51
|
Li Z, Zhou Q, Li S, Liu M, Li Y, Chen C. Carbon dots fabricated by solid-phase carbonization using p-toluidine and l-cysteine for sensitive detection of copper. CHEMOSPHERE 2022; 308:136298. [PMID: 36064008 DOI: 10.1016/j.chemosphere.2022.136298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, a label-free "turn off" fluorescent sensor has been resoundingly fabricated using carbon dots (CDs) for ultrasensitive detection of copper ions (Cu2+). CDs are prepared by solid phase carbonization method using p-toluidine and l-cysteine as the precursors. The synthesized CDs exhibited the highest fluorescence intensity with excitation and emission wavelengths set at 300 nm and 400 nm, respectively. The CDs were selective and sensitive to Cu2+ due to the static quenching mechanism. The concentration of CDs, and solution pH and incubation time were important parameters for the developed sensor. The experimental results showed that 20 mgL-1 was enough for the analysis. As the solution pH was concerned, it was apparent that the sensor was endowed with an excellent response signal to Cu2+ and provided high sensitivity at pH 12. The interaction occurred very quickly, and the incubation time could be set at 1 min. The sensor provided a two-stage calibration curve to Cu2+ in the range of 0.05-0.7 and 0.7-4 μM with a limit of detection of 47 nM. The obtained results clearly demonstrated that this facile method was fast, reliable and selective for detecting Cu2+, which would explore a prospective strategy for developing effective and low-cost sensors for monitoring metal ions in aqueous environments.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanhui Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
52
|
He C, Ma J, Xu H, Ge C, Lian Z. Selective capture and determination of doxycycline in marine sediments by using magnetic imprinting dispersive solid-phase extraction coupled with high performance liquid chromatography. MARINE POLLUTION BULLETIN 2022; 184:114215. [PMID: 36307947 DOI: 10.1016/j.marpolbul.2022.114215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics are frequently used in aquaculture as feed additives and finally enter the marine environment that can pose potential threat to humans. In this study, magnetic molecularly imprinted nanocomposites were prepared by surface imprinting and applied as selective sorbents for specific capture of doxycycline. A multivariate approach based on response surface methodology with Box-Behnken design was adopted to optimize the dispersive solid-phase extraction of doxycycline from marine sediment. Three key parameters, including adsorbent amount and type of washing/eluting solvent, were screened. Under optimum conditions, the limit of detection was 0.03 μg g-1 with good linearity from 0.5 to 20 μg g-1 followed by HPLC detection. Finally, two sediment samples were analysed and satisfactory recoveries between 90.60 % and 93.76 % were obtained with acceptable relative standard deviations (≤4.12 %), suggesting a promising applicability of the developed method for efficient extraction and sensitive quantification of antibiotics in complex marine environmental matrix.
Collapse
Affiliation(s)
- Cheng He
- Marine College, Shandong University, Weihai 264209, China
| | - Jiaxin Ma
- Marine College, Shandong University, Weihai 264209, China
| | - Huan Xu
- Marine College, Shandong University, Weihai 264209, China
| | - Changzi Ge
- Marine College, Shandong University, Weihai 264209, China
| | - Ziru Lian
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
53
|
Chen X, Xu J, Li Y, Zhang L, Bi N, Gou J, Zhu T, Jia L. A novel intelligently integrated MOF-based ratio fluorescence sensor for ultra-sensitive monitoring of TC in water and food samples. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
54
|
pH-responsive hybrid materials with dynamic photoluminescence for anti-counterfeiting, encryption and biogenic amines detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
55
|
Zhang H, Nian Q, Dai H, Wan X, Xu Q. A nanofiber-mat-based solid-phase sensor for sensitive ratiometric fluorescent sensing and fine visual colorimetric detection of tetracycline. Food Chem 2022; 395:133597. [DOI: 10.1016/j.foodchem.2022.133597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
|
56
|
Sulym I, Cetinkaya A, Yence M, Çorman ME, Uzun L, Ozkan SA. Novel electrochemical sensor based on molecularly imprinted polymer combined with L-His-MWCNTs@PDMS-5 nanocomposite for selective and sensitive assay of tetracycline. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
57
|
Ratiometric fluorescence and visual determination of tetracycline antibiotics based on Y 3+ and copper nanoclusters-induced cascade signal amplification. Mikrochim Acta 2022; 189:352. [PMID: 36008501 DOI: 10.1007/s00604-022-05447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
