacts gene expression in the embryo which may result in hypersensitivity to poor maternal nutrition during pregnancy, raising the risks for cognitive impairment later in life. This review explores how epigenetics induce and regulate critical periods, and also discusses how early environmental interactions prime a system towards a particular health outcome and influence susceptibility to disease or cognitive impairment throughout life.
Collapse
Affiliation(s)
- Eliza R Bacon
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; The Center for Precision Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Roberta Diaz Brinton
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Center for Innovation in Brain Science, School of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
58
|
Ruberti OM, Rodrigues B. Estrogen Deprivation and Myocardial Infarction: Role of Aerobic Exercise Training, Inflammation and Metabolomics. Curr Cardiol Rev 2021; 16:292-305. [PMID: 31362678 PMCID: PMC7903506 DOI: 10.2174/1573403x15666190729153026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
In general, postmenopausal women present higher mortality, and worse prognosis after myocardial infarction (MI) compared to men, due to estrogen deficiency. After MI, cardiovascular alterations occur such as the autonomic imbalance and the pro-inflammatory cytokines increase. In this sense, therapies that aim to minimize deleterious effects caused by myocardial ischemia are important. Aerobic training has been proposed as a promising intervention in the prevention of cardiovascular diseases. On the other hand, some studies have attempted to identify potential biomarkers for cardiovascular diseases or specifically for MI. For this purpose, metabolomics has been used as a tool in the discovery of cardiovascular biomarkers. Therefore, the objective of this work is to discuss the changes involved in ovariectomy, myocardial infarction, and aerobic training, with emphasis on inflammation and metabolism.
Collapse
Affiliation(s)
- Olívia M Ruberti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Bruno Rodrigues
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
59
|
Hugenschmidt CE, Duran T, Espeland MA. Interactions between estradiol, diabetes, and brain aging and the risk for cognitive impairment. Climacteric 2021; 24:359-365. [PMID: 33586564 DOI: 10.1080/13697137.2021.1877652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Women's Health Initiative Memory Study reported that older women using conjugated equine estrogens hormone therapy (HT) with or without medroxyprogesterone acetate were at increased risk for probable dementia and smaller brain volumes. These adverse effects were greatest among women who had type 2 diabetes mellitus (T2DM) at baseline or who developed the disease during follow-up. This review summarizes existing literature from randomized trials, observational studies, and preclinical studies to provide a fundamental understanding of the effects of the interaction between T2DM and HT on cognitive and metabolic health changes in brain aging.
Collapse
Affiliation(s)
- C E Hugenschmidt
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - T Duran
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - M A Espeland
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Biostatistics & Data Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
60
|
Cazzaniga ME, Giordano M, Bandera M, Cassani C, Bounous V, Lania A, Biasi G, Destro M, Ricci S, Lucini D, Biglia N, Pagani O. Managing Menopausal Symptoms in Young Women With Breast Cancer: When Medicine Is Not All. The Take Care Project. Clin Breast Cancer 2021; 21:e547-e560. [PMID: 33685833 DOI: 10.1016/j.clbc.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/29/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
In the last decade, endocrine therapy strategies in perimenopausal women with hormone-responsive early breast cancer (BC) have changed and now ovarian function suppression (OFS) is recommended for the majority of patients. Side effects of OFS mimic menopausal symptoms, including hot flushes, sweats, weight gain, and sexual dysfunction, which may negatively impact quality of life (QoL). Aims of the Take Care Project are the education of physicians and patients to have all the information (medical and nonmedical) they need to manage menopausal symptoms by distributing educational materials useful to face menopause. Four different areas have been identified by surveys conducted among physicians and young patients: for each area, interventions and tools have been elaborated by a doctor and nonphysician professionals of these identified areas, to offer the widest information available. Clinical and practical suggestions have been provided. Based on the evidence given, we strongly suggest setting up a multidisciplinary team for the treatment planning of young patients with BC, which could help patients to face and manage their new menopause condition. The reduction of side effects and the improvement in QoL should be the best ally to treat young patients with BC.
Collapse
Affiliation(s)
- Marina Elena Cazzaniga
- Phase 1 Research Unit & Oncology Unit, Azienda Socio Sanitaria Territoriale Monza & Milano Bicocca School of Medicine and Surgery, Monza, Italy.
| | - Monica Giordano
- Oncology Unit, Azienda Socio Sanitaria Territoriale Lariana, Como, Italy
| | - Mirko Bandera
- Farmacie Sant'Agata, Pharmacy Group, Bulgarograsso (Como), Italy
| | - Chiara Cassani
- Department of Obstetrics and Gynecology, Istituto di Ricovero e Cura a Carattere Scientifico, Policlinico San Matteo, Pavia, Italy
| | - Valentina Bounous
- Department of Obstetrics and Gynecology, Mauriziano "Umberto I" Hospital, University of Turin, Turin, Italy
| | - Andrea Lania
- Endocrinology, Diabetology and Andrology Unit, Biomedicine Department, Humanitas University, Milan, Italy
| | - Giovanna Biasi
- Prevention Department, Unità Operativa Complessa Medicine and Sport and Exercise, Treviso, Italy
| | - Maurizio Destro
- Medical Unit, Azienda Socio Sanitaria Territoriale Bergamo Ovest, Treviglio (BG) Italy
| | - Sauro Ricci
- Executive Chef, Joja Restaurant, Milan, Italy
| | - Daniela Lucini
- Exercise Medicine Unit, University of Milan BIOMETRA Department, Humanitas Clinical and Research Center, Milan, Italy
| | - Nicoletta Biglia
- Department of Obstetrics and Gynecology, Mauriziano "Umberto I" Hospital, University of Turin, Turin, Italy
| | - Olivia Pagani
- EOC Istituto Oncologico della Svizzera Italiana Ospedale Regionale Bellinzona e Valli 6500, Bellinzona, Switzerland
| |
Collapse
|
61
|
Pala S, Atilgan R, Kuloglu T, Yalçın E, Kaya N, Etem E. The decrease in hippocampal transient receptor potential M2 (TRPM2) channel and muscarinic acetylcholine receptor 1 (CHRM1) is associated with memory loss in a surgical menopause rat model. Arch Med Sci 2021; 17:228-235. [PMID: 33488875 PMCID: PMC7811316 DOI: 10.5114/aoms.2019.83760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/01/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The aim of the study was to investigate the association of transient receptor potential M2 (TRPM2) channel and muscarinic acetylcholine receptor 1 (CHRM1) activity with the memorial functions that are deteriorated in surgical menopause. MATERIAL AND METHODS A total of 14 female rats were randomly divided into 2 groups: group (G)1: sham group; group (G)2: surgical menopause group, the group in which bilateral ovariectomy was performed. Fourteen days after the surgical procedure, learning and memorial tests were performed in G1 and G2 for a totally 13 days. The time required for the rats to find the cheese in the labyrinth was recorded and statistical evaluation of it was performed between groups. On the 14th day of the memory test, the rats were decapitated and the brain tissues were fixed in 10% formalin. Hippocampal TRPM2 and CHRM1 gene expression was evaluated with RNA isolation, complementary DNA (cDNA) synthesis and quantitative real-time PCR (qRT-PCR) analysis. TRPM2 and CHRM1 immunoreactivity was evaluated in hippocampal tissue with the immunohistochemical method. Histo-score was calculated regarding the diffuseness of and severity of the staining; and statistical analyses were performed. RESULTS In the ovariectomized group, the mean time required for the rats to find the cheese was statistically significantly elongated (39.29 ±4.0 s vs. 29.86 ±2.6 s). When the hippocampal TRPM2 and CHRM1 gene expression and immunoreactivity were compared with the sham group, there was a statistically significant decrease in the surgical menopause group (p < 0.05). CONCLUSIONS In surgical menopause, in deterioration of memorial functions, hippocampal TRPM2 channel and CHRM1 activity plays an important role.
Collapse
Affiliation(s)
- Sehmus Pala
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Remzi Atilgan
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Emre Yalçın
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Nalan Kaya
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Ebru Etem
- Department of Medical Biology, School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
62
|
Ishizuka B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI). Front Endocrinol (Lausanne) 2021; 12:626924. [PMID: 33716979 PMCID: PMC7949002 DOI: 10.3389/fendo.2021.626924] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Premature ovarian insufficiency (POI) occurs in at least 1% of all women and causes life-long health problems and psychological stress. Infertility caused by POI used to be considered absolute, with infertility treatment having little or no value. Generally, it has been thought that medicine can provide little service to these patients. The etiology of POI has been found to be genetic, chromosomal, and autoimmune. In addition, the increasing numbers of cancer survivors are candidates for iatrogenic POI, along with patients who have undergone ovarian surgery, especially laparoscopic surgery. Over 50 genes are known to be causally related to POI, and the disease course of some cases has been clarified, but in most cases, the genetic background remains unexplained, suggesting that more genes associated with the etiology of POI need to be discovered. Thus, in most cases, the genetic background of POI has not been clarified. Monosomy X is well known to manifest as Turner's syndrome and is associated with primary amenorrhea, but recent studies have shown that some women with numerical abnormalities of the X chromosome can have spontaneous menstruation up to their twenties and thirties, and some even conceive. Hormone replacement therapy (HRT) is recommended for women with POI from many perspectives. It alleviates vasomotor and genitourinary symptoms and prevents bone loss and cardiovascular disease. POI has been reported to reduce quality of life and life expectancy, and HRT may help improve both. Most of the problems that may occur with HRT in postmenopausal women do not apply to women with POI; thus, in POI, HRT should be considered physiological replacement of estrogen (+progesterone). This review describes some new approaches to infertility treatment in POI patients that may lead to new treatments for POI, along with the development of more sensitive markers of secondary/preantral follicles and genetic diagnosis.
Collapse
Affiliation(s)
- Bunpei Ishizuka
- Rose Ladies Clinic, Tokyo, Japan
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan
- *Correspondence: Bunpei Ishizuka,
| |
Collapse
|
63
|
Veldsman M, Nobis L, Alfaro-Almagro F, Manohar S, Husain M. The human hippocampus and its subfield volumes across age, sex and APOE e4 status. Brain Commun 2020; 3:fcaa219. [PMID: 33615215 PMCID: PMC7884607 DOI: 10.1093/braincomms/fcaa219] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023] Open
Abstract
Female sex, age and carriage of the apolipoprotein E e4 allele are the greatest risk factors for sporadic Alzheimer's disease. The hippocampus has a selective vulnerability to atrophy in ageing that may be accelerated in Alzheimer's disease, including in those with increased genetic risk of the disease, years before onset. Within the hippocampal complex, subfields represent cytoarchitectonic and connectivity based divisions. Variation in global hippocampal and subfield volume associated with sex, age and apolipoprotein E e4 status has the potential to provide a sensitive biomarker of future vulnerability to Alzheimer's disease. Here, we examined non-linear age, sex and apolipoprotein E effects, and their interactions, on hippocampal and subfield volumes across several decades spanning mid-life to old age in 36 653 healthy ageing individuals. FMRIB Software Library derived estimates of total hippocampal volume and Freesurfer derived estimates hippocampal subfield volume were estimated. A model-free, sliding-window approach was implemented that does not assume a linear relationship between age and subfield volume. The annualized percentage of subfield volume change was calculated to investigate associations with age, sex and apolipoprotein E e4 homozygosity. Hippocampal volume showed a marked reduction in apolipoprotein E e4/e4 female carriers after age 65. Volume was lower in homozygous e4 individuals in specific subfields including the presubiculum, subiculum head, cornu ammonis 1 body, cornu ammonis 3 head and cornu ammonis 4. Nearby brain structures in medial temporal and subcortical regions did not show the same age, sex and apolipoprotein E interactions, suggesting selective vulnerability of the hippocampus and its subfields. The findings demonstrate that in healthy ageing, two factors-female sex and apolipoprotein E e4 status-confer selective vulnerability of specific hippocampal subfields to volume loss.
Collapse
Affiliation(s)
- Michele Veldsman
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lisa Nobis
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Sanjay Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
| |
Collapse
|
64
|
Tang Y, Lv XL, Bao YZ, Wang JR. Glycyrrhizin improves bone metabolism in ovariectomized mice via inactivating NF-κB signaling. Climacteric 2020; 24:253-260. [PMID: 33084419 DOI: 10.1080/13697137.2020.1828853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Postmenopausal osteoporosis (PMO) is a prevalent metabolic bone disease with high morbidity and serious complications. Here, we studied the effect of glycyrrhizin on bone metabolism using the ovariectomized (OVX) mouse model. METHODS Osteoclast-related gene expression and osteoclastic function were evaluated in RAW264.7 cells and bone marrow-derived monocytes (BMMs) by real-time polymerase chain reaction and bone resorption assay. For animal studies, female C57BL/6J mice were randomly divided into sham operated, OVX and OVX with glycyrrhizin groups. Bone mass and trabecular microarchitecture were analyzed by micro-computed tomography, dual X-ray absorptiometry, and histomorphometric analysis. Receptor activator of nuclear factor-κB (NF-κB) ligand-induced osteoclastogenesis and the NF-κB signaling pathway were studied by tartrate-resistant acid phosphatase staining and western blotting, respectively. RESULTS Glycyrrhizin inhibits RANKL-induced expression of Nfatc-1, c-Fos, Trap, Ds-stamp, and Ctsk in RAW264.7 cells. Also, fewer bone resorption pits form when BMMs are incubated in the presence of glycyrrhizin. Glycyrrhizin ameliorates bone loss and improves trabecular bone parameters in OVX mice. BMMs isolated from OVX mice show higher ability of RANKL-induced osteoclastogenesis, which is tremendously reversed by glycyrrhizin. There is significantly higher phosphorylation of IκB-α at Ser32 and NF-κB p65 at Ser536, as well as increased protein levels of c-FOS and NFATc-1 in BMMs of OVX mice, which are all greatly suppressed by glycyrrhizin. CONCLUSIONS Our findings imply that glycyrrhizin is a potential efficient adjuvant therapeutic for PMO.
Collapse
Affiliation(s)
- Y Tang
- Geriatrics Research Institute of Zhejiang Province, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, PR China
| | - X L Lv
- Geriatrics Research Institute of Zhejiang Province, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, PR China
| | - Y Z Bao
- Geriatrics Research Institute of Zhejiang Province, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, PR China
| | - J R Wang
- Geriatrics Research Institute of Zhejiang Province, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, PR China
| |
Collapse
|
65
|
Torromino G, Maggi A, De Leonibus E. Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol 2020; 197:101895. [PMID: 32781107 DOI: 10.1016/j.pneurobio.2020.101895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Women are more prone than men to develop age-related dementia, such as Alzheimer's disease (AD). This has been linked to the marked decrease in circulating estrogens during menopause. This review proposes to change this perspective and consider women's vulnerability to developing AD as a consequence of sex differences in the neurobiology of memory, focusing on the hippocampus. The hippocampus of cognitively impaired subjects tends to shrink with age; however, in many cases, this can be prevented by exercise or cognitive training, suggesting that if you do not use the hippocampus you lose it. We will review the developmental trajectory of sex steroids-regulated differences on the hippocampus, proposing that the overall shaping action of sex-steroids results in a lower usage of the hippocampus in females, which in turn makes them more vulnerable to the effects of ageing, the "network fragility hypothesis". To explain why women rely less on hippocampus-dependent strategies, we propose a "computational hypothesis" that is based on experimental evidence suggesting that the direct effects of estrogens on hippocampal synaptic and structural plasticity during the estrous-cycle confers instability to the memory-dependent hippocampal network. Finally, we propose to counteract AD with training and/or treatments, such as orienteering, which specifically favour the use of the hippocampus.