A ratiometric fluorescence probe is proposed for sensitive and visual detection of tetracyclinee (TC) based on cascade fluorescence signal amplification induced by bovine serum albumin-stabilized copper nanoclusters (BSA-CuNCs) and yttrium ions (Y3+). TC can combine with Y3+ to form the complex (TC-Y3+) to enhance the fluorescence of TC at 515 nm. Then, positively charged TC-Y3+ and negatively charged BSA-CuNCs was bonded together by electrostatic interactions to achieve the fluorescence resonance energy transfer (FRET) process. With the increase of TC concentration, the fluorescence intensity of TC-Y3+ at 515 nm (F515) gradually increased; meanwhile, the fluorescence intensity of BSA-CuNCs at 405 nm (F405) decreased gradually. The ratio of F515 and F405 was used for the quantitative determination of TC. The linear range of the constructed fluorescent probe is 1.0 to 60.0 μM, and the limit of detection is 0.22 μM. The method was successfully applied to the determination of TC in spiked milk with recoveries ranging from 94.3 to 112%. Furthermore, the color of this platform can be observed from dark violet to bright green under the UV lamp. Since the response time of the reaction is less than 10 s, an intelligent sensing platform based on the use of the smartphone as image acquisition equipment was also established to realize rapid on-site and portable detection of TC through the colorimetric recognition application.
Collapse
|
58
|
An intrinsic dual-emitting fluorescence sensing toward tetracycline with self-calibration model based on luminescent lanthanide-functionalized metal-organic frameworks. Food Chem 2022; 400:133995. [DOI: 10.1016/j.foodchem.2022.133995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022]
|
59
|
Yang K, Jia P, Hou J, Zhao S, Wang L. An ingenious turn-on ratiometric fluorescence sensor for sensitive and visual detection of tetracyclines. Food Chem 2022; 396:133693. [PMID: 35868283 DOI: 10.1016/j.foodchem.2022.133693] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/18/2022] [Accepted: 07/10/2022] [Indexed: 11/04/2022]
Abstract
To achieve facile and rapid detection of tetracyclines (TCs), herein, we fabricated an ingenious turn-on ratiometric fluorescence sensor (Ru@ZIF-8) based on embedding red-emitting Ru(bpy)32+ into zeolitic imidazolate framework-8 (ZIF-8). With the introduction of TCs, Ru@ZIF-8 system held the impervious red fluorescence, and generated green fluorescence which originated from the interaction between ZIF-8 and TCs, thereby achieving ratiometric fluorescence strategy through turn-on response signal and stable reference signal. Moreover, the ratiometric response accompanied discernible color change from red to green-yellow, which facilitated detection by naked eyes. The developed sensor exhibited prominent specificity and sensitivity, with detection limits of 2.4, 4.2, 1.6 and 7.2 nM for tetracycline, chlortetracycline, oxytetracycline and doxycycline, respectively. In addition, the satisfactory recoveries were obtained during detecting TCs in drink water, milk and beef, and the test paper-based sensor was successfully applied in real-time visual detection of TCs. All results indicated the feasibility and potential application of Ru@ZIF-8.
Collapse
Affiliation(s)
- Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jinjie Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
60
|
Ratiometric fluorescence sensing with logical operation: Theory, design and applications. Biosens Bioelectron 2022; 213:114456. [PMID: 35691083 DOI: 10.1016/j.bios.2022.114456] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/14/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022]
Abstract
The construction of ratiometric fluorescence sensing logic systems has gradually become a hot topic in fluorescence analysis, due to the multi-target analysis potential of logic operations and the high specificity and selectivity of ratiometric fluorescence sensing. In this paper, the basic principles of various logic functions implemented in ratiometric fluorescence detection are discussed in the context of sensing mechanisms, and the strategies for constructing logic systems in different ratiometric fluorescence sensing application areas are summarized. Although there are limitations such as cumbersome operations and complicated experiments, ratiometric fluorescence sensing logic circuits that combine the visualization of logic operations and the accuracy of ratiometric fluorescence are still worthy of in-depth study. This review may be useful for researchers interested in the construction of logic operations based on ratiometric fluorescence sensing applications.