Collapse
Affiliation(s)
- Giulia Torromino
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy.
| |
Collapse
|
66
|
Loss of Estrogen Efficacy Against Hippocampus Damage in Long-Term OVX Mice Is Related to the Reduction of Hippocampus Local Estrogen Production and Estrogen Receptor Degradation. Mol Neurobiol 2020; 57:3540-3551. [PMID: 32542593 DOI: 10.1007/s12035-020-01960-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Postmenopausal women experience a higher risk for neurodegenerative diseases, including cognitive impairment and ischemic stroke. Many preclinical studies have indicated that estrogen replacement therapy (ERT) may provide protective effects against these neurological diseases. However, the results of Women's Health Initiative (WHI) studies have led to the proposal of "critical period hypothesis," which states that there is a precise window of opportunity for administering beneficial hormone therapy following menopause. However, the underlying molecular mechanisms require further characterization. Here, we explored the effects of ERT on cognition decline and global cerebral ischemia (GCI)-induced hippocampal neuronal damage in mice that had experienced both short-term (ovariectomized (OVX) 1 week) and long-term (OVX 10 weeks) estrogen deprivation. We also further explored the concentration of 17β-estradiol (E2) in the circulation and hippocampus and the expression of aromatase and estrogen receptors (ERα, ERα-Ser118, and ERβ). We found that the neuroprotective effectiveness of ERT against hippocampus damage exhibited in OVX1w mice was totally absent in OVX10w mice. Interestingly, the concentration of hippocampal E2 was irreversibly reduced in OVX10w mice, which was related to the decrease of aromatase expression in the hippocampus. In addition, long-term estrogen deprivation (LTED) led to a decrease in estrogen receptor proteins in the hippocampus. Thus, we concluded that the loss of ERT neuroprotection against hippocampus injury in LTED mice was related to the reduction in hippocampus E2 production and estrogen receptor degradation. These results provide several intervention targets to restore the effectiveness of ERT neuroprotection in elderly post-menopausal women.
Collapse
|
67
|
|
68
|
Chen YC, Oyang YJ, Lin TY, Sun WZ. Risk assessment of dementia after hysterectomy: Analysis of 14-year data from the National Health Insurance Research Database in Taiwan. J Chin Med Assoc 2020; 83:394-399. [PMID: 32149891 DOI: 10.1097/jcma.0000000000000286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Anesthesia and surgery may increase the risk of dementia in the elderly, but the higher prevalence of dementia in women and other evidence suggest that dementia risk increases in younger women undergoing hysterectomy. In this study, we assessed the risk of dementia after hysterectomy. METHODS Hysterectomies registered in the National Health Insurance Research Database from 2000 to 2013 were evaluated using a retrospective generational research method. Multivariate Cox regression analysis was used to assess the effect of age at surgery, anesthesia method, and surgery type on the hazard ratio (HR) for the development of dementia. RESULTS Among 280 308 patients who underwent hysterectomy, 4753 (1.7%) developed dementia. Age at surgery and anesthesia method were associated with the occurrence of dementia, independent of surgery type. Among patients 30-49 years of age, general anesthesia (GA) was associated with a higher risk of dementia than spinal anesthesia (SA). The HR for GA was 2.678 (95% confidence interval [CI] = 1.269-5.650) and the risk of dementia increased by 7.4% for every 1-year increase in age (HR = 1.074; 95% CI = 1.048-1.101). In patients >50 years of age, the HR for GA was 1.206 (95% CI = 1.057-1.376), and the risk of dementia increased by 13.0% for every 1-year increase in age (HR = 1.130; 95% CI = 1.126-1.134). CONCLUSION The risk of dementia in women who underwent hysterectomy was significantly affected by older age at surgery, and the risk might not increase linearly with age, but show instead an S-curve with exponential increase at about 50 years of age. Although less significant, GA was associated with higher risk than SA, and the effect of the anesthesia method was greater in patients <50 years of age. In contrast, the surgical procedure used was not associated to the risk of dementia.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Yen-Jen Oyang
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering & Computer Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Tzu-Yun Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Wei-Zen Sun
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering & Computer Science, National Taiwan University, Taipei, Taiwan, ROC
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
69
|
Fritz RG, Zimmermann E, Picq JL, Lautier C, Meier M, Kästner S, Schmidtke D. Sex-specific patterns of age-related cerebral atrophy in a nonhuman primate Microcebus murinus. Neurobiol Aging 2020; 91:148-159. [PMID: 32229027 DOI: 10.1016/j.neurobiolaging.2020.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
Steadily aging populations result in a growing need for research regarding age-related brain alterations and neurodegenerative pathologies. By allowing a good translation of results to humans, nonhuman primates, such as the gray mouse lemur Microcebus murinus, have gained attention in this field. Our aim was to examine correlations between atrophy-induced brain alterations and age, with special focus on sex differences in mouse lemurs. For cerebral volumetric measurements, in vivo magnetic resonance imaging was performed on 59 animals (28♀♀/31♂♂) aged between 1.0 to 11.9 years. Volumes of different brain regions, cortical thicknesses, and ventricular expansions were evaluated. Analyses revealed significant brain atrophies with increasing age, particularly around the caudate nucleus, the thalamus, and frontal, parietal, and temporo-occipital regions. Especially old females showed a strong decline in cingulate cortex thickness and had higher values of ventricular expansion, whereas cortical thickness of the splenium and occipital regions decreased mainly in males. Our study, thus, provides first evidence for sex-specific, age-related brain alterations in a nonhuman primate, suggesting that mouse lemurs can help elucidating the mechanism underlying sex disparities in cerebral aging, for which there is mixed evidence in humans.
Collapse
Affiliation(s)
- Rebecca G Fritz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jean-Luc Picq
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-Roses, France; Laboratoire de Psychopathologie et de Neuropsychologie, Université Paris 8, St Denis, France
| | - Corinne Lautier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Martin Meier
- ZTL-Imaging, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Sabine Kästner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
70
|
Does preventive oophorectomy increase the risk of depression in BRCA mutation carriers? ACTA ACUST UNITED AC 2020; 27:156-161. [DOI: 10.1097/gme.0000000000001437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
71
|
Wang Y, Mishra A, Brinton RD. Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Res 2020; 9. [PMID: 32047612 PMCID: PMC6993821 DOI: 10.12688/f1000research.21599.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The brain undergoes two aging programs: chronological and endocrinological. This is particularly evident in the female brain, which undergoes programs of aging associated with reproductive competency. Comprehensive understanding of the dynamic metabolic and neuroinflammatory aging process in the female brain can illuminate windows of opportunities to promote healthy brain aging. Bioenergetic crisis and chronic low-grade inflammation are hallmarks of brain aging and menopause and have been implicated as a unifying factor causally connecting genetic risk factors for Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss metabolic phenotypes of pre-menopausal, peri-menopausal, and post-menopausal aging and their consequent impact on the neuroinflammatory profile during each transition state. A critical aspect of the aging process is the dynamic metabolic neuro-inflammatory profiles that emerge during chronological and endocrinological aging. These dynamic systems of biology are relevant to multiple age-associated neurodegenerative diseases and provide a therapeutic framework for prevention and delay of neurodegenerative diseases of aging. While these findings are based on investigations of the female brain, they have a broader fundamental systems of biology strategy for investigating the aging male brain. Molecular characterization of alterations in fuel utilization and neuroinflammatory mechanisms during these neuro-endocrine transition states can inform therapeutic strategies to mitigate the risk of Alzheimer's disease in women. We further discuss a precision hormone replacement therapy approach to target symptom profiles during endocrine and chronological aging to reduce risk for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
72
|
Yare K, Woodward M. Hormone Therapy and Effects on Sporadic Alzheimer’s Disease in Postmenopausal Women: Importance of Nomenclature. J Alzheimers Dis 2020; 73:23-37. [DOI: 10.3233/jad-190896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Katrine Yare
- Austin Health, Heidelberg Repatriation Hospital, Victoria, Australia
| | - Michael Woodward
- Austin Health, Heidelberg Repatriation Hospital, Victoria, Australia
| |
Collapse
|
73
|
Abstract
The central cholinergic system is one of the most important modulator neurotransmitter system implicated in diverse behavioral processes. Activation of the basal forebrain cortical cholinergic input system represents a critical step in cortical information processing. This chapter explores recent developments illustrating cortical cholinergic transmission mediate defined cognitive operations, which is contrary to the traditional view that acetylcholine acts as a slowly acting neuromodulator that influences arousal cortex-wide. Specifically, we review the evidence that phasic cholinergic signaling in the prefrontal cortex is a causal mediator of signal detection. In addition, studies that support the neuromodulatory role of cholinergic inputs in top-down attentional control are summarized. Finally, we review new findings that reveal sex differences and hormonal regulation of the cholinergic-attention system.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
74
|
Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, Ma Y. The Critical Period for Neuroprotection by Estrogen Replacement Therapy and the Potential Underlying Mechanisms. Curr Neuropharmacol 2020; 18:485-500. [PMID: 31976839 PMCID: PMC7457406 DOI: 10.2174/1570159x18666200123165652] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
17β-Estradiol (estradiol or E2) is a steroid hormone that has been broadly applied as a neuroprotective therapy for a variety of neurodegenerative and cerebrovascular disorders such as ischemic stroke, Alzheimer's disease, and Parkinson's disease. Several laboratory and clinical studies have reported that Estrogen Replacement Therapy (ERT) had no effect against these diseases in elderly postmenopausal women, and at worst, increased their risk of onset and mortality. This review focuses on the growing body of data from in vitro and animal models characterizing the potential underlying mechanisms and signaling pathways that govern successful neuroprotection by ERT, including the roles of E2 receptors in mediating neuroprotection, E2 genomic regulation of apoptosis- related pathways, membrane-bound receptor-mediated non-genomic signaling pathways, and the antioxidant mechanisms of E2. Also discussed is the current evidence for a critical period of effective treatment with estrogen following natural or surgical menopause and the outcomes of E2 administration within an advantageous time period. The known mechanisms governing the duration of the critical period include depletion of E2 receptors, the switch to a ketogenic metabolic profile by neuronal mitochondria, and a decrease in acetylcholine that accompanies E2 deficiency. Also the major clinical trials and observational studies concerning postmenopausal Hormone Therapy (HT) are summarized to compare their outcomes with respect to neurological disease and discuss their relevance to the critical period hypothesis. Finally, potential controversies and future directions for this field are discussed throughout the review.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaqun Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| | - Yulong Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| |
Collapse
|
75
|
Konishi K, Cherkerzian S, Aroner S, Jacobs EG, Rentz DM, Remington A, Aizley H, Hornig M, Klibanski A, Goldstein JM. Impact of BDNF and sex on maintaining intact memory function in early midlife. Neurobiol Aging 2019; 88:137-149. [PMID: 31948671 DOI: 10.1016/j.neurobiolaging.2019.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/30/2019] [Accepted: 12/14/2019] [Indexed: 01/06/2023]
Abstract
Sex steroid hormones and neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), play a significant neuroprotective role in memory circuitry aging. Here, we present findings characterizing the neuroprotective effects of BDNF on memory performance, as a function of sex and reproductive status in women. Participants (N = 191; mean age = 50.03 ± 2.10) underwent clinical and cognitive testing, fMRI scanning, and hormonal assessments of menopausal staging. Memory performance was assessed with the 6-Trial Selective Reminding Test and the Face-Name Associative Memory Exam. Participants also performed a working memory (WM) N-back task during fMRI scanning. Results revealed significant interactions between menopausal status and BDNF levels. Only in postmenopausal women, lower plasma BDNF levels were associated with significantly worse memory performance and altered function in the WM circuitry. BDNF had no significant impact on memory performance or WM function in pre/perimenopausal women or men. These results suggest that in postmenopausal women, BDNF is associated with memory performance and memory circuitry function, thus providing evidence of potential sex-dependent factors of risk and resilience for early intervention.
Collapse
Affiliation(s)
- Kyoko Konishi
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Cherkerzian
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sarah Aroner
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily G Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Dorene M Rentz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne Remington
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harlyn Aizley
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Anne Klibanski
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jill M Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
76
|
Cox LM, Abou-El-Hassan H, Maghzi AH, Vincentini J, Weiner HL. The sex-specific interaction of the microbiome in neurodegenerative diseases. Brain Res 2019; 1724:146385. [PMID: 31419428 PMCID: PMC6886714 DOI: 10.1016/j.brainres.2019.146385] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Several neurologic diseases exhibit different prevalence and severity in males and females, highlighting the importance of understanding the influence of biologic sex and gender. Beyond host-intrinsic differences in neurologic development and homeostasis, evidence is now emerging that the microbiota is an important environmental factor that may account for differences between men and women in neurologic disease. The gut microbiota is composed of trillions of bacteria, archaea, viruses, and fungi, that can confer benefits to the host or promote disease. There is bidirectional communication between the intestinal microbiota and the brain that is mediated via immunologic, endocrine, and neural signaling pathways. While there is substantial interindividual variation within the microbiota, differences between males and females can be detected. In animal models, sex-specific microbiota differences can affect susceptibility to chronic diseases. In this review, we discuss the ways in which neurologic diseases may be regulated by the microbiota in a sex-specific manner.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Amir Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Julia Vincentini
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
77
|
Long T, Yao JK, Li J, Kirshner ZZ, Nelson D, Dougherty GG, Gibbs RB. Estradiol and selective estrogen receptor agonists differentially affect brain monoamines and amino acids levels in transitional and surgical menopausal rat models. Mol Cell Endocrinol 2019; 496:110533. [PMID: 31394142 PMCID: PMC6717664 DOI: 10.1016/j.mce.2019.110533] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
Estrogens have many beneficial effects in the brain. Previously, we evaluated the effects of two models of menopause (surgical vs. transitional) on multiple monoaminergic endpoints in different regions of the adult rat brain in comparison with levels in gonadally intact rats. Here we evaluated the effects of estrogen receptor (ER) agonist treatments in these same two models of menopause. Neurochemical endpoints were evaluated in the hippocampus (HPC), frontal cortex (FCX), and striatum (STR) of adult ovariectomized (OVX) rats and in rats that underwent selective and gradual ovarian follicle depletion by daily injection of 4-vinylcyclohexene-diepoxide (VCD), after 1- and 6-weeks treatment with 17β-estradiol (E2), or with selective ERα (PPT), ERβ (DPN), or GPR30 (G-1) agonists. Endpoints included serotonin (5-HT) and 5-Hydroxyindoleacetic acid, dopamine (DA), 3,4-Dihydroxyphenylacetic acid and homovanillic acid, norepinephrine (NE) and epinephrine, as well as the amino acids tryptophan (TRP) and tyrosine (TYR). Significant differences between the models were detected. OVX rats were much more sensitive to ER agonist treatments than VCD-treated rats. Significant differences between brain regions also were detected. Within OVX rats, more agonist effects were detected in the HPC than in any other region. One interesting finding was the substantial decrease in TRP and TYR detected in the HPC and FCX in response to agonist treatments, particularly in OVX rats. This is on top of the substantial decreases in TRP and TYR previously reported one week after OVX or VCD-treatments in comparison with gonadally intact controls. Other interesting findings included increases in the levels of 5-HT, DA, and NE in the HPC of OVX rats treated with DPN, increases in DA detected in the FCX of OVX rats treated with any of the ER agonists, and increases in 5-HT and DA detected in the STR of OVX rats treated with E2. Many effects that were observed after 1-week of treatment were no longer observed after 6-weeks of treatment, demonstrating that effects were temporary despite continued agonist treatment. Collectively, the results demonstrate significant differences in the effects of ER agonists on monoaminergic endpoints in OVX vs. VCD-treated rats that also were brain region-specific and time dependent. The fact that agonist treatments had lesser effects in VCD treated rats than in OVX rats may help to explain reports of lesser effects of estrogen replacement on cognitive performance in women that have undergone transitional vs. surgical menopause.