Collapse
|
61
|
Jia L, Zhang Y, Zhu T, Xu J. Study on visual multicolor intelligent detection of tetracycline antibiotics in various environmental samples by palygorskite-based fluorescent nano-probe. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
62
|
Wang J, Li X, Zhang R, Fu B, Chen M, Ye M, Liu W, Xu J, Pan G, Zhang H. A molecularly imprinted antibiotic receptor on magnetic nanotubes for the detection and removal of environmental oxytetracycline. J Mater Chem B 2022; 10:6777-6783. [PMID: 35583296 DOI: 10.1039/d2tb00497f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The detection and elimination of antibiotic contaminants, such as oxytetracycline (OTC), a broad-spectrum tetracycline antibiotic, would be of help in efficient environmental monitoring, agriculture and food safety tests. Nevertheless, currently available methodologies, which mostly rely on the chromatographic separation of OTC, suffer from low sensitivity and complicated processes. Thus, we report here on the design and synthesis of a fluorescent sensor based on molecularly imprinted magnetic halloysite nanotubes (referred to as MHNTs@FMIPs) for the effective detection and purification of OTC in actual environmental samples. The fluorescence of the MHNTs@FMIPs was quenched obviously upon loading with OTC, covering a linear concentration range of 10-300 nM with a limit of detection (LOD) as low as 8.1 nM. The imprinting factor is 4.47, indicating an excellent specificity. Furthermore, the MHNTs@FMIPs can be applied to the quantitative detection of OTC (5 cycles of 300 nM) in aquaculture wastewater and Yangtze River water, demonstrating their immense application potential.
Collapse
Affiliation(s)
- Jixiang Wang
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China. .,Pharmaceutical Sciences Laboratory, Åbo Akademi University, FI-20520, Turku, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Xiaolei Li
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Rong Zhang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, CN-200233, Shanghai, China
| | - Bingjie Fu
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Mingcan Chen
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Mengxue Ye
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Wanyu Liu
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Jingjing Xu
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, FI-20520, Turku, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| |
Collapse
|
63
|
Zhang L, Xu Y, Xu J, Zhang H, Zhao T, Jia L. Intelligent multicolor nano-sensor based on nontoxic dual fluoroprobe and MOFs for colorful consecutive detection of Hg 2+ and cysteine. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128478. [PMID: 35180520 DOI: 10.1016/j.jhazmat.2022.128478] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Ultrasensitive detection of Hg2+ in aquatic ecosystems is of great significance due to its high toxicity and ubiquity in water. Herein, using a one-step in-situ synthesis method, blue fluorescent carbon dots (CDs), red fluorescent InP/ZnS quantum dots (InPQDs), and MOFs (ZIF-8) integrated multicolor nano-sensor CDs/InPQDs@ZIF-8 was constructed for consecutive visual detection of Hg2+ and Cys. The InPQDs can act as the response unit for Hg2+ and Cys, with the limit of detection (LOD) of 8.68 and 37.96 nM, respectively. Significantly, the low detection limit combines with good specificity and accuracy of the nano-sensor meet the requirement for the safety monitoring and control of Hg2+ in drinking and environmental water. Moreover, the color recognition and processing software installed on smart phone can realize the real-time and rapid sensing of Hg2+ and Cys. A logic gate circuit was also devised, providing the possibilities for the application of the nano-sensor in the field of intelligent devices. As far as we know, this was the first example to apply InPQDs to the continuous multicolor visual detection of Hg2+ and Cys, which provided reference for the construction of environmentally-friendly dual emission fluorescent sensors for hazardous substance monitoring.
Collapse
Affiliation(s)
- Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan, 454000, China
| | - Yiru Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan, 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan, 454000, China.
| | - Huiju Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan, 454000, China
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, No. 2001 Shiji Road, Jiaozuo, Henan, 454000, China.