Collapse
Affiliation(s)
- Tao Long
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Jeffrey K Yao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Junyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ziv Z Kirshner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Doug Nelson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - George G Dougherty
- Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
78
|
Marongiu R. Accelerated Ovarian Failure as a Unique Model to Study Peri-Menopause Influence on Alzheimer's Disease. Front Aging Neurosci 2019; 11:242. [PMID: 31551757 PMCID: PMC6743419 DOI: 10.3389/fnagi.2019.00242] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Despite decades of extensive research efforts, efficacious therapies for Alzheimer's disease (AD) are lacking. The multi-factorial nature of AD neuropathology and symptomatology has taught us that a single therapeutic approach will most likely not fit all. Women constitute ~70% of the affected AD population, and pathology and rate of symptoms progression are 2-3 times higher in women than men. Epidemiological data suggest that menopausal estrogen loss may be causative of the more severe symptoms observed in AD women, however, results from clinical trials employing estrogen replacement therapy are inconsistent. AD pathological hallmarks-amyloid β (Aβ), neurofibrillary tangles (NFTs), and chronic gliosis-are laid down during a 20-year prodromal period before clinical symptoms appear, which coincides with the menopause transition (peri-menopause) in women (~45-54-years-old). Peri-menopause is marked by widely fluctuating estrogen levels resulting in periods of irregular hormone-receptor interactions. Recent studies showed that peri-menopausal women have increased indicators of AD phenotype (brain Aβ deposition and hypometabolism), and peri-menopausal women who used hormone replacement therapy (HRT) had a reduced AD risk. This suggests that neuroendocrine changes during peri-menopause may be a trigger that increases risk of AD in women. Studies on sex differences have been performed in several AD rodent models over the years. However, it has been challenging to study the menopause influence on AD due to lack of optimal models that mimic the human process. Recently, the rodent model of accelerated ovarian failure (AOF) was developed, which uniquely recapitulates human menopause, including a transitional peri-AOF period with irregular estrogen fluctuations and a post-AOF stage with low estrogen levels. This model has proven useful in hypertension and cognition studies with wild type animals. This review article will highlight the molecular mechanisms by which peri-menopause may influence the female brain vulnerability to AD and AD risk factors, such as hypertension and apolipoprotein E (APOE) genotype. Studies on these biological mechanisms together with the use of the AOF model have the potential to shed light on key molecular pathways underlying AD pathogenesis for the development of precision medicine approaches that take sex and hormonal status into account.
Collapse
Affiliation(s)
- Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Weill Cornell Medicine, Department of Neurosurgery, Cornell University, New York, NY, United States
| |
Collapse
|
79
|
Martel MM, Eisenlohr-Moul T, Roberts B. Interactive effects of ovarian steroid hormones on alcohol use and binge drinking across the menstrual cycle. JOURNAL OF ABNORMAL PSYCHOLOGY 2019; 126:1104-1113. [PMID: 29154570 DOI: 10.1037/abn0000304] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Patterns and features of substance use and abuse vary across the menstrual cycle in humans. Yet, little work has systematically examined the within-person relationships between ovarian hormone changes and alcohol use across the menstrual cycle. Our study was the first to examine the roles of within-person levels of estradiol (E2) and progesterone (P4) in relation to daily alcohol use and binge drinking in young women. Participants were 22 naturally cycling women, ages 18-22, recruited through a university subject pool who reported any alcohol use and who completed a screening visit assessing study eligibility, followed by 35 subsequent days of data collection. E2 and P4 were obtained via enzyme immunoassay of saliva samples collected by participants each morning, 30 min after waking. Presence and degree of daily substance use were obtained using an adaptation of the Timeline FollowBack Interview completed daily. Results indicated that elevated E2 in the context of decreased P4 levels were associated with higher risk of drinking and binge drinking. These effects were present only on weekend days. Results are suggestive of a dual risk model in which both ovulatory E2 increases and perimenstrual P4 decreases increase risk for drinking. Differential associations of steroids with drinking across the menstrual cycle may suggest the need for clinical assessment of substance use to take into account hormone dynamics and menstrual cycle phase. (PsycINFO Database Record
Collapse
|
80
|
Fruzzetti F, Palla G, Gambacciani M, Simoncini T. Tailored hormonal approach in women with premature ovarian insufficiency. Climacteric 2019; 23:3-8. [PMID: 31352836 DOI: 10.1080/13697137.2019.1632284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Premature ovarian insufficiency (POI) is probably one of the most devastating diagnoses for women of reproductive age. The major implications for fertility, climacteric symptoms, and quality of life, the great impact of long-term consequences such as bone loss and cardiovascular health, and the lack of a coherent and shared clinical approach make the choice for the right hormonal therapy challenging. In this review we propose an integrated and patient-based hormonal approach for women with POI, from puberty to late reproductive age.
Collapse
Affiliation(s)
- F Fruzzetti
- UO Gynecology and Obstetrics I, University of Pisa, Pisa, Italy
| | - G Palla
- UO Gynecology and Obstetrics I, University of Pisa, Pisa, Italy
| | - M Gambacciani
- UO Gynecology and Obstetrics I, University of Pisa, Pisa, Italy
| | - T Simoncini
- UO Gynecology and Obstetrics I, University of Pisa, Pisa, Italy
| |
Collapse
|
81
|
Impact of adrenal hormones, reproductive aging, and major depression on memory circuitry decline in early midlife. Brain Res 2019; 1721:146303. [PMID: 31279842 DOI: 10.1016/j.brainres.2019.146303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022]
Abstract
Dehydroepiandrosterone-sulfate (DHEAS) is an adrenal androgen that is, in part, aromatized to estradiol. It continues to be produced after menopause and provides estrogenicity after depletion of ovarian hormones. Estradiol depletion contributes to memory circuitry changes over menopause, including changes in hippocampal (HIPP) and dorsolateral- and ventrolateral-prefrontal cortex (DLPFC; VLPFC) function. Further, major depressive disorder (MDD) patients have, in general, lower levels of estradiol and lower DHEAS than healthy controls, thus potentially a higher risk of adverse menopausal outcomes. We investigated whether higher DHEAS levels after menopause is associated with better memory circuitry function, especially in women with MDD. 212 adults (ages 45-55, 50% women) underwent clinical and fMRI testing. Participants performed a working memory (WM) N-back task and an episodic memory verbal encoding (VE) task during fMRI scanning. DHEAS levels were significantly associated with memory circuitry function, specifically in MDD postmenopausal women. On the WM task, lower DHEAS levels were associated with increased HIPP activity. On the VE task, lower DHEAS levels were associated with decreased activity in the HIPP and VLPFC. In contrast, there was no association between DHEAS levels and memory circuitry function in MDD pre/perimenopausal women, men, and non-MDD participants regardless of sex and reproductive status. In fact, MDD postmenopausal women with higher levels of DHEAS were similar to MDD pre/perimenopausal women and men. Thus, memory circuitry deficits associated with MDD and a lower ability of the adrenal gland to produce DHEAS after menopause may contribute to a lower ability to maintain intact memory function with age.
Collapse
|
82
|
Barrientos RM, Brunton PJ, Lenz KM, Pyter L, Spencer SJ. Neuroimmunology of the female brain across the lifespan: Plasticity to psychopathology. Brain Behav Immun 2019; 79:39-55. [PMID: 30872093 PMCID: PMC6591071 DOI: 10.1016/j.bbi.2019.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
The female brain is highly dynamic and can fundamentally remodel throughout the normal ovarian cycle as well as in critical life stages including perinatal development, pregnancy and old-age. As such, females are particularly vulnerable to infections, psychological disorders, certain cancers, and cognitive impairments. We will present the latest evidence on the female brain; how it develops through the neonatal period; how it changes through the ovarian cycle in normal individuals; how it adapts to pregnancy and postpartum; how it responds to illness and disease, particularly cancer; and, finally, how it is shaped by old age. Throughout, we will highlight female vulnerability to and resilience against disease and dysfunction in the face of environmental challenges.
Collapse
Affiliation(s)
- R M Barrientos
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH 43210, United States
| | - P J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK; Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, International Campus, Haining, Zhejiang 314400, PR China
| | - K M Lenz
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychology, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, United States
| | - L Pyter
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic. 3083, Australia.
| |
Collapse
|
83
|
Polysaccharides of Fructus corni Improve Ovarian Function in Mice with Aging-Associated Perimenopause Symptoms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2089586. [PMID: 31346338 PMCID: PMC6620845 DOI: 10.1155/2019/2089586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/14/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
Abstract
Objective Perimenopause symptoms have an extremely high incidence in aging women. Development of new strategies to improve perimenopause symptoms is important topic in clinical context. Increasing studies have shown that the polysaccharides of Fructus corni (PFC) have many pharmacological activities including antiaging effects. Here, we evaluated the effects of PFC on the ovarian function in natural aging-associated perimenopause symptoms in mice. Methods Natural aging mice (16-month old) were orally administrated with PFC at 1.11 g/kg daily for 24 days with none-treated young mice (3-month old) as control. Blood samples were collected for measurements of serum levels of estradiol, progesterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH). Ovaries were isolated for histopathological and molecular exanimations. Results We found that the aging mice had decreased number of growing follicles and corpus luteum in ovary, but treatment with PFC restored their amounts. Measurement of hormones showed that there were low serum levels of estradiol and progesterone but high levels of LH and FSH in aging mice; however PFC restored estradiol and progesterone levels but reduced LH and FSH levels. Immunohistochemical analysis with ovarian tissues also revealed that the expression of inhibin and insulin-like growth factor 1 was reduced in the ovary of aging mice but was restored by PFC. These data indicated that PFC regulated ovarian function-associated hormone levels in aging mice. Furthermore, there was reduced expression of antiapoptotic protein Bcl-2 and increased expression of proapoptotic molecules Bax and cleaved-caspase-3 in the ovary of aging mice. However, treatment with PFC upregulated Bcl-2 and downregulated Bax and cleaved-caspase-3, suggesting that PFC inhibited apoptosis of granulosa cells in the ovary of aging mice. Conclusion PFC improved the ovarian function in mice, which had high potential to be developed as a safe and effective therapeutic remedy for aging-associated perimenopause symptoms.
Collapse
|
84
|
Honarpisheh P, McCullough LD. Sex as a biological variable in the pathology and pharmacology of neurodegenerative and neurovascular diseases. Br J Pharmacol 2019; 176:4173-4192. [PMID: 30950038 DOI: 10.1111/bph.14675] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of dementia, most commonly caused by cerebrovascular and neurodegenerative diseases, continues to grow as our population ages. Alzheimer disease (AD) and vascular cognitive impairment (VCI) are responsible for more than 80% of all cases of dementia. There are few effective, long-term treatments for AD and VCI-related conditions (e.g., stroke and cerebral amyloid angiopathy (CAA)). This review focuses on AD (as the most common "neurodegenerative" cause of dementia), CAA (as an "emerging" cause of dementia), and stroke (as the most common cause of "vascular" dementia). We will discuss the available literature on the pharmacological therapies that demonstrate sex differences, which refer to any combination of structural, chromosomal, gonadal, or hormonal differences between males and females. We will emphasize the importance of considering sex as a biological variable in the design of preclinical and clinical studies that investigate underlying pathologies or response to pharmacological interventions in dementia. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, Texas
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, Texas
| |
Collapse
|
85
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
86
|
Natari RB, McGuire TM, Baker PJ, Clavarino AM, Dingle KD, Hollingworth SA. Longitudinal impact of the Women’s Health Initiative study on hormone therapy use in Australia. Climacteric 2019; 22:489-497. [DOI: 10.1080/13697137.2019.1593357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- R. B. Natari
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, Australia
- Department of Pharmacy, Jambi Regional Psychiatric Hospital, Jambi, Indonesia
| | - T. M. McGuire
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, Australia
- Mater Pharmacy Services, Mater Health Services, South Brisbane, QLD, Australia
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - P. J. Baker
- School of Public Health, University of Queensland, Herston, QLD, Australia
| | - A. M. Clavarino
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, Australia
- School of Public Health, University of Queensland, Herston, QLD, Australia
| | - K. D. Dingle
- School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - S. A. Hollingworth
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
87
|
Crimins JL, Puri R, Calakos KC, Yuk F, Janssen WGM, Hara Y, Rapp PR, Morrison JH. Synaptic distributions of pS214-tau in rhesus monkey prefrontal cortex are associated with spine density, but not with cognitive decline. J Comp Neurol 2019; 527:856-873. [PMID: 30408169 PMCID: PMC6333519 DOI: 10.1002/cne.24576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022]
Abstract
Female rhesus monkeys and women are subject to age- and menopause-related deficits in working memory, an executive function mediated by the dorsolateral prefrontal cortex (dlPFC). Long-term cyclic administration of 17β-estradiol improves working memory, and restores highly plastic axospinous synapses within layer III dlPFC of aged ovariectomized monkeys. In this study, we tested the hypothesis that synaptic distributions of tau protein phosphorylated at serine 214 (pS214-tau) are altered with age or estradiol treatment, and couple to working memory performance. First, ovariectormized young and aged monkeys received vehicle or estradiol treatment, and were tested on the delayed response (DR) test of working memory. Serial section electron microscopic immunocytochemistry was then performed to quantitatively assess the subcellular synaptic distributions of pS214-tau. Overall, the majority of synapses contained pS214-tau immunogold particles, which were predominantly localized to the cytoplasm of axon terminals. pS214-tau was also abundant within synaptic and cytoplasmic domains of dendritic spines. The density of pS214-tau immunogold within the active zone, cytoplasmic, and plasmalemmal domains of axon terminals, and subjacent to the postsynaptic density within the subsynaptic domains of dendritic spines, were each reduced with age. None of the variables examined were directly linked to cognitive status, but a high density of pS214-tau immunogold particles within presynaptic cytoplasmic and plasmalemmal domains, and within postsynaptic subsynaptic and plasmalemmal domains, accompanied high synapse density. Together, these data support a possible physiological, rather than pathological, role for pS214-tau in the modulation of synaptic morphology in monkey dlPFC.
Collapse
Affiliation(s)
- Johanna L. Crimins
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rishi Puri
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Katina C. Calakos
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Frank Yuk
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William G. M. Janssen
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter R. Rapp
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD 21224
| | - John H. Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- California National Primate Research Center, Davis, CA 95616
- Department of Neurology, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
88
|
Image-guided phenotyping of ovariectomized mice: altered functional connectivity, cognition, myelination, and dopaminergic functionality. Neurobiol Aging 2019; 74:77-89. [DOI: 10.1016/j.neurobiolaging.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/20/2018] [Accepted: 10/06/2018] [Indexed: 01/22/2023]
|
89
|
Wang J, Yu R, Han QQ, Huang HJ, Wang YL, Li HY, Wang HM, Chen XR, Ma SL, Yu J. G-1 exhibit antidepressant effect, increase of hippocampal ERs expression and improve hippocampal redox status in aged female rats. Behav Brain Res 2019; 359:845-852. [DOI: 10.1016/j.bbr.2018.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/31/2023]
|
90
|
Pottoo FH, Tabassum N, Javed MN, Nigar S, Rasheed R, Khan A, Barkat MA, Alam MS, Maqbool A, Ansari MA, Barreto GE, Ashraf GM. The Synergistic Effect of Raloxifene, Fluoxetine, and Bromocriptine Protects Against Pilocarpine-Induced Status Epilepticus and Temporal Lobe Epilepsy. Mol Neurobiol 2019; 56:1233-1247. [PMID: 29881945 DOI: 10.1007/s12035-018-1121-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
Abstract
The present antiepileptic drugs pose several problems in the management of seizures owing to their meager neuroprotective potential, adverse effects on bone, detrimental effects on cognitive function, chronic toxicity, drug interactions, side effects including aggression, agitation, and irritability and sometimes exacerbation of seizures. We followed up progressive preclinical investigation in mice against pilocarpine (PILO)-induced status epilepticus (SE) and temporal lobe epilepsy (TLE). To determine the response of raloxifene (RF) (4 and 8 mg/kg), fluoxetine (FT) (14 and 22 mg/kg), bromocriptine (BC) (6 and 10 mg/kg), and their low-dose combinations, oral treatment was scheduled for 28 days followed by PILO (300 mg/kg, i.p). The response was stalked for intensive behavioral monitoring of convulsions, hippocampal neuropeptide Y (NPY), and oxidative stress discernment along with histomorphological studies. The resultant data confirmed the therapeutic potential of triple drug combination of raloxifene (4 mg/kg) with fluoxetine (14 mg/kg) and bromocriptine (6 mg/kg) compared to monotherapy with raloxifene (4 mg/kg), and bromocriptine (6 mg/kg) as otherwise monotherapy with fluoxetine (14 mg/kg) was ineffective to suppress convulsions; an effect better than sodium valproate (300 mg/kg), a standard AED, was validated. Most profoundly, PILO-induced compensatory increases in hippocampal NPY levels (20.01%), which was escalated (100%) with the triple drug combination. The same pattern of results was superseded for oxidative stress indices and neuronal damage. The results for the first time demonstrate the propitious role of triple drug combination in the management of SE and TLE. Therapeutically, this enhancing profile of drugs fosters a safer and more effective drug-combination regimen. Graphical abstract.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India.