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan, 454000, China.
| |
Collapse
|
64
|
Shen Y, Wei Y, Zhu C, Cao J, Han DM. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
65
|
Yang W, Zheng X, Gao F, Li H, Fu B, Guo DY, Wang F, Pan Q. CdTe QDs@ZIF-8 composite-based recyclable ratiometric fluorescent sensor for rapid and sensitive detection of chlortetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120785. [PMID: 34972052 DOI: 10.1016/j.saa.2021.120785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The residue problem in animal food products caused by the abuse of chlortetracycline (CTC) is one of the food safety issues that have attracted much attention. Herein, a composite was generated by embedding CdTe quantum dots (QDs) into ZIF-8 for ratiometric fluorescent analysis of CTC. With adding CTC, the green luminescence of CTC appeared under the sensitization effect of Zn2+ in ZIF-8, but the red luminescence of CdTe QDs was reduced by the inner filtration effect of CTC. On this basis, CTC was detected by the composite with a short response time of 1 min, and the limit of detection was calculated to be 37 nM that was 17 times lower than the maximum residue limit of CTC in animal food products (626 nM). Excellent recyclability of the composite was also observed, and CTC was consecutively measured at least six times. The composite was used to determine CTC in basa fish and pure milk with satisfactory recoveries (91.0-110.0%). Portable test strips were further manufactured and the visual determination of CTC was obtained. These results convictively demonstrate that CdTe QDs@ZIF-8 composite as a recyclable ratiometric fluorescent sensor achieves the rapid and sensitive measurement of CTC residue in animal food products.
Collapse
Affiliation(s)
- Weikang Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Xinyu Zheng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Feng Gao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Bo Fu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen 361000, PR China.
| | - Fuxiang Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, PR China; School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
66
|
Stimulus response of HNT-CDs-Eu nano-sensor: Toward visual point-of-care monitoring of a bacterial spore biomarker with hypersensitive multi-color agarose gel based analytical device. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
67
|
Zhang Y, Mehedi Hassan M, Rong Y, Liu R, Li H, Ouyang Q, Chen Q. An upconversion nanosensor for rapid and sensitive detection of tetracycline in food based on magnetic-field-assisted separation. Food Chem 2022; 373:131497. [PMID: 34772565 DOI: 10.1016/j.foodchem.2021.131497] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Tetracycline, a broad-spectrum antibiotic, has been widely used in disease treatment and other fields. However, due to the unreasonable use, its residue remains in food which eventually harms human health. Here described an upconversion nanosensor for tetracycline detection based on magnetic separation and electrostatic adsorption. To identify tetracycline, tetracycline aptamer, and europium ions (Eu3+) were introduced in the system. According to the electrostatic adsorption principle, Eu3+ exposed core-shell UCNPs were bound to negative complex of magnetic nanoparticles (MNPs) and aptamer. In the presence of tetracycline, UCNPs separated with MNPs-aptamer and remained in the supernatant by an external magnetic field. Under optimal conditions, the linear detection range of tetracycline was 0.5-1000 ng·mL-1, and the detection limit was 0.17 ng·mL-1. It has been successfully applied to detect tetracycline in food samples. The constructed method provided broad prospects for tetracycline detection with the merits of simple operation, high sensitivity, excellent repeatability, and selectivity.
Collapse
Affiliation(s)
- Yunlian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Rui Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
68
|
Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151997. [PMID: 34848263 DOI: 10.1016/j.scitotenv.2021.151997] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/18/2023]
Abstract
Residual antibiotics in food products originated from administration of the antibiotics to animals may be accumulated through food metabolism in the human body and endanger safety and health. Thus, developing a prompt and accurate way for detection of antibiotics is a crucial issue. The zero-dimensional fluorescent probes including metals based, carbon and graphene quantum dots (QDs), are highly sensitive materials to use for the detection of a wide range of antibiotics in natural products. These QDs demonstrate unique optical properties like tunable photoluminescence (PL) and excitation-wavelength dependent emission. This study investigates the trends related to carbon and metal based QDs preparation and modification, and their diverse detection application. We discuss the performance of QDs based sensors application in various detection systems such as photoluminescence, photoelectrochemical, chemiluminescence, electrochemiluminescence, colorimetric, as well as describing their working principles in several samples. The detecting mechanism of a QDs-based sensor is dependent on its properties and specific interactions with particular antibiotics. This review also tries to describe environmental application and future perspective of QDs for antibiotics detection.