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Shah Nigar
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Rouqia Rasheed
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Ayash Khan
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram, India
| | - Amir Maqbool
- Department of Zoology, Govt. College for Women, M. A. Road, Srinagar, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
91
|
Koebele SV, Palmer JM, Hadder B, Melikian R, Fox C, Strouse IM, DeNardo DF, George C, Daunis E, Nimer A, Mayer LP, Dyer CA, Bimonte-Nelson HA. Hysterectomy Uniquely Impacts Spatial Memory in a Rat Model: A Role for the Nonpregnant Uterus in Cognitive Processes. Endocrinology 2019; 160:1-19. [PMID: 30535329 PMCID: PMC6293088 DOI: 10.1210/en.2018-00709] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
Approximately one-third of women experience hysterectomy, or the surgical removal of the uterus, by 60 years of age, with most surgeries occurring prior to the onset of natural menopause. The ovaries are retained in about half of these surgeries, whereas for the other half hysterectomy occurs concurrently with oophorectomy. The dogma is that the nonpregnant uterus is dormant. There have been no preclinical assessments of surgical variations in menopause, including hysterectomy, with and without ovarian conservation, on potential endocrine and cognitive changes. We present a novel rat model of hysterectomy alongside sham, ovariectomy (Ovx), and Ovx-hysterectomy groups to assess effects of surgical menopause variations. Rats without ovaries learned the working memory domain of a complex cognitive task faster than did those with ovaries. Moreover, uterus removal alone had a unique detrimental impact on the ability to handle a high-demand working memory load. The addition of Ovx, that is, Ovx-hysterectomy, prevented this hysterectomy-induced memory deficit. Performance did not differ amongst groups in reference memory-only tasks, suggesting that the working memory domain is particularly sensitive to variations in surgical menopause. Following uterus removal, ovarian histology and estrous cycle monitoring demonstrated that ovaries continued to function, and serum assays indicated altered ovarian hormone and gonadotropin profiles by 2 months after surgery. These results underscore the critical need to further study the contribution of the uterus to the female phenotype, including effects of hysterectomy with and without ovarian conservation, on the trajectory of brain and endocrine aging to decipher the impact of common variations in gynecological surgery in women. Moreover, findings demonstrate that the nonpregnant uterus is not dormant, and indicate that there is an ovarian-uterus-brain system that becomes interrupted when the reproductive tract has been disrupted, leading to alterations in brain functioning.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Justin M Palmer
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Bryanna Hadder
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Ryan Melikian
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Carly Fox
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Isabel M Strouse
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | | | | | | | | | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
- Correspondence: Heather A. Bimonte-Nelson, PhD, Arizona State University, Department of Psychology, Behavioral Neuroscience Division, Arizona Alzheimer’s Consortium, P.O. Box 871104, Tempe, Arizona 85287. E-mail:
| |
Collapse
|
92
|
Pottoo FH, Javed MN, Barkat MA, Alam MS, Nowshehri JA, Alshayban DM, Ansari MA. Estrogen and Serotonin: Complexity of Interactions and Implications for Epileptic Seizures and Epileptogenesis. Curr Neuropharmacol 2019; 17:214-231. [PMID: 29956631 PMCID: PMC6425080 DOI: 10.2174/1570159x16666180628164432] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
A burgeoning literature documents the confluence of ovarian steroids and central serotonergic systems in the injunction of epileptic seizures and epileptogenesis. Estrogen administration in animals reduces neuronal death from seizures by up-regulation of the prosurvival molecule i.e. Bcl-2, anti-oxidant potential and protection of NPY interneurons. Serotonin modulates epileptiform activity in either direction i.e administration of 5-HT agonists or reuptake inhibitors leads to the activation of 5-HT3 and 5-HT1A receptors tending to impede focal and generalized seizures, while depletion of brain 5-HT along with the destruction of serotonergic terminals leads to expanded neuronal excitability hence abatement of seizure threshold in experimental animal models. Serotonergic neurotransmission is influenced by the organizational activity of steroid hormones in the growing brain and the actuation effects of steroids which come in adulthood. It is further established that ovarian steroids bring induction of dendritic spine proliferation on serotonin neurons thus thawing a profound effect on serotonergic transmission. This review features 5-HT1A and 5-HT3 receptors as potential targets for ameliorating seizure-induced neurodegeneration and recurrent hypersynchronous neuronal activity. Indeed 5-HT3 receptors mediate cross-talk between estrogenic and serotonergic pathways, and could be well exploited for combinatorial drug therapy against epileptogenesis.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Address correspondence to these authors at the Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia; E-mail: and Department of Pharmacology, College of Clinical Pharmacy, 31441 Imam Abdulrahman Bin Faisal University, (Formerly University of Dammam), Dammam, Saudi Arabia; E-mail:
| | | | | | | | | | | | - Mohammad Azam Ansari
- Address correspondence to these authors at the Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia; E-mail: and Department of Pharmacology, College of Clinical Pharmacy, 31441 Imam Abdulrahman Bin Faisal University, (Formerly University of Dammam), Dammam, Saudi Arabia; E-mail:
| |
Collapse
|
93
|
Abstract
Engaging in targeted exercise interventions is a promising, non-pharmacological strategy to mitigate the deleterious effects of aging and disease on brain health. However, despite its therapeutic potential, a large amount of variation exists in exercise efficacy in older adults aged 55 and older. In this review, we present the argument that biological sex may be an important moderator of the relationship between physical activity and cognition. Sex differences exist in dementia as well as in several associated risk factors, including genetics, cardiovascular factors, inflammation, hormones and social and psychological factors. Different exercise interventions, such as aerobic training and resistance training, influence cognition and brain health in older adults and these effects may be sex-dependent. The biological mechanisms underlying the beneficial effects of exercise on the brain may be different in males and females. Specifically, we examine sex differences in neuroplasticity, neurotrophic factors and physiological effects of exercise to highlight the possible mediators of sex differences in exercise efficacy on cognition. Future studies should address the potential sex difference in exercise efficacy if we are to develop effective, evidence-based exercise interventions to promote healthy brain aging for all individuals.
Collapse
Affiliation(s)
- Cindy K Barha
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada.,Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada.,Department of Physical Therapy, University of British Columbia, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver, Canada
| |
Collapse
|
94
|
Speth RC, D'Ambra M, Ji H, Sandberg K. A heartfelt message, estrogen replacement therapy: use it or lose it. Am J Physiol Heart Circ Physiol 2018; 315:H1765-H1778. [PMID: 30216118 PMCID: PMC6336974 DOI: 10.1152/ajpheart.00041.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
The issue of cardiovascular and cognitive health in women is complex. During the premenopausal phase of life, women have healthy blood pressure levels that are lower than those of age-matched men, and they have less cardiovascular disease. However, in the postmenopausal stage of life, blood pressure in women increases, and they are increasingly susceptible to cardiovascular disease, cognitive impairments, and dementia, exceeding the incidence in men. The major difference between pre- and postmenopausal women is the loss of estrogen. Thus, it seemed logical that postmenopausal estrogen replacement therapy, with or without progestin, generally referred to as menopausal hormone treatment (MHT), would prevent these adverse sequelae. However, despite initially promising results, a major randomized clinical trial refuted the benefits of MHT, leading to its falling from favor. However, reappraisal of this study in the framework of a "critical window," or "timing hypothesis," has changed our perspective on the benefit-to-risk ratio of MHT, and this review discusses the historical, current, and future approaches to MHT.
Collapse
Affiliation(s)
- Robert C Speth
- College of Pharmacy, Nova Southeastern University , Fort Lauderdale, Florida
- Department of Pharmacology and Physiology, College of Medicine, Georgetown University , Washington, District of Columbia
| | | | - Hong Ji
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
95
|
Oveisgharan S, Arvanitakis Z, Yu L, Farfel J, Schneider JA, Bennett DA. Sex differences in Alzheimer's disease and common neuropathologies of aging. Acta Neuropathol 2018; 136:887-900. [PMID: 30334074 DOI: 10.1007/s00401-018-1920-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022]
Abstract
Alzheimer's dementia is significantly more common in women than in men. However, few pathological studies have addressed sex difference in Alzheimer's disease (AD) and other brain pathologies. We leveraged postmortem data from 1453 persons who participated in one of two longitudinal community-based studies of older adults, the Religious Orders Study and the Rush Memory and Aging Project. Postmortem examination identified AD pathologies, neocortical Lewy bodies, DNA-binding protein 43 (TDP-43), hippocampal sclerosis, gross and micro infarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy. Linear and logistic regressions examined the association of sex with each of the pathologic measures. Two-thirds of subjects were women (n = 971; 67%), with a mean age at death of 89.8 (SD = 6.6) years in women and 87.3 (SD = 6.6) in men. Adjusted for age and education, women had higher levels on a global measure of AD pathology (estimate = 0.102, SE = 0.022, p < 0.001), and tau tangle density in particular (estimate = 0.334, SE = 0.074, p < 0.001), and there was a borderline difference between women and men in amyloid-β load (estimate = 0.124, SE = 0.065, p = 0.056). In addition, compared to men, women were more likely to have more severe arteriolosclerosis (OR = 1.28, 95% CI:1.04-1.58, p = 0.018), and less likely to have gross infarcts (OR = 0.78, 95% CI:0.61-0.98, p = 0.037), although the association with gross infarct was attenuated after controlling for vascular risk factors. These data help elucidate the neuropathologic footprint of sex difference in AD and other common brain pathologies of aging.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jose Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Department of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
96
|
Gannon OJ, Robison LS, Custozzo AJ, Zuloaga KL. Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. Neurochem Int 2018; 127:38-55. [PMID: 30471324 DOI: 10.1016/j.neuint.2018.11.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is the second most common cause of dementia. While males overall appear to be at a slightly higher risk for VCID throughout most of the lifespan (up to age 85), some risk factors for VCID more adversely affect women. These include female-specific risk factors associated with pregnancy related disorders (e.g. preeclampsia), menopause, and poorly timed hormone replacement. Further, presence of certain co-morbid risk factors, such as diabetes, obesity and hypertension, also may more adversely affect women than men. In contrast, some risk factors more greatly affect men, such as hyperlipidemia, myocardial infarction, and heart disease. Further, stroke, one of the leading risk factors for VCID, has a higher incidence in men than in women throughout much of the lifespan, though this trend is reversed at advanced ages. This review will highlight the need to take biological sex and common co-morbidities for VCID into account in both preclinical and clinical research. Given that there are currently no treatments available for VCID, it is critical that we understand how to mitigate risk factors for this devastating disease in both sexes.
Collapse
Affiliation(s)
- O J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - L S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - A J Custozzo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - K L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
97
|
Long T, Yao JK, Li J, Kirshner ZZ, Nelson D, Dougherty GG, Gibbs RB. Comparison of transitional vs surgical menopause on monoamine and amino acid levels in the rat brain. Mol Cell Endocrinol 2018; 476:139-147. [PMID: 29738870 PMCID: PMC6120792 DOI: 10.1016/j.mce.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
Abstract
Loss of ovarian function has important effects on neurotransmitter production and release with corresponding effects on cognitive performance. To date, there has been little direct comparison of the effects of surgical and transitional menopause on neurotransmitter pathways in the brain. In this study, effects on monoamines, monoamine metabolites, and the amino acids tryptophan (TRP) and tyrosine (TYR) were evaluated in adult ovariectomized (OVX) rats and in rats that underwent selective and gradual ovarian follicle depletion by daily injection of 4-vinylcyclohexene-diepoxide (VCD). Tissues from the hippocampus (HPC), frontal cortex (FCX), and striatum (STR) were dissected and analyzed at 1- and 6-weeks following OVX or VCD treatments. Tissues from gonadally intact rats were collected at proestrus and diestrus to represent neurochemical levels during natural states of high and low estrogens. In gonadally intact rats, higher levels of serotonin (5-HT) were detected at proestrus than at diestrus in the FCX. In addition, the ratio of 5-hydroxyindoleacetic acid (5-HIAA)/5HT in the FCX and HPC was lower at proestrus than at diestrus, suggesting an effect on 5-HT turnover in these regions. No other significant differences between proestrus and diestrus were observed. In OVX- and VCD-treated rats, changes were observed which were both brain region- and time point-dependent. In the HPC levels of norepinephrine, 5-HIAA, TRP and TYR were significantly reduced at 1 week, but not 6 weeks, in both OVX and VCD-treated rats relative to proestrus and diestrus. In the FCX, dopamine levels were elevated at 6 weeks after OVX relative to diestrus. A similar trend was observed at 1 week (but not 6 weeks) following VCD treatment. In the STR, norepinephrine levels were elevated at 1 week following OVX, and HVA levels were elevated at 1 week, but not 6 weeks, following VCD treatment, relative to proestrus and diestrus. Collectively, these data provide the first comprehensive analysis comparing the effects of two models of menopause on multiple neuroendocrine endpoints in the brain. These effects likely contribute to effects of surgical and transitional menopause on brain function and cognitive performance that have been reported.
Collapse
Affiliation(s)
- Tao Long
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Jeffrey K Yao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Junyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ziv Z Kirshner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Doug Nelson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - George G Dougherty
- Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
98
|
Mielke MM. Sex and Gender Differences in Alzheimer's Disease Dementia. THE PSYCHIATRIC TIMES 2018; 35:14-17. [PMID: 30820070 PMCID: PMC6390276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Michelle M Mielke
- Department of Health Sciences Research, Division of Epidemiology and Department of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
99
|
17β-estradiol modulates NGF and BDNF expression through ERβ mediated ERK signaling in cortical astrocytes. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0099-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
100
|
Nebel RA, Aggarwal NT, Barnes LL, Gallagher A, Goldstein JM, Kantarci K, Mallampalli MP, Mormino EC, Scott L, Yu WH, Maki PM, Mielke MM. Understanding the impact of sex and gender in Alzheimer's disease: A call to action. Alzheimers Dement 2018; 14:1171-1183. [PMID: 29907423 PMCID: PMC6400070 DOI: 10.1016/j.jalz.2018.04.008] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Precision medicine methodologies and approaches have advanced our understanding of the clinical presentation, development, progression, and management of Alzheimer's disease (AD) dementia. However, sex and gender have not yet been adequately integrated into many of these approaches. METHODS The Society for Women's Health Research Interdisciplinary Network on AD, comprised of an expert panel of scientists and clinicians, reviewed ongoing and published research related to sex and gender differences in AD. RESULTS The current review is a result of this Network's efforts and aims to: (1) highlight the current state-of-the-science in the AD field on sex and gender differences; (2) address knowledge gaps in assessing sex and gender differences; and (3) discuss 12 priority areas that merit further research. DISCUSSION The exclusion of sex and gender has impeded faster advancement in the detection, treatment, and care of AD across the clinical spectrum. Greater attention to these differences will improve outcomes for both sexes.
Collapse
Affiliation(s)
- Rebecca A Nebel
- Scientific Programs, Society for Women's Health Research (SWHR®), Washington, DC, USA.
| | - Neelum T Aggarwal
- Department of Neurological Sciences and the Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lisa L Barnes
- Department of Neurological Sciences and the Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Aimee Gallagher
- Scientific Programs, Society for Women's Health Research (SWHR®), Washington, DC, USA
| | - Jill M Goldstein
- Department of Psychiatry, Harvard Medical School, and Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, and Massachusetts General Hospital, Boston, MA, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Monica P Mallampalli
- Scientific Programs, Society for Women's Health Research (SWHR®), Washington, DC, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Laura Scott
- Cellular and Molecular Medicine Program, Johns Hopkins University, Baltimore, MD, USA
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Pauline M Maki
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Michelle M Mielke
- Department of Epidemiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|