Collapse
Affiliation(s)
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Tehran 14155-477, Iran.
| |
Collapse
|
69
|
Lei SN, Cong H. Fluorescence detection of perfluorooctane sulfonate in water employing a tetraphenylethylene-derived dual macrocycle BowtieCyclophane. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
70
|
Zhao Y, Zhao C, Yang Y, Li Z, Qiu X, Gao J, Ji M. Adsorption of sulfamethoxazole on polypyrrole decorated volcanics over a wide pH range: Mechanisms and site energy distribution consideration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
71
|
Kaur N, Tiwari P, Abbas Z, Mobin SM. Doxycycline detection and degradation in aqueous media via simultaneous synthesis of Fe-N@Carbon dots and Fe3O4-Carbon dot hybrid nanoparticles: One arrow two hawk approach. J Mater Chem B 2022; 10:5251-5262. [DOI: 10.1039/d2tb00475e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The overuse of antibiotics in recent years presents a huge challenge to society for their removal from the environment. The prolonged presence of antibiotics as environmental pollutants results in the...
Collapse
|
72
|
Wang Y, Zhang K, Du Y. Recent progress of carbon dot fluorescent probes for tetracycline detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj04064f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We made a detailed discussion about TCs and CDs, including the synthetic methods, doping strategies and promising prospects.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacy, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, P. R. China
| | - Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
73
|
Sun Z, Gao Y, Niu Z, Pan H, Xu X, Zhang W, Zou X. Programmable-Printing Paper-Based Device with a MoS 2 NP and Gmp/Eu-Cit Fluorescence Couple for Ratiometric Tetracycline Analysis in Various Natural Samples. ACS Sens 2021; 6:4038-4047. [PMID: 34672196 DOI: 10.1021/acssensors.1c01448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Paper-based fluorescence devices, with smartphone aids, bring considerable operation convenience for tetracycline (TC) sensing. Nevertheless, they must meet the challenge in real determination against complicated backgrounds. Considering that, we present a programmable-printing paper-based device and then apply it to TC determination for various natural samples. MoS2 NPs and Gmp/Eu-Cit are synthetized as composite probes. A static quenching process is found with MoS2 NP fluorescence at 430 nm, while significant magnification of Gmp/Eu-Cit emission is obtained at 617 nm, establishing a valuable ratiometric indicator. Remarkably, two-stage programmable printing maximizes the proposed sensing capability. A transitive device, containing a gradually changing amount of a certain probe, is prepared to sense TC. With a homemade smartphone application and 3D-printed measurement chamber, the corresponding signals are examined to explore optimal setups. These setups are automatically processed to prepare the final-version device, not requiring manual operations. Benefitting from this interesting feature, the proposed device gains many rewards in performances. It effectively senses TC in a wide range from 12.7 nM to 80 μM and simultaneously provides naked eye-legible signals and smartphone-based readouts with confident selectivity and stability. This device is consequently applied for various samples of soil, river water, milk, and serum and meets well with HPLC-MS and recovery tests.
Collapse
Affiliation(s)
- Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Yunlong Gao
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Zeng Niu
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Haodong Pan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xuechao Xu
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
74
|
Tian X, Fan Z. Novel ratiometric probe based on the use of rare earth-carbon dots nanocomposite for the visual determination of doxycycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119925. [PMID: 34020383 DOI: 10.1016/j.saa.2021.119925] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Rare earth-carbon dots (RE-CDs) hybrid nanomaterials with the merits of both RE and CDs have rapidly emerging as highly promising functional materials in biochemical analysis. In this work, a new kind of water-soluble RE-CDs nanocomposite (CDs@CaF2:Eu3+) was developed for the ratiometric determination of doxycycline (DOX). The CDs@CaF2:Eu3+ under the excitation at 365 nm displayed blue emission of CDs at 440 nm and no obvious emission of Eu3+. With the addition of DOX, substantial fluorescence quenching of the CDs at 440 nm and enhancement of Eu3+ at 613 nm were observed, resulting in a ratiometric fluorescent response toward DOX. A wide linear range from 0.1 µM to 30 µM was achieved in the detection of DOX with a lowest detection limit of 43 nM. In particular, the probe could discriminate DOX from other tetracycline antibiotics through unique fluorescence response. Moreover, we have successfully applied the method for the determination of DOX in milk and honey samples.
Collapse
Affiliation(s)
- Xiaolin Tian
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China.
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China.
| |
Collapse
|
75
|
Zhou J, Zhao R, Liu S, Feng L, Li W, He F, Gai S, Yang P. Europium Doped Silicon Quantum Dot As a Novel FRET Based Dual Detection Probe: Sensitive Detection of Tetracycline, Zinc, and Cadmium. SMALL METHODS 2021; 5:e2100812. [PMID: 34927952 DOI: 10.1002/smtd.202100812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/04/2021] [Indexed: 06/14/2023]
Abstract
The imbalance of Zn2+ /Cd2+ in the human body can lead to many serious diseases due to the overuse of antibiotics and deposition in animal products. Developing a functional material for detecting is challenging and in demand. Herein, silicon quantum dots (SiQDs) are designed as a functional platform for the detection of tetracycline and Zn2+ /Cd2+ . The COOH functionalized SiQDs with the emission wavelength of 450 nm are chelated with Eu(NO3 )3 to form SiQDs-Eu3+ ratio fluorescent probes, which can be used to detect tetracycline (TCs) and Zn2+ /Cd2+ by fluorescence resonance energy transfer (FRET) principle sequentially. The fluorescent probe showed good linearity between ion concentration and fluorescence enhancement. The detection limit of TCs and Zn2+ /Cd2+ are 0.2 × 10-6 m and 3 × 10-6 m, respectively, when the pH of the solution is 7.4. In addition, the synthesized SiQDs-Eu3+ exhibited good stability (from 94.9% to 103.1%). The relative standard deviations (RSD, n = 10) of human serum and urine were both less than 3%. Therefore, the SiQDs-Eu3+ ratio fluorescence probe will provide a good application prospect in actual sample detection.
Collapse
Affiliation(s)
- Jialing Zhou
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shikai Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Wenting Li
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
76
|
Xu X, Wu X, Ding Y, Zhou X. Multicolorimetric sensing of histamine in fishes based on enzymatic etching of gold nanorods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
77
|
Zhou C, Zou H, Sun C, Li Y. Recent advances in biosensors for antibiotic detection: Selectivity and signal amplification with nanomaterials. Food Chem 2021; 361:130109. [PMID: 34029899 DOI: 10.1016/j.foodchem.2021.130109] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022]
Abstract
Antibiotics are widely used in the prevention and treatment of infectious diseases in animals due to its bactericidal or bacteriostatic action. Residual antibiotics and their metabolites pose great threats to human and animal health, such as potential carcinogenic and mutagenic effects, and bacterial resistances. Therefore, it is necessary and urgent to accurately monitor trace amounts of antibiotics in food samples. Up to now, many analytical methods have been reported for the determination of antibiotics. Biosensors with the advantages of high sensitivity, rapid response, easy miniaturization, and low price have been widely applied to the detection of antibiotics residues in past decades. This review offered an in-depth evaluation of recognition elements for antibiotic residues in diverse food matrices. In addition, it presented a systematical and critical review on signal amplification via various materials, focusing on recently developed nanomaterials. Finally, the review provided an outlook on the future concepts to help upgrade the sensing techniques for antibiotics in food.
Collapse
Affiliation(s)
- Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Chengjun Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China.
| |
Collapse
|
78
|
Pech M, Vrchota J, Bednář J. Predictive Maintenance and Intelligent Sensors in Smart Factory: Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:1470. [PMID: 33672479 PMCID: PMC7923427 DOI: 10.3390/s21041470] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
With the arrival of new technologies in modern smart factories, automated predictive maintenance is also related to production robotisation. Intelligent sensors make it possible to obtain an ever-increasing amount of data, which must be analysed efficiently and effectively to support increasingly complex systems' decision-making and management. The paper aims to review the current literature concerning predictive maintenance and intelligent sensors in smart factories. We focused on contemporary trends to provide an overview of future research challenges and classification. The paper used burst analysis, systematic review methodology, co-occurrence analysis of keywords, and cluster analysis. The results show the increasing number of papers related to key researched concepts. The importance of predictive maintenance is growing over time in relation to Industry 4.0 technologies. We proposed Smart and Intelligent Predictive Maintenance (SIPM) based on the full-text analysis of relevant papers. The paper's main contribution is the summary and overview of current trends in intelligent sensors used for predictive maintenance in smart factories.
Collapse
Affiliation(s)
| | - Jaroslav Vrchota
- Department of Management, Faculty of Economics, University of South Bohemia in Ceske Budejovice, Studentska 13, 370 05 Ceske Budejovice, Czech Republic; (M.P.); (J.B.)
| | | |
Collapse
